Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.
Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We define graphs and complete graphs and state this theorem in those terms.
Graphs and Complete Graphs

Def A **Graph** $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

Example

$V = \{1, 2, 3, 4, 5, 6\}$.

$E = \{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)\}$.

Def The degree (deg) of a vertex is how many edges use it.

In the above graph $\text{deg}(1) = 5$ and $\text{deg}(2) = \text{deg}(3) = \text{deg}(4) = \text{deg}(5) = \text{deg}(6) = 1$.
Graphs and Complete Graphs

Def A **Graph** $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

Example
Def A **Graph** $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

Example
Graphs and Complete Graphs

Def A **Graph** $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

Example

![Graph diagram](image)

$V = \{1, 2, 3, 4, 5, 6\}$.

$\text{deg}(1) = 5$ and $\text{deg}(2) = \text{deg}(3) = \text{deg}(4) = \text{deg}(5) = \text{deg}(6) = 1$.
Graphs and Complete Graphs

Def A **Graph** $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

Example

\[
V = \{1, 2, 3, 4, 5, 6\}.
\]

\[
E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}\}.
\]
Graphs and Complete Graphs

Def A **Graph** $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

Example

$V = \{1, 2, 3, 4, 5, 6\}$.
$E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}\}$.

Def The **degree** (deg) of a vertex is how many edges use it.
Def A Graph \(G = (V, E) \) is a set \(V \) and a set of unordered pairs from \(V \), called edges. These can easily be drawn. Example

\[
V = \{1, 2, 3, 4, 5, 6\}.
\]
\[
E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}\}.
\]

Def The degree (\(\text{deg} \)) of a vertex is how many edges use it. In the above graph \(\text{deg}(1) = 5 \) and \(\text{deg}(2) = \text{deg}(3) = \text{deg}(4) = \text{deg}(5) = \text{deg}(6) = 1 \).
Complete Graphs

Def The **Complete Graph on** n **Vertices**, denoted K_n, is $V = \{1, \ldots, n\}$ and E is **all** possible edges.
Complete Graphs

Def The **Complete Graph on \(n \) Vertices**, denoted \(K_n \), is \(V = \{1, \ldots, n\} \) and \(E \) is **all** possible edges.

Example
Complete Graphs

Def The **Complete Graph on n Vertices**, denoted K_n, is $V = \{1, \ldots, n\}$ and E is all possible edges.

Example

```
1

2 3 4
```

This graph is K_4.

Note Every vertex of K_n has degree $n - 1$.

Complete Graphs

Def The **Complete Graph on n Vertices**, denoted K_n, is $V = \{1, \ldots, n\}$ and E is all possible edges.

Example

This graph is K_4.

Note Every vertex of K_n has degree $n - 1$.
Below is standard notation which you may or may not have seen.
More Notation

Below is standard notation which you may or may not have seen. Thats a tautology!
More Notation

Below is standard notation which you may or may not have seen.
That's a tautology!

Notation
More Notation

Below is standard notation which you may or may not have seen. That's a tautology!

Notation

- ∃ means **there exists**
More Notation

Below is standard notation which you may or may not have seen. Thats a tautology!

Notation

- \(\exists \) means *there exists*
- \(\forall \) means *for all*
One More Definition

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.
2. If $|U| = k$ then we may call U a **k-clique**.
3. If the edges of G are 2-colored with RED and BLUE, and all of the edges between verts of U are RED then we call U a **Red Clique**. Similar for Blue.

4. If I formed a rock band it would be called **Bill Gasarch and the Red Cliques**!
One More Definition

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.
Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.
2. If $|U| = k$ then we may call U a k-clique.
Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.
2. If $|U| = k$ then we may call U a **k-clique**.
3. If the edges of G are 2-colored with **RED** and **BLUE**, and all of the edges between verts of U are **RED** then we call U a **Red Clique**. Similar for **Blue**.
One More Definition

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.
2. If $|U| = k$ then we may call U a *k-clique*.
3. If the edges of G are 2-colored with **RED** and **BLUE**, and all of the edges between verts of U are **RED** then we call U a **Red Clique**. Similar for **Blue**.
4. If I formed a rock band it would be called
One More Definition

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.
2. If $|U| = k$ then we may call U a **k-clique**.
3. If the edges of G are 2-colored with **RED** and **BLUE**, and all of the edges between verts of U are **RED** then we call U a **Red Clique**. Similar for **Blue**.
4. If I formed a rock band it would be called **Bill Gasarch and the Red Clique**s!
For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).
The First Theorem, Restated

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

We could state that as

\[\forall \text{ 2-coloring of the edges of } K_6 \ \exists \text{ a monochromatic } K_3 \] (triangle).
The First Theorem, Restated

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

We could state that as
\[\forall \text{ 2-coloring of the edges of } K_6 \exists \text{ a monochromatic } K_3 \text{ (triangle).} \]

