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Divides

• We say that 𝑎𝑎|𝑏𝑏 if 𝑏𝑏 = 𝑎𝑎𝑎𝑎 where 𝑎𝑎 ∈ 𝑍𝑍
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• We say that 𝑎𝑎|𝑏𝑏 if 𝑏𝑏 = 𝑎𝑎𝑎𝑎 where 𝑎𝑎 ∈ 𝑍𝑍
• Examples:

• 2|10
• 5|25
• 5 ∤ 7
• 0 ∤ 3
• 8|8
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Algorithms on Divisibility

1. Modular Exponentiation (Repeated Squaring)
2. Greatest Common Divisor (GCD)



Basic assumptions

• 𝑎𝑎 + 𝑏𝑏 and 𝑎𝑎 ⋅ 𝑏𝑏 have unit cost
• This is not true if 𝑎𝑎, 𝑏𝑏 are too large 



First problem

How fast can we compute 𝑎𝑎𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 𝑛𝑛,𝑚𝑚 ∈ ℕ ?
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• Modding a large quantity is tough on the FPU
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First problem, second approach

2. We could start computing 𝑎𝑎 × 𝑎𝑎 × ⋯× 𝑎𝑎 until the product 
becomes larger than 𝑚𝑚, reduce and repeat until we’re done. 



First problem, second approach

2. We could start computing 𝑎𝑎 × 𝑎𝑎 × ⋯× 𝑎𝑎 until the product 
becomes larger than 𝑚𝑚, reduce and repeat until we’re done. 

• Problems
• Arithmetic overflow in computation of 𝑎𝑎𝑛𝑛
• Modding a large quantity is tough on the FPU
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2. We could start computing 𝑎𝑎 × 𝑎𝑎 × ⋯× 𝑎𝑎 until the product 
becomes larger than 𝑚𝑚, reduce and repeat until we’re done. 

• Problems
• Arithmetic overflow in computation of 𝑎𝑎𝑛𝑛
• Modding a large quantity is tough on the FPU

• Additionally, we have another nice property…
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Example

• Computing 364 𝑚𝑚𝑚𝑚𝑚𝑚 99 in log2 64 = 6 steps.
• All ≡ are ≡ (mod 99).

1. 321 ≡ 9
2. 322 ≡ 32

2
≡ 92 ≡ 81

3. 323 ≡ 322
2
≡ 812 ≡ 27

4. 324 ≡ 323
2
≡ 272 ≡ 36

5. 325 ≡ 324
2
≡ 362 ≡ 9

6. 326 ≡ 9 2 ≡ 81

• Aha! 364 = 326 ≡ 81



Good news, bad news

• Good news By using repeated squaring, can compute 𝑎𝑎2ℓ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚
quickly (roughly ℓ = log2 2ℓ steps)
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• Good news By using repeated squaring, can compute 𝑎𝑎2ℓ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚
quickly (roughly ℓ = log2 2ℓ steps)

• Bad news What if our exponent is not a power of 2?
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Example

• Computing 327 𝑚𝑚𝑚𝑚𝑚𝑚 99 with the same method
• All ≡ are ≡ (mod 99).

• 31 ≡ 3
• 32 ≡ 9
• 322 ≡ 32 2 ≡ 92 ≡ 81

• 323 ≡ 322
2
≡ 812 ≡ 27

• 324 ≡ 323
2
≡ 272 ≡ 36



Example

• Computing 327 𝑚𝑚𝑚𝑚𝑚𝑚 99 with the same method
• All ≡ are ≡ (mod 99).

• 31 ≡ 3
• 32 ≡ 9
• 322 ≡ 32 2 ≡ 92 ≡ 81

• 323 ≡ 322
2
≡ 812 ≡ 27

• 324 ≡ 323
2
≡ 272 ≡ 36

• 327 = 316 × 38 × 32 × 31 ≡ 36 × 27 × 9 × 3
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• To avoid large numbers, reduce product as you go



Example (contd.)

• To avoid large numbers, reduce product as you go

• 327 = 316 × 38 × 32 × 31 ≡ 36 × 27 × 9 × 3 ≡

36 × 27 × 9 × 3 ≡ 81 × 27 ≡ 9



Exercise

• Solve the following for 𝑟𝑟 please!

534 ≡ 𝑟𝑟 ( 𝑚𝑚𝑚𝑚𝑚𝑚 117)
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• Step 4 Compute 𝑎𝑎2𝑞𝑞1 × ⋯× 𝑎𝑎2𝑞𝑞𝑟𝑟 mod m reducing when necessary 
to avoid large numbers 
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The key step

• The key step is Step #3. Use repeated squaring to compute 

𝑎𝑎20 , 𝑎𝑎21 ,𝑎𝑎22 , … , 𝑎𝑎2𝑞𝑞𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

using 𝑎𝑎2𝑖𝑖+1 ≡ 𝑎𝑎2𝑖𝑖
2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚

• When computing 𝑎𝑎2𝑖𝑖+1 mod m, already have computed 𝑎𝑎2𝑖𝑖
2

𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚
• Note that all numbers are below 𝑚𝑚 because we reduce mod m every step 

of the way
• So 𝑎𝑎2𝑖𝑖

2
is unit cost and anything mod m is also unit cost!
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(GCD)
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Second problem: Greatest Common Divisor 
(GCD)

