
True or False?

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true?

No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.

Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.

There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true?

Yes. Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes.

Take z = x+y
2 .

True of False: Density

Is the following TRUE or FALSE:

(∀x)(∀y)[x < y → (∃z)[x < z < y]]

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.
1) If D = N then is the statement true? No.
Counterexample: x = 1, y = 2.
There is no z ∈ N such that 1 < z < 2.

2) If D = Q then is the statement is true? Yes. Take z = x+y
2 .

Find Domains such that . . .

Consider:

(∃x)(∀y 6= x)[y > x]

Give a domain where this is T. N with x = 0.

Give a domain where this is F. Z since, ∀x , x − 1 < x .

Find Domains such that . . .

Consider:

(∃x)(∀y 6= x)[y > x]

Give a domain where this is T.

N with x = 0.

Give a domain where this is F. Z since, ∀x , x − 1 < x .

Find Domains such that . . .

Consider:

(∃x)(∀y 6= x)[y > x]

Give a domain where this is T. N with x = 0.

Give a domain where this is F. Z since, ∀x , x − 1 < x .

Find Domains such that . . .

Consider:

(∃x)(∀y 6= x)[y > x]

Give a domain where this is T. N with x = 0.

Give a domain where this is F.

Z since, ∀x , x − 1 < x .

Find Domains such that . . .

Consider:

(∃x)(∀y 6= x)[y > x]

Give a domain where this is T. N with x = 0.

Give a domain where this is F. Z since, ∀x , x − 1 < x .

Expressing Math With
Quantifiers

Expressing Properties of Numbers: EVEN

I want to say x is even. How to do that with quantifiers.

Quantifiers range over Z.

EVEN(x) ≡ (∃y)[x = 2y]

Expressing Properties of Numbers: EVEN

I want to say x is even. How to do that with quantifiers.
Quantifiers range over Z.

EVEN(x) ≡ (∃y)[x = 2y]

Expressing Properties of Numbers: EVEN

I want to say x is even. How to do that with quantifiers.
Quantifiers range over Z.

EVEN(x) ≡ (∃y)[x = 2y]

Expressing Properties of Numbers: ≡ 1 (mod 5)

I want to say that x ≡ 1 (mod 5), which means that when we
divide x by 5 we get a remainder of 1. Lets call this property
ONEFIVE

Quantifiers range over Z.

ONEFIVE(x) ≡ (∃y)[x = 5y + 1]

Expressing Properties of Numbers: ≡ 1 (mod 5)

I want to say that x ≡ 1 (mod 5), which means that when we
divide x by 5 we get a remainder of 1. Lets call this property
ONEFIVE
Quantifiers range over Z.

ONEFIVE(x) ≡ (∃y)[x = 5y + 1]

Expressing Properties of Numbers: ≡ 1 (mod 5)

I want to say that x ≡ 1 (mod 5), which means that when we
divide x by 5 we get a remainder of 1. Lets call this property
ONEFIVE
Quantifiers range over Z.

ONEFIVE(x) ≡ (∃y)[x = 5y + 1]

PRIMES over N

I want to say that x ∈ N is PRIME.

Quantifiers range over N.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

PRIMES over N

I want to say that x ∈ N is PRIME.
Quantifiers range over N.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

PRIMES over N

I want to say that x ∈ N is PRIME.
Quantifiers range over N.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

PRIMES over Z

I want to say that x ∈ Z is PRIME.

Quantifiers range over Z.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Does this work? Discuss.

−7 = −1× 7 Its also −7×−1×−1× 1. So. . . not a prime?

NAH, we want −7 to be a prime.

PRIMES over Z

I want to say that x ∈ Z is PRIME.
Quantifiers range over Z.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Does this work? Discuss.

−7 = −1× 7 Its also −7×−1×−1× 1. So. . . not a prime?

NAH, we want −7 to be a prime.

