START
RECORDING

Mod Arithmetic

CMSC250

Divides

* Wesaythata|bifb = ax wherex € Z

Divides

e Wesaythata|bifb = ax wherex € Z

 Examples:
.+ 2|10
. 5|25
« 5}7
c 0+3
. 8|8

Modular Arithmetic

* We say that a = b (mod m) (read “a is congruent to b mod m”) means
that m [(a — b).

Modular Arithmetic

* We say that a = b (mod m) (read “a is congruent to b mod m”) means
that m [(a — b).

* Examples:
e 6 =2 (mod4)
« 81 =0 (mod?9)

* 91 = 0 (mod 13)
* 100 = 2 (mod 7)

Modular Arithmetic

* We say that a = b (mod m) (read “a is congruent to b mod m”) means
that m [(a — b).

* Examples:
6 =2 (mod4)
81 = 0 (mod 9)

91 = 0 (mod 13)
100 = 2 (mod 7)

e Convention: 0 <bhb<m-—1

Modular Arithmetic

* We say that a = b (mod m) (read “a is congruent to b mod m”) means
that m [(a — b).

* Examples:
e 6 =2 (mod4)
« 81 =0 (mod?9)

* 91 = 0 (mod 13)
* 100 = 2 (mod 7)

e Convention: 0 <bh<m-—1
* THINK: Take large number a, divide by m, remainder is b

Modular Arithmetic

* We say that a = b (mod m) (read “a is congruent to b mod m”) means
that m [(a — b).

* Examples:
e 6 =2 (mod4)
« 81 =0 (mod?9)

* 91 = 0 (mod 13)
* 100 = 2 (mod 7)

e Convention: 0 <bh<m-—1
* THINK: Take large number a, divide by m, remainder is b
e Terminology: “Reducing a mod m”

VS

* In Logic, ¢1 = @, mean that ¢, and @, have the same truth table
(are logically equivalent)

VS

* In Logic, ¢1 = @, mean that ¢, and @, have the same truth table
(are logically equivalent)

* In Number Theory, a = b (mod m), read “a is congruent to
b mod m”) means m |(a — b).

VS

* In Logic, ¢; = @, mean that ¢, and @, have the same truth table
(are logically equivalent)

* In Number Theory, a = b (mod m), read “a is congruent to
b mod m”) means m |(a — b).

* THESE TWO ARE VERY DIFFERENT!!!! THEY HAVE
NOTHING TO DO WITH EACH OTHER!

Properties of congruence

1. Ifay = b; (mod m) and a, = b, (mod m), then:
(a; + a,) = (by + by)(mod m)

Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; +a,) = (by + by)(mod m)

Proof:
* a; = b; (modm) = m|(a; — by)

Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; +a,) = (by + by)(mod m)

Proof:
* a; = b; (modm) = m|(a; — by)
* 3 €Z)[a; — by =m -] ()]

Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; + a,) = (by + by,)(mod m)
Proof:
* a; = b; (modm) = m|(a; — by)
o (37"1 € Z)[al — bl =m:- Tl] (I)
* Similarly, @r, € Z)[a, — b, =m - 1,] (1)

Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; +a,) = (by + by)(mod m)

Proof:
* a; = b; (modm) = m|(a; — by)
« @ €Z)ay— by =m-nry] ()
* Similarly, @r, € Z)[a, — b, =m - 1,] (1)
* Therefore, by (/) and (I/) we have:

al—b1+a2—b2=m-r1+m-r2=>(a1+a2)—(b1+b2)=m-(r1+r2)=>

a,; + a, = (b; + b,)(mod m)

Properties of congruence

2. Ifay = by (mod m) and a, = b, (mod m), then

a,-a, = by - b, (mod m)

Properties of congruence
Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + bo = ao.

Properties of congruence

Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + b = a». Then,

ai-as = (jm+ by)(km + b2)

Properties of congruence

Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + b = a». Then,

ai-as = (jm+ by)(km + b2)

— jkm® + kmby + jmbo + by - by
= m(jkm + kby + jb2) + b1 - b2

Properties of congruence

Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + b = a». Then,

ai-as = (jm+ by)(km + b2)

— jkm® + kmby + jmbo + by - by
= m(jkm + kby + jb2) + b1 - b2

So, (a1 - az) — (b1 - b2) = m(jkm + kby + jb2). Since
jkm + kby + jbo € Z, @y - ao = by - bo(mod m)

Proof with modular arithmetic

* Claim: Any two integers of opposite parity sum to an odd number.

Proof with modular arithmetic

* Claim: Any two integers of opposite parity sum to an odd number.

* Proof:
* Since aq, a, are opposite parity. Assume that

a; =0 (mod 2) and a, =1 (mod 2)

Proof with modular arithmetic

* Claim: Any two integers of opposite parity sum to an odd number.

