

Duplicator Spoiler Games

DUP and SPOIL

$a < b$.

DUP and SPOIL

$a < b$.

$L_a = \{1 < 2 < \dots < a\}$

DUP and SPOIL

$a < b$.

$$L_a = \{1 < 2 < \dots < a\}$$

$$L_b = \{1 < 2 < \dots < b\}$$

DUP and SPOIL

$a < b$.

$$L_a = \{1 < 2 < \dots < a\}$$

$$L_b = \{1 < 2 < \dots < b\}$$

DUP is **crazy**! He thinks L_a and L_b are the same!

DUP and SPOIL

$a < b$.

$$L_a = \{1 < 2 < \dots < a\}$$

$$L_b = \{1 < 2 < \dots < b\}$$

DUP is **crazy**! He thinks L_a and L_b are the same!

1. SPOIL wants to convince DUP that $L_a \neq L_b$.

DUP and SPOIL

$a < b$.

$$L_a = \{1 < 2 < \dots < a\}$$

$$L_b = \{1 < 2 < \dots < b\}$$

DUP is **crazy**! He thinks L_a and L_b are the same!

1. SPOIL wants to convince DUP that $L_a \neq L_b$.
2. DUP wants to resist the attempt.

DUP and SPOIL

$a < b$.

$$L_a = \{1 < 2 < \dots < a\}$$

$$L_b = \{1 < 2 < \dots < b\}$$

DUP is **crazy**! He thinks L_a and L_b are the same!

1. SPOIL wants to convince DUP that $L_a \neq L_b$.
2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

S Tries to Convince D that $L_a \neq L_b$

Parameter k The number of rounds.

S Tries to Convince D that $L_a \neq L_b$

Parameter k The number of rounds.

1. S pick number in one orderings.

S Tries to Convince D that $L_a \neq L_b$

Parameter k The number of rounds.

1. **S** pick number in one orderings.
2. **D** pick number in OTHER ORDERING. D will try to pick a point that most **looks like** the other point.

S Tries to Convince D that $L_a \neq L_b$

Parameter k The number of rounds.

1. **S** pick number in one orderings.
2. **D** pick number in OTHER ORDERING. D will try to pick a point that most **looks like** the other point.
3. Repeat for k rounds.

S Tries to Convince D that $L_a \neq L_b$

Parameter k The number of rounds.

1. **S** pick number in one orderings.
2. **D** pick number in OTHER ORDERING. D will try to pick a point that most **looks like** the other point.
3. Repeat for k rounds.
4. This process creates a map between k points of L_a and k points of L_b .

S Tries to Convince D that $L_a \neq L_b$

Parameter k The number of rounds.

1. **S** pick number in one orderings.
2. **D** pick number in OTHER ORDERING. D will try to pick a point that most **looks like** the other point.
3. Repeat for k rounds.
4. This process creates a map between k points of L_a and k points of L_b .
5. If this map is order preserving D wins, else S wins.

S Tries to Convince D that $L_a \neq L_b$

Parameter k The number of rounds.

1. **S** pick number in one orderings.
2. **D** pick number in OTHER ORDERING. D will try to pick a point that most **looks like** the other point.
3. Repeat for k rounds.
4. This process creates a map between k points of L_a and k points of L_b .
5. If this map is order preserving D wins, else S wins.

Bill plays a student $(L_3, L_4, 2), (L_3, L_4, 3)$

Want Optimal k

Since $L_a \neq L_b$, S will win if k is large enough.

Want Optimal k

Since $L_a \neq L_b$, S will win if k is large enough.
We want to know the smallest k .

Want Optimal k

Since $L_a \neq L_b$, S will win if k is large enough.

We want to know the smallest k .

We assume both players play perfectly.

Want Optimal k

Since $L_a \neq L_b$, S will win if k is large enough.

We want to know the smallest k .

We assume both players play perfectly.

We want k such that

Want Optimal k

Since $L_a \neq L_b$, S will win if k is large enough.

We want to know the smallest k .

We assume both players play perfectly.

We want k such that

1. S beats D in the (L_a, L_b, k) game.

Want Optimal k

Since $L_a \neq L_b$, S will win if k is large enough.

We want to know the smallest k .

We assume both players play perfectly.

We want k such that

1. S beats D in the (L_a, L_b, k) game.
2. D beats S in the $(L_a, L_b, k - 1)$ game.

Work On In Groups

Try to determine:

Work On In Groups

Try to determine:

1. Who wins $(L_3, L_4, 2)$? (2 moves).

Work On In Groups

Try to determine:

1. Who wins $(L_3, L_4, 2)$? (2 moves).
2. Who wins $(L_8, L_{10}, 3)$? (3 moves)

Work On In Groups

Try to determine:

1. Who wins $(L_3, L_4, 2)$? (2 moves).
2. Who wins $(L_8, L_{10}, 3)$? (3 moves)
3. GENERALLY: Who wins (L_a, L_b, k) .

Generalize

Can use any orderings L, L'

Generalize

Can use any orderings L, L'

1. \mathbb{N} and \mathbb{Q} are the usual orderings.

