
Duplicator Spoiler Games



DUP and SPOIL

a < b.

La = {1 < 2 < · · · < a}
Lb = {1 < 2 < · · · < b}
DUP is crazy! He thinks La and Lb are the same!

1. SPOIL wants to convince DUP that La 6= Lb.

2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.
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S Tries to Convince D that La 6= Lb

Parameter k The number of rounds.

1. S pick number in one orderings.

2. D pick number in OTHER ORDERING. D will try to pick a
point that most looks like the other point.

3. Repeat for k rounds.

4. This process creates a map between k points of La and k
points of Lb.

5. If this map is order preserving D wins, else S wins.

Bill plays a student (L3, L4, 2), (L3, L4, 3)
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Want Optimal k

Since La 6= Lb, S will win if k is large enough.

We want to know the smallest k.
We assume both players play perfectly.
We want k such that

1. S beats D in the (La, Lb, k) game.

2. D beats S in the (La, Lb, k − 1) game.
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Work On In Groups

Try to determine:

1. Who wins (L3, L4, 2)? (2 moves).

2. Who wins (L8, L10, 3)? (3 moves)

3. GENERALLY: Who wins (La, Lb, k).
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Generalize

Can use any orderings L, L′

1. N and Q are the usual orderings.

2. N∗ is the ordering · · · < 2 < 1 < 0.

3. If L is an ordering then L∗ is that ordering backwards.

Play a student N and Z with 1 move, 2 moves
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In all problems we want a k such that the two conditions hold.

1. D wins (N,Z, k − 1), S wins (N,Z, k).

2. D wins (N,Q, k − 1), S wins (N,Q, k).

3. D wins (Z,Q, k − 1), S wins (Z,Q, k).
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In all problems we want a k such that the two conditions hold.

1. D wins (L10,N + N∗, k − 1), S wins (L10,N + N∗, k).

2. D wins (N + Z,N, k − 1), S wins (N + Z,N, k).
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A Notion of L,L′ being Similar

Let L and L′ be two linear orderings.

Def If D wins the k-round DS-game on L, L′ then L, L′ are
k-game equivalent (denoted L≡G

k L
′).
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What is Truth?

All sentences use the usual logic symbols and <.

Def If L is a linear ordering and φ is a sentence then L |= φ means
that φ is true in L.
Example Let φ = (∀x)(∀y)(∃z)[x < y =⇒ x < z < y ]

1. Q |= φ

2. N |= ¬φ
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Quantifier Depth (qd) Intuitively

(∃x)(∀y)[x ≤ y ]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y ]. qd = 2.

(∀x)(∀y)[x ≤ y ∨ x = y ∨ x ≥ y ]. qd = 2.

(∃x)(∃y)(∀z)[x ≤ z ≤ y ]. qd = 3.

Discuss the qd of:
(∀x)(∃y)(x < y ∧ (∀z)[z ≤ x ∨ y ≤ z ].

Upshot We need to define qd rigorously.
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Quantifier Depth (qd) Formally

If φ(~x) has 0 quantifiers then qd(φ(~x)) = 0.

qd(φ1(~x) ∨ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(φ1(~x) ∧ φ2(~x)) = max{qd(φ1(~x), qd(φ2(~x))}.

qd(¬φ(~x)) = qd(φ(~x)).

qd((∃x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.

qd((∀x1)[φ(x1, . . . , xn)] = qd(φ1(x1, . . . , xn)) + 1.
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Example of Quantifier Depth

(∀x)(∀z)[x < z → (∃y)[x < y < z ]]

Lets take it apart
qd((∃y)[x < y < z ]) = 1 + 0 = 1.
qd(x < z → (∃y)[x < y < z ]) = max{0, 1} = 1.

qd((∀x)(∀z)[x < z → (∃y)[x < y < z ]]) = 2 + 1 = 3
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Another Notion of L, L′ Similar

Let L and L′ be two linear orderings.

Def L and L′ are k-truth-equiv (L≡T
k L
′)

(∀φ, qd(φ) ≤ k)[L |= φ iff L′ |= φ.]
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The Big Theorem

Thm Let L, L′ be any linear ordering and let k ∈ N.

The following are equivalent.

1. L≡T
k L
′

2. L≡G
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′
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Applications

1. Density cannot be expressed with qd 2.
(Proof: Z≡G

2 Q so Z≡T
2 Q).

2. Well foundedness cannot be expressed in 1st order at all!
(Proof: (∀n)[N + Z≡G

n N]).
WILL DO ON WHITE BOARD.

3. Upshot: Questions about expressability become questions
about games.

4. Complexity: As Computer Scientists we think of complexity in
terms of time or space (e.g., sorting n elements can be done
in roughly n log n comparisons). But how do you measure
complexity for concepts where time and space do not apply?
One measure is quantifier depth. These games help us prove
LOWER BOUNDS on quantifier depth!
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Proving DUP Wins
Rigorously



Notation

The game where the orders are L and L′, and its for n moves, will
be denoted

(L, L′; n)



La and Lb

Thm For all n, if a, b ≥ 2n then DUP wins (La, Lb; n).

IB n = 1. DUP clearly wins (La, Lb; 1).
IH For all a, b ≥ 2n−1, DUP wins (La, Lb; n − 1).
IS We do 1 case: SP makes move x ≤ 2n−1 in La.
DUP respond with x in Lb. DUP views game as 2 GAMES:
Key The game is now 2 games.

I < x in both orders: (Lx−1, Lx−1; n − 1). SP will never play
here.

I > x in both orders: (La−x , Lb−x ; n − 1).
Since x ≤ 2n−1 and a, b ≥ 2n, a− x − 1 ≥ 2n−1 and
b − x − 1 ≥ 2n−1.
By IH DUP wins (La−x , Lb−x ; n − 1).
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General Principle

1. After the 1st move x in in L and the counter-move x ′ in L′,
the game is now two boards,

1.1 L<x and L′<x′
.

1.2 L>x and L′>x′
.

2. We might use induction on those smaller boards.

3. Might not need induction on the smaller boards if they are
orderings we already proved things about.
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N+ N∗ and La

Thm For all n, if a ≥ 2n, DUP wins (N + N∗, La; n).

Might make this a HW.
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N and N+ Z

Thm For all n, DUP wins (N,N + Z; n).

IB n = 1. DUP clearly wins (N,N + Z; 1).
IH DUP wins (N,N + Z; n − 1).
1) SP plays x in either N or N-part of N + Z then DUP counters
with the same x in the other part. The 2 games are

(Lx , Lx ; n − 1) and (N,N + Z; n − 1).
SP won’t play on 1st board.
The 2nd board DUP wins by IH.

2) SP plays x in Z part of N + Z then DUP plays 2n in N. The 2
games are

(N + N∗, L2n ; n − 1) and (N,N; n − 1).
SP won’t play on 2nd board. DUP wins 1st board by prior thm.
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