Dynamic Programming

CMSC250H

February 16, 2026

DP February 16, 2026 1717

Dynamic Programming

Definition
Dynamic Programming: An algorithm technique that explores the
space of all possible solutions by carefully decomposing things into
a series of subproblems, and building up correct solutions to larger
and larger subproblems.

DP February 16, 2026 2/17

Dynamic Programming

@ Sounds like brute force, but systematically works through the
exponential large set of possible solutions

® Doesn't look at all solutions, takes optimal subproblem
solution to build up larger ones

© Store subproblem solutions, so we don't have to compute
again (memoization)

DP February 16, 2026 3/17

Example) Weighted Interval Scheduling

Weighted Interval Scheduling

Given a set of scheduling requests {1,2, ... n}. Each has a start and

finish time s(i) and f(i), as well as a weight w(i). Generate a set S of
requests that maximizes the total weight

s [o w]

i€eS

DP February 16, 2026 4/17

Index

DP February 16, 2026 5/17

Creating a Solution

e We know that if we add an interval i to the set, then we can't
add any conflicting requests.

e Let p(j) denote the largest index i < j, such that i and j are
disjoint

e Observe the following two cases (working backwards):

e Either nisin the optimal set
® Or nis notin the optimal set

DP February 16, 2026 6/17

e What can we say about Siif nis in the optimal solution?

DP February 16, 2026 av

¢ What can we say about Siif nis in the optimal solution?

¢ |f nisin the solution, then the intervals
p(n)+1,p(n)+2,...,n—1 cannot be in the S (since they
overlap with n).

® So, the optimal solution is reduced to finding the optimal
solution up until p(j)

OPT(n) = w(n) + OPT(p(n))

DP February 16, 2026 8/17

e What can we say about Sif nis not in the optimal solution?

® S may contain any interval from the set {1,2,...,n— 1}
® So, our problem is reduced to inspecting these elements

OPT(n) = OPT(n— 1)

DP February 16, 2026 9/17

Putting It Together

® These two cases now develop into a recurrence to solve the
problem:

Optimal Solution For Weighted Interval Scheduling

OPT(n) = max(n + OPT(p(j)), OPT(p(})))

DP February 16, 2026 10/17

Memoization

e There are still an exponential amount of subproblems here
(The number of subsets 2")

e We can instead store the solution to a polynomial amount of
smaller problems and build up

DP February 16, 2026 11717

Algorithm

M[0] =0
fori=1,...,ndo
M[i] = max(w(i) + M[p(i)], M[i — 1])

or recursively

if i =0 then
return 0
else if M[i] # empty then
return M[i]
else
return M[j] = max(w(i) + M[p(/)], M[i — 1])

DP February 16, 2026 12/17

Observe that the runtime of the algorithm is O(n), since the

number of recursive calls and iterations is bounded by the size of
M, which is size n 4 1

DP February 16, 2026 13/17

Example 2) Weighted Knapsack

Weighted Knapsack

Say we have a single knapsack, that can hold at most weight W. We
also have a list of items {1,. .., n}, each with weight w(i). We want a
set S with maximum weight, without going over W

max Z w(i)y < W

SC{1,...,n} ‘co

DP February 16, 2026 14/17

New Strategy

e We can't rule out conflicting items (like in Interval Scheduling),
i.e selecting neliminates p(n) +1,...,n—1

e So what does happen if we add n?

DP February 16, 2026 15717

Considering the Weight

e We do know that if we add nto S, then we now have remaining
weight W — w(n) for all the remaining items

e |[f we don't add nto S then we have weight W for all the
remaining items

DP February 16, 2026 16/17

The Recurrence

We can now parameterize the recurrence by both the weight and
the items:

Optimal Solution for Weighted Knapsack

OPT(n, W) = max(OPT(n — 1, W), w(n) + OPT(n — 1, W — (w(n)))

This gives us an algorithm like before, but with a n x W size array.
Hence, the algorithm runs in O(W - n) time

DP February 16, 2026 17717