Generalize

Can use any orderings L, L'

1. \mathbb{N} and \mathbb{Q} are the usual orderings.
2. \mathbb{N}^* is the ordering $\cdots < 2 < 1 < 0$.

Generalize

Can use any orderings L, L'

1. \mathbb{N} and \mathbb{Q} are the usual orderings.
2. \mathbb{N}^* is the ordering $\cdots < 2 < 1 < 0$.
3. If L is an ordering then L^* is that ordering backwards.

Generalize

Can use any orderings L, L'

1. \mathbb{N} and \mathbb{Q} are the usual orderings.
2. \mathbb{N}^* is the ordering $\cdots < 2 < 1 < 0$.
3. If L is an ordering then L^* is that ordering backwards.

Play a student \mathbb{N} and \mathbb{Z} with 1 move, 2 moves

Work on in Groups

In all problems we want a k such that the two conditions hold.

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins $(\mathbb{N}, \mathbb{Z}, k - 1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins $(\mathbb{N}, \mathbb{Z}, k - 1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
2. D wins $(\mathbb{N}, \mathbb{Q}, k - 1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins $(\mathbb{N}, \mathbb{Z}, k - 1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
2. D wins $(\mathbb{N}, \mathbb{Q}, k - 1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.
3. D wins $(\mathbb{Z}, \mathbb{Q}, k - 1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k - 1)$, S wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k)$.

Work on in Groups

In all problems we want a k such that the two conditions hold.

1. D wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k - 1)$, S wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k)$.
2. D wins $(\mathbb{N} + \mathbb{Z}, \mathbb{N}, k - 1)$, S wins $(\mathbb{N} + \mathbb{Z}, \mathbb{N}, k)$.

A Notion of L, L' being Similar

Let L and L' be two linear orderings.

A Notion of L, L' being Similar

Let L and L' be two linear orderings.

Def If D wins the k -round DS-game on L, L' then L, L' are **k -game equivalent** (denoted $L \equiv_k^G L'$).

What is Truth?

All sentences use the usual logic symbols and $<$.

What is Truth?

All sentences use the usual logic symbols and $<$.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L .

What is Truth?

All sentences use the usual logic symbols and $<$.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L .

Example Let $\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$

What is Truth?

All sentences use the usual logic symbols and $<$.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L .

Example Let $\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$

1. $\mathbb{Q} \models \phi$

What is Truth?

All sentences use the usual logic symbols and $<$.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L .

Example Let $\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$

1. $\mathbb{Q} \models \phi$
2. $\mathbb{N} \models \neg\phi$

Quantifier Depth (qd) Intuitively

$(\exists x)(\forall y)[x \leq y]$. qd = 2.

Quantifier Depth (qd) Intuitively

$(\exists x)(\forall y)[x \leq y]$. qd = 2.

$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]$. qd = 2.

Quantifier Depth (qd) Intuitively

$(\exists x)(\forall y)[x \leq y]$. qd = 2.

$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]$. qd = 2.

$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]$. qd = 2.

Quantifier Depth (qd) Intuitively

$(\exists x)(\forall y)[x \leq y]$. qd = 2.

$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]$. qd = 2.

$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]$. qd = 2.

$(\exists x)(\exists y)(\forall z)[x \leq z \leq y]$. qd = 3.

Quantifier Depth (qd) Intuitively

$$(\exists x)(\forall y)[x \leq y]. \text{ qd} = 2.$$

$$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]. \text{ qd} = 2.$$

$$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]. \text{ qd} = 2.$$

$$(\exists x)(\exists y)(\forall z)[x \leq z \leq y]. \text{ qd} = 3.$$

Discuss the qd of:

$$(\forall x)(\exists y)(x < y \wedge (\forall z)[z \leq x \vee y \leq z].$$

Quantifier Depth (qd) Intuitively

$(\exists x)(\forall y)[x \leq y]$. qd = 2.

$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]$. qd = 2.

$(\forall x)(\forall y)[x \leq y \vee x = y \vee x \geq y]$. qd = 2.

$(\exists x)(\exists y)(\forall z)[x \leq z \leq y]$. qd = 3.

Discuss the qd of:

$(\forall x)(\exists y)(x < y \wedge (\forall z)[z \leq x \vee y \leq z])$.

Upshot We need to define qd rigorously.

Quantifier Depth (qd) Formally

Quantifier Depth (qd) Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\text{qd}(\phi(\vec{x})) = 0$.

