Horse Numbers
Definition of Horse Numbers

Recall If \(n \) horses run in a race then the number of ways they can finish is \(n! \).
Definition of Horse Numbers

Recall If \(n \) horses run in a race then the number of ways they can finish is \(n! \).

Not Quite

1. Two horses: \(x_1 < x_2 \) or \(x_2 < x_1 \) or \(x_1 = x_2 \). \(H(2) = 3 \).

2. Three horses. Work on it!

Answer on next slide.
Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.
Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can **tie**.

Due $H(n)$ is the number of ways n horse can finish a race.
Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can *tie*.

Due $H(n)$ is the number of ways n horse can finish a race. $H(0) = 1$ by convention.
Definition of Horse Numbers

Recall If \(n \) horses run in a race then the number of ways they can finish is \(n! \).

Not Quite Horses can tie.

Due \(H(n) \) is the number of ways \(n \) horse can finish a race.
\(H(0) = 1 \) by convention. \(H(1) = 1 \) clearly.
Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can **tie**.

Due $H(n)$ is the number of ways n horse can finish a race. $H(0) = 1$ by convention. $H(1) = 1$ clearly.

Examples Horses are x_1, x_2.

1. 2 horses: $x_1 < x_2$ OR $x_2 < x_1$ OR $x_1 = x_2$. $H(2) = 3$.

Answer on next slide.
Definition of Horse Numbers

Recall If \(n \) horses run in a race then the number of ways they can finish is \(n! \).

Not Quite Horses can tie.

Due \(H(n) \) is the number of ways \(n \) horse can finish a race. \(H(0) = 1 \) by convention. \(H(1) = 1 \) clearly.

Examples Horses are \(x_1, x_2 \).

1. 2 horses: \(x_1 < x_2 \) OR \(x_2 < x_1 \) OR \(x_1 = x_2 \). \(H(2) = 3 \).
2. Three horses. Work on it!
Definition of Horse Numbers

Recall If \(n \) horses run in a race then the number of ways they can finish is \(n! \).

Not Quite Horses can **tie**.

Due \(H(n) \) is the number of ways \(n \) horse can finish a race. \(H(0) = 1 \) by convention. \(H(1) = 1 \) clearly.

Examples Horses are \(x_1, x_2 \).

1. 2 horses: \(x_1 < x_2 \) OR \(x_2 < x_1 \) OR \(x_1 = x_2 \). \(H(2) = 3 \).
2. Three horses. Work on it!

Answer on next slide.
Three Horses
Three Horses

\[x_1 < x_2 < x_3 \quad x_1 < x_3 < x_2 \quad x_1 < x_2 = x_3 \]
Three Horses

\[x_1 < x_2 < x_3 \quad x_1 < x_3 < x_2 \quad x_1 < x_2 = x_3 \]

\[x_2 < x_1 < x_3 \quad x_2 < x_3 < x_1 \quad x_2 < x_3 = x_1 \]
Three Horses

$x_1 < x_2 < x_3 \quad x_1 < x_3 < x_2 \quad x_1 < x_2 = x_3$

$x_2 < x_1 < x_3 \quad x_2 < x_3 < x_1 \quad x_2 < x_3 = x_1$

$x_3 < x_1 < x_2 \quad x_3 < x_2 < x_1 \quad x_3 < x_2 = x_1$
Three Horses

\[
\begin{align*}
 x_1 < x_2 < x_3 & \quad x_1 < x_3 < x_2 & \quad x_1 < x_2 = x_3 \\
 x_2 < x_1 < x_3 & \quad x_2 < x_3 < x_1 & \quad x_2 < x_3 = x_1 \\
 x_3 < x_1 < x_2 & \quad x_3 < x_2 < x_1 & \quad x_3 < x_2 = x_1 \\
 x_1 = x_2 < x_3 & \quad x_1 = x_3 < x_2 & \quad x_2 = x_3 < x_1
\end{align*}
\]
Three Horses

\[x_1 < x_2 < x_3 \quad x_1 < x_3 < x_2 \quad x_1 < x_2 = x_3 \]
\[x_2 < x_1 < x_3 \quad x_2 < x_3 < x_1 \quad x_2 < x_3 = x_1 \]
\[x_3 < x_1 < x_2 \quad x_3 < x_2 < x_1 \quad x_3 < x_2 = x_1 \]
\[x_1 = x_2 < x_3 \quad x_1 = x_3 < x_2 \quad x_2 = x_3 < x_1 \]
\[x_1 = x_2 = x_3 \]
Three Horses

\[\begin{align*}
 &x_1 < x_2 < x_3 & x_1 < x_3 < x_2 & x_1 < x_2 = x_3 \\
 &x_2 < x_1 < x_3 & x_2 < x_3 < x_1 & x_2 < x_3 = x_1 \\
 &x_3 < x_1 < x_2 & x_3 < x_2 < x_1 & x_3 < x_2 = x_1 \\
 &x_1 = x_2 < x_3 & x_1 = x_3 < x_2 & x_2 = x_3 < x_1 \\
 &x_1 = x_2 = x_3 \\
 H(3) &= 13
\end{align*}\]
Work on it
Four Horses

