
Duplicator Spoiler Games

DUP and SPOIL

a < b.

La = {1 < 2 < · · · < a}
Lb = {1 < 2 < · · · < b}
DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

DUP and SPOIL

a < b.
La = {1 < 2 < · · · < a}

Lb = {1 < 2 < · · · < b}
DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

DUP and SPOIL

a < b.
La = {1 < 2 < · · · < a}
Lb = {1 < 2 < · · · < b}

DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

DUP and SPOIL

a < b.
La = {1 < 2 < · · · < a}
Lb = {1 < 2 < · · · < b}
DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

DUP and SPOIL

a < b.
La = {1 < 2 < · · · < a}
Lb = {1 < 2 < · · · < b}
DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

DUP and SPOIL

a < b.
La = {1 < 2 < · · · < a}
Lb = {1 < 2 < · · · < b}
DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

DUP and SPOIL

a < b.
La = {1 < 2 < · · · < a}
Lb = {1 < 2 < · · · < b}
DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)

S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)

S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)

S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)

S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)

S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)

S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)

Want Optimal k

Since La 6= Lb, S will win if k is large enough.

We want to know the smallest k.
We assume both players play perfectly.
We want k such that

1. S beats D in the (La, Lb, k) game.

2. D beats S in the (La, Lb, k − 1) game.

Want Optimal k

Since La 6= Lb, S will win if k is large enough.
We want to know the smallest k.

We assume both players play perfectly.
We want k such that

1. S beats D in the (La, Lb, k) game.

2. D beats S in the (La, Lb, k − 1) game.

Want Optimal k

Since La 6= Lb, S will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.

We want k such that

1. S beats D in the (La, Lb, k) game.

2. D beats S in the (La, Lb, k − 1) game.

Want Optimal k

Since La 6= Lb, S will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.
We want k such that

1. S beats D in the (La, Lb, k) game.

2. D beats S in the (La, Lb, k − 1) game.

Want Optimal k

Since La 6= Lb, S will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.
We want k such that

1. S beats D in the (La, Lb, k) game.

2. D beats S in the (La, Lb, k − 1) game.

Want Optimal k

Since La 6= Lb, S will win if k is large enough.
We want to know the smallest k.
We assume both players play perfectly.
We want k such that

1. S beats D in the (La, Lb, k) game.

2. D beats S in the (La, Lb, k − 1) game.

Work On In Groups

Try to determine:

1. Who wins (L3, L4, 2)? (2 moves).

2. Who wins (L8, L10, 3)? (3 moves)

3. GENERALLY: Who wins (La, Lb, k).

Work On In Groups

Try to determine:

1. Who wins (L3, L4, 2)? (2 moves).

2. Who wins (L8, L10, 3)? (3 moves)

3. GENERALLY: Who wins (La, Lb, k).

Work On In Groups

Try to determine:

1. Who wins (L3, L4, 2)? (2 moves).

2. Who wins (L8, L10, 3)? (3 moves)

3. GENERALLY: Who wins (La, Lb, k).

Work On In Groups

Try to determine:

1. Who wins (L3, L4, 2)? (2 moves).

2. Who wins (L8, L10, 3)? (3 moves)

3. GENERALLY: Who wins (La, Lb, k).

Generalize

Can use any orderings L, L′

1. N and Q are the usual orderings.

2. N∗ is the ordering · · · < 2 < 1 < 0.

3. If L is an ordering then L∗ is that ordering backwards.

Play a student N and Z with 1 move, 2 moves

Generalize

Can use any orderings L, L′

1. N and Q are the usual orderings.

2. N∗ is the ordering · · · < 2 < 1 < 0.

3. If L is an ordering then L∗ is that ordering backwards.

Play a student N and Z with 1 move, 2 moves

Generalize

Can use any orderings L, L′

1. N and Q are the usual orderings.

2. N∗ is the ordering · · · < 2 < 1 < 0.

3. If L is an ordering then L∗ is that ordering backwards.

Play a student N and Z with 1 move, 2 moves

Generalize

Can use any orderings L, L′

1. N and Q are the usual orderings.

2. N∗ is the ordering · · · < 2 < 1 < 0.

3. If L is an ordering then L∗ is that ordering backwards.

Play a student N and Z with 1 move, 2 moves

Generalize

Can use any orderings L, L′

1. N and Q are the usual orderings.

2. N∗ is the ordering · · · < 2 < 1 < 0.

3. If L is an ordering then L∗ is that ordering backwards.

Play a student N and Z with 1 move, 2 moves

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins (N,Z, k − 1), S wins (N,Z, k).

2. D wins (N,Q, k − 1), S wins (N,Q, k).

3. D wins (Z,Q, k − 1), S wins (Z,Q, k).

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins (N,Z, k − 1), S wins (N,Z, k).