• If 𝑎𝑎, 𝑏𝑏 ∈ ℕ≠0, then the GCD of 𝑎𝑎, 𝑏𝑏 is the largest non-zero integer 𝑛𝑛
such that 𝑛𝑛 |𝑎𝑎 and 𝑛𝑛 | 𝑏𝑏
• What is the GCD of…

• 10 and 15? 5
• 12 and 90? 6
• 20 and 29? 1 (20 and 29 are called co-prime or relatively prime)
• 153 and 181 1 (also co-prime)



Euclid’s GCD algorithm

• Recall If 𝑎𝑎 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚) and 𝑏𝑏 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 , then 𝑎𝑎 − 𝑏𝑏 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚)
• The GCD algorithm finds the greatest common divisor by executing this 

recursion (assume a > b)

𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎, 𝑏𝑏 = 𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎, 𝑏𝑏 − 𝑎𝑎

Until its arguments are the same.
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Greatest Common Divisor (GCD)

• Recall If 𝑎𝑎 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚) and 𝑏𝑏 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 , then 𝑎𝑎 − 𝑏𝑏 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚)
• The GCD algorithm finds the greatest common divisor by executing this 

recursion (assume a > b)
𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎, 𝑏𝑏 = 𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎, 𝑏𝑏 − 𝑎𝑎

Until its arguments are the same.
• Question If we implement this in a programming language, it can only be 

done recursively

Yes
(why)

No 
(Why)

Something Else
(What)



Greatest Common Divisor (GCD)

• Recall If 𝑎𝑎 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚) and 𝑏𝑏 ≡ 0 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 , then 𝑎𝑎 − 𝑏𝑏 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚)
• The GCD algorithm finds the greatest common divisor by executing this 

recursion (assume a > b)
𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎, 𝑏𝑏 = 𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎, 𝑏𝑏 − 𝑎𝑎

Until its arguments are the same.
• Question If we implement this in a programming language, it can only be 

done recursively

Yes
(why)

No 
(Why)

Something Else
(What)

left = a;
right = b;
while(left != right){

if(left > right)
left = left – right;

else
right = right - left;

}
print "GCD is: " left; // Or right

Tail 
recursion



GCD example

• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18 = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = 
GCD(4- 2, 2) = GCD(2, 2) = 2



GCD example

• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18 = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = 
GCD(4- 2, 2) = GCD(2, 2) = 2

Given integers 𝑎𝑎, 𝑏𝑏 with 𝑎𝑎 > 𝑏𝑏 (without loss of 
generality), approximately how many steps 
does this algorithm take?

a steps b steps

Something Elsea-b steps



GCD example

• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18 = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = 
GCD(4- 2, 2) = GCD(2, 2) = 2

Given integers 𝑎𝑎, 𝑏𝑏 with 𝑎𝑎 > 𝑏𝑏 (without loss of 
generality), approximately how many steps 
does this algorithm take?

a steps b steps

Something Elsea-b steps

Roughly 
�𝑎𝑎 𝑏𝑏



Can we do better?

• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18 = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = 
GCD(4- 2, 2) = GCD(2, 2) = 2

Yes No Something 
Else



Can we do better?

• GCD(18, 100) =
GCD(18, 100 – 18) = GCD(18, 82)=
GCD(18, 82 – 18) = GCD(18, 64) = 
GCD(18, 64 – 18) = GCD(18, 46) = 
GCD(18, 46 – 18) = GCD(18, 28) =
GCD(18, 28 – 18) = GCD(18, 10) =
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2) =
GCD(6 - 2, 2) = GCD(4, 2) = 
GCD(4- 2, 2) = GCD(2, 2) = 2

Yes No Something 
Else

GCD(18, 100 – 5 x 18)

GCD(8 – 3 x 2, 2)

GCD(18, 100) =
GCD(18, 100 – 5 x 18) = GCD(18, 

10) =
GCD(18 – 10, 10) = GCD(8, 10) =
GCD(8, 10 - 8) = GCD(8, 2) =
GCD(8 – 3 x 2, 2) = GCD(2, 2) = 2

From 10 to 4 steps!



How fast is this new algorithm?

• Given non-zero integers 𝑎𝑎, 𝑏𝑏 with 𝑎𝑎 > 𝑏𝑏, roughly how many steps 
does this new algorithm take to compute GCD(a, b)?

�𝑎𝑎 𝑏𝑏2 𝑎𝑎 Something Elselog2 𝑎𝑎



• Given non-zero integers 𝑎𝑎, 𝑏𝑏 with 𝑎𝑎 > 𝑏𝑏, roughly how many steps does 
this new algorithm take to compute GCD(a, b)?

• In fact, it takes log𝜙𝜙 𝑎𝑎, where 𝜙𝜙 = 1+ 5
2

is the golden ratio.
• Proof by Gabriel Lamé in 1844, considered by some to be the first ever

result in Algorithmic Complexity theory.

log2 𝑎𝑎

How fast is this new algorithm?

�𝑎𝑎 𝑏𝑏2 𝑎𝑎 Something Else



STOP 
RECORDING
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