Work on it
Answer on next slide.
Four Horses: Answer in a Way That Can Generalize

1. Pick one of x_1, x_2, x_3, x_4 to be unique min: 4_1. Order the 3 horses left: H_3. Total: $4_1 H_3$

2. Pick two of x_1, x_2, x_3, x_4 to be only mins: 4_2. Order the 2 horses left: H_2. Total: $4_2 H_2$

3. Pick three of x_1, x_2, x_3, x_4 to be only mins: 4_3. Order the 1 horse left: H_1. Total: $4_3 H_1$

4. Pick three of x_1, x_2, x_3, x_4 to be only mins: 4_4. Order the 0 horses left: H_0. Total: $4_4 H_0$

Total: $4_1 H_3 + 4_2 H_2 + 4_3 H_1 + 4_4 H_0 = 75$

Can write in a nicer way for summations:

$4_0 H_0 + 4_1 H_1 + 4_2 H_2 + 4_3 H_3 = 75$
Four Horses: Answer in a Way That Can Generalize

1. Pick one of x_1, x_2, x_3, x_4 to be \textbf{unique min}: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
Four Horses: Answer in a Way That Can Generalize

1. Pick one of x_1, x_2, x_3, x_4 to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1}H(3)$

2. Pick two of x_1, x_2, x_3, x_4 to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2}H(2)$
Four Horses: Answer in a Way That Can Generalize

1. Pick one of x_1, x_2, x_3, x_4 to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1}H(3)$

2. Pick two of x_1, x_2, x_3, x_4 to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2}H(2)$

3. Pick three of x_1, x_2, x_3, x_4 to be only mins: $\binom{4}{3}$. Order the 1 horse left: $H(1)$. Total: $\binom{4}{3}H(1)$

Total: $\binom{4}{0}H(0) + \binom{4}{1}H(3) + \binom{4}{2}H(2) + \binom{4}{3}H(1) = 75$
Four Horses: Answer in a Way That Can Generalize

1. Pick one of \(x_1, x_2, x_3, x_4 \) to be **unique min**: \(\binom{4}{1} \). Order the 3 horses left: \(H(3) \). Total: \(\binom{4}{1} H(3) \)

2. Pick two of \(x_1, x_2, x_3, x_4 \) to be **only mins**: \(\binom{4}{2} \). Order the 2 horses left: \(H(2) \). Total: \(\binom{4}{2} H(2) \)

3. Pick three of \(x_1, x_2, x_3, x_4 \) to be **only mins**: \(\binom{4}{3} \). Order the 1 horse left: \(H(1) \). Total: \(\binom{4}{3} H(1) \)

4. Pick three of \(x_1, x_2, x_3, x_4 \) to be **only mins**: \(\binom{4}{4} \). Order the 0 horses left: \(H(0) \). Total: \(\binom{4}{4} H(0) \)

Total: \(\binom{4}{0} H(0) + \binom{4}{1} H(3) + \binom{4}{2} H(2) + \binom{4}{3} H(1) = 75 \)
Four Horses: Answer in a Way That Can Generalize

1. Pick one of x_1, x_2, x_3, x_4 to be unique min: \(\binom{4}{1} \). Order the 3 horses left: \(H(3) \). Total: \(\binom{4}{1} H(3) \)

2. Pick two of x_1, x_2, x_3, x_4 to be only mins: \(\binom{4}{2} \). Order the 2 horses left: \(H(2) \). Total: \(\binom{4}{2} H(2) \)

3. Pick three of x_1, x_2, x_3, x_4 to be only mins: \(\binom{4}{3} \). Order the 1 horse left: \(H(1) \). Total: \(\binom{4}{3} H(1) \)

4. Pick three of x_1, x_2, x_3, x_4 to be only mins: \(\binom{4}{4} \). Order the 0 horses left: \(H(0) \). Total: \(\binom{4}{4} H(0) \)

