
250H-Discussion:
Algorithm Design
Techniques
2/9/26

Brute Force
● Attempting all possible solutions, seeing which one is the “best”

● Guaranteed to give you the best possible solution

● Not always efficient
○ Exponential runtimes
○ P VS NP

● We get better solutions using design techniques
○ Narrowing down solution space (LPs)
○ Memoization
○ Heuristics

Greedy Algorithms

● An algorithm is greedy if it builds up a solution in small steps, each a “locally”
optimum solution satisfying some criteria

● Although greedy algorithms are not optimal for all problems, they can produce
optimal solutions for some
○ Typically very intuitive and easy to prove correctness
○ We won’t be going over the proof techniques

Example 1) Making Change

● Suppose you are a cashier and you need to make change for someone who just paid
you

● They are annoying and ask for the minimum number of coins in return

● What approach do you take?

Taking the biggest coin

● Naturally, taking the coin with the most value lowers the remaining amount the most

Taking the biggest coin

● Naturally, taking the coin with the most value lowers the remaining amount the most

● This is the algorithm! take the largest possible coin available and subtract its value
from the total, repeating until total is 0

Taking the biggest coin

Suppose the change you need to make is 87 cents

○ Take as many quarters as you can
■ 1 – 62 remaining
■ 2 – 37 remaining
■ 3 – 12 remaining
■ Can’t take anymore

○ Take as many dimes as you can
■ 1 – 2 remaining
■ Can’t take anymore

○ Take as many nickels
■ Can’t take any!

○ Take as many pennies
■ 2 pennies

Coin values

Vote: The algorithm we gave before

1. GIVES OPTIMAL SOLUTIONS FOR ALL COIN VALUES
2. DOESN”T GIVE OPTIMAL SOLUTIONS FOR ALL COIN VALUES

Coin values

● Not all coin values give you the optimal solution with this algorithm

Coin values

● Not all coin values give you the optimal solution with this algorithm

● {1, 3, 4,}

Coin values

● Not all coin values give you the optimal solution with this algorithm

● {1, 3, 4,}

● {1, 15, 25}

Coin values

● Not all coin values give you the optimal solution with this algorithm

● {1, 3, 4,} – 6
○ Greedy = {4, 1, 1}
○ Optimal = {3, 3}

● {1, 15, 25} – 35
○ Greedy = {25, 1 (x10)}
○ Optimal = {15, 15, 1, 1, 1, 1, 1}

Brute Force?

What is a brute force algorithm for this?

Example 2) Interval Scheduling

● We have n requests, labeled 1, .., n, to use a room between times a-b. (i.e [a, b]).

● Each request has a starting time, S(i), and a finish time, F(i).

● We want to schedule as many of these as possible, without creating any overlap

Answer:

We schedule Tasks 2, 3, and 4

Strategy/Heuristic

● How can we make a selection at each step based on the problem’s properties

● What are some ideas?
○ Select the one with the earliest start time?

Strategy/Heuristic

● How can we make a selection at each step based on the problem’s properties

● What are some ideas?
○ Select the one with the earliest start time?
○ Select the one shortest in length?

Strategy/Heuristic

● How can we make a selection at each step based on the problem’s properties

● What are some ideas?
○ Select the one with the earliest start time?

■ Nope!
○ Select the one shortest in length?

■ Nope!
○ Select the one that finishes first?

■ Works!

Sort by Finish Times

● Intuition:
○ This ensures that we have the most possible REMAINING TIME to schedule the rest of the

problems

Sort by Finish Times
● Intuition:

○ This ensures that we have the most possible REMAINING TIME to schedule the rest of the
problems

● Answer: Task 3, 4, 5, 8, 9, and 11

Expanding this Problem - Weighted I.S

● What if we assign weights to each of these requests
○ This represents some requests being more important than others
○ Each request now has a weight, w(i).
○ We want to maximize weight!

● Would our algorithm work now?

Expanding this Problem - Weighted I.S

● What if we assign weights to each of these requests
○ This represents some requests being more important than others
○ Each request now has a weight, w(i).
○ We want to maximize weight!

● Would our algorithm work now?
○ No
○

Proving Optimality of Greedy Algorithms

● Suppose we have access to an optimal solution, O.
● Our greedy solution: A

1. Assume A is not optimal
2. Compare it to O
3. Derive a contradiction by the properties of our algorithm

Or

1. Compare A and O at each step
2. Show that at each step A does AT LEAST as well as O