Quantifier Depth (qd) Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\text{qd}(\phi(\vec{x})) = 0$.

$$\text{qd}(\phi_1(\vec{x}) \vee \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

Quantifier Depth (qd) Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\text{qd}(\phi(\vec{x})) = 0$.

$$\text{qd}(\phi_1(\vec{x}) \vee \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

$$\text{qd}(\phi_1(\vec{x}) \wedge \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

Quantifier Depth (qd) Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\text{qd}(\phi(\vec{x})) = 0$.

$$\text{qd}(\phi_1(\vec{x}) \vee \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

$$\text{qd}(\phi_1(\vec{x}) \wedge \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

$$\text{qd}(\neg\phi(\vec{x})) = \text{qd}(\phi(\vec{x})).$$

Quantifier Depth (qd) Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\text{qd}(\phi(\vec{x})) = 0$.

$$\text{qd}(\phi_1(\vec{x}) \vee \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

$$\text{qd}(\phi_1(\vec{x}) \wedge \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

$$\text{qd}(\neg\phi(\vec{x})) = \text{qd}(\phi(\vec{x})).$$

$$\text{qd}((\exists x_1)[\phi(x_1, \dots, x_n)] = \text{qd}(\phi_1(x_1, \dots, x_n)) + 1.$$

Quantifier Depth (qd) Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\text{qd}(\phi(\vec{x})) = 0$.

$$\text{qd}(\phi_1(\vec{x}) \vee \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

$$\text{qd}(\phi_1(\vec{x}) \wedge \phi_2(\vec{x})) = \max\{\text{qd}(\phi_1(\vec{x})), \text{qd}(\phi_2(\vec{x}))\}.$$

$$\text{qd}(\neg\phi(\vec{x})) = \text{qd}(\phi(\vec{x})).$$

$$\text{qd}((\exists x_1)[\phi(x_1, \dots, x_n)] = \text{qd}(\phi_1(x_1, \dots, x_n)) + 1.$$

$$\text{qd}((\forall x_1)[\phi(x_1, \dots, x_n)] = \text{qd}(\phi_1(x_1, \dots, x_n)) + 1.$$

Example of Quantifier Depth

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < z]]$$

Example of Quantifier Depth

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < z]]$$

Lets take it apart

Example of Quantifier Depth

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < z]]$$

Lets take it apart

$$\text{qd}((\exists y)[x < y < z]) = 1 + 0 = 1.$$

Example of Quantifier Depth

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < z]]$$

Lets take it apart

$$\text{qd}((\exists y)[x < y < z]) = 1 + 0 = 1.$$

$$\text{qd}(x < z \rightarrow (\exists y)[x < y < z]) = \max\{0, 1\} = 1.$$

Example of Quantifier Depth

$$(\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < z]]$$

Lets take it apart

$$\text{qd}((\exists y)[x < y < z]) = 1 + 0 = 1.$$

$$\text{qd}(x < z \rightarrow (\exists y)[x < y < z]) = \max\{0, 1\} = 1.$$

$$\text{qd}((\forall x)(\forall z)[x < z \rightarrow (\exists y)[x < y < z]]) = 2 + 1 = 3$$

Another Notion of L, L' Similar

Let L and L' be two linear orderings.

Another Notion of L, L' Similar

Let L and L' be two linear orderings.

Def L and L' are **k -truth-equiv** ($L \equiv_k^T L'$)

$$(\forall \phi, \text{qd}(\phi) \leq k)[L \models \phi \text{ iff } L' \models \phi.]$$

The Big Theorem

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$.

The Big Theorem

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

The Big Theorem

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv_k^T L'$

The Big Theorem

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv_k^T L'$
2. $L \equiv_k^G L'$

Applications

Applications

1. Density *cannot* be expressed with $qd\ 2$.
(Proof: $\mathbb{Z}\equiv_2^G \mathbb{Q}$ so $\mathbb{Z}\equiv_2^T \mathbb{Q}$).

Applications

1. Density *cannot* be expressed with qd 2.
(Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
2. Well foundedness cannot be expressed in 1st order at all!
(Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$).

WILL DO ON WHITE BOARD.

Applications

1. Density *cannot* be expressed with $\text{qd } 2$.
(Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
2. Well foundedness cannot be expressed in 1st order at all!
(Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$).
WILL DO ON WHITE BOARD.
3. Upshot: Questions about expressability become questions about games.

Applications

1. Density *cannot* be expressed with $\exists \forall$.
(Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
2. Well foundedness cannot be expressed in 1st order at all!
(Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$).
WILL DO ON WHITE BOARD.
3. Upshot: Questions about expressability become questions about games.
4. Complexity: As Computer Scientists we think of complexity in terms of time or space (e.g., sorting n elements can be done in roughly $n \log n$ comparisons). But how do you measure complexity for concepts where time and space do not apply? One measure is quantifier depth. These games help us prove LOWER BOUNDS on quantifier depth!