We could state that as
\[\forall \text{ 2-coloring of the edges of } K_6 \exists \text{ a monochromatic 3-clique (triangle).} \]
The First Theorem, Restated

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

We could state that as
\[\forall \text{ 2-coloring of the edges of } K_6 \ \exists \text{ a monochromatic } K_3 (\text{triangle}). \]

We could state that as
\[\forall \text{ 2-coloring of the edges of } K_6 \ \exists \text{ a monochromatic 3-clique (triangle)}. \]

We prove this in the next few slides.
Focus on Vertex 1

Given a 2-coloring of the edges of K_6 we look at vertex 1.
Focus on Vertex 1

Given a 2-coloring of the edges of K_6 we look at vertex 1.

There are 5 edges coming out of vertex 1. They are 2 colored. There exist 3 edges from vertex 1 that are the same color. We can assume (1, 2), (1, 3), (1, 4) are all RED.
Given a 2-coloring of the edges of K_6 we look at vertex 1.

There are 5 edges coming out of vertex 1.
Focus on Vertex 1

Given a 2-coloring of the edges of K_6 we look at vertex 1.

There are 5 edges coming out of vertex 1. They are 2 colored.
Focus on Vertex 1

Given a 2-coloring of the edges of K_6 we look at vertex 1.

There are 5 edges coming out of vertex 1. They are 2 colored. ∃ 3 edges from vertex 1 that are the same color.
Focus on Vertex 1

Given a 2-coloring of the edges of K_6 we look at vertex 1.

There are 5 edges coming out of vertex 1. They are 2 colored.

\exists 3 edges from vertex 1 that are the same color. We can assume $(1, 2), (1, 3), (1, 4)$ are all RED.
(1,2), (1,3), (1,4) are RED
We Look Just at Vertices 1, 2, 3, 4

If (2, 3) is RED then get RED Triangle. So assume (2, 3) is BLUE.
We Look Just at Vertices 1,2,3,4

If (2, 3) is **RED** then get **RED** Triangle. So assume (2,3) is **BLUE**.
If (3,4) is RED then get RED triangle. So assume (3,4) is BLUE.
(2,3) is **BLUE**
If (3,4) is **RED** then get **RED** triangle. So assume (3,4) is **BLUE**.

(2,3) is **BLUE**
(2,3) and (3,4) are BLUE
(2,3) and (3,4) are **BLUE**
(2,3) and (3,4) are **BLUE**

If (2,4) is **RED** then get **RED** triangle. So assume (2,4) is **BLUE**.
(2,4) is BLUE
(2,4) is BLUE
(2,4) is BLUE

Note that there is a **BLUE** triangle with verts 2, 3, 4. Done!
What if we color edges of K_5?

This graph is not arbitrary. $SQ_5 = \{x^2 \pmod{5} : 0 \leq x \leq 4\} = \{0, 1, 4\}$.

\Rightarrow If $i - j \in SQ_5$ then RED.

\Rightarrow If $i - j \not\in SQ_5$ then BLUE.
What if we color edges of K_5?

This graph is not arbitrary.
$SQ_5 = \{x^2 \pmod{5} : 0 \leq x \leq 4\} = \{0, 1, 4\}$.

- If $i - j \in SQ_5$ then **RED**.
- If $i - j \notin SQ_5$ then **BLUE**.
Asymmetric Ramsey Numbers

Definition $R(a, b)$ is least n such that for all 2-colorings of K_n there is either a red K_a or a blue K_b.

1. $R(a, b) = R(b, a)$.
2. $R(2, b) = b$
3. $R(a, 2) = a$
Asymmetric Ramsey Numbers

Definition $R(a, b)$ is least n such that for all 2-colorings of K_n there is either a red K_a or a blue K_b.

1. $R(a, b) = R(b, a)$.
2. $R(2, b) = b$
3. $R(a, 2) = a$

Proof left to the reader, but its easy.
Theorem \(R(a, b) \leq R(a - 1, b) + R(a, b - 1) \)
Theorem $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$

Let $n = R(a - 1, b) + R(a, b - 1)$.

Assume you have a coloring of the edges of K_n. The proof has three cases on the next three slides. They will be:

1. There is a vertex with large Red Deg.
2. There is a vertex with large Blue Deg.
3. All verts have small Red degree and small Blue degree.
\[R(a, b) \leq R(a - 1, b) + R(a, b - 1) \]

Theorem \(R(a, b) \leq R(a - 1, b) + R(a, b - 1) \)

Let \(n = R(a - 1, b) + R(a, b - 1) \).

