Arithmetic-Mean
Geometric-Mean
Inequalities
AM and GM

Def

1. The **arithmetic mean (AM)** of x_1, \ldots, x_n is

$$\frac{x_1 + \cdots + x_n}{n}.$$
AM and GM

Def

1. The **arithmetic mean (AM)** of x_1, \ldots, x_n is

 \[
 \frac{x_1 + \cdots + x_n}{n}.
 \]

2. The **geometric mean (GM)** of x_1, \ldots, x_n is

 \[(x_1 \cdots x_n)^{1/n}.
 \]
AM and GM

Def

1. The **arithmetic mean (AM)** of \(x_1, \ldots, x_n\) is

\[
\frac{x_1 + \cdots + x_n}{n}.
\]

2. The **geometric mean (GM)** of \(x_1, \ldots, x_n\) is

\[
(x_1 \cdots x_n)^{1/n}.
\]

How do AM and GM compare when \(x_1, \ldots, x_n \in \mathbb{R}^+\)?
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare?

Square both sides:

\[
x^2 + 2xy + y^2 \geq xy
\]

\[
x^2 - 2xy + y^2 \geq 0
\]

\[
(x - y)^2 \geq 0
\]

Proof also reveals that they are equal IFF $x = y$. Why $n = 2$? It will be the base case. And more!
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare? Discuss.
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare? Discuss.

$$ \frac{x+y}{2} \geq \sqrt{xy} $$
AM and GM: \(n = 2 \)

Assume \(x, y \in \mathbb{R}^+ \).

How do \(\frac{x+y}{2} \) and \(\sqrt{xy} \) compare? Discuss.

\[
\frac{x + y}{2} \geq \sqrt{xy}
\]

Square both sides

\[
\left(\frac{x + y}{2} \right)^2 \geq \sqrt{xy}^2
\]

\[
x^2 + 2xy + y^2 \geq 4xy
\]

\[
x^2 - 2xy + y^2 \geq 0
\]

\[
(x - y)^2 \geq 0
\]

Proof also reveals that they are equal IFF \(x = y \).
AM and GM: \(n = 2 \)

Assume \(x, y \in \mathbb{R}^+ \).
How do \(\frac{x + y}{2} \) and \(\sqrt{xy} \) compare? Discuss.

\[
\frac{x + y}{2} \geq \sqrt{xy}
\]

Square both sides

\[
\frac{x^2 + 2xy + y^2}{4} \geq xy
\]

Proof also reveals that they are equal IFF \(x = y \).

Why \(n = 2 \)?
It will be the base case.
And more!
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare? Discuss.

\[
\frac{x + y}{2} \geq \sqrt{xy}
\]

Square both sides

\[
\frac{x^2 + 2xy + y^2}{4} \geq xy
\]

\[
\frac{x^2 - 2xy + y^2}{4} \geq 0
\]
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare? Discuss.

\[
\frac{x + y}{2} \geq \sqrt{xy}
\]

Square both sides

\[
\frac{x^2 + 2xy + y^2}{4} \geq xy
\]

\[
\frac{x^2 - 2xy + y^2}{4} \geq 0
\]

\[
\frac{(x - y)^2}{4} \geq 0
\]
AM and GM: \(n = 2 \)

Assume \(x, y \in \mathbb{R}^+ \).

How do \(\frac{x+y}{2} \) and \(\sqrt{xy} \) compare? Discuss.

\[
\frac{x + y}{2} \geq \sqrt{xy}
\]

Square both sides

\[
\frac{x^2 + 2xy + y^2}{4} \geq xy
\]

\[
\frac{x^2 - 2xy + y^2}{4} \geq 0
\]

\[
\frac{(x - y)^2}{4} \geq 0
\]

Proof also reveals that they are equal IFF \(x = y \).
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare? Discuss.

$$\frac{x + y}{2} \geq \sqrt{xy}$$

Square both sides

$$\frac{x^2 + 2xy + y^2}{4} \geq xy$$

$$\frac{x^2 - 2xy + y^2}{4} \geq 0$$

$$(x - y)^2 \geq 0$$

Proof also reveals that they are equal IFF $x = y$.

Why $n = 2$?
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare? Discuss.

$$\frac{x + y}{2} \geq \sqrt{xy}$$

Square both sides

$$\frac{x^2 + 2xy + y^2}{4} \geq xy$$

$$\frac{x^2 - 2xy + y^2}{4} \geq 0$$

$$(x - y)^2 \geq 0$$

Proof also reveals that they are equal IFF $x = y$.