Proving DUP Wins Rigorously

Notation

The game where the orders are L and L' , and its for n moves, will be denoted

$$(L, L'; n)$$

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \geq 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \geq 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \geq 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \geq 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

- ▶ $< x$ in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \geq 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

- ▶ $< x$ in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- ▶ $> x$ in both orders: $(L_{a-x}, L_{b-x}; n-1)$.

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \geq 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

- ▶ $< x$ in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- ▶ $> x$ in both orders: $(L_{a-x}, L_{b-x}; n-1)$.

Since $x \leq 2^{n-1}$ and $a, b \geq 2^n$, $a - x - 1 \geq 2^{n-1}$ and $b - x - 1 \geq 2^{n-1}$.

L_a and L_b

Thm For all n , if $a, b \geq 2^n$ then DUP wins $(L_a, L_b; n)$.

IB $n = 1$. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \geq 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

- ▶ $< x$ in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- ▶ $> x$ in both orders: $(L_{a-x}, L_{b-x}; n-1)$.

Since $x \leq 2^{n-1}$ and $a, b \geq 2^n$, $a - x - 1 \geq 2^{n-1}$ and $b - x - 1 \geq 2^{n-1}$.

By IH DUP wins $(L_{a-x}, L_{b-x}; n-1)$.

General Principle

General Principle

1. After the 1st move x in in L and the counter-move x' in L' ,
the game is now two boards,

General Principle

1. After the 1st move x in L and the counter-move x' in L' ,
the game is now two boards,
1.1 $L^{ $x}$$ and $L'^{ x' }$.

General Principle

1. After the 1st move x in L and the counter-move x' in L' ,
the game is now two boards,
 - 1.1 $L^{ x }$ and $L'^{ x' }$.
 - 1.2 $L^{> x }$ and $L'^{> x' }$.

General Principle

1. After the 1st move x in L and the counter-move x' in L' ,
the game is now two boards,
 - 1.1 $L^{ x }$ and $L'^{ x' }$.
 - 1.2 $L^{> x }$ and $L'^{> x' }$.
2. We might use induction on those smaller boards.

General Principle

1. After the 1st move x in L and the counter-move x' in L' , the game is now two boards,
 - 1.1 $L^{ x }$ and $L'^{ x' }$.
 - 1.2 $L^{> x }$ and $L'^{> x' }$.
2. We might use induction on those smaller boards.
3. Might not need induction on the smaller boards if they are orderings we already proved things about.

$\mathbb{N} + \mathbb{N}^*$ and L_a

Thm For all n , if $a \geq 2^n$, DUP wins $(\mathbb{N} + \mathbb{N}^*, L_a; n)$.

$\mathbb{N} + \mathbb{N}^*$ and L_a

Thm For all n , if $a \geq 2^n$, DUP wins $(\mathbb{N} + \mathbb{N}^*, L_a; n)$.
Might make this a HW.

\mathbb{N} and $\mathbb{N} + \mathbb{Z}$

Thm For all n , DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

\mathbb{N} and $\mathbb{N} + \mathbb{Z}$

Thm For all n , DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB $n = 1$. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

\mathbb{N} and $\mathbb{N} + \mathbb{Z}$

Thm For all n , DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB $n = 1$. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

\mathbb{N} and $\mathbb{N} + \mathbb{Z}$

Thm For all n , DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB $n = 1$. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N} -part of $\mathbb{N} + \mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are

\mathbb{N} and $\mathbb{N} + \mathbb{Z}$

Thm For all n , DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB $n = 1$. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N} -part of $\mathbb{N} + \mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are

$(L_x, L_x; n - 1)$ and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

\mathbb{N} and $\mathbb{N} + \mathbb{Z}$

Thm For all n , DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB $n = 1$. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N} -part of $\mathbb{N} + \mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are

$(L_x, L_x; n - 1)$ and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

2) SP plays x in \mathbb{Z} part of $\mathbb{N} + \mathbb{Z}$ then DUP plays 2^n in \mathbb{N} . The 2 games are

\mathbb{N} and $\mathbb{N} + \mathbb{Z}$

Thm For all n , DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB $n = 1$. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N} -part of $\mathbb{N} + \mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are

$(L_x, L_x; n - 1)$ and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

SP won't play on 1st board.

The 2nd board DUP wins by IH.

2) SP plays x in \mathbb{Z} part of $\mathbb{N} + \mathbb{Z}$ then DUP plays 2^n in \mathbb{N} . The 2 games are

$(\mathbb{N} + \mathbb{N}^*, L_{2^n}; n - 1)$ and $(\mathbb{N}, \mathbb{N}; n - 1)$.

SP won't play on 2nd board. DUP wins 1st board by prior thm.