PRIMES over Z

I want to say that x ∈ Z is PRIME.
Quantifiers range over Z.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Does this work? Discuss.

−7 = −1× 7 Its also −7×−1×−1× 1. So. . . not a prime?

NAH, we want −7 to be a prime.

PRIMES over Z

I want to say that x ∈ Z is PRIME.
Quantifiers range over Z.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Does this work? Discuss.

−7 = −1× 7 Its also −7×−1×−1× 1. So. . . not a prime?

NAH, we want −7 to be a prime.

PRIMES over Z

I want to say that x ∈ Z is PRIME.
Quantifiers range over Z.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Does this work? Discuss.

−7 = −1× 7 Its also −7×−1×−1× 1. So. . . not a prime?

NAH, we want −7 to be a prime.

PRIMES over Z (cont)

PRIME(x) ≡ (x /∈ {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Why did we make 1 an exception? Because 7 = 1× 7.

Should we make −1 an exception also? Yes.

PRIME(x) ≡ (x /∈ {0, 1,−1})∧(∀y , z)[x = yz → (y = ±1)∨(z = ±1)]

PRIMES over Z (cont)

PRIME(x) ≡ (x /∈ {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Why did we make 1 an exception? Because 7 = 1× 7.

Should we make −1 an exception also? Yes.

PRIME(x) ≡ (x /∈ {0, 1,−1})∧(∀y , z)[x = yz → (y = ±1)∨(z = ±1)]

PRIMES over Z (cont)

PRIME(x) ≡ (x /∈ {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Why did we make 1 an exception? Because 7 = 1× 7.

Should we make −1 an exception also?

Yes.

PRIME(x) ≡ (x /∈ {0, 1,−1})∧(∀y , z)[x = yz → (y = ±1)∨(z = ±1)]

PRIMES over Z (cont)

PRIME(x) ≡ (x /∈ {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Why did we make 1 an exception? Because 7 = 1× 7.

Should we make −1 an exception also? Yes.

PRIME(x) ≡ (x /∈ {0, 1,−1})∧(∀y , z)[x = yz → (y = ±1)∨(z = ±1)]

PRIMES over Z (cont)

PRIME(x) ≡ (x /∈ {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Why did we make 1 an exception? Because 7 = 1× 7.

Should we make −1 an exception also? Yes.

PRIME(x) ≡ (x /∈ {0, 1,−1})∧(∀y , z)[x = yz → (y = ±1)∨(z = ±1)]

PRIMES over G

Def The Gaussian Integers G are numbers of the form

{a + bi : a, b ∈ Z}

We want to define PRIME in G . What will be the exceptional
numbers? Why?
Work in Groups

The exceptions are {1,−1, i ,−i}. Why?

7 = i ×−i × 7.
We don’t really want to count the i and −i .

PRIMES over G

Def The Gaussian Integers G are numbers of the form

{a + bi : a, b ∈ Z}

We want to define PRIME in G . What will be the exceptional
numbers? Why?

Work in Groups

The exceptions are {1,−1, i ,−i}. Why?

7 = i ×−i × 7.
We don’t really want to count the i and −i .

PRIMES over G

Def The Gaussian Integers G are numbers of the form

{a + bi : a, b ∈ Z}

We want to define PRIME in G . What will be the exceptional
numbers? Why?
Work in Groups

The exceptions are {1,−1, i ,−i}. Why?

7 = i ×−i × 7.
We don’t really want to count the i and −i .

PRIMES over G

Def The Gaussian Integers G are numbers of the form

{a + bi : a, b ∈ Z}

We want to define PRIME in G . What will be the exceptional
numbers? Why?
Work in Groups

The exceptions are {1,−1, i ,−i}. Why?

7 = i ×−i × 7.
We don’t really want to count the i and −i .

PRIMES over G

Def The Gaussian Integers G are numbers of the form

{a + bi : a, b ∈ Z}

We want to define PRIME in G . What will be the exceptional
numbers? Why?
Work in Groups

The exceptions are {1,−1, i ,−i}. Why?