2. D wins (N,Q, k − 1), S wins (N,Q, k).

3. D wins (Z,Q, k − 1), S wins (Z,Q, k).

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins (N,Z, k − 1), S wins (N,Z, k).

2. D wins (N,Q, k − 1), S wins (N,Q, k).

3. D wins (Z,Q, k − 1), S wins (Z,Q, k).

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins (N,Z, k − 1), S wins (N,Z, k).

2. D wins (N,Q, k − 1), S wins (N,Q, k).

3. D wins (Z,Q, k − 1), S wins (Z,Q, k).

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins (L10,N + N∗, k − 1), S wins (L10,N + N∗, k).

2. D wins (N + Z,N, k − 1), S wins (N + Z,N, k).

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins (L10,N + N∗, k − 1), S wins (L10,N + N∗, k).

2. D wins (N + Z,N, k − 1), S wins (N + Z,N, k).

A Notion of L,L′ being Similar

Let L and L′ be two linear orderings.

Def If D wins the k-round DS-game on L, L′ then L, L′ are
k-game equivalent (denoted L≡G

k L
′).

A Notion of L,L′ being Similar

Let L and L′ be two linear orderings.
Def If D wins the k-round DS-game on L, L′ then L, L′ are
k-game equivalent (denoted L≡G

k L
′).

What is Truth?

All sentences use the usual logic symbols and <.

Def If L is a linear ordering and φ is a sentence then L |= φ means
that φ is true in L.
Example Let φ = (∀x)(∀y)(∃z)[x < y =⇒ x < z < y]

1. Q |= φ

2. N |= ¬φ

What is Truth?

All sentences use the usual logic symbols and <.
Def If L is a linear ordering and φ is a sentence then L |= φ means
that φ is true in L.

Example Let φ = (∀x)(∀y)(∃z)[x < y =⇒ x < z < y]

1. Q |= φ

2. N |= ¬φ

What is Truth?

All sentences use the usual logic symbols and <.
Def If L is a linear ordering and φ is a sentence then L |= φ means
that φ is true in L.
Example Let φ = (∀x)(∀y)(∃z)[x < y =⇒ x < z < y]

1. Q |= φ

2. N |= ¬φ

What is Truth?

All sentences use the usual logic symbols and <.
Def If L is a linear ordering and φ is a sentence then L |= φ means
that φ is true in L.
Example Let φ = (∀x)(∀y)(∃z)[x < y =⇒ x < z < y]

1. Q |= φ

2. N |= ¬φ

What is Truth?

All sentences use the usual logic symbols and <.
Def If L is a linear ordering and φ is a sentence then L |= φ means
that φ is true in L.
Example Let φ = (∀x)(∀y)(∃z)[x < y =⇒ x < z < y]

1. Q |= φ

2. N |= ¬φ

Quantifier Depth (qd) Intuitively

(∃x)(∀y)[x ≤ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∃x)(∃y)(∀z)[x ≤ z ≤ y]. qd = 3.

Discuss the qd of:
(∀x)(∃y)(x < y ∧ (∀z)[z ≤ x ∨ y ≤ z].

Upshot We need to define qd rigorously.

Quantifier Depth (qd) Intuitively

(∃x)(∀y)[x ≤ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∃x)(∃y)(∀z)[x ≤ z ≤ y]. qd = 3.

Discuss the qd of:
(∀x)(∃y)(x < y ∧ (∀z)[z ≤ x ∨ y ≤ z].

Upshot We need to define qd rigorously.

Quantifier Depth (qd) Intuitively

(∃x)(∀y)[x ≤ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∃x)(∃y)(∀z)[x ≤ z ≤ y]. qd = 3.

Discuss the qd of:
(∀x)(∃y)(x < y ∧ (∀z)[z ≤ x ∨ y ≤ z].

Upshot We need to define qd rigorously.

Quantifier Depth (qd) Intuitively

(∃x)(∀y)[x ≤ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∃x)(∃y)(∀z)[x ≤ z ≤ y]. qd = 3.

Discuss the qd of:
(∀x)(∃y)(x < y ∧ (∀z)[z ≤ x ∨ y ≤ z].

Upshot We need to define qd rigorously.

Quantifier Depth (qd) Intuitively

(∃x)(∀y)[x ≤ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∃x)(∃y)(∀z)[x ≤ z ≤ y]. qd = 3.

Discuss the qd of:
(∀x)(∃y)(x < y ∧ (∀z)[z ≤ x ∨ y ≤ z].

Upshot We need to define qd rigorously.

Quantifier Depth (qd) Intuitively

(∃x)(∀y)[x ≤ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y]. qd = 2.

(∃x)(∃y)(∀z)[x ≤ z ≤ y]. qd = 3.

Discuss the qd of:
(∀x)(∃y)(x < y ∧ (∀z)[z ≤ x ∨ y ≤ z].