Assume you have a coloring of the edges of \(K_n \).
Theorem \(R(a, b) \leq R(a - 1, b) + R(a, b - 1) \)

Let \(n = R(a - 1, b) + R(a, b - 1) \).
Assume you have a coloring of the edges of \(K_n \).
The proof has three cases on the next three slides.
Theorem $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$

Let $n = R(a - 1, b) + R(a, b - 1)$.
Assume you have a coloring of the edges of K_n.
The proof has three cases on the next three slides.
They will be
Theorem \(R(a, b) \leq R(a - 1, b) + R(a, b - 1) \)

Let \(n = R(a - 1, b) + R(a, b - 1) \).
Assume you have a coloring of the edges of \(K_n \).
The proof has three cases on the next three slides.
They will be

1. There is a vertex with large Red Deg.
Theorem $R(a, b) \leq R(a - 1, b) + R(a, b - 1)$

Let $n = R(a - 1, b) + R(a, b - 1)$.

Assume you have a coloring of the edges of K_n.

The proof has three cases on the next three slides.

They will be

1. There is a vertex with large Red Deg.
2. There is a vertex with large Blue Deg.
Theorem \(R(a, b) \leq R(a - 1, b) + R(a, b - 1) \)

Let \(n = R(a - 1, b) + R(a, b - 1) \).

Assume you have a coloring of the edges of \(K_n \).

The proof has three cases on the next three slides.

They will be

1. There is a vertex with large Red Deg.
2. There is a vertex with large Blue Deg.
3. All verts have small Red degree and small Blue degree.
Case 1 $(\exists v)[\deg_R(v) \geq R(a - 1, b)]$.
Some Vertex v Has Large Red Deg

Case 1 $(\exists v)[\deg_R(v) \geq R(a - 1, b)]$.
Let $m = R(a - 1, b)$.
Case 1 \((\exists v)[\deg_R(v) \geq R(a - 1, b)]\).
Let \(m = R(a - 1, b)\).
Some Vertex v Has Large Red Deg

Case 1 $(\exists v)[\deg_R(v) \geq R(a - 1, b)]$. Let $m = R(a - 1, b)$.

Case 1.1 There is a Red K_{a-1} in \{1, \ldots, m\}. This set together with vertex v is a Red K_a.
Some Vertex v Has Large Red Deg

Case 1 $(\exists v)[\deg_R(v) \geq R(a - 1, b)]$.
Let $m = R(a - 1, b)$.

Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a.

Case 1.2 There is a Blue K_b in $\{1, \ldots, m\}$. DONE.
Some Vertex v Has Large Red Deg

Case 1 ($\exists v)[\deg_R(v) \geq R(a - 1, b)]$. Let $m = R(a - 1, b)$.

Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Red K_a.

Case 1.2 There is a Blue K_b in $\{1, \ldots, m\}$. DONE.

Case 1.3 Neither. **Impossible** since $m = R(a - 1, b)$.
Some Vertex v Has Large Blue Deg

Case 2 $(\exists v)[\deg_B(v) \geq R(a, b - 1)]$.

Case 2.1 There is a Red K_a in \{1, \ldots, m\}. DONE

Case 2.2 There is a Blue $K_{b - 1}$ in \{1, \ldots, m\}. This set together with vertex v is a Blue K_b.

Case 2.3 Neither. Impossible since $m = R(a, b - 1)$.

Some Vertex v Has Large Blue Deg

Case 2 $(\exists v)[\deg_B(v) \geq R(a, b - 1)]$. Let $m = R(a, b - 1)$.

Case 2.1 There is a Red K_a in $\{1, \ldots, m\}$. DONE

Case 2.2 There is a Blue K_{b-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Blue K_b.

Case 2.3 Neither. Impossible since $m = R(a, b - 1)$.
Some Vertex \(v \) Has Large Blue Deg

Case 2 \((\exists v)[\deg_B(v) \geq R(a, b - 1)]\).
Let \(m = R(a, b - 1) \).
Some Vertex \(v \) Has Large Blue Deg

Case 2 \((\exists v)[\deg_B(v) \geq R(a, b-1)] \).
Let \(m = R(a, b-1) \).

![Diagram](image)

Case 2.1 There is a Red \(K_a \) in \(\{1, \ldots, m\} \). DONE
Some Vertex v Has Large Blue Deg

Case 2 $(\exists v)[\deg_B(v) \geq R(a, b - 1)]$.
Let $m = R(a, b - 1)$.

![Diagram with vertices and edges]

Case 2.1 There is a Red K_a in $\{1, \ldots, m\}$. DONE
Case 2.2 There is a Blue K_{b-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Blue K_b.

Case 2.3 Neither. Impossible since $m = R(a, b - 1)$.
Some Vertex v Has Large Blue Deg

Case 2 $(\exists v)[\deg_B(v) \geq R(a, b - 1)]$.
Let $m = R(a, b - 1)$.