7 = i ×−i × 7.
We don’t really want to count the i and −i .

Units

Def Let D be some domain. If x ∈ D then the mult inverse of x
(if it exists) is the number y such that xy = 1.

In N the only number that has a mult inverse is 1.

In Z the only numbers that has a mult inverses are 1, −1.

In G the only numbers that has a mult inverses are 1, −1, i , −i .
Def Let D be a domain. The units of D are the elements of D
that have a multiplicative inverse.

The Unit are the exceptions. If x ∈ D, u is a unit, and v is its
inverse, then
x = uvx
We don’t want to say x is not prime. u, v should not matter!

Units

Def Let D be some domain. If x ∈ D then the mult inverse of x
(if it exists) is the number y such that xy = 1.

In N the only number that has a mult inverse is 1.

In Z the only numbers that has a mult inverses are 1, −1.

In G the only numbers that has a mult inverses are 1, −1, i , −i .
Def Let D be a domain. The units of D are the elements of D
that have a multiplicative inverse.

The Unit are the exceptions. If x ∈ D, u is a unit, and v is its
inverse, then
x = uvx
We don’t want to say x is not prime. u, v should not matter!

Units

Def Let D be some domain. If x ∈ D then the mult inverse of x
(if it exists) is the number y such that xy = 1.

In N the only number that has a mult inverse is 1.

In Z the only numbers that has a mult inverses are 1, −1.

In G the only numbers that has a mult inverses are 1, −1, i , −i .
Def Let D be a domain. The units of D are the elements of D
that have a multiplicative inverse.

The Unit are the exceptions. If x ∈ D, u is a unit, and v is its
inverse, then
x = uvx
We don’t want to say x is not prime. u, v should not matter!

Units

Def Let D be some domain. If x ∈ D then the mult inverse of x
(if it exists) is the number y such that xy = 1.

In N the only number that has a mult inverse is 1.

In Z the only numbers that has a mult inverses are 1, −1.

In G the only numbers that has a mult inverses are 1, −1, i , −i .

Def Let D be a domain. The units of D are the elements of D
that have a multiplicative inverse.

The Unit are the exceptions. If x ∈ D, u is a unit, and v is its
inverse, then
x = uvx
We don’t want to say x is not prime. u, v should not matter!

Units

Def Let D be some domain. If x ∈ D then the mult inverse of x
(if it exists) is the number y such that xy = 1.

In N the only number that has a mult inverse is 1.

In Z the only numbers that has a mult inverses are 1, −1.

In G the only numbers that has a mult inverses are 1, −1, i , −i .
Def Let D be a domain. The units of D are the elements of D
that have a multiplicative inverse.

The Unit are the exceptions. If x ∈ D, u is a unit, and v is its
inverse, then
x = uvx
We don’t want to say x is not prime. u, v should not matter!

Units

Def Let D be some domain. If x ∈ D then the mult inverse of x
(if it exists) is the number y such that xy = 1.

In N the only number that has a mult inverse is 1.

In Z the only numbers that has a mult inverses are 1, −1.

In G the only numbers that has a mult inverses are 1, −1, i , −i .
Def Let D be a domain. The units of D are the elements of D
that have a multiplicative inverse.

The Unit are the exceptions. If x ∈ D, u is a unit, and v is its
inverse, then
x = uvx
We don’t want to say x is not prime. u, v should not matter!

Units and Primes

Let D be any domain of numbers.
We will be quantifying over it.

UNIT(x) ≡ (∃y)[xy = 1]

PRIME(x) ≡

(x 6= 0, x /∈ UNIT)∧(∀y , z)[x = yz → ((y ∈ UNIT)∨(z ∈ UNIT)].

Units and Primes

Let D be any domain of numbers.
We will be quantifying over it.

