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Mod Arithmetic

CMSC250
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Divides

e Wesaythata|bifb = ax wherex € Z

 Examples:
.+ 2|10
. 5|25
« 5}7
c 0+3
. 8|8
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Modular Arithmetic

* We say that a = b (mod m) (read “a is congruent to b mod m”) means
that m [(a — b).

* Examples:
e 6 =2 (mod4)
« 81 =0 (mod?9)

* 91 = 0 (mod 13)
* 100 = 2 (mod 7)

e Convention: 0 <bh<m-—1
* THINK: Take large number a, divide by m, remainder is b
e Terminology: “Reducing a mod m”
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VS

* In Logic, ¢; = @, mean that ¢, and @, have the same truth table
(are logically equivalent)

* In Number Theory, a = b (mod m), read “a is congruent to
b mod m”) means m |(a — b).

* THESE TWO ARE VERY DIFFERENT!!!! THEY HAVE
NOTHING TO DO WITH EACH OTHER!
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Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; + a,) = (by + by,)(mod m)
Proof:
* a; = b; (modm) = m|(a; — by)
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Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; +a,) = (by + by)(mod m)

Proof:
* a; = b; (modm) = m|(a; — by)
« @ €Z)ay— by =m-nry] ()
* Similarly, @r, € Z)[a, — b, =m - 1,] (1)
* Therefore, by (/) and (I/) we have:

al—b1+a2—b2=m-r1+m-r2=>(a1+a2)—(b1+b2)=m-(r1+r2)=>

a,; + a, = (b; + b,)(mod m)



Properties of congruence

2. Ifay = by (mod m) and a, = b, (mod m), then

a,-a, = by - b, (mod m)



Properties of congruence
Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + bo = ao.
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Properties of congruence

Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + b = a». Then,

ai-as = (jm+ by)(km + b2)

— jkm® + kmby + jmbo + by - by
= m(jkm + kby + jb2) + b1 - b2



Properties of congruence

Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + b = a». Then,

ai-as = (jm+ by)(km + b2)

— jkm® + kmby + jmbo + by - by
= m(jkm + kby + jb2) + b1 - b2

So, (a1 - az) — (b1 - b2) = m(jkm + kby + jb2). Since
jkm + kby + jbo € Z, @y - ao = by - bo(mod m)
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Proof with modular arithmetic

* Claim: Any two integers of opposite parity sum to an odd number.

* Proof:
* Since aq, a, are opposite parity. Assume that

a; =0 (mod 2) and a, = 1 (mod 2)
* Using the properties of modular arithmetic, we obtain:

a;+a, =(0+ 1)(mod 2) =1 (mod 2)
* Done.



More proofs

e Similarly, you can show that (Va € N)[a* + a = 0 (mod 2)]



More proofs

e Similarly, you can show that (Va € N)[a? + a = 0 (mod 2)]
* Proof: We will simplify notation by assuming that “ = " is the same as

" = (mod 2)” We have two cases:

1. a=0.Then,a?+ a= 0%+ 0=0.Done.
2. a=1.Then,a’?+a=1%+1= 0. Done.



Algorithms on Divisibility

1. Modular Exponentiation (Repeated Squaring)
2. Greatest Common Divisor (GCD)



Basic assumptions

- a+ banda - b have unit cost
e Thisis not true if a, b are too large
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First problem

How fast can we compute a™ mod m (n,m € N)?

1. Obviously, we can compute a™ = a X a X --- X a and mod that large
number by m. n times

e Problems

e Arithmetic overflow in computation of a™
e Modding a large quantity is tough on the FPU
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2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.
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First problem, second approach

2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.

* Problems
e Arithmetic overflow in computation of a™
e Modding a large guantity is tough on the FPU

* Additionally, we have another nice property...
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Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All =are= (mod99).

1. 32 =9

2 32 =(32)"=92=31
2
3 3% = (322) =812 = 27
4

32" = (323)2 =272 = 36



Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All =are= (mod99).
1. 32 =9
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Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All=are= (mod99).
. 32 =

AN N W NN
W
N
|
B o
N
w
—
N
Il
w DN OO
~
\)
1l
O W N
@)



Example

* Computing 3°* mod 99 in log, 64 = 6 steps.
e All=are= (mod99).