Why $n = 2$? It will be the base case.
AM and GM: $n = 2$

Assume $x, y \in \mathbb{R}^+$. How do $\frac{x+y}{2}$ and \sqrt{xy} compare? Discuss.

$$\frac{x + y}{2} \geq \sqrt{xy}$$

Square both sides

$$\frac{x^2 + 2xy + y^2}{4} \geq xy$$

$$\frac{x^2 - 2xy + y^2}{4} \geq 0$$

$$(x - y)^2 \geq 0$$

Proof also reveals that they are equal IFF $x = y$.

Why $n = 2$? It will be the base case. And more!
The AM-GM Theorem

Thm For all $n \in \mathbb{N}$ and for all $x_1, \ldots, x_n \in \mathbb{R}^+$

\[
\frac{x_1 + \cdots + x_n}{n} \geq (x_1 \cdots x_n)^{1/n}
\]

Equality happens iff $x_1 = \cdots = x_n$.
The AM-GM Theorem

Thm For all $n \in \mathbb{N}$ and for all $x_1, \ldots, x_n \in \mathbb{R}^+$

\[
\frac{x_1 + \cdots + x_n}{n} \geq (x_1 \cdots x_n)^{1/n}
\]

Equality happens iff $x_1 = \cdots = x_n$.
Recall To prove ($\forall n \geq 2)[P(n)]$ by induction you prove
Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove $P(2)$
Recall To prove \((\forall n \geq 2)[P(n)]\) by induction you prove
\(P(2)\)
\((\forall n \geq 2))[P(n) \rightarrow P(n + 1)].\)
Recall To prove \((\forall n \geq 2)[P(n)]\) by induction you prove \(P(2)\)
\((\forall n \geq 2))[P(n) \rightarrow P(n + 1)]\). From these two you can get to any \(n \geq 2\).
Recall To prove \((\forall n \geq 2)[P(n)]\) by induction you prove

- \(P(2)\)
- \((\forall n \geq 2))[P(n) \rightarrow P(n + 1)].\)

From these two you can get to any \(n \geq 2\).

Any set of rules that allows you to get to any number would work.
Recall To prove \((\forall n \geq 2)[P(n)]\) by induction you prove
\(P(2)\)
\((\forall n \geq 2))[P(n) \rightarrow P(n + 1)].\)
From these two you can get to any \(n \geq 2.\)
Any set of rules that allows you to get to any number would work.

We will prove
Recall To prove $(\forall n \geq 2)[P(n)]$ by induction you prove

$P(2)$

$(\forall n \geq 2))[P(n) \rightarrow P(n + 1)]$.

From these two you can get to any $n \geq 2$.

Any set of rules that allows you to get to any number would work.

We will prove

$P(2)$
Recall: To prove \((\forall n \geq 2)[P(n)]\) by induction you prove

\[
P(2) \quad (\forall n \geq 2)) [P(n) \rightarrow P(n + 1)].
\]

From these two you can get to any \(n \geq 2\).

Any set of rules that allows you to get to any number would work.

We will prove

\[
P(2) \text{ (we already did this).}
\]
Recall To prove \((\forall n \geq 2)[P(n)]\) by induction you prove
\[P(2)\]
\((\forall n \geq 2))[P(n) \rightarrow P(n + 1)].\]
From these two you can get to any \(n \geq 2\).
Any set of rules that allows you to get to any number would work.

We will prove
\[P(2)\text{ (we already did this).}\]
\[(\forall n)[(P(2) \land P(2^{n-1})) \rightarrow P(2^n)]]\]
Recall To prove \((\forall n \geq 2)[P(n)]\) by induction you prove
\[P(2) \]
\[(\forall n \geq 2))[P(n) \rightarrow P(n + 1)].\]
From these two you can get to any \(n \geq 2\).
Any set of rules that allows you to get to any number would work.

We will prove
\[P(2) \] (we already did this).
\[(\forall n)[(P(2) \land P(2^{n-1})) \rightarrow P(2^n)] \]
\[(\forall n < m)[P(m) \rightarrow P(n)] \] (YES, \(n < m\)). (NOT a typo!)
Recall: To prove \((\forall n \geq 2)[P(n)]\) by induction you prove
\[P(2)\]
\[(\forall n \geq 2))[P(n) \rightarrow P(n + 1)].\]
From these two you can get to any \(n \geq 2\).
Any set of rules that allows you to get to any number would work.

