If \(P = NP \) then . . .

1 Known Theorems and Definitions

Notation 1.1 \(P \) is the set of problems that are in polynomial time. Just think can be solved quickly.

Note that if \(P = NP \) that means that one can determine quickly if a formula has a satisfying assignment. Can one also find a satisfying assignment if one exists? Yes:

Lemma 1.2 If \(P = NP \) then there exists a poly-time algorithm that will, on input \(\phi \), do the following.

1. If \(\phi \notin SAT \) then the output is NO
2. If \(\phi \in SAT \) then the output is \(\vec{a} \) where \(\phi(\vec{a}) = T \) (so the output is a satisfying assignment).

Note that SAT is a \(\exists \) question: Does THERE EXIST a satisfying assignment? But what about a \(\exists \forall \) question? If \(P = NP \) then are those also easy? Yes:

Lemma 1.3 Assume \(P = NP \) then the following are true.

1. Let \(B \) be a set of pairs that is in \(P \). (Think given \(x, y \), determining \((x, y) \in B \) can be done quickly). Let \(q \) be a polynomial. Then the following problem is in \(P \)

\[
A = \{ x: (\exists y, |y| \leq q(|x|))[(x, y) \in B] \}.
\]

Example Let

\[
B = \{ (\phi, \vec{y}) : \phi(\vec{y}) = T \}.
\]

Then

\[
A = \{ \phi: (\exists y, |y| \leq q(|x|))[(\phi, y) \in B] \}.
\]
Note that A is SAT.

Non-SAT Example G is a set of cities and a table that tells you how much it costs to go from one to the other. c is a cost so just a natural number. y is a sequence of cities so that you hit every one once.

$$B = \{(G, c), y) : \text{The sequence } y \text{ costs } \leq c \}.$$

Then

$$A = \{(G, c) : (\exists y)[\text{The sequence } y \text{ costs } \leq c] \}.$$

HENCEFORTH $(\exists^p x)$ and $(\forall^p x)$ WILL MEAN THAT THE DOMAIN OF x IS STRINGS BOUNDED BY SOME POLY IN THE LENGTH OF THE PREVIOUS VARIABLES.

2. Let B be a set of triples that are in P (just think given x, y, z, determining $(x, y, z) \in B$ can be done quickly). Let q be a polynomial. Then the following problem is in P

$$A = \{x : (\exists^p y)(\forall^p z)[(x, y, z) \in B] \}.$$

Example Let $\phi(\vec{x}, \vec{y})$ be a formula with variables in \vec{x} and \vec{y}. So its really $\phi(x_1, \ldots, x_n, y_1, \ldots, y_m)$.

$$B = \{(\phi, \vec{x}, \vec{y}) : \phi(\vec{x}, \vec{y}) = T \}.$$

Then

$$A = \{\phi(\vec{x}, \vec{y}) : (\exists^p \vec{x})(\forall^p \vec{y})[\phi(\vec{x}, \vec{y})] \}.$$

Note that A is not SAT, its a $\exists^p \forall$ version of SAT.

3. Let B be a set of four-tuples (or five-tuples etc.) that are in P. Similar to last part.

Say we have that SAT is in Poly Time but perhaps with a large polynomial. Can we ASK if there is a better program? Yes, though in a limited domain:
Lemma 1.4 If $P = NP$ then there exists a poly-time algorithm that will, on input program M, a poly q, and a number n will do the following.

1. If M is an algorithm for SAT restricted to $\leq n$ variables such that on any input on $k \leq n$ variables runs in time $\leq q(k)$ then output YES. (So if M is a FAST algorithm for SAT restricted to $\leq n$ variables then output YES.)

2. Otherwise output NO

Proof:
For this problme we take the number of variables to be the size of a formula .
Let A be the set of all (M, q, n) such that the following are true

1. $(\forall \phi, |\phi| = m \leq n)[M(\phi) \text{ runs in time } \leq q(m)].$

2. $(\forall \phi, |\phi| = m \leq n)[M(\phi) = \vec{a} \rightarrow \phi(\vec{a}) = T].$

 If $M(\phi)$ outputs a vector, its a satisfying assignment.

3. $(\forall \phi, |\phi| = m \leq n)[M(\phi) = NO \rightarrow (\forall \vec{a})[\phi(\vec{a}) = F].$

 If $M(\phi)$ outputs NO then ϕ is NOT satisfiable.

This can be written with quantifiers and fit into the form of Lemma 1.3. Hence the problem is in P. ■

Can we actually FIND a better algorithm? Yes.

Lemma 1.5 If $P = NP$ then there exists a poly-time algorithm that will, on input a poly q, and a number n will do the following: Determine if there exists an Algorithm M as in the last lemma, and if so then OUTPUT THE ALGORITHM.

Theorem 1.6 Assume $P = NP$ (though perhaps with a terrible algorithm). Assume there exists a better algorithm that works when the number of variables is $\leq 10^{10}$. Then we can find that algorithm.
Proof:

Run the algorithm in Lemma 1.4 on smaller and smaller polynomials (and \(n = 10^{10} \)) until you find a small polynomial (small enough for your purposes) where it says YES.

Note the following

1. Since you may have \(P = NP \) but with a terrible algorithm, finding the better algorithm will take a long time. But its a one-time cost.

2. The inventor of the terrible \(P = NP \) algorithm probably understood the algorithm, as did others who looked at it. But the new much-better algorithm was machine generated and hence it is possible, indeed likely, that nobody understands it.

3. I am assuming that there exists a good algorithm. If this is incorrect, thats sad, but the approach above will verify that there is no good algorithm.