1. 32 =9

2. 32 =(3?%) ‘=92=g
3. 325( )58252
4. 325( )EZ = 36
5.325( )53 =9
6. 32 =(9)? =81

e Aha! 364 = 32° = 81



Good news, bad news

 Good news By using repeated squaring, can compute a’’ mod m
quickly (roughly # = log, 2* steps)



Good news, bad news

. . f
 Good news By using repeated squaring, can compute a® mod m
quickly (roughly # = log, 2* steps)

 Bad news What if our exponent is not a power of 27



Example

327

* Computing mod 99 with the same method



Example

e Computing 3?7 mod 99 with the same method
 All =are= (mod99).

° 31:
° 32:

¢ 32" = (32)2 =92 =81
. 32° = (322)2 = 812 =27



Example

e Computing 3?7 mod 99 with the same method
 All =are= (mod99).

° 315
° 325

. 32° = (32)225 92 = 81
. 32° = (322) =812 = 27
2
. 32* = (323) =272 = 36
e 327 =316 % 38 % 32 x 31=36 x 27 X 9 X



Example (contd.)

» To avoid large numbers, reduce product as you go



Example (contd.)

» To avoid large numbers, reduce product as you go

e 327 =316 w38 % 32 x 31 =36 X 27 X 9 X 3 =

36 X 27 )X (9 X 3) =81 X 27=9



Exercise

* Solve the following for r please!

534 = r (mod 117)
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o Step1Writen=2%1 42924 ...4 2%, g,<q, << g,

d2 4....4249 q q
e Step 2 Note that @™ = @271 +2%2++297 — 291 5 ... 5 g2



Algorithm to compute a™ (mod m) in logn steps

e Step1Writen =29 + 29 + ... 4+ 297, g, < q, < -+ < q,
e Step 2 Note that a™ = 2" +22++217 = 2% 5 ... x g2

* Step 3 Use repeated squaring to compute

0 1 2 q
a’ ,a* ,a*,..,a*" modm

i i\ 2
using a2’ = (az ) (mod m)



Algorithm to compute a™ (mod m) in logn steps

 Step1Writen =29 4292 +...4 297, g,<q, <+ <@,
e Step 2 Note that @™ = @271 +2%2++297 — 291 5 ... 5 g2
* Step 3 Use repeated squaring to compute

a2’ a?,a?’, ..., a®" mod m

i i\ 2
using a2’ = (az ) (mod m)

 Step 4 Compute a2 x -+ x a2’ mod m reducing when necessary
to avoid large numbers



The key step

* The key step is Step #3. Use repeated squaring to compute

0 1 52 q
a? ,a% ,a*,..,a*" modm

~_
N

using a2 = (azl (mod m)
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The key step

The key step is Step #3. Use repeated squaring to compute

0 1 52 q
a’ ,a* ,a*,..,a*" modm
. 2
. +1 A
using a? = (az ) (mod m)
2i+1

i\ 2
When computing a mod m, already have computed (UL2 ) (mod m)

Note that all numbers are below m because we reduce mod m every step
of the way



The key step

The key step is Step #3. Use repeated squaring to compute

0 1 52 q
a’ ,a? ,a*,..,a*" modm
. Ny
. +1 A
using a® = = (a2 ) (mod m)
2i+1

i\ 2
When computing a mod m, already have computed (a2 ) (mod m)

Note that all numbers are below m because we reduce mod m every step
of the way

2
* So (azl) is unit cost and anything mod m is also unit cost!
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* What is the GCD of...
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(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b
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Second problem: Greatest Common Divisor
(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b

* What is the GCD of...
e 10and 15?5
12 and 90? 6
20 and 297 1 (20 and 29 are called co-prime or relatively prime)
153 and 181 1 (also co-prime)



Euclid’s GCD algorithm

e Recalllfa =0 (mod m)andb =0 (mod m),thena —b = 0 (mod m)



Euclid’s GCD algorithm

* Recalllfa =0 (modm)andb =0 (mod m),thena — b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this
recursion (assume a > b)

GCD(a,b) = GCD(a,b —a)

Until its arguments are the same.