Upshot We need to define qd rigorously.

Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

Example of Quantifier Depth

(∀x)(∀z)[x < z → (∃y)[x < y < z]]

Lets take it apart
qd((∃y)[x < y < z]) = 1 + 0 = 1.
qd(x < z → (∃y)[x < y < z]) = max{0, 1} = 1.

qd((∀x)(∀z)[x < z → (∃y)[x < y < z]]) = 2 + 1 = 3

Example of Quantifier Depth

(∀x)(∀z)[x < z → (∃y)[x < y < z]]

Lets take it apart

qd((∃y)[x < y < z]) = 1 + 0 = 1.
qd(x < z → (∃y)[x < y < z]) = max{0, 1} = 1.

qd((∀x)(∀z)[x < z → (∃y)[x < y < z]]) = 2 + 1 = 3

Example of Quantifier Depth

(∀x)(∀z)[x < z → (∃y)[x < y < z]]

Lets take it apart
qd((∃y)[x < y < z]) = 1 + 0 = 1.

qd(x < z → (∃y)[x < y < z]) = max{0, 1} = 1.

qd((∀x)(∀z)[x < z → (∃y)[x < y < z]]) = 2 + 1 = 3

Example of Quantifier Depth

(∀x)(∀z)[x < z → (∃y)[x < y < z]]

Lets take it apart
qd((∃y)[x < y < z]) = 1 + 0 = 1.
qd(x < z → (∃y)[x < y < z]) = max{0, 1} = 1.

qd((∀x)(∀z)[x < z → (∃y)[x < y < z]]) = 2 + 1 = 3

Example of Quantifier Depth

(∀x)(∀z)[x < z → (∃y)[x < y < z]]

Lets take it apart
qd((∃y)[x < y < z]) = 1 + 0 = 1.
qd(x < z → (∃y)[x < y < z]) = max{0, 1} = 1.

qd((∀x)(∀z)[x < z → (∃y)[x < y < z]]) = 2 + 1 = 3

Another Notion of L, L′ Similar

Let L and L′ be two linear orderings.

Def L and L′ are k-truth-equiv (L≡T
k L
′)

(∀φ, qd(φ) ≤ k)[L |= φ iff L′ |= φ.]

Another Notion of L, L′ Similar

Let L and L′ be two linear orderings.
Def L and L′ are k-truth-equiv (L≡T

k L
′)

(∀φ, qd(φ) ≤ k)[L |= φ iff L′ |= φ.]

The Big Theorem

Thm Let L, L′ be any linear ordering and let k ∈ N.

The following are equivalent.

1. L≡T
k L
′

2. L≡G
k L
′

The Big Theorem

Thm Let L, L′ be any linear ordering and let k ∈ N.
The following are equivalent.

1. L≡T
k L
′

2. L≡G
k L
′

The Big Theorem

Thm Let L, L′ be any linear ordering and let k ∈ N.
The following are equivalent.

1. L≡T
k L
′

2. L≡G
k L
′

The Big Theorem

Thm Let L, L′ be any linear ordering and let k ∈ N.
The following are equivalent.

1. L≡T
k L
′

2. L≡G
k L
′

Applications

1. Density cannot be expressed with qd 2.
(Proof: Z≡G

2 Q so Z≡T
2 Q).

2. Well foundedness cannot be expressed in 1st order at all!
(Proof: (∀n)[N + Z≡G

n N]).
WILL DO ON WHITE BOARD.

3. Upshot: Questions about expressability become questions
about games.

4. Complexity: As Computer Scientists we think of complexity in
terms of time or space (e.g., sorting n elements can be done
in roughly n log n comparisons). But how do you measure
complexity for concepts where time and space do not apply?
One measure is quantifier depth. These games help us prove
LOWER BOUNDS on quantifier depth!

Applications

1. Density cannot be expressed with qd 2.
(Proof: Z≡G

2 Q so Z≡T
2 Q).

2. Well foundedness cannot be expressed in 1st order at all!
(Proof: (∀n)[N + Z≡G

n N]).
WILL DO ON WHITE BOARD.

3. Upshot: Questions about expressability become questions
about games.

4. Complexity: As Computer Scientists we think of complexity in
terms of time or space (e.g., sorting n elements can be done
in roughly n log n comparisons). But how do you measure
complexity for concepts where time and space do not apply?
One measure is quantifier depth. These games help us prove
LOWER BOUNDS on quantifier depth!

Applications

1. Density cannot be expressed with qd 2.
(Proof: Z≡G

2 Q so Z≡T
2 Q).

2. Well foundedness cannot be expressed in 1st order at all!
(Proof: (∀n)[N + Z≡G

n N]).
WILL DO ON WHITE BOARD.