Case 2.1 There is a Red K_a in $\{1, \ldots, m\}$. DONE
Case 2.2 There is a Blue K_{b-1} in $\{1, \ldots, m\}$. This set together with vertex v is a Blue K_b.
Case 2.3 Neither. Impossible since $m = R(a, b - 1)$.
Case 3 Negate Case 1 and Case 2:
All Verts: Small Red Deg and Small Blue Deg

Case 3 Negate Case 1 and Case 2:

1. $(\forall v)[\deg_R(v) \leq R(a - 1, b) - 1]$ and
All Verts: Small Red Deg and Small Blue Deg

Case 3 Negate Case 1 and Case 2:

1. \((\forall v)[\deg_R(v) \leq R(a-1, b) - 1]\) and
2. \((\forall v)[\deg_B(v) \leq R(a, b-1) - 1]\)
All Verts: Small Red Deg and Small Blue Deg

Case 3 Negate Case 1 and Case 2:

1. \((\forall v)[\deg_R(v) \leq R(a - 1, b) - 1]\) and
2. \((\forall v)[\deg_B(v) \leq R(a, b - 1) - 1]\)

Hence

\[(\forall v)[\deg(v) \leq R(a - 1, b) + R(a, b - 1) - 2 = n - 2]\]
Case 3 Negate Case 1 and Case 2:

1. \((\forall v)[\deg_{R}(v) \leq R(a - 1, b) - 1]\) and
2. \((\forall v)[\deg_{B}(v) \leq R(a, b - 1) - 1]\)

Hence

\[(\forall v)[\deg(v) \leq R(a - 1, b) + R(a, b - 1) - 2 = n - 2]\]

Not possible since every vertex of \(K_n\) has degree \(n - 1\).
Let's compute bounds on $R(a, b)$

- $R(3, 3) \leq R(2, 3) + R(3, 2) \leq 3 + 3 = 6$
- $R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 = 10$
- $R(3, 5) \leq R(2, 5) + R(3, 4) \leq 5 + 10 = 15$
- $R(3, 6) \leq R(2, 6) + R(3, 5) \leq 6 + 15 = 21$
- $R(3, 7) \leq R(2, 7) + R(3, 6) \leq 7 + 21 = 28$
- $R(4, 4) \leq R(3, 4) + R(4, 3) \leq 10 + 10 = 20$
- $R(4, 5) \leq R(3, 5) + R(4, 4) \leq 15 + 20 = 35$
- $R(5, 5) \leq R(4, 5) + R(5, 4) \leq 35 + 35 = 70$.
Table of Bounds

<table>
<thead>
<tr>
<th>$R(a, b)$</th>
<th>Bound on $R(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(3, 3)$</td>
<td>6</td>
</tr>
<tr>
<td>$R(3, 4)$</td>
<td>10</td>
</tr>
<tr>
<td>$R(3, 5)$</td>
<td>15</td>
</tr>
<tr>
<td>$R(3, 6)$</td>
<td>21</td>
</tr>
<tr>
<td>$R(3, 7)$</td>
<td>28</td>
</tr>
<tr>
<td>$R(4, 4)$</td>
<td>20</td>
</tr>
<tr>
<td>$R(4, 5)$</td>
<td>35</td>
</tr>
<tr>
<td>$R(5, 5)$</td>
<td>70</td>
</tr>
</tbody>
</table>
Table of Bounds

<table>
<thead>
<tr>
<th>$R(a, b)$</th>
<th>Bound on $R(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(3, 3)$</td>
<td>6</td>
</tr>
<tr>
<td>$R(3, 4)$</td>
<td>10</td>
</tr>
<tr>
<td>$R(3, 5)$</td>
<td>15</td>
</tr>
<tr>
<td>$R(3, 6)$</td>
<td>21</td>
</tr>
<tr>
<td>$R(3, 7)$</td>
<td>28</td>
</tr>
<tr>
<td>$R(4, 4)$</td>
<td>20</td>
</tr>
<tr>
<td>$R(4, 5)$</td>
<td>35</td>
</tr>
<tr>
<td>$R(5, 5)$</td>
<td>70</td>
</tr>
</tbody>
</table>

Can we make some improvements to this?
Table of Bounds

<table>
<thead>
<tr>
<th>$R(a, b)$</th>
<th>Bound on $R(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(3, 3)$</td>
<td>6</td>
</tr>
<tr>
<td>$R(3, 4)$</td>
<td>10</td>
</tr>
<tr>
<td>$R(3, 5)$</td>
<td>15</td>
</tr>
<tr>
<td>$R(3, 6)$</td>
<td>21</td>
</tr>
<tr>
<td>$R(3, 7)$</td>
<td>28</td>
</tr>
<tr>
<td>$R(4, 4)$</td>
<td>20</td>
</tr>
<tr>
<td>$R(4, 5)$</td>
<td>35</td>
</tr>
<tr>
<td>$R(5, 5)$</td>
<td>70</td>
</tr>
</tbody>
</table>