UNIT(x) ≡ (∃y)[xy = 1]

PRIME(x) ≡

(x 6= 0, x /∈ UNIT)∧(∀y , z)[x = yz → ((y ∈ UNIT)∨(z ∈ UNIT)].

So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q? Discuss
All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.
What are the primes in ONEFOUR? Work in Groups

So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q?

Discuss
All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.
What are the primes in ONEFOUR? Work in Groups

So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q? Discuss

All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.
What are the primes in ONEFOUR? Work in Groups

So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q? Discuss
All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.
What are the primes in ONEFOUR? Work in Groups

So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q? Discuss
All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.

What are the primes in ONEFOUR? Work in Groups

So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q? Discuss
All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.
What are the primes in ONEFOUR?

Work in Groups

So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q? Discuss
All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.
What are the primes in ONEFOUR? Work in Groups

Primes in ONEFOUR

Elements of ONEFOUR: 1, 5, 9, 13, 17, 21, 25. We stop here.
1: a unit
5: a prime
9: a prime! Note that 3 /∈ ONEFOUR so cannot say 9 = 3× 3.
13,17: Primes
21: a prime!
25: 5× 5 are first composite.

Expressing Theorems: Four-Square Theorem

Four-Square Theorem Every natural number is the sum of ≤ 4
squares.

Four-Square Theorem Every natural number is the sum of 4
squares. We allow 0.

(∀x)(∃x1, x2, x3, x4)[x = x2
1 + x2

2 + x2
3 + x2

4]

Expressing Theorems: Four-Square Theorem

Four-Square Theorem Every natural number is the sum of ≤ 4
squares.
Four-Square Theorem Every natural number is the sum of 4
squares. We allow 0.

(∀x)(∃x1, x2, x3, x4)[x = x2
1 + x2

2 + x2
3 + x2

4]

Expressing Theorems: Four-Square Theorem

Four-Square Theorem Every natural number is the sum of ≤ 4
squares.
Four-Square Theorem Every natural number is the sum of 4
squares. We allow 0.

(∀x)(∃x1, x2, x3, x4)[x = x2
1 + x2

2 + x2
3 + x2

4]

Expressing Statements: Goldbach’s Conjecture

Goldbach’s Conjecture Every sufficiently large even number can
be written as the sum of two primes.

(∃x)(∀y > x)

[EVEN(y)→ (∃y1, y2)[PRIME(y1)∧PRIME(y2)∧ (y = y1 + y2)]]

Expressing Statements: Goldbach’s Conjecture

Goldbach’s Conjecture Every sufficiently large even number can
be written as the sum of two primes.

(∃x)(∀y > x)

[EVEN(y)→ (∃y1, y2)[PRIME(y1)∧PRIME(y2)∧ (y = y1 + y2)]]

Vinogradav’s Theorem

Vinogradov’s Theorem Every sufficiently large odd number can
be written as the sum of three primes.

(∃x)(∀y > x)

[ODD(y)→

(∃y1, y2, y3)[PRIME(y1)∧PRIME(y2)∧PRIME(y3)∧(y = y1+y2+y3)]]]

Vinogradav’s Theorem

Vinogradov’s Theorem Every sufficiently large odd number can
be written as the sum of three primes.

(∃x)(∀y > x)

[ODD(y)→

(∃y1, y2, y3)[PRIME(y1)∧PRIME(y2)∧PRIME(y3)∧(y = y1+y2+y3)]]]

Square root of 2

Thm
√

2 /∈ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
Note that if 2 = x2

y2 then 2y2 = x2.

¬(∃x , y)[2y2 = x2]

(∀x , y)[2y2 6= x2]

Note that using ¬(∃x , y) ≡ (∀x , y)¬ ended up not having a ¬ in
the final expression.

Square root of 2

Thm
√

2 /∈ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
Note that if 2 = x2

y2 then 2y2 = x2.

