

Dynamic Programming

CMSC250H

February 16, 2026

Definition

Dynamic Programming: An algorithm technique that explores the space of all possible solutions by carefully decomposing things into a series of subproblems, and building up correct solutions to larger and larger subproblems.

Dynamic Programming

- ① Sounds like brute force, but systematically works through the exponential large set of possible solutions
- ② Doesn't look at all solutions, takes optimal subproblem solution to build up larger ones
- ③ Store subproblem solutions, so we don't have to compute again (memoization)

Example) Weighted Interval Scheduling

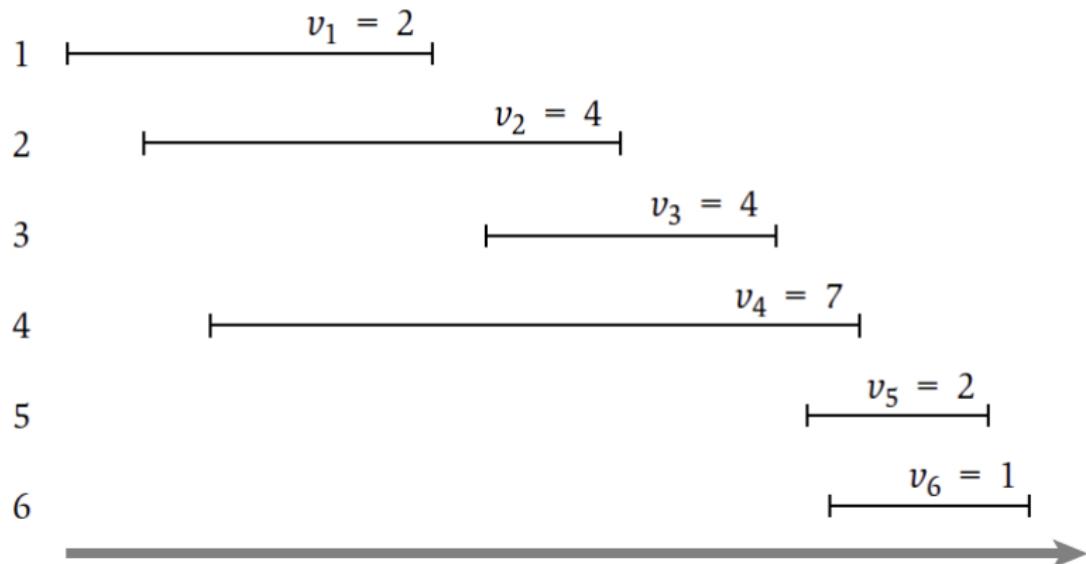
Weighted Interval Scheduling

Given a set of scheduling requests $\{1, 2, \dots, n\}$. Each has a start and finish time $s(i)$ and $f(i)$, as well as a weight $w(i)$. Generate a set S of requests that maximizes the total weight

$$\max_{S \subseteq \{1, \dots, n\}} \left[\sum_{i \in S} w(i) \right]$$

Example

Index



Creating a Solution

- We know that if we add an interval i to the set, then we can't add any conflicting requests.
- Let $p(j)$ denote the largest index $i < j$, such that i and j are disjoint
- Observe the following two cases (working backwards):
 - Either n is in the optimal set
 - Or n is not in the optimal set

- What can we say about S if n is in the optimal solution?

Case 1)

- What can we say about S if n is in the optimal solution?
 - If n is in the solution, then the intervals $p(n) + 1, p(n) + 2, \dots, n - 1$ cannot be in the S (since they overlap with n).
 - So, the optimal solution is reduced to finding the optimal solution up until $p(j)$

$$\text{OPT}(n) = w(n) + \text{OPT}(p(n))$$

Case 2)

- What can we say about S if n is not in the optimal solution?
 - S may contain any interval from the set $\{1, 2, \dots, n-1\}$
 - So, our problem is reduced to inspecting these elements

$$\text{OPT}(n) = \text{OPT}(n-1)$$

Putting It Together

- These two cases now develop into a recurrence to solve the problem:

Optimal Solution For Weighted Interval Scheduling

$$\text{OPT}(n) = \max(n + \text{OPT}(p(j)), \text{OPT}(p(j)))$$

Memoization

- There are still an exponential amount of subproblems here (The number of subsets 2^n)
- We can instead store the solution to a polynomial amount of smaller problems and build up

Algorithm

$M[0] = 0$

for $i = 1, \dots, n$ **do**

$M[i] = \max(w(i) + M[p(i)], M[i - 1])$

or recursively

if $i = 0$ **then**

return 0

else if $M[i] \neq \text{empty}$ **then**

return $M[i]$

else

return $M[j] = \max(w(i) + M[p(i)], M[i - 1])$

Observe that the runtime of the algorithm is $O(n)$, since the number of recursive calls and iterations is bounded by the size of M , which is size $n + 1$

Example 2) Weighted Knapsack

Weighted Knapsack

Say we have a single knapsack, that can hold at most weight W . We also have a list of items $\{1, \dots, n\}$, each with weight $w(i)$. We want a set S with maximum weight, without going over W

$$\max_{S \subseteq \{1, \dots, n\}} \sum_{i \in S} w(i) \leq W$$

New Strategy

- We can't rule out conflicting items (like in Interval Scheduling), i.e selecting n eliminates $p(n) + 1, \dots, n - 1$
- So what does happen if we add n ?

Considering the Weight

- We do know that if we add n to S , then we now have remaining weight $W - w(n)$ for all the remaining items
- If we don't add n to S then we have weight W for all the remaining items

The Recurrence

We can now parameterize the recurrence by both the weight and the items:

Optimal Solution for Weighted Knapsack

$$\text{OPT}(n, W) = \max(\text{OPT}(n - 1, W), w(n) + \text{OPT}(n - 1, W - (w(n))))$$

This gives us an algorithm like before, but with a $n \times W$ size array. Hence, the algorithm runs in $O(W \cdot n)$ time