Total:
Four Horses: Answer in a Way That Can Generalize

1. Pick one of x_1, x_2, x_3, x_4 to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$

2. Pick two of x_1, x_2, x_3, x_4 to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2} H(2)$

3. Pick three of x_1, x_2, x_3, x_4 to be only mins: $\binom{4}{3}$. Order the 1 horse left: $H(1)$. Total: $\binom{4}{3} H(1)$

4. Pick three of x_1, x_2, x_3, x_4 to be only mins: $\binom{4}{4}$. Order the 0 horses left: $H(0)$. Total: $\binom{4}{4} H(0)$

Total:

$$\binom{4}{1} H(3) + \binom{4}{2} H(2) + \binom{4}{3} H(1) + \binom{4}{4} H(0) = 75$$
Four Horses: Answer in a Way That Can Generalize

1. Pick one of x_1, x_2, x_3, x_4 to be **unique min**: $(\begin{pmatrix} 4 \\ 1 \end{pmatrix})$. Order the 3 horses left: $H(3)$. Total: $(\begin{pmatrix} 4 \\ 1 \end{pmatrix})H(3)$

2. Pick two of x_1, x_2, x_3, x_4 to be **only mins**: $(\begin{pmatrix} 4 \\ 2 \end{pmatrix})$. Order the 2 horses left: $H(2)$. Total: $(\begin{pmatrix} 4 \\ 2 \end{pmatrix})H(2)$

3. Pick three of x_1, x_2, x_3, x_4 to be **only mins**: $(\begin{pmatrix} 4 \\ 3 \end{pmatrix})$. Order the 1 horse left: $H(1)$. Total: $(\begin{pmatrix} 4 \\ 3 \end{pmatrix})H(1)$

4. Pick three of x_1, x_2, x_3, x_4 to be **only mins**: $(\begin{pmatrix} 4 \\ 4 \end{pmatrix})$. Order the 0 horses left: $H(0)$. Total: $(\begin{pmatrix} 4 \\ 4 \end{pmatrix})H(0)$

Total:

$$(\begin{pmatrix} 4 \\ 1 \end{pmatrix})H(3) + (\begin{pmatrix} 4 \\ 2 \end{pmatrix})H(2) + (\begin{pmatrix} 4 \\ 3 \end{pmatrix})H(1) + (\begin{pmatrix} 4 \\ 4 \end{pmatrix})H(0) = 75$$

Can write in a nicer way for summations:
Four Horses: Answer in a Way That Can Generalize

1. Pick one of \(x_1, x_2, x_3, x_4\) to be unique min: \(\binom{4}{1}\). Order the 3 horses left: \(H(3)\). Total: \(\binom{4}{1}H(3)\)

2. Pick two of \(x_1, x_2, x_3, x_4\) to be only mins: \(\binom{4}{2}\). Order the 2 horses left: \(H(2)\). Total: \(\binom{4}{2}H(2)\)

3. Pick three of \(x_1, x_2, x_3, x_4\) to be only mins: \(\binom{4}{3}\). Order the 1 horse left: \(H(1)\). Total: \(\binom{4}{3}H(1)\)

4. Pick three of \(x_1, x_2, x_3, x_4\) to be only mins: \(\binom{4}{4}\). Order the 0 horses left: \(H(0)\). Total: \(\binom{4}{4}H(0)\)

Total:

\[
\binom{4}{1}H(3) + \binom{4}{2}H(2) + \binom{4}{3}H(1) + \binom{4}{4}H(0) = 75
\]

Can write in a nicer way for summations:

\[
\binom{4}{0}H(0) + \binom{4}{1}H(1) + \binom{4}{2}H(2) + \binom{4}{3}H(3) = 75
\]
For $1 \leq i \leq n$, choose i horses to be the \textit{only min}:

$$H(n) = \sum_{i=1}^{n} \binom{n}{i} H(n-i).$$
n Horses

$H(n)$:
For $1 \leq i \leq n$, choose i horses to be the only min: $\binom{n}{i} = \binom{n}{n-i}$.
n Horses

$H(n)$:
For $1 \leq i \leq n$, choose i horses to be the only min: \(\binom{n}{i} = \binom{n}{n-i} \).
Order the remaining $n - i$ horses: $H(n - i)$.
n Horses

$H(n)$:
For $1 \leq i \leq n$, choose i horses to be the \textbf{only min}: $\binom{n}{i} = \binom{n}{n-i}$.
Order the remaining $n - i$ horses: $H(n-i)$.

\[
H(n) = \sum_{i=1}^{n} \binom{n}{n-i} H(n-i) = \sum_{i=0}^{n-1} \binom{n}{i} H(i).
\]