¬(∃x , y)[2y2 = x2]

(∀x , y)[2y2 6= x2]

Note that using ¬(∃x , y) ≡ (∀x , y)¬ ended up not having a ¬ in
the final expression.

Square root of 2

Thm
√

2 /∈ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
Note that if 2 = x2

y2 then 2y2 = x2.

¬(∃x , y)[2y2 = x2]

(∀x , y)[2y2 6= x2]

Note that using ¬(∃x , y) ≡ (∀x , y)¬ ended up not having a ¬ in
the final expression.

Square root of 2

Thm
√

2 /∈ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
Note that if 2 = x2

y2 then 2y2 = x2.

¬(∃x , y)[2y2 = x2]

(∀x , y)[2y2 6= x2]

Note that using ¬(∃x , y) ≡ (∀x , y)¬ ended up not having a ¬ in
the final expression.

Square root of 2

Thm
√

2 /∈ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
Note that if 2 = x2

y2 then 2y2 = x2.

¬(∃x , y)[2y2 = x2]

(∀x , y)[2y2 6= x2]

Note that using ¬(∃x , y) ≡ (∀x , y)¬ ended up not having a ¬ in
the final expression.

Square root of 2

Thm
√

2 /∈ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
Note that if 2 = x2

y2 then 2y2 = x2.

¬(∃x , y)[2y2 = x2]

(∀x , y)[2y2 6= x2]

Note that using ¬(∃x , y) ≡ (∀x , y)¬ ended up not having a ¬ in
the final expression.

Order Notation

Sometimes We Don’t Care About Constants

The following conversation would never happen.

LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!

Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!

BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!

Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?

LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!

Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.

BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!

Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?

LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!

Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!

When Do/Don’t We Care About Constants?

1) When we first look at a problem we want to just get a sense of
how hard it is:

Exp vs Poly time?
If poly then what degree?
If roughly n2 then can we get it to roughly n log n or n?
Once we have exhausted all of our tricks to get it into (say)
roughly n2 time we THEN would do things to get the constant
down, perhaps non-rigorous things.

When Do/Don’t We Care About Constants?

1) When we first look at a problem we want to just get a sense of
how hard it is:
Exp vs Poly time?

If poly then what degree?
If roughly n2 then can we get it to roughly n log n or n?
Once we have exhausted all of our tricks to get it into (say)
roughly n2 time we THEN would do things to get the constant
down, perhaps non-rigorous things.

When Do/Don’t We Care About Constants?

1) When we first look at a problem we want to just get a sense of
how hard it is:
Exp vs Poly time?
If poly then what degree?

If roughly n2 then can we get it to roughly n log n or n?
Once we have exhausted all of our tricks to get it into (say)
roughly n2 time we THEN would do things to get the constant
down, perhaps non-rigorous things.

When Do/Don’t We Care About Constants?

1) When we first look at a problem we want to just get a sense of
how hard it is:
Exp vs Poly time?
If poly then what degree?
If roughly n2 then can we get it to roughly n log n or n?

Once we have exhausted all of our tricks to get it into (say)
roughly n2 time we THEN would do things to get the constant
down, perhaps non-rigorous things.

When Do/Don’t We Care About Constants?

1) When we first look at a problem we want to just get a sense of
how hard it is:
Exp vs Poly time?
If poly then what degree?
If roughly n2 then can we get it to roughly n log n or n?
Once we have exhausted all of our tricks to get it into (say)
roughly n2 time we THEN would do things to get the constant
down, perhaps non-rigorous things.

We Want to Make “Roughly” Rigorous

We want to say that we don’t care about constants.

We want to say that 18n3 + 8n2 + 12n + 1000 is roughly n3.

f ≤ O(n3) First attempt:

(∃c)[f (n) ≤ cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f ≤ O(n3) Second and final attempt:

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cn3].

We leave it to the reader to prove that

18n3 + 8n2 + 12n + 1000 = O(n3)

by finding the values of n0, c , d .

