250H-Discussion:
Algorithm Design
Techniques

2/9/26

Brute Force

Attempting all possible solutions, seeing which one is the “best”

e Guaranteed to give you the best possible solution

e Not always efficient
o Exponential runtimes
o PVSNP
e \We get better solutions using design techniques

o Narrowing down solution space (LPs)
o Memoization
o Heuristics

Greedy Algorithms

e An algorithm is greedy if it builds up a solution in small steps, each a “locally”
optimum solution satisfying some criteria

e Although greedy algorithms are not optimal for all problems, they can produce

optimal solutions for some
o Typically very intuitive and easy to prove correctness
o We won’t be going over the proof techniques

Example 1) Making Change

e Suppose you are a cashier and you need to make change for someone who just paid
you

e They are annoying and ask for the minimum number of coins in return

e What approach do you take?

Taking the biggest coin

e Naturally, taking the coin with the most value lowers the remaining amount the most

Taking the biggest coin

e Naturally, taking the coin with the most value lowers the remaining amount the most

e This is the algorithm! take the largest possible coin available and subtract its value
from the total, repeating until total is O

Taking the biggest coin

Suppose the change you need to make is 87 cents

o Take as many quarters as you can
m 1-62 remaining
m 2-37 remaining
m 3-12 remaining
m Can’ttake anymore
o Take as many dimes as you can
m 1-2remaining
m Can’'t take anymore
o Take as many nickels
m Can'ttake any!
o Take as many pennies
m 2 pennies

Coin values

Vote: The algorithm we gave before

1. GIVES OPTIMAL SOLUTIONS FOR ALL COIN VALUES
2. DOESN"T GIVE OPTIMAL SOLUTIONS FOR ALL COIN VALUES

Coin values

e Not all coin values give you the optimal solution with this algorithm

Coin values

e Not all coin values give you the optimal solution with this algorithm

o {1,3,4}

Coin values

e Not all coin values give you the optimal solution with this algorithm

o {1,3,4}

o {1,15,25}

Coin values

e Not all coin values give you the optimal solution with this algorithm

e {1,3,4}-6
o Greedy ={4, 1, 1}
o Optimal = {3, 3}

e {1,15,25}-35
o Greedy ={25,1 (x10)}
o Optimal={15,15,1,1,1, 1, 1}

Brute Force?

What is a brute force algorithm for this?

Example 2) Interval Scheduling

e We have n requests, labeled 1, .., n, to use a room between times a-b. (i.e [a, b]).
e Each request has a starting time, S(i), and a finish time, F(i).

e We want to schedule as many of these as possible, without creating any overlap

Task 1

Answer:

We schedule Tasks 2, 3, and 4

Strategy/Heuristic

e How can we make a selection at each step based on the problem’s properties

e \What are some ideas?
o Select the one with the earliest start time?

Strategy/Heuristic

e How can we make a selection at each step based on the problem’s properties

e \What are some ideas?
o Select the one with the earliest start time?
o Select the one shortest in length?

Strategy/Heuristic

e How can we make a selection at each step based on the problem’s properties

e \What are some ideas?
o Select the one with the earliest start time?

m Nope!
o Select the one shortest in length?
m Nope!

o Select the one that finishes first?
n Works!

Sort by Finish Times

e Intuition:
o This ensures that we have the most possible REMAINING TIME to schedule the rest of the
problems

Task 10

Task 8

Sort by Finish Times

e Intuition:
o This ensures that we have the most possible REMAINING TIME to schedule the rest of the
problems

e Answer:Task 3,4,5,8,9,and 11

Task 4 || Task 5

Task 2

Task 10

Task 8

Expanding this Problem - Weighted I.S

e What if we assign weights to each of these requests
o This represents some requests being more important than others
o Each request now has a weight, w(i).
o We want to maximize weight!

e Would our algorithm work now?

Expanding this Problem - Weighted I.S

e What if we assign weights to each of these requests
o This represents some requests being more important than others
o Each request now has a weight, w(i).
o We want to maximize weight!

e Would our algorithm work now?

o No
Index
i . Value = 1 .
Value = 3
2 I I
Value = 1
3 [|

Proving Optimality of Greedy Algorithms

e Suppose we have access to an optimal solution, O.
e Our greedy solution: A

Assume A is not optimal
Compareitto O
Derive a contradiction by the properties of our algorithm

WN =

Or

1. Compare A and O at each step
2. Show that at each step A does AT LEAST as well as O

