Predicate and Quantifier Review

250H
Negating Quantified Expressions

<table>
<thead>
<tr>
<th>Negation</th>
<th>Equivalent Statement</th>
<th>When Is Negation True?</th>
<th>When False?</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬ ∃ x P (x)</td>
<td>∀ x ¬ P (x)</td>
<td>For every x, P (x) is false</td>
<td>There is an x for which P (x) is true</td>
</tr>
<tr>
<td>¬ ∀ x P (x)</td>
<td>∃ x ¬ P (x)</td>
<td>There is an x for which P (x) is false</td>
<td>P (x) is true for every x</td>
</tr>
</tbody>
</table>
The Order of Quantifiers

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
 - The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes $P(x, y)$ true for every x.
 - There must be a particular value of y for which $P(x, y)$ is true regardless of the choice of x.
 - $\forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which $P(x, y)$ is true
 - No matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which $P(x, y)$ is true
 - $\forall x \exists y P(x, y)$: y can depend on x
 - $\exists y \forall x P(x, y)$: y is a constant independent of x
Logical Operator: Conditional Statements

Common ways to express $p \rightarrow q$:

- if p, then q
- p implies q
- if p, q
- p only if q
- p is sufficient for q
- a sufficient condition for q is p
- q if p
- q whenever p
- q when p
- q is necessary for p
- a necessary condition for p is q
- q follows from p
- q unless $\neg p$
Example 1: Translating Math Statements into Statements

- Translate the statement “The sum of two positive integers is always positive” into a logical expression
 - Rewrite it so that the implied quantifiers and a domain are shown
 - For every two integers, if these integers are both positive, then the sum of these integers is positive.
 - Introduce the variables x and y to obtain
 - For all positive integers x and y, $x + y$ is positive.
 - Quantify
 - $\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$, where the domain for both variables consists of all integers.
 - Alternate Solution: $\forall x \forall y (x + y > 0)$, where the domain for both variables consists of all positive integers.
Example 2: Translating Math Statements into Statements

- Translate the statement: Every real number except zero has a multiplicative inverse.
 \(\text{(A multiplicative inverse of a real number } x \text{ is a real number } y \text{ such that } xy = 1.)\)
 - Rewrite it so that the implied quantifiers and a domain are shown
 - For every real number \(x\) except zero, \(x\) has a multiplicative inverse.
 - Introduce the variables \(x\) and \(y\) to obtain
 - For every real number \(x\), if \(x \neq 0\), then there exists a real number \(y\) such that \(xy = 1\)
 - Quantify
 - \(\forall x((x \neq 0) \rightarrow \exists y(xy = 1))\)
Example 3: Translating Math Statements into Statements

- Translate the statement: There exists two distinct rational numbers such that $xy = 0$.
 - $\exists x, y \in \mathbb{Q} ((x \neq y) \land (xy = 0))$
Example 4: Translating Math Statements into Statements

- Translate the statement: There exists an infinite number of natural numbers.
 - $\forall x \in \mathbb{N} \, \exists y \in \mathbb{N} \, (y > x)$
Example 5: Translating Math Statements into Statements

- Translate the statement: There are no natural numbers x, y such that xy = -1.
 - ¬(∃ x,y (xy = -1))
 - ∀ x, y ∈ N (xy ≠ -1)