Can we make some improvements to this? YES!
Table of Bounds

<table>
<thead>
<tr>
<th>$R(a, b)$</th>
<th>Bound on $R(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(3, 3)$</td>
<td>6</td>
</tr>
<tr>
<td>$R(3, 4)$</td>
<td>10</td>
</tr>
<tr>
<td>$R(3, 5)$</td>
<td>15</td>
</tr>
<tr>
<td>$R(3, 6)$</td>
<td>21</td>
</tr>
<tr>
<td>$R(3, 7)$</td>
<td>28</td>
</tr>
<tr>
<td>$R(4, 4)$</td>
<td>20</td>
</tr>
<tr>
<td>$R(4, 5)$</td>
<td>35</td>
</tr>
<tr>
<td>$R(5, 5)$</td>
<td>70</td>
</tr>
</tbody>
</table>

Can we make some improvements to this? **YES!**

We need a theorem.
Table of Bounds

<table>
<thead>
<tr>
<th>$R(a, b)$</th>
<th>Bound on $R(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(3, 3)$</td>
<td>6</td>
</tr>
<tr>
<td>$R(3, 4)$</td>
<td>10</td>
</tr>
<tr>
<td>$R(3, 5)$</td>
<td>15</td>
</tr>
<tr>
<td>$R(3, 6)$</td>
<td>21</td>
</tr>
<tr>
<td>$R(3, 7)$</td>
<td>28</td>
</tr>
<tr>
<td>$R(4, 4)$</td>
<td>20</td>
</tr>
<tr>
<td>$R(4, 5)$</td>
<td>35</td>
</tr>
<tr>
<td>$R(5, 5)$</td>
<td>70</td>
</tr>
</tbody>
</table>

Can we make some improvements to this? YES! We need a theorem. We first do an example.
A Graph on 9 Vertices with all verts Deg 3?

Thm There is NO graph on 9 verts, with every vertex of deg 3.
A Graph on 9 Vertices with all verts Deg 3?

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.
Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.

Every vertex contributes 3 to the number of edges.
There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.
Every vertex contributes 3 to the number of edges.
So there are $9 \times 3 = 27$ edges.
Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.
Every vertex contributes 3 to the number of edges.
So there are $9 \times 3 = 27$ edges.

Oh. We overcounted.
There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges. Every vertex contributes 3 to the number of edges. So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.
Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.
Every vertex contributes 3 to the number of edges.
So there are \(9 \times 3 = 27 \) edges.

Oh! We overcounted. We counted every edge exactly twice.

Oh My! That means there are \(\frac{27}{2} \) edges.
There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.
Every vertex contributes 3 to the number of edges.
So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Oh My! That means there are $\frac{27}{2}$ edges. Contradiction.
A Graph on 9 Vertices with all verts Deg 3?

Thm There is NO graph on 9 verts, with every vertex of deg 3.

We count the number of edges.
Every vertex contributes 3 to the number of edges.
So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Oh My! That means there are $\frac{27}{2}$ edges. Contradiction.
We generalize this on the next slide.
Handshake Lemma

Lemma Let $G = (V, E)$ be a graph.

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$
Lemma Let $G = (V, E)$ be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$

$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Handshake Lemma

If all pairs of people in a room shake hands, an even number of shakes. (Pre-COVID when people shook hands.)
Handshake Lemma

Lemma Let $G = (V, E)$ be a graph.

\[V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \} \]
\[V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \} \]

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.
Handshake Lemma

Lemma Let $G = (V, E)$ be a graph.

\[V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \} \]

\[V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \} \]

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

\[\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}. \]
Handshake Lemma

Lemma Let \(G = (V, E) \) be a graph.

\[
V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}
\]
\[
V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}
\]

Then \(|V_{\text{odd}}| \equiv 0 \pmod{2} \).

\[
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
\]

\[
\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.
\]
Handshake Lemma

Lemma Let $G = (V, E)$ be a graph.

\[V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \} \]
\[V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \} \]

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

\[
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
\]

\[
\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.
\]

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

(Pre-COVID when people shook hands.)
Handshake Lemma

Lemma Let $G = (V, E)$ be a graph.

$$V_{\text{even}} = \{ v : \deg(v) \equiv 0 \pmod{2} \}$$

$$V_{\text{odd}} = \{ v : \deg(v) \equiv 1 \pmod{2} \}$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Handshake Lemma If all pairs of people in a room shake hands, even number of shakes.
Handshake Lemma

Lemma Let $G = (V, E)$ be a graph.

$$V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}$$
$$V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.$$

$$\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Handshake Lemma If all pairs of people in a room shake hands, even number of shakes. (Pre-COVID when people shook hands.)
Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.
Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.
And NOW to our improvements on small Ramsey numbers.
$R(3, 4) \leq 9$ Case 1

Assume we have a 2-coloring of the edges of K_9.
Assume we have a 2-coloring of the edges of K_9. **Case 1** ($\exists v [\deg_R(v) \geq 4]$).
$R(3, 4) \leq 9$ Case 1

Assume we have a 2-coloring of the edges of K_9.