We Want to Make “Roughly” Rigorous

We want to say that we don’t care about constants.
We want to say that 18n3 + 8n2 + 12n + 1000 is roughly n3.

f ≤ O(n3) First attempt:

(∃c)[f (n) ≤ cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f ≤ O(n3) Second and final attempt:

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cn3].

We leave it to the reader to prove that

18n3 + 8n2 + 12n + 1000 = O(n3)

by finding the values of n0, c , d .

We Want to Make “Roughly” Rigorous

We want to say that we don’t care about constants.
We want to say that 18n3 + 8n2 + 12n + 1000 is roughly n3.

f ≤ O(n3) First attempt:

(∃c)[f (n) ≤ cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f ≤ O(n3) Second and final attempt:

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cn3].

We leave it to the reader to prove that

18n3 + 8n2 + 12n + 1000 = O(n3)

by finding the values of n0, c , d .

We Want to Make “Roughly” Rigorous

We want to say that we don’t care about constants.
We want to say that 18n3 + 8n2 + 12n + 1000 is roughly n3.

f ≤ O(n3) First attempt:

(∃c)[f (n) ≤ cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f ≤ O(n3) Second and final attempt:

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cn3].

We leave it to the reader to prove that

18n3 + 8n2 + 12n + 1000 = O(n3)

by finding the values of n0, c , d .

We Want to Make “Roughly” Rigorous

We want to say that we don’t care about constants.
We want to say that 18n3 + 8n2 + 12n + 1000 is roughly n3.

f ≤ O(n3) First attempt:

(∃c)[f (n) ≤ cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f ≤ O(n3) Second and final attempt:

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cn3].

We leave it to the reader to prove that

18n3 + 8n2 + 12n + 1000 = O(n3)

by finding the values of n0, c , d .

We Want to Make “Roughly” Rigorous

We want to say that we don’t care about constants.
We want to say that 18n3 + 8n2 + 12n + 1000 is roughly n3.

f ≤ O(n3) First attempt:

(∃c)[f (n) ≤ cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f ≤ O(n3) Second and final attempt:

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cn3].

We leave it to the reader to prove that

18n3 + 8n2 + 12n + 1000 = O(n3)

by finding the values of n0, c , d .

f = O(g)

f ≤ O(g) means

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cg(n)].

You will see O() a lot in CMSC 351 and 451 when you deal with
algorithms and want to bound the run time, roughly.

f = O(g)

f ≤ O(g) means

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cg(n)].

You will see O() a lot in CMSC 351 and 451 when you deal with
algorithms and want to bound the run time, roughly.

Other Ways to Use O()

f ∈ nO(1) means poly time.

f ∈ 2O(n) means 2cn for some c , and after some n0.

Other Ways to Use O()

f ∈ nO(1) means poly time.

f ∈ 2O(n) means 2cn for some c , and after some n0.

Another Conversations

The following conversation would never happen.

BILL:Leo, I have shown that SAT requires roughly 2n time!
LEO:Roughly? What do you mean?
BILL:There are constants c , d , e such that ANY algorithm for SAT
takes time ≥ 2cn − dn2 − e. OH, the algorithm only has this
runtime when the number of variables is ≥ 100.
LEO:What are c , d , e?
BILL:Who freakin cares! I showed SAT is not in poly time you are
concerned with the constants!

Another Conversations

The following conversation would never happen.
BILL:Leo, I have shown that SAT requires roughly 2n time!

LEO:Roughly? What do you mean?
BILL:There are constants c , d , e such that ANY algorithm for SAT
takes time ≥ 2cn − dn2 − e. OH, the algorithm only has this
runtime when the number of variables is ≥ 100.
LEO:What are c , d , e?
BILL:Who freakin cares! I showed SAT is not in poly time you are
concerned with the constants!