* Proof:
* Since aq, a, are opposite parity. Assume that

a; =0 (mod 2) and a, = 1 (mod 2)
* Using the properties of modular arithmetic, we obtain:

a;+a, =(0+ 1)(mod 2) =1 (mod 2)
* Done.

More proofs

e Similarly, you can show that (Va € N)[a* + a = 0 (mod 2)]

More proofs

e Similarly, you can show that (Va € N)[a? + a = 0 (mod 2)]
* Proof: We will simplify notation by assuming that “ = " is the same as

" = (mod 2)” We have two cases:

1. a=0.Then,a?+ a= 0%+ 0=0.Done.
2. a=1.Then,a’?+a=1%+1= 0. Done.

Algorithms on Divisibility

1. Modular Exponentiation (Repeated Squaring)
2. Greatest Common Divisor (GCD)

Basic assumptions

- a+ banda - b have unit cost
e Thisis not true if a, b are too large

First problem

How fast can we compute a™ mod m (n,m € N)?

First problem

How fast can we compute a™ mod m (n,m € N)?

1. Obviously, we can compute a™ = a X a X --- X a and mod that large
number by m. n times

First problem

How fast can we compute a™ mod m (n,m € N)?

1. Obviously, we can compute a™ = a X a X --- X a and mod that large
number by m. n times

e Problems

e Arithmetic overflow in computation of a™
e Modding a large quantity is tough on the FPU

First problem, second approach

2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.

First problem, second approach

2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.

* Problems
e Arithmetic overflow in computation of a™
e Modding a large guantity is tough on the FPU

First problem, second approach

2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.

* Problems
e Arithmetic overflow in computation of a™
e Modding a large guantity is tough on the FPU

* Additionally, we have another nice property...

First problem

* How fast can we compute a” mod m (n,m € N)?

We can do it in roughly

Something Else
logn steps

We always need n We can do it in
steps roughly v/n steps

First problem

* How fast can we compute a™ mod m (n,m € N)?

We can do it in roughly

Something Else
logn steps

We always need n We can do it in
steps roughly v/n steps

Example

364

* Computing mod 99 in log, 64 = 6 steps.

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All =are= (mod99).

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All =are= (mod99).
1. 32 =9

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All =are= (mod99).
1. 32 =9
2 32 =(32)"=92=31

Example

Computing 3°* mod 99 in log, 64 = 6 steps.

All = are = (mod 99).
1. 32 =9
2 32 =(32)"=92=31
2
3 3% = (322) =812 = 27

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All =are= (mod99).

1. 32 =9

2 32 =(32)"=92=31
2
3 3% = (322) =812 = 27
4

32" = (323)2 =272 = 36

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All =are= (mod99).
1. 32 =9

it N W N
w
N
Il
~—
w
pe

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All=are= (mod99).
. 32 =

AN N W NN
W
N
|
B o
N
w
—
N
Il
w DN OO
~
\)
1l
O W N
@)

Example

* Computing 3°* mod 99 in log, 64 = 6 steps.
e All=are= (mod99).

1. 32 =9

2. 32 =(3?%) ‘=92=g
3. 325()58252
4. 325()EZ = 36
5.325()53 =9
6. 32 =(9)? =81

e Aha! 364 = 32° = 81

Good news, bad news

 Good news By using repeated squaring, can compute a’’ mod m
quickly (roughly # = log, 2* steps)

Good news, bad news

. . f
 Good news By using repeated squaring, can compute a® mod m
quickly (roughly # = log, 2* steps)

 Bad news What if our exponent is not a power of 27

Example

327

* Computing mod 99 with the same method

Example

e Computing 3?7 mod 99 with the same method
 All =are= (mod99).

° 31:
° 32:

¢ 32" = (32)2 =92 =81
. 32° = (322)2 = 812 =27

Example

e Computing 3?7 mod 99 with the same method
 All =are= (mod99).

° 315
° 325

. 32° = (32)225 92 = 81
. 32° = (322) =812 = 27
2
. 32* = (323) =272 = 36
e 327 =316 % 38 % 32 x 31=36 x 27 X 9 X

Example (contd.)

» To avoid large numbers, reduce product as you go

Example (contd.)

» To avoid large numbers, reduce product as you go

e 327 =316 w38 % 32 x 31 =36 X 27 X 9 X 3 =

36 X 27)X (9 X 3) =81 X 27=9

Exercise

* Solve the following for r please!