3. Upshot: Questions about expressability become questions
about games.

4. Complexity: As Computer Scientists we think of complexity in
terms of time or space (e.g., sorting n elements can be done
in roughly n log n comparisons). But how do you measure
complexity for concepts where time and space do not apply?
One measure is quantifier depth. These games help us prove
LOWER BOUNDS on quantifier depth!

Applications

1. Density cannot be expressed with qd 2.
(Proof: Z≡G

2 Q so Z≡T
2 Q).

2. Well foundedness cannot be expressed in 1st order at all!
(Proof: (∀n)[N + Z≡G

n N]).
WILL DO ON WHITE BOARD.

3. Upshot: Questions about expressability become questions
about games.

4. Complexity: As Computer Scientists we think of complexity in
terms of time or space (e.g., sorting n elements can be done
in roughly n log n comparisons). But how do you measure
complexity for concepts where time and space do not apply?
One measure is quantifier depth. These games help us prove
LOWER BOUNDS on quantifier depth!

Applications

1. Density cannot be expressed with qd 2.
(Proof: Z≡G

2 Q so Z≡T
2 Q).

2. Well foundedness cannot be expressed in 1st order at all!
(Proof: (∀n)[N + Z≡G

n N]).
WILL DO ON WHITE BOARD.

3. Upshot: Questions about expressability become questions
about games.

4. Complexity: As Computer Scientists we think of complexity in
terms of time or space (e.g., sorting n elements can be done
in roughly n log n comparisons). But how do you measure
complexity for concepts where time and space do not apply?
One measure is quantifier depth. These games help us prove
LOWER BOUNDS on quantifier depth!

Proving DUP Wins
Rigorously

Notation

The game where the orders are L and L′, and its for n moves, will
be denoted

(L, L′; n)

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).

IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).

IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).

IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:

Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).

Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.

By IH DUP wins (La−x , Lb−x ; n − 1).

La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).
IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).

General Principle

1. After the 1st move x in in L and the counter-move x ′ in L′,
the game is now two boards,

1.1 L<x and L′<x′
.

1.2 L>x and L′>x′
.

2. We might use induction on those smaller boards.

3. Might not need induction on the smaller boards if they are
orderings we already proved things about.

General Principle

1. After the 1st move x in in L and the counter-move x ′ in L′,
the game is now two boards,

1.1 L<x and L′<x′
.

1.2 L>x and L′>x′
.

2. We might use induction on those smaller boards.

3. Might not need induction on the smaller boards if they are
orderings we already proved things about.

General Principle

1. After the 1st move x in in L and the counter-move x ′ in L′,
the game is now two boards,

1.1 L<x and L′<x′
.

1.2 L>x and L′>x′
.

2. We might use induction on those smaller boards.

3. Might not need induction on the smaller boards if they are
orderings we already proved things about.

General Principle

1. After the 1st move x in in L and the counter-move x ′ in L′,
the game is now two boards,

1.1 L<x and L′<x′
.

1.2 L>x and L′>x′
.

2. We might use induction on those smaller boards.

3. Might not need induction on the smaller boards if they are
orderings we already proved things about.

General Principle

1. After the 1st move x in in L and the counter-move x ′ in L′,
the game is now two boards,

1.1 L<x and L′<x′
.

1.2 L>x and L′>x′
.

2. We might use induction on those smaller boards.

3. Might not need induction on the smaller boards if they are
orderings we already proved things about.

General Principle

1. After the 1st move x in in L and the counter-move x ′ in L′,
the game is now two boards,

1.1 L<x and L′<x′
.

1.2 L>x and L′>x′
.

2. We might use induction on those smaller boards.

3. Might not need induction on the smaller boards if they are
orderings we already proved things about.

N+ N∗ and La

Thm For all n, if a ≥ 2n, DUP wins (N + N∗, La; n).

Might make this a HW.

N+ N∗ and La

Thm For all n, if a ≥ 2n, DUP wins (N + N∗, La; n).
Might make this a HW.

N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).

IB n = 1. DUP clearly wins (N,N + Z; 1).
IH DUP wins (N,N + Z; n − 1).
1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.

N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).
IB n = 1. DUP clearly wins (N,N + Z; 1).

IH DUP wins (N,N + Z; n − 1).
1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.

N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).
IB n = 1. DUP clearly wins (N,N + Z; 1).
IH DUP wins (N,N + Z; n − 1).

1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.

N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).
IB n = 1. DUP clearly wins (N,N + Z; 1).
IH DUP wins (N,N + Z; n − 1).
1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.

N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).
IB n = 1. DUP clearly wins (N,N + Z; 1).
IH DUP wins (N,N + Z; n − 1).
1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.

N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).
IB n = 1. DUP clearly wins (N,N + Z; 1).
IH DUP wins (N,N + Z; n − 1).
1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.

N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).
IB n = 1. DUP clearly wins (N,N + Z; 1).
IH DUP wins (N,N + Z; n − 1).
1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.

