
Expressing Hard Math
With Quantifiers



Expressing Theorems: Four-Square Theorem

Four-Square Theorem Every natural number is the sum of ≤ 4
squares.

Four-Square Theorem Every natural number is the sum of 4
squares. We allow 0.

(∀x)(∃x1, x2, x3, x4)[x = x2
1 + x2

2 + x2
3 + x2

4 ]
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Expressing Statements: Goldbach’s Conjecture

Goldbach’s Conjecture Every sufficiently large even number can
be written as the sum of two primes.

(∃x)(∀y > x)

[EVEN(y)→ (∃y1, y2)[PRIME(y1)∧PRIME(y2)∧ (y = y1 + y2)]]
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Vinogradav’s Theorem

Vinogradov’s Theorem Every sufficiently large odd number can
be written as the sum of three primes.

(∃x)(∀y > x)

[ODD(y)→

(∃y1, y2, y3)[PRIME(y1)∧PRIME(y2)∧PRIME(y3)∧(y = y1+y2+y3)]]]
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Square root of 2

Thm
√

2 /∈ Q. (We will prove this later in the course.)

We want to express this with quantifiers over Z.
Note that if 2 = x2

y2 then 2y2 = x2.

¬(∃x , y)[2y2 = x2]

(∀x , y)[2y2 6= x2]

Note that using ¬(∃x , y) ≡ (∀x , y)¬ ended up not having a ¬ in
the final expression.
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Order Notation



Sometimes We Don’t Care About Constants

The following conversation would never happen.

LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!



Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!

BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!



Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?

LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!



Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.

BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!



Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?

LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!



Sometimes We Don’t Care About Constants

The following conversation would never happen.
LEO:Bill, I have an algorithm that solves SAT in roughly n2 time!
BILL:Roughly? What do you mean?
LEO:There are constants c , d , e such that my algorithm works in
time ≤ cn2 + dn + e. OH, the algorithm only has this runtime
when the number of variables is ≥ 100.
BILL:What are c , d , e?
LEO:Who freakin cares! I solved SAT without using brute force
and you are concerned with the constants!



When Do/Don’t We Care About Constants?

1) When we first look at a problem we want to just get a sense of
how hard it is:

Exp vs Poly time?
If poly then what degree?
If roughly n2 then can we get it to roughly n log n or n?
Once we have exhausted all of our tricks to get it into (say)
roughly n2 time we THEN would do things to get the constant
down, perhaps non-rigorous things.
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We Want to Make “Roughly” Rigorous

We want to say that we don’t care about constants.

We want to say that 18n3 + 8n2 + 12n + 1000 is roughly n3.

f ≤ O(n3) First attempt:

(∃c)[f (n) ≤ cn3].

We do not really care what happens for small values of n. The
following definition captures this:
f ≤ O(n3) Second and final attempt:

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cn3].

We leave it to the reader to prove that

18n3 + 8n2 + 12n + 1000 = O(n3)

by finding the values of n0, c , d .
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f = O(g)

f ≤ O(g) means

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≤ cg(n)].

You will see O() a lot in CMSC 351 and 451 when you deal with
algorithms and want to bound the run time, roughly.
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Other Ways to Use O()

f ∈ nO(1) means poly time.

f ∈ 2O(n) means 2cn for some c , and after some n0.
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Another Conversations

The following conversation would never happen.

BILL:Leo, I have shown that SAT requires roughly 2n time!
LEO:Roughly? What do you mean?
BILL:There are constants c , d , e such that ANY algorithm for SAT
takes time ≥ 2cn − dn2 − e. OH, the algorithm only has this
runtime when the number of variables is ≥ 100.
LEO:What are c , d , e?
BILL:Who freakin cares! I showed SAT is not in poly time you are
concerned with the constants!
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f = Ω(g)

f ≥ Ω(g) means

(∃n0)(∃c)(∀n ≥ n0)[f (n) ≥ cg(n)].

This notation is used to express that an algorithm requires some
amount of time.
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If I proved . . .

If I proved that SAT requires Ω(n3) time would I have solved P vs
NP?

No. SAT could still be in time n4.

If I proved that SAT requires nΩ(log log log n) time would I have
solved P vs NP?

Yes. That function is bigger than any poly. But result would be
odd since people really think SAT requires 2Ω(n).

You would still get the $1,000,000.
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