534 = r (mod 117)

Algorithm to compute a™ (mod m) in logn steps

o Step1Writen=2%1 42924 ...4 2%, g,<q, << g,

Algorithm to compute a™ (mod m) in logn steps

o Step1Writen=2%1 42924 ...4 2%, g,<q, << g,

d2 4....4249 q q
e Step 2 Note that @™ = @271 +2%2++297 — 291 5 ... 5 g2

Algorithm to compute a™ (mod m) in logn steps

e Step1Writen =29 + 29 + ... 4+ 297, g, < q, < -+ < q,
e Step 2 Note that a™ = 2" +22++217 = 2% 5 ... x g2

* Step 3 Use repeated squaring to compute

0 1 2 q
a’ ,a* ,a*,..,a*" modm

i i\ 2
using a2’ = (az) (mod m)

Algorithm to compute a™ (mod m) in logn steps

 Step1Writen =29 4292 +...4 297, g,<q, <+ <@,
e Step 2 Note that @™ = @271 +2%2++297 — 291 5 ... 5 g2
* Step 3 Use repeated squaring to compute

a2’ a?,a?’, ..., a®" mod m

i i\ 2
using a2’ = (az) (mod m)

 Step 4 Compute a2 x -+ x a2’ mod m reducing when necessary
to avoid large numbers

The key step

* The key step is Step #3. Use repeated squaring to compute

0 1 52 q
a? ,a% ,a*,..,a*" modm

~_
N

using a2 = (azl (mod m)

The key step

* The key step is Step #3. Use repeated squaring to compute

0 1 52 q
a’ ,a* ,a*,..,a*" modm
. 2
. +1 A
using a? = (az) (mod m)
2i+1

i\ 2
* When computing a mod m, already have computed (a2) (mod m)

The key step

The key step is Step #3. Use repeated squaring to compute

0 1 52 q
a’ ,a* ,a*,..,a*" modm
. 2
. +1 A
using a? = (az) (mod m)
2i+1

i\ 2
When computing a mod m, already have computed (UL2) (mod m)

Note that all numbers are below m because we reduce mod m every step
of the way

The key step

The key step is Step #3. Use repeated squaring to compute

0 1 52 q
a’ ,a? ,a*,..,a*" modm
. Ny
. +1 A
using a® = = (a2) (mod m)
2i+1

i\ 2
When computing a mod m, already have computed (a2) (mod m)

Note that all numbers are below m because we reduce mod m every step
of the way

2
* So (azl) is unit cost and anything mod m is also unit cost!

Second problem: Greatest Common Divisor
(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b

Second problem: Greatest Common Divisor
(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b

e What is the GCD of...
e 10 and 15?7

Second problem: Greatest Common Divisor
(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b

e Whatis the GCD of...
e 10and 15?5
e 12 and90?

Second problem: Greatest Common Divisor
(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b

* What is the GCD of...
e 10and 15?5
e 12and 90?6
e 20and29?

Second problem: Greatest Common Divisor
(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b

e Whatis the GCD of...
e 10and 15?5
12 and 907 6

20 and 297 1 (20 and 29 are called co-prime or relatively prime)
153 and 181

Second problem: Greatest Common Divisor
(GCD)

e Ifa, b € N*Y, then the GCD of q, b is the largest non-zero integer n
suchthatn |[aandn | b

* What is the GCD of...
e 10and 15?5
12 and 90? 6
20 and 297 1 (20 and 29 are called co-prime or relatively prime)
153 and 181 1 (also co-prime)

Euclid’s GCD algorithm

e Recalllfa =0 (mod m)andb =0 (mod m),thena —b = 0 (mod m)

Euclid’s GCD algorithm

* Recalllfa =0 (modm)andb =0 (mod m),thena — b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this
recursion (assume a > b)

GCD(a,b) = GCD(a,b —a)

Until its arguments are the same.

Greatest Common Divisor (GCD)

e Recalllfa =0 (mod m)andb =0 (mod m),thena —b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this
recursion

GCD(a,b) = GCD(a,b —a)
Until its arguments are the same.
 Question If we implement this in a programming language, it can only be

done recursively
No Something Else
(Why) (What)

Greatest Common Divisor (GCD)

* Recalllfa =0 (mod m)andb =0 (mod m),thena —b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this

recursion _
GCD(a,b) = GCD(a,b —a) Ialil

Until its arguments are the same. recursion
 Question If we implement this in a programming language, it can only be
done recursively e

while(left != right){

if(left > right)
Yes Something Else elsieft = left - right;
h What
(why) (What) right = right - left;

}

print "GCD is: " left; // or right

GCD example

. GCD(18, 100) =

GCD(18, 100 — 18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46)
GCD(18, 46 — 18) = GCD(18, 28)
GCD(18, 28 — 18) = GCD(18, 10)
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2)
GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4-2,2) = GCD(2, 2) = 2

GCD example

 GCD(18, 100) =
GCD(18, 100 —18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) = Given integers a, b with a > b (without loss of
GCD(18, 64 —18) = GCD(18,46) = generality), approximately how many steps
GCD(18, 46— 18) = GCD(18, 28) = does this algorithm take?
GCD(18, 28 — 18) = GCD(18, 10) =

GCD(18 - 10, 10) = GCD(8, 10)= - stone b stens
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =

GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4-2,2) = GCD(2, 2) = 2

a-b steps Something Else

GCD example

GCD(18, 100) =

GCD(18, 100 —18) = GCD(18, 82)=

GCD(18, 82 — 18 = GCD(18, 64) = Given integers a, b with a > b (without loss of
GCD(18, 64 —18) = GCD(18,46) = generality), approximately how many steps
GCD(18, 46— 18) = GCD(18, 28) = does this algorithm take?

