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Public Key Crypto: Math
Needed and

Diffie-Hellman



Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.
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General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats

1. Want the prove that cracking a cipher is hard.

2. Hard to prove any problem hard.

3. We use hardness assumptions (e.g. factoring is hard).
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Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.

Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.
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Math Needed for Both
Diffie-Hellman and RSA



Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with mod add and mult.

2. Z∗
p is the numbers {1, . . . , p − 1} with mod mult.

Convention By prime we will always mean a large prime, so in
particular, NOT 2. Hence we can assume p−1

2 is in N.



Exponentiation Mod p

Problem Given a, n, p find an (mod p)

We showed last time that this can be done in O(log n) steps.

Thats fast!
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Generators and Discrete
Logarithms



Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.

31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.
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Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81.

x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.
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Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.

Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga
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Discrete Log-Example: 3x ≡ 93 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Is there a trick for g x ≡ 93 (mod 101)? Not that I know of.



Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.
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The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.
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Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.
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has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.



Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.
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Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.
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Convention

For the rest of the slides on Diffie-Hellman Key Exchange there
will always be a prime p that we are considering.

ALL math done from that point on is mod p.

ALL numbers are in {1, . . . , p − 1}.



Finding Generators



Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens? Θ( p
log log p )

Hence if you just look for a gen you will find one soon.
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Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g. If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.
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Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?
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Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.
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Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!
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Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!
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