Another Conversations

The following conversation would never happen.
BILL:Leo, I have shown that SAT requires roughly 2n time!
LEO:Roughly? What do you mean?

BILL:There are constants c , d , e such that ANY algorithm for SAT
takes time ≥ 2cn − dn2 − e. OH, the algorithm only has this
runtime when the number of variables is ≥ 100.
LEO:What are c , d , e?
BILL:Who freakin cares! I showed SAT is not in poly time you are
concerned with the constants!

Another Conversations

The following conversation would never happen.
BILL:Leo, I have shown that SAT requires roughly 2n time!
LEO:Roughly? What do you mean?
BILL:There are constants c , d , e such that ANY algorithm for SAT
takes time ≥ 2cn − dn2 − e. OH, the algorithm only has this
runtime when the number of variables is ≥ 100.

LEO:What are c , d , e?
BILL:Who freakin cares! I showed SAT is not in poly time you are
concerned with the constants!

Another Conversations

The following conversation would never happen.
BILL:Leo, I have shown that SAT requires roughly 2n time!
LEO:Roughly? What do you mean?
BILL:There are constants c , d , e such that ANY algorithm for SAT
takes time ≥ 2cn − dn2 − e. OH, the algorithm only has this
runtime when the number of variables is ≥ 100.
LEO:What are c , d , e?

BILL:Who freakin cares! I showed SAT is not in poly time you are
concerned with the constants!

Another Conversations

The following conversation would never happen.
BILL:Leo, I have shown that SAT requires roughly 2n time!
LEO:Roughly? What do you mean?
BILL:There are constants c , d , e such that ANY algorithm for SAT
takes time ≥ 2cn − dn2 − e. OH, the algorithm only has this
runtime when the number of variables is ≥ 100.
LEO:What are c , d , e?
BILL:Who freakin cares! I showed SAT is not in poly time you are
concerned with the constants!

f = Ω(g)

f ≥ Ω(g) means

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≥ cg(n)].

This notation is used to express that an algorithm requires some
amount of time.

f = Ω(g)

f ≥ Ω(g) means

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≥ cg(n)].

This notation is used to express that an algorithm requires some
amount of time.

If I proved . . .

If I proved that SAT requires Ω(n3) time would I have solved P vs
NP?

No. SAT could still be in time n4.

If I proved that SAT requires nΩ(log log log n) time would I have
solved P vs NP?

Yes. That function is bigger than any poly. But result would be
odd since people really think SAT requires 2Ω(n).

You would still get the $1,000,000.

If I proved . . .

If I proved that SAT requires Ω(n3) time would I have solved P vs
NP?

No. SAT could still be in time n4.

If I proved that SAT requires nΩ(log log log n) time would I have
solved P vs NP?

Yes. That function is bigger than any poly. But result would be
odd since people really think SAT requires 2Ω(n).

You would still get the $1,000,000.

If I proved . . .

If I proved that SAT requires Ω(n3) time would I have solved P vs
NP?

No. SAT could still be in time n4.

If I proved that SAT requires nΩ(log log log n) time would I have
solved P vs NP?

Yes. That function is bigger than any poly. But result would be
odd since people really think SAT requires 2Ω(n).

You would still get the $1,000,000.

If I proved . . .

If I proved that SAT requires Ω(n3) time would I have solved P vs
NP?

No. SAT could still be in time n4.

If I proved that SAT requires nΩ(log log log n) time would I have
solved P vs NP?

Yes. That function is bigger than any poly. But result would be
odd since people really think SAT requires 2Ω(n).

You would still get the $1,000,000.

If I proved . . .

If I proved that SAT requires Ω(n3) time would I have solved P vs
NP?

No. SAT could still be in time n4.

If I proved that SAT requires nΩ(log log log n) time would I have
solved P vs NP?

Yes. That function is bigger than any poly. But result would be
odd since people really think SAT requires 2Ω(n).

You would still get the $1,000,000.