GCD(18, 28 — 18) = GCD(18, 10) =

GCD(18 - 10, 10) = GCD(8, 10)= a steps b steps
GCD(8,10- 8)=GCD(8, 2) =

GCD(8 - 2, 2) = GCD(6, 2) = N Roughly
GCD(6 - 2, 2) = GCD(4, 2) = e Somoting Ele i,
GCD(4- 2, 2) = GCD(2, 2) = 2

N

Can we do better?

GCD(18, 100) =

GCD(18, 100 — 18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46)
GCD(18, 46 — 18) = GCD(18, 28)
GCD(18, 28 — 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4-2,2) = GCD(2, 2) = 2

Something
Else

Can we do better?

Something
Else

e GCD(18, 100) =
GCD(18, 100 — 18) = GCD(18, 82)= —
GCD(18, 82 — 18) = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46) = - ©CD(18,100-5x18)
GCD(18, 46 — 18) = GCD(18, 28) =
GCD(18, 28 — 18) = GCD(18, 10) = __

GCD(18, 100) =
GCD(18, 100 — 5 x 18) = GCD(18,

GCD(18 - 10, 10) = GCD(8, 10)= 10) =

GCD(8, 10 - 8)= GCD(8, 2) = GCD(18 — 10, 10) = GCD(8, 10) =
GCD(8-2,2)=GCD(6,2)= — ccpe-3x2, 2) GCD(8, 10 - 8) = GCD(8, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = GCD(8 -3 x2,2) = GCD(2, 2) = 2

GCD(4-2,2)=GCD(2,2)=2 — From 10 to 4 steps!

How fast is this new algorithm?

* Given non-zero integers a, b with a > b, roughly how many steps
does this new algorithm take to compute GCD(a, b)?

e log, a Something Else

How fast is this new algorithm?

* Given non-zero integers a, b with a rou%hly how many steps does
this new algorithm take to compute GCD(a b):

N (-
* Infact, it take , Where ¢ =

* Proof by Gabriel Lamé in 1844, considered by some to be the first ever
result in Algorlthmlc CompIeX|ty theory.

e \
/ \
log, a (Something Else |

.\‘

\

1+\/§ ./

is the golden ratio.

STOP
RECORDING

	Slide Number 1
	Mod Arithmetic
	Divides
	Divides
	Modular Arithmetic
	Modular Arithmetic
	Modular Arithmetic
	Modular Arithmetic
	Modular Arithmetic
	
	
	
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Properties of congruence
	Proof with modular arithmetic
	Proof with modular arithmetic
	Proof with modular arithmetic
	More proofs
	More proofs
	Algorithms on Divisibility���1. Modular Exponentiation (Repeated Squaring)�2. Greatest Common Divisor (GCD)�
	Basic assumptions
	First problem
	First problem
	First problem
	First problem, second approach
	First problem, second approach
	First problem, second approach
	First problem
	First problem
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Good news, bad news
	Good news, bad news
	Example
	Example
	Example
	Example (contd.)
	Example (contd.)
	Exercise
	Algorithm to compute 𝑎 𝑛 𝑚𝑜𝑑 𝑚 in log𝑛 steps
	Algorithm to compute 𝑎 𝑛 𝑚𝑜𝑑 𝑚 in log𝑛 steps
	Algorithm to compute 𝑎 𝑛 𝑚𝑜𝑑 𝑚 in log𝑛 steps
	Algorithm to compute 𝑎 𝑛 𝑚𝑜𝑑 𝑚 in log𝑛 steps
	The key step
	The key step
	The key step
	The key step
	Second problem: Greatest Common Divisor (GCD)
	Second problem: Greatest Common Divisor (GCD)
	Second problem: Greatest Common Divisor (GCD)
	Second problem: Greatest Common Divisor (GCD)
	Second problem: Greatest Common Divisor (GCD)
	Second problem: Greatest Common Divisor (GCD)
	Euclid’s GCD algorithm
	Euclid’s GCD algorithm
	Greatest Common Divisor (GCD)
	Greatest Common Divisor (GCD)
	GCD example
	GCD example
	GCD example
	Can we do better?
	Can we do better?
	How fast is this new algorithm?
	How fast is this new algorithm?
	Slide Number 80