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.
$R(3, 4) \leq 9$ Case 1

Assume we have a 2-coloring of the edges of K_9.

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

1) If any of $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$ are RED, have RED K_3.

2) If all of $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$ are BLUE, have BLUE K_4.

$R(3, 4) \leq 9$ Case 1

Assume we have a 2-coloring of the edges of K_9.

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

1) If any of $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$ are RED, have RED K_3.

2) If all of $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$ are BLUE, have BLUE K_4.
Case 2 \((\exists v)[\deg_R(v) \leq 2]\), so \(\deg_B(v) \geq 6\).
$R(3, 4) \leq 9$ Case 2

Case 2 ($\exists v)[\deg_R(v) \leq 2]$, so $\deg_B(v) \geq 6$.

(1) There is a RED K_3 in $\{1, 2, 3, 4, 5, 6\}$. Have RED K_3.
Case 2 \((\exists v)[\deg_R(v) \leq 2]\), so \(\deg_B(v) \geq 6\).

(1) There is a RED \(K_3\) in \(\{1, 2, 3, 4, 5, 6\}\). Have RED \(K_3\).

(2) There is a BLUE \(K_3\). With \(v\) get a BLUE \(K_4\).
Recall

Case 1: \(\exists v \left[\deg R(v) \geq 4 \right] \).
Case 2: \(\exists v \left[\deg R(v) \leq 2 \right] \).

Negation of Case 1 and Case 2 yields

Case 3: \(\forall v \left[\deg R(v) = 3 \right] \).

So the RED graph is a graph on 9 verts with all verts of degree 3. This is impossible!
$R(3, 4) \leq 9$ Case 3

Recall

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Negation of Case 1 and Case 2 yields

Case 3 $(\forall v)[\deg_R(v) = 3]$.

So the RED graph is a graph on 9 verts with all verts of degree 3.

This is impossible!
Recall

Case 1 \(\exists v \) \([\deg_R(v) \geq 4]\).

Case 2 \(\exists v \) \([\deg_R(v) \leq 2]\).
Recall

Case 1 \((\exists v)[\deg_R(v) \geq 4]\).

Case 2 \((\exists v)[\deg_R(v) \leq 2]\).

Negation of Case 1 and Case 2 yields
$R(3, 4) \leq 9$ Case 3

Recall

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Case 2 $(\exists v)[\deg_R(v) \leq 2]$.

Negation of Case 1 and Case 2 yields

Case 3 $(\forall v)[\deg_R(v) = 3]$.

SO the \textit{RED} graph is a graph on 9 verts with all verts of degree 3. This is impossible!
$R(3, 4) \leq 9$ Case 3

Recall

Case 1 $(\exists v)[\deg_R(v) \geq 4]$.

Case 2 $(\exists v)[\deg_R(v) \leq 2]$.

Negation of Case 1 and Case 2 yields

Case 3 $(\forall v)[\deg_R(v) = 3]$.

So the **RED** graph is a graph on 9 verts with all verts of degree 3.
Recall

Case 1 \((\exists v)[\deg_R(v) \geq 4]\).

Case 2 \((\exists v)[\deg_R(v) \leq 2]\).

Negation of Case 1 and Case 2 yields

Case 3 \((\forall v)[\deg_R(v) = 3]\).

SO the **RED** graph is a graph on 9 verts with all verts of degree 3. This is impossible!
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work?
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work? We originally had

$$R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$$
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work? We originally had

$$R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$$

Key: $R(2, 4)$ and $R(3, 3)$ were both *even!*
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work? We originally had

$$R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$$

Key: $R(2, 4)$ and $R(3, 3)$ were both **even**!

Theorem $R(a, b) \leq$

1. $R(a, b - 1) + R(a - 1, b)$ always.
2. $R(a, b - 1) + R(a - 1, b) - 1$ if $R(a, b - 1) \equiv R(a - 1, b) \equiv 0 \pmod{2}$
A Generalization of this Trick

What was it about $R(3, 4)$ that made that trick work? We originally had

$$R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$$

Key: $R(2, 4)$ and $R(3, 3)$ were both even!