Greatest Common Divisor (GCD)

e Recalllfa =0 (mod m)andb =0 (mod m),thena —b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this
recursion

GCD(a,b) = GCD(a,b —a)
Until its arguments are the same.
 Question If we implement this in a programming language, it can only be

done recursively
No Something Else
(Why) (What)




Greatest Common Divisor (GCD)

* Recalllfa =0 (mod m)andb =0 (mod m),thena —b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this

recursion _
GCD(a,b) = GCD(a,b —a) Ialil

Until its arguments are the same. recursion
 Question If we implement this in a programming language, it can only be
done recursively e

while(left != right){

if(left > right)
Yes Something Else elsieft = left - right;
h What
(why) (What) right = right - left;

}

print "GCD is: " left; // or right




GCD example

. GCD(18, 100) =

GCD(18, 100 — 18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46)
GCD(18, 46 — 18) = GCD(18, 28)
GCD(18, 28 — 18) = GCD(18, 10)
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2)
GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4-2,2) = GCD(2, 2) = 2



GCD example

 GCD(18, 100) =
GCD(18, 100 —18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) = Given integers a, b with a > b (without loss of
GCD(18, 64 —18) = GCD(18,46) =  generality), approximately how many steps
GCD(18, 46— 18) = GCD(18, 28) =  does this algorithm take?
GCD(18, 28 — 18) = GCD(18, 10) =

GCD(18 - 10, 10) = GCD(8, 10)= - stone b stens
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =

GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4-2,2) = GCD(2, 2) = 2

a-b steps Something Else




GCD example

GCD(18, 100) =

GCD(18, 100 —18) = GCD(18, 82)=

GCD(18, 82 — 18 = GCD(18, 64) = Given integers a, b with a > b (without loss of
GCD(18, 64 —18) = GCD(18,46) =  generality), approximately how many steps
GCD(18, 46— 18) = GCD(18, 28) =  does this algorithm take?

GCD(18, 28 — 18) = GCD(18, 10) =

GCD(18 - 10, 10) = GCD(8, 10)= a steps b steps
GCD(8,10- 8)=GCD(8, 2) =

GCD(8 - 2, 2) = GCD(6, 2) = N Roughly
GCD(6 - 2, 2) = GCD(4, 2) = e Somoting Ele i,
GCD(4- 2, 2) = GCD(2, 2) = 2

N



Can we do better?

GCD(18, 100) =

GCD(18, 100 — 18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46)
GCD(18, 46 — 18) = GCD(18, 28)
GCD(18, 28 — 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4-2,2) = GCD(2, 2) = 2

Something
Else




Can we do better?

Something
Else

e GCD(18, 100) =
GCD(18, 100 — 18) = GCD(18, 82)= —
GCD(18, 82 — 18) = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46) = - ©CD(18,100-5x18)
GCD(18, 46 — 18) = GCD(18, 28) =
GCD(18, 28 — 18) = GCD(18, 10) = __

GCD(18, 100) =
GCD(18, 100 — 5 x 18) = GCD(18,

GCD(18 - 10, 10) = GCD(8, 10)= 10) =

GCD(8, 10 - 8)= GCD(8, 2) = GCD(18 — 10, 10) = GCD(8, 10) =
GCD(8-2,2)=GCD(6,2)=  — ccpe-3x2, 2) GCD(8, 10 - 8) = GCD(8, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = GCD(8 -3 x2,2) = GCD(2, 2) = 2

GCD(4-2,2)=GCD(2,2)=2 — From 10 to 4 steps!



How fast is this new algorithm?

* Given non-zero integers a, b with a > b, roughly how many steps
does this new algorithm take to compute GCD(a, b)?

e log, a Something Else




How fast is this new algorithm?

* Given non-zero integers a, b with a rou%hly how many steps does
this new algorithm take to compute GCD(a b):

N (-
* Infact, it take , Where ¢ =

* Proof by Gabriel Lamé in 1844, considered by some to be the first ever
result in Algorlthmlc CompIeX|ty theory.

e \
/ \
log, a ( Something Else |

.\‘

\

1+\/§ ./

is the golden ratio.
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