
Dynamic Programming
CMSC250H

February 16, 2026

DP February 16, 2026 1 / 17



Dynamic Programming

Definition
Dynamic Programming: An algorithm technique that explores the
space of all possible solutions by carefully decomposing things into
a series of subproblems, and building up correct solutions to larger
and larger subproblems.

DP February 16, 2026 2 / 17



Dynamic Programming

1 Sounds like brute force, but systematically works through the
exponential large set of possible solutions

2 Doesn’t look at all solutions, takes optimal subproblem
solution to build up larger ones

3 Store subproblem solutions, so we don’t have to compute
again (memoization)

DP February 16, 2026 3 / 17



Example) Weighted Interval Scheduling

Weighted Interval Scheduling
Given a set of scheduling requests {1,2, . . . n}. Each has a start and
finish time s(i) and f (i), as well as a weight w(i). Generate a set S of
requests that maximizes the total weight

max
S⊆{1,...,n}

[∑
i∈S

w(i)
]

DP February 16, 2026 4 / 17



Example

DP February 16, 2026 5 / 17



Creating a Solution

• We know that if we add an interval i to the set, then we can’t
add any conflicting requests.

• Let p(j) denote the largest index i < j , such that i and j are
disjoint

• Observe the following two cases (working backwards):
• Either n is in the optimal set
• Or n is not in the optimal set

DP February 16, 2026 6 / 17



Case 1)

• What can we say about S if n is in the optimal solution?

DP February 16, 2026 7 / 17



Case 1)

• What can we say about S if n is in the optimal solution?
• If n is in the solution, then the intervals

p(n) + 1,p(n) + 2, . . . , n − 1 cannot be in the S (since they
overlap with n).

• So, the optimal solution is reduced to finding the optimal
solution up until p(j)

OPT(n) = w(n) + OPT(p(n))

DP February 16, 2026 8 / 17



Case 2)

• What can we say about S if n is not in the optimal solution?
• S may contain any interval from the set {1,2, . . . , n − 1}
• So, our problem is reduced to inspecting these elements

OPT(n) = OPT(n − 1)

DP February 16, 2026 9 / 17



Putting It Together

• These two cases now develop into a recurrence to solve the
problem:

Optimal Solution For Weighted Interval Scheduling

OPT(n) = max(n + OPT(p(j)),OPT(p(j)))

DP February 16, 2026 10 / 17



Memoization

• There are still an exponential amount of subproblems here
(The number of subsets 2n)

• We can instead store the solution to a polynomial amount of
smaller problems and build up

DP February 16, 2026 11 / 17



Algorithm

M[0] = 0

for i = 1, . . . , n do
M[i] = max(w(i) + M[p(i)],M[i − 1])

or recursively

if i = 0 then
return 0

else if M[i] ̸= empty then
return M[i]

else
return M[j] = max(w(i) + M[p(i)],M[i − 1])

DP February 16, 2026 12 / 17



Runtime

Observe that the runtime of the algorithm is O(n), since the
number of recursive calls and iterations is bounded by the size of
M , which is size n + 1

DP February 16, 2026 13 / 17



Example 2) Weighted Knapsack

Weighted Knapsack
Say we have a single knapsack, that can hold at most weight W . We
also have a list of items {1, . . . ,n}, each with weight w(i). We want a
set S with maximum weight, without going over W

max
S⊆{1,...,n}

∑
i∈S

w(i) ≤ W

DP February 16, 2026 14 / 17



New Strategy

• We can’t rule out conflicting items (like in Interval Scheduling),
i.e selecting n eliminates p(n) + 1, . . . , n − 1

• So what does happen if we add n?

DP February 16, 2026 15 / 17



Considering the Weight

• We do know that if we add n to S, then we now have remaining
weight W − w(n) for all the remaining items

• If we don’t add n to S then we have weight W for all the
remaining items

DP February 16, 2026 16 / 17



The Recurrence

We can now parameterize the recurrence by both the weight and
the items:

Optimal Solution for Weighted Knapsack

OPT(n,W ) = max(OPT(n − 1,W ),w(n) + OPT(n − 1,W − (w(n)))

This gives us an algorithm like before, but with a n × W size array.
Hence, the algorithm runs in O(W · n) time

DP February 16, 2026 17 / 17