Theorem $R(a, b) \leq$

1. $R(a, b - 1) + R(a - 1, b)$ always.
2. $R(a, b - 1) + R(a - 1, b) - 1$ if
 $$R(a, b - 1) \equiv R(a - 1, b) \equiv 0 \pmod{2}$$

Proof left to the Reader.
Some Better Upper Bounds

- $R(3, 3) \leq R(2, 3) + R(3, 2) \leq 3 + 3 = 6$.
- $R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 - 1 = 9$.
- $R(3, 5) \leq R(2, 5) + R(3, 4) \leq 5 + 9 = 14$.
- $R(3, 6) \leq R(2, 6) + R(3, 5) \leq 6 + 14 - 1 = 19$.
- $R(3, 7) \leq R(2, 7) + R(3, 6) \leq 7 + 19 = 26$.
- $R(4, 4) \leq R(3, 4) + R(4, 3) \leq 9 + 9 = 18$.
- $R(4, 5) \leq R(3, 5) + R(4, 4) \leq 14 + 18 - 1 = 31$.
- $R(5, 5) \leq R(4, 5) + R(5, 4) = 62$.

Are these tight?
$R(3, 3) \geq 6$

$R(3, 3) \geq 6$: Need coloring of K_5 w/o mono K_3.

Note $-1 = 2^2 \pmod{5}$. Hence $a - b \in \mathbb{SQ}$ iff $b - a \in \mathbb{SQ}$. So the coloring is well defined.
$R(3, 3) \geq 6$

$R(3, 3) \geq 6$: Need coloring of K_5 w/o mono K_3.

Vertices are $\{0, 1, 2, 3, 4\}$.

$\text{COL}(a, b) = \text{RED}$ if $a - b \equiv SQ \pmod{5}$, otherwise BLUE.

Note $-1 = 2^2 \pmod{5}$. Hence $a - b \in \text{SQ}$ iff $b - a \in \text{SQ}$. So the coloring is well defined.
\(R(3, 3) \geq 6 \)

\(R(3, 3) \geq 6 \): Need coloring of \(K_5 \) w/o mono \(K_3 \).

Vertices are \(\{0, 1, 2, 3, 4\} \).

\(COL(a, b) = \text{RED} \) if \(a - b \equiv SQ \pmod{5} \), \(\text{BLUE} \) OW.
\(R(3, 3) \geq 6\)

\(R(3, 3) \geq 6\): Need coloring of \(K_5\) w/o mono \(K_3\).

Vertices are \(\{0, 1, 2, 3, 4\}\).

\(COL(a, b) = \text{RED}\) if \(a - b \equiv SQ \pmod{5}\), \(\text{BLUE}\) OW.

Note \(-1 = 2^2 \pmod{5}\). Hence \(a - b \in SQ\) iff \(b - a \in SQ\). So the coloring is well defined.
\[R(3, 3) \geq 6 \]

\[\text{COL}(a, b) = \text{RED} \text{ if } a - b \equiv SQ \pmod{5}, \text{ BLUE OW.} \]

- Squares mod 5: 1, 4.
- If there is a RED triangle then \(a - b, b - c, c - a \) all SQ’s. SUM is 0. So

\[x^2 + y^2 + z^2 \equiv 0 \pmod{5} \text{ Can show impossible} \]

- If there is a BLUE triangle then \(a - b, b - c, c - a \) all non-SQ’s. Product of non-sq’s is a sq. So

\[2(a - b), 2(b - c), 2(c - a) \] all squares. SUM to zero- same proof.

UPSHOT \(R(3, 3) = 6 \) and the coloring used math of interest!
\(R(4, 4) = 18 \)

\(R(4, 4) \geq 18 \): Need coloring of \(K_{17} \) w/o mono \(K_4 \).
\(R(4, 4) = 18 \)

\(R(4, 4) \geq 18 \): Need coloring of \(K_{17} \) w/o mono \(K_4 \).

Vertices are \(\{0, \ldots, 16\} \).

Use
\[
\text{COL}(a, b) = \text{RED} \text{ if } a - b \equiv SQ \pmod{17}, \text{ BLUE OW}.
\]
\(R(4, 4) = 18 \)

\(R(4, 4) \geq 18 \): Need coloring of \(K_{17} \) w/o mono \(K_4 \).

Vertices are \{0, \ldots, 16\}.

Use

\[COL(a, b) = \text{RED} \text{ if } a - b \equiv SQ \pmod{17}, \text{ BLUE O W.} \]

Same idea as above for \(K_5 \), but more cases.

\textbf{UPSHOT} \(R(4, 4) = 18 \) and the coloring used math of interest!
\(R(3, 5) = 14 \)

\(R(3, 5) \geq 14 \): Need coloring of \(K_{13} \) w/o RED \(K_3 \) or BLUE \(K_5 \).
\(R(3, 5) = 14 \)

\[R(3, 5) \geq 14: \text{ Need coloring of } K_{13} \text{ w/o RED } K_3 \text{ or BLUE } K_5. \]

Vertices are \{0, \ldots, 13\}.

Use

\[\text{COL}(a, b) = \text{RED if } a - b \equiv CUBE \pmod{14}, \text{ BLUE OW.} \]
$R(3, 5) = 14$

$R(3, 5) \geq 14$: Need coloring of K_{13} w/o RED K_3 or BLUE K_5.

