Expressing Hard Math
With Quantifiers
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(Vx)(3x1, x2, X3, Xa)[x = x¢ 4+ x5 + x5 + x7]
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Vinogradav’s Theorem

Vinogradov’s Theorem Every sufficiently large odd number can
be written as the sum of three primes.

(IX)(Vy > x)

[ODD(y) —

(3y1, y2, y3)[PRIME(y1 )APRIME(y2)APRIME(y3)A(y = y1+y2+y3)]l]
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Square root of 2

Thm 2 ¢ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
. 2
Note that if 2 = % then 2y? = x°.

—(3x,y)[2y* = ¥°]

(Vx, y)[2y? # x7]

Note that using =(3x,y) = (Vx, y)— ended up not having a = in
the final expression.



Order Notation
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Sometimes We Don’t Care About Constants

The following conversation would never happen.

LEO:Bill, | have an algorithm that solves SAT in roughly n? time!
BILL:Roughly? What do you mean?

LEO:There are constants c, d, e such that my algorithm works in
time < cn® 4+ dn+ e. OH, the algorithm only has this runtime
when the number of variables is > 100.

BILL:What are ¢, d, e?

LEO:Who freakin cares! | solved SAT without using brute force
and you are concerned with the constants!
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When Do/Don’t We Care About Constants?

1) When we first look at a problem we want to just get a sense of
how hard it is:

Exp vs Poly time?

If poly then what degree?

If roughly n? then can we get it to roughly nlogn or n?

Once we have exhausted all of our tricks to get it into (say)
roughly n® time we THEN would do things to get the constant
down, perhaps non-rigorous things.
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We Want to Make “Roughly” Rigorous

We want to say that we don't care about constants.
We want to say that 18n3 4 8n? + 12n 4 1000 is roughly nd.

f < O(n®) First attempt:

(3o)[f(n) < cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f < O(n3) Second and final attempt:

(3no)(3c)(Vn > no)[f(n) < cn’].

We leave it to the reader to prove that

18n® 4 8n” + 12n + 1000 = O(n®)

by finding the values of ng, ¢, d.
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f=0(g)

f < O(g) means

(3m0)(3<)(vn > mo)[F(n) < cg(n)].

You will see O() a lot in CMSC 351 and 451 when you deal with
algorithms and want to bound the run time, roughly.
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Other Ways to Use O()

f € n°1) means poly time.
f € 29(n) means 2" for some c, and after some ng.
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Another Conversations

The following conversation would never happen.

BILL:Leo, | have shown that SAT requires roughly 2" time!
LEO:Roughly? What do you mean?

BILL:There are constants c, d, e such that ANY algorithm for SAT
takes time > 2°" — dn? — e. OH, the algorithm only has this
runtime when the number of variables is > 100.

LEO:What are ¢, d, €7

BILL:Who freakin cares! | showed SAT is not in poly time you are
concerned with the constants!
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f=Q(g)

f > Q(g) means

(3m0)(3c)(Vn = no)[f(n) = cg(n)]-

This notation is used to express that an algorithm requires some
amount of time.
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If | proved ...

If | proved that SAT requires Q(n3) time would | have solved P vs
NP?
No. SAT could still be in time n*.

If | proved that SAT requires n®(l°glog1og ) time would | have
solved P vs NP?

Yes. That function is bigger than any poly. But result would be
odd since people really think SAT requires 2",

You would still get the $1,000,000.