We will prove
\[P(2)\] (we already did this).
\[(\forall n)[(P(2) \land P(2^{n-1})) \rightarrow P(2^n)]\]
\[(\forall n < m)[P(m) \rightarrow P(n)]\] (YES, \(n < m\)). (NOT a typo!)
From these implications we easily obtain \((\forall n)[P(n)].\)
\[P(2^{n-1}) \implies P(2^n) \]

IH \[\sum_{i=1}^{2^{n-1}} x_i \geq (\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} \]
\[P(2^{n-1}) \implies P(2^n) \]

IH \[\sum_{i=1}^{2^{n-1}} x_i \geq (\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} \]

IS \[
\sum_{i=1}^{2^n} x_i = \sum_{i=1}^{2^{n-1}} x_i + \sum_{i=2^{n-1}+1}^{2^n} x_i = \frac{1}{2} \left(\sum_{i=1}^{2^{n-1}} x_i + \sum_{i=2^{n-1}+1}^{2^n} x_i \right)
\]
\[P(2^{n-1}) \implies P(2^n) \]

IH \[\frac{\sum_{i=1}^{2^{n-1}} x_i}{2^{n-1}} \geq (\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} \]

IS \[
\frac{\sum_{i=1}^{2^n} x_i}{2^n} = \frac{\sum_{i=1}^{2^{n-1}} x_i}{2^n} + \frac{\sum_{i=2^{n-1}+1}^{2^n} x_i}{2^n} = \frac{1}{2} \left(\frac{\sum_{i=1}^{2^{n-1}} x_i}{2^{n-1}} + \frac{\sum_{i=2^{n-1}+1}^{2^n} x_i}{2^{n-1}} \right)
\]

\[
\geq \frac{1}{2} \left((\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} + (\prod_{i=2^{n-1}+1}^{2^n} x_i)^{1/2^{n-1}} \right)
\]
\[P(2^{n-1}) \implies P(2^n) \]

IH \[\frac{\sum_{i=1}^{2^{n-1}} x_i}{2^{n-1}} \geq (\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} \]

IS

\[
\frac{\sum_{i=1}^{2^n} x_i}{2^n} = \frac{\sum_{i=1}^{2^{n-1}} x_i}{2^n} + \frac{\sum_{i=2^{n-1}+1}^{2^n} x_i}{2^n} = \frac{1}{2} \left(\frac{\sum_{i=1}^{2^{n-1}} x_i}{2^{n-1}} + \frac{\sum_{i=2^{n-1}+1}^{2^n} x_i}{2^{n-1}} \right)
\]

\[
\geq \frac{1}{2} \left(\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} + \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}} \right)
\]

Next Slide
\[P(2^{n-1}) \Longrightarrow P(2^n) \text{ (cont)} \]

\[\geq \frac{1}{2} \left(\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} + \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}} \right) \]
\(P(2^{n-1}) \implies P(2^n) \) (cont)

\[
\geq \frac{1}{2} \left(\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} + \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}} \right)
\]

Note This is AM of 2 numbers! We use AM-GM-2 on it!
\[P(2^{n-1}) \iff P(2^n) \text{ (cont)} \]

\[
\geq \frac{1}{2} (\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} + \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}})
\]

Note This is AM of 2 numbers! We use AM-GM-2 on it!

\[
\frac{1}{2} (\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} + \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}}) \geq
\]
\[P(2^{n-1}) \implies P(2^n) \ (\text{cont}) \]

\[\geq \frac{1}{2}((\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} + (\prod_{i=2^{n-1}+1}^{2^n} x_i)^{1/2^{n-1}}) \]

Note This is AM of 2 numbers! We use AM-GM-2 on it!

\[\frac{1}{2}((\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} + (\prod_{i=2^{n-1}+1}^{2^n} x_i)^{1/2^{n-1}}) \geq \]

\[(\prod_{i=1}^{2^{n-1}} x_i)^{1/2^{n-1}} \times (\prod_{i=2^{n-1}+1}^{2^n} x_i)^{1/2^{n-1}})^{1/2} \]
\[P(2^{n-1}) \implies P(2^n) \text{ (cont)} \]

\[
\geq \frac{1}{2} \left(\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} + \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}} \right)
\]