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = \text{RED}$ if $a - b \equiv \text{CUBE} \pmod{14}$, BLUE OW.

Same idea as above for K_5, but more cases.
\[R(3, 5) = 14 \]

\[R(3, 5) \geq 14: \text{ Need coloring of } K_{13} \text{ w/o RED } K_3 \text{ or BLUE } K_5. \]

Vertices are \(\{0, \ldots, 13\} \).

Use
\[COL(a, b) = \text{ RED if } a - b \equiv CUBE \pmod{14}, \text{ BLUE OW}. \]

Same idea as above for \(K_5 \), but more cases.

UPSHOT \(R(3, 5) = 14 \) and the coloring used math of interest!
$R(3, 4) = 9$

This is a subgraph of the $R(3, 5)$ graph
$R(3, 4) = 9$

This is a subgraph of the $R(3, 5)$ graph

UPSHOT $R(3, 4) = 9$ and the coloring used math of interest!
Can we extend these Patterns?

Good news \(R(4, 5) = 25. \)
Can we extend these Patterns?

Good news $R(4, 5) = 25$.

Bad news
Can we extend these Patterns?

Good news \(R(4, 5) = 25. \)

Bad news
THATS IT.
Can we extend these Patterns?

Good news $R(4, 5) = 25$.

Bad news

THATS IT.

No other $R(a, b)$ are known using NICE methods.
Summary of Bounds

<table>
<thead>
<tr>
<th>(R(a, b))</th>
<th>Old Bound</th>
<th>New Bound</th>
<th>Opt</th>
<th>Int?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(3, 3))</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>(Y)</td>
</tr>
<tr>
<td>(R(3, 4))</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>(Y)</td>
</tr>
<tr>
<td>(R(3, 5))</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>(Y)</td>
</tr>
<tr>
<td>(R(3, 6))</td>
<td>21</td>
<td>19</td>
<td>18</td>
<td>Lower-Y</td>
</tr>
<tr>
<td>(R(3, 7))</td>
<td>28</td>
<td>27</td>
<td>23</td>
<td>Lower-Y</td>
</tr>
<tr>
<td>(R(4, 4))</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>(Y)</td>
</tr>
<tr>
<td>(R(4, 5))</td>
<td>35</td>
<td>31</td>
<td>25</td>
<td>(N)</td>
</tr>
<tr>
<td>(R(5, 5))</td>
<td>70</td>
<td>62</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
Summary of Bounds

<table>
<thead>
<tr>
<th>$R(a, b)$</th>
<th>Old Bound</th>
<th>New Bound</th>
<th>Opt</th>
<th>Int?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(3, 3)$</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Y</td>
</tr>
<tr>
<td>$R(3, 4)$</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>Y</td>
</tr>
<tr>
<td>$R(3, 5)$</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>Y</td>
</tr>
<tr>
<td>$R(3, 6)$</td>
<td>21</td>
<td>19</td>
<td>18</td>
<td>Lower-Y</td>
</tr>
<tr>
<td>$R(3, 7)$</td>
<td>28</td>
<td>27</td>
<td>23</td>
<td>Lower-Y</td>
</tr>
<tr>
<td>$R(4, 4)$</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>Y</td>
</tr>
<tr>
<td>$R(4, 5)$</td>
<td>35</td>
<td>31</td>
<td>25</td>
<td>N</td>
</tr>
<tr>
<td>$R(5, 5)$</td>
<td>70</td>
<td>62</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

$R(5, 5)$: $43 \leq R(5, 5) \leq 49$. So far not mathematically interesting.
1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs.
Moral of the Story

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs.

 (Joel Spencer) *The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.*
Moral of the Story

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs.
 (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

2. Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.
When Will We Know $R(5, 5)$

1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5, 5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6, 6)$. In that case, he believes, we should attempt to destroy the aliens.
When Will We Know $R(5,5)$

1. (Quote from Joel Spencer): *Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6,6)$. In that case, he believes, we should attempt to destroy the aliens.*

2. I asked Stanislaw Radziszewski, the world’s leading authority on Small Ramsey Numbers, what $R(5,5)$ is and when we would know it. He said
1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5, 5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6, 6)$. In that case, he believes, we should attempt to destroy the aliens.

2. I asked Stanislaw Radziszowski, the worlds leading authority on Small Ramsey Numbers, what $R(5, 5)$ is and when we would know it. He said $R(5) = 43$, and
When Will We Know $R(5,5)$

1. (Quote from Joel Spencer): *Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6,6)$. In that case, he believes, we should attempt to destroy the aliens.*

2. I asked Stanislaw Radziszowski, the world’s leading authority on Small Ramsey Numbers, what $R(5,5)$ is and when we would know it. He said $R(5) = 43$, and we will never know it.