
Numbers and Primes and
Units, Oh My!



PRIMES over N

I want to say that x ∈ N is PRIME.

Quantifiers range over N.

PRIME(x) ≡ (x 6= {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]
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−7 = −1× 7 Its also −7×−1×−1× 1. So. . . not a prime?

NAH, we want −7 to be a prime.
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PRIMES over Z (cont)

PRIME(x) ≡ (x /∈ {0, 1}) ∧ (∀y , z)[x = yz → (y = 1) ∨ (z = 1)]

Why did we make 1 an exception? Because 7 = 1× 7.

Should we make −1 an exception also? Yes.

PRIME(x) ≡ (x /∈ {0, 1,−1})∧(∀y , z)[x = yz → (y = ±1)∨(z = ±1)]
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PRIMES over G

Def The Gaussian Integers G are numbers of the form

{a + bi : a, b ∈ Z}

We want to define PRIME in G . What will be the exceptional
numbers? Why?
Work in Groups

The exceptions are {1,−1, i ,−i}. Why?

7 = i ×−i × 7.
We don’t really want to count the i and −i .
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Units

Def Let D be some domain. If x ∈ D then the mult inverse of x
(if it exists) is the number y such that xy = 1.

In N the only number that has a mult inverse is 1.

In Z the only numbers that has a mult inverses are 1, −1.

In G the only numbers that has a mult inverses are 1, −1, i , −i .
Def Let D be a domain. The units of D are the elements of D
that have a multiplicative inverse.

The Unit are the exceptions. If x ∈ D, u is a unit, and v is its
inverse, then
x = uvx
We don’t want to say x is not prime. u, v should not matter!
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Units and Primes

Let D be any domain of numbers.
We will be quantifying over it.

UNIT(x) ≡ (∃y)[xy = 1]

PRIME(x) ≡

(x 6= 0 ∧ ¬UNIT(x)) ∧ (∀y , z)[x = yz → (UNIT(y) ∨UNIT(z)].



Units and Primes

Let D be any domain of numbers.
We will be quantifying over it.

UNIT(x) ≡ (∃y)[xy = 1]

PRIME(x) ≡

(x 6= 0 ∧ ¬UNIT(x)) ∧ (∀y , z)[x = yz → (UNIT(y) ∨UNIT(z)].



So Thats why. . .

1) So thats why 1 is NOT a prime. In any domain D we have
Units, Primes, Composites, 0

2) Can we define primes in Q? Discuss
All elements of Q are units, so there are no primes.

3) Let ONEFOUR = {n : n ≡ 1 (mod 4)}. The only unit is 1.
Note that 9 is PRIME in ONEFOUR since the factorization
9 = 3× 3 is NOT valid since 3 /∈ ONEFOUR.
What are the primes in ONEFOUR? Work in Groups
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Primes in ONEFOUR

Elements of ONEFOUR: 1, 5, 9, 13, 17, 21, 25. We stop here.
1: a unit
5: a prime
9: a prime! Note that 3 /∈ ONEFOUR so cannot say 9 = 3× 3.
13,17: Primes
21: a prime!
25: 5× 5 are first composite.



Primes and Units In Other Domains

Dd = {a + b
√
d : a, b ∈ Z}

WORK IN GROUPS
Find all the units of D2.
Find all the units of D3.
etc.
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VOTE
1) D2 has an infinite number of units.
2) D2 has a finite number of unit.
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Let a + b
√
d = a− b

√
d . This is called the conjugate of a+ b

√
d .

Let N(a + b
√
d) = (a + b

√
d)(a + b

√
d) = a2 − db2d . Norm!

Thm N(αβ) = N(α)N(β). HW
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Units

Thm If α is a unit then N(α) = 1.

α a unit implies (∃β)[αβ = 1] implies
N(αβ) = 1 implies N(α)N(β) = 1

Key N(α) and N(β) are in Z so they must be 1 or −1.

Hence N(α) ∈ {−1, 1}.
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Other Direction

Thm If N(α) ∈ {−1, 1} then α is a unit.
N(α) = ±1
αalpha = ±1
So either α or −α is the inverse of α.
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Lemma About Units

Thm If α is a unit then, for all n ∈ Z, αn is a unit.

α a unit

N(α) = ±1

If n ∈ N then
N(αn) = N(α)n = ±1.

Since α is a unit, α−1 ∈ D.

Hence α−n ∈ D. Easy to show its a unit.

This theorem does not guarantee an infinite number of units.
Note that i is a unit in D−1 but {in : n ∈ Z} = {1,−1, i ,−i}.
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Back to D2

Need a unit u in D2 such that un are all different.

Need a, b ∈ Z such that a2 − b2d = ±1.

a2 − 2b2 = 1. Try b = 0, b = 1, . . .
b = 0: (a, b) = (1, 0). Thats just 1
b = 1: a2 − 2 = 1. No Solution.
b = 2: a2 − 8 = 1. Solution a = 3 so (a, b) = (3, 2). (3 + 2

√
2) is

a unit.
Infinite number of units: (3 + 2

√
2)n as n ∈ Z.
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Need a, b ∈ Z such that a2 − b2d = ±1.

a2 − 2b2 = 1. Try b = 0, b = 1, . . .
b = 0: (a, b) = (1, 0). Thats just 1
b = 1: a2 − 2 = 1. No Solution.
b = 2: a2 − 8 = 1. Solution a = 3 so (a, b) = (3, 2). (3 + 2

√
2) is

a unit.
Infinite number of units: (3 + 2

√
2)n as n ∈ Z.