Note This is AM of 2 numbers! We use AM-GM-2 on it!

\[
\frac{1}{2} \left(\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} + \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}} \right) \geq \frac{2^{n-1}}{2 \left(\left(\prod_{i=1}^{2^{n-1}} x_i \right)^{1/2^{n-1}} \times \left(\prod_{i=2^{n-1}+1}^{2^n} x_i \right)^{1/2^{n-1}} \right) \right)^{1/2}
\]

\[
\geq \left(\prod_{i=1}^{2^n} x_i \right)^{1/2^{n-1}} = \left(\prod_{i=1}^{2^n} x_i \right)^{1/2^n}.
\]
\[n < m: \quad P(m) \implies P(n) \]

IH \((\forall x_1, \ldots, x_m) \left[\frac{\sum_{i=1}^{m} x_i}{m} \geq \left(\prod_{i=1}^{m} x_i \right)^{1/m} \right] \).
\(n < m: \ P(m) \implies P(n) \)

IH \((\forall x_1, \ldots, x_m)[\frac{\sum_{i=1}^{m}x_i}{m} \geq (\prod_{i=1}^{m}x_i)^{1/m}] \).

IS We care about \(\frac{x_1 + \cdots + x_n}{n} \).
\(n < m: \ P(m) \implies P(n) \)

IH \((\forall x_1, \ldots, x_m)[\frac{\sum_{i=1}^{m} x_i}{m} \geq (\prod_{i=1}^{m} x_i)^{1/m}] \).

IS We care about \(\frac{x_1 + \cdots + x_n}{n} \).

We need \(x_{n+1}, \ldots, x_m \) so we can use IH.
\(n < m: \ P(m) \implies P(n) \)

\textbf{IH} \ (\forall x_1, \ldots, x_m)[\frac{\sum_{i=1}^m x_i}{m} \geq (\prod_{i=1}^m x_i)^{1/m}].

\textbf{IS} \ We \ care \ about \ \frac{x_1 + \cdots + x_n}{n}.

We need \(x_{n+1}, \ldots, x_m \) so we can use \textbf{IH}.

\[
\begin{align*}
x_{n+1} = \cdots = x_m &= \frac{x_1 + \cdots + x_n}{n} = \alpha.
\end{align*}
\]
\(n < m: \quad P(m) \implies P(n) \)

IH \((\forall x_1, \ldots, x_m)[\frac{\sum_{i=1}^{m} x_i}{m} \geq (\prod_{i=1}^{m} x_i)^{1/m}]\).

IS We care about \(\frac{x_1 + \cdots + x_n}{n}\).

We need \(x_{n+1}, \ldots, x_m\) so we can use IH.

\[
x_{n+1} = \cdots = x_m = \frac{x_1 + \cdots + x_n}{n} = \alpha.
\]

And now we begin the proof, starting with \(\alpha\).
\[n < m: \quad P(m) \implies P(n) \]

IH \((\forall x_1, \ldots, x_m)[\frac{\sum_{i=1}^{m} x_i}{m} \geq (\prod_{i=1}^{m} x_i)^{1/m}]\).

IS We care about \(\frac{x_1 + \cdots + x_n}{n}\).

We need \(x_{n+1}, \ldots, x_m\) so we can use IH.

\[
x_{n+1} = \cdots = x_m = \frac{x_1 + \cdots + x_n}{n} = \alpha.
\]

And now we begin the proof, starting with \(\alpha\).

\[
\alpha = \frac{x_1 + \cdots + x_n}{n} = \frac{m}{n}(x_1 + \cdots + x_n).
\]
\[n < m: \ P(m) \implies P(n) \ (\text{cont}) \]

\[\alpha = \frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} (x_1 + \cdots + x_n), \]
\[n < m: \quad P(m) \implies P(n) \quad (\text{cont}) \]

\[\alpha = \frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} \left(\frac{x_1 + \cdots + x_n}{m} \right). \]

We want to write this as the mean of \(m \) elements.
\[n < m: \ P(m) \implies P(n) \] (cont)

\[\alpha = \frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} \left(x_1 + \cdots + x_n \right). \]

We want to write this as the mean of \(m \) elements.

\[\frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} \left(x_1 + \cdots + x_n \right) = \]
$n < m$: $P(m) \iff P(n)$ (cont)

\[\alpha = \frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} \left(\frac{x_1 + \cdots + x_n}{m} \right). \]

We want to write this as the mean of m elements.

\[\frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} \left(\frac{x_1 + \cdots + x_n}{m} \right) = \]

\[\frac{x_1 + \cdots + x_n + \frac{m}{n} (x_1 + \cdots + x_n) - x_1 - \cdots - x_n}{m} = \]
\(n < m: \ P(m) \implies P(n) \) (cont)

\[
\alpha = \frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} \left(\frac{x_1 + \cdots + x_n}{m} \right).
\]

We want to write this as the mean of \(m \) elements.

\[
\frac{x_1 + \cdots + x_n}{n} = \frac{m}{n} \left(\frac{x_1 + \cdots + x_n}{m} \right) = \frac{x_1 + \cdots + x_n + \frac{m}{n} (x_1 + \cdots + x_n) - x_1 - \cdots - x_n}{m} = \frac{x_1 + \cdots + x_n + \frac{m-n}{n} (x_1 + \cdots + x_n)}{m} = \frac{x_1 + \cdots + x_n + (m-n)\alpha}{m}
\]
\[n < m: \ P(m) \implies P(n) \ (cont) \]

\[\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m} \]
\(n < m: \ P(m) \implies P(n) \) (cont)

\[
\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m}
\]

We have the mean of \(m \) numbers! We can use IH!
\[n < m: \quad P(m) \implies P(n) \quad (\text{cont}) \]

\[
\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m}
\]

We have the mean of \(m \) numbers! We can use IH!

\[
\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m} \geq ((\prod_{i=1}^{n} x_i \alpha^{m-n})^{1/m}
\]
$n < m$: $P(m) \implies P(n)$ (cont)

\[\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m} \]

We have the mean of m numbers! We can use IH!

\[\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m} \geq ((\prod_{i=1}^{n} x_i)\alpha^{m-n})^{1/m} \]

\[\alpha^m \geq ((\prod_{i=1}^{n} x_i)\alpha^{m-n}) \]
\[\alpha = \frac{x_1 + \cdots + x_n + (m-n)\alpha}{m} \]

We have the mean of \(m \) numbers! We can use IH!

\[\alpha = \frac{x_1 + \cdots + x_n + (m-n)\alpha}{m} \geq ((\prod_{i=1}^{n} x_i)\alpha^{m-n})^{1/m} \]

\[\alpha^m \geq ((\prod_{i=1}^{n} x_i)\alpha^{m-n}) \]

Multiply both sides by \(\alpha^{n-m} \) to get
\[n < m: \ P(m) \implies P(n) \text{ (cont)} \]

\[\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m} \]

We have the mean of \(m \) numbers! We can use IH!

\[\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m} \geq ((\prod_{i=1}^{n} x_i)^{\alpha^{m-n}})^{1/m} \]

\[\alpha^m \geq ((\prod_{i=1}^{n} x_i)^{\alpha^{m-n}}) \]

Multiply both sides by \(\alpha^{n-m} \) to get

\[\alpha^n \geq \prod_{i=1}^{n} x_i \]
\[
\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m}
\]

We have the mean of \(m \) numbers! We can use IH!

\[
\alpha = \frac{x_1 + \cdots + x_n + (m - n)\alpha}{m} \geq \left(\prod_{i=1}^{n} x_i \alpha^{m-n} \right)^{1/m}
\]

\[
\alpha^m \geq \left(\prod_{i=1}^{n} x_i \alpha^{m-n} \right)
\]

Multiply both sides by \(\alpha^{n-m} \) to get

\[
\alpha^n \geq \left(\prod_{i=1}^{n} x_i \right)
\]

\[
\alpha \geq \left(\prod_{i=1}^{n} x_i \right)^{1/n}
\]
Why This Example?

This example is interesting since it uses a diff induction scheme.
Why This Example?

This example is interesting since it uses a diff induction scheme. They key is that if you from:
Why This Example?

This example is interesting since it uses a diff induction scheme. The key is that if you from:

- Base Case
Why This Example?

This example is interesting since it uses a diff induction scheme. The key is that if you from:

- Base Case
- IS

you can reach any $n \in \mathbb{N}$, then $(\forall n)[P(n)]$.