
BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Public Key Crypto: Math
Needed and

Diffie-Hellman

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.

Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:

Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,

Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.

Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?

Yes! And that is the key to public-key cryptography.

Private-Key Ciphers

Shift Cipher Alice and Bob meet and agree on s ∈ {1, . . . , 25}.
Alice codes x with x + s (mod 26)

Affine Cipher Alice and Bob meet and agree on a, b ∈ {1, . . . , 25}
Alice codes x with ax + b (mod 26).
(Need for a to be rel prime to 26. I skip details on this.)

Historically there have been many ciphers where Alice and Bob
must meet:
Vigenere Cipher, General Sub, General 2-char sub, Matrix Cipher,
One-time Pad,
Alice and Bob need to meet!. Hence called Private-Key ciphers.
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats

1. Want the prove that cracking a cipher is hard.

2. Hard to prove any problem hard.

3. We use hardness assumptions (e.g. factoring is hard).

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats

1. Want the prove that cracking a cipher is hard.

2. Hard to prove any problem hard.

3. We use hardness assumptions (e.g. factoring is hard).

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats

1. Want the prove that cracking a cipher is hard.

2. Hard to prove any problem hard.

3. We use hardness assumptions (e.g. factoring is hard).

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats

1. Want the prove that cracking a cipher is hard.

2. Hard to prove any problem hard.

3. We use hardness assumptions (e.g. factoring is hard).

General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats

1. Want the prove that cracking a cipher is hard.

2. Hard to prove any problem hard.

3. We use hardness assumptions (e.g. factoring is hard).

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.

Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.
Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.
Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.
Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.

3. Factoring n can be done in O(
√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.
Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.
Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.
Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Difficulty of Problems Based on Length of Input
Hardness of a problem is measured by time-to-solve as a function
of length of input.
Examples

1. Given a Boolean formula φ(x1, . . . , xn), is there a satisfying
assignment? Seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.
3. Factoring n can be done in O(

√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Better (but still exp) algs

known.

Upshot For numeric problems length is lg n. Encryption requires:
I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What Counts We count math operations as taking 1 step. This
could be an issue with enormous numbers. We will work with
mods so not a problem.

Math Needed for Both
Diffie-Hellman and RSA

Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with mod add and mult.

2. Z∗
p is the numbers {1, . . . , p − 1} with mod mult.

Convention By prime we will always mean a large prime, so in
particular, NOT 2. Hence we can assume p−1

2 is in N.

Exponentiation Mod p

Problem Given a, n, p find an (mod p)

We showed last time that this can be done in O(log n) steps.

Thats fast!

Exponentiation Mod p

Problem Given a, n, p find an (mod p)

We showed last time that this can be done in O(log n) steps.

Thats fast!

Exponentiation Mod p

Problem Given a, n, p find an (mod p)

We showed last time that this can be done in O(log n) steps.

Thats fast!

Exponentiation Mod p

Problem Given a, n, p find an (mod p)

We showed last time that this can be done in O(log n) steps.

Thats fast!

Generators and Discrete
Logarithms

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.

31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3

32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2

works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6

34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4

35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5

36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Generators (mod p)

Let’s take powers of 3 mod 7. All math is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
works for any natural p.
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order.

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81.

x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.

Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.

Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps.

Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.

Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.

Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps.

Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?

VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example

Fact: 3 is a generator mod 101. All math is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81. x = 4 obv works.

2. Find x such that 3x ≡ 92.
Try computing 31, 32, . . . , until you get 92.
Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93.
Try computing 31, 32, . . . , until you get 93.
Might take ∼ 100 steps. Shortcut?

2nd and 3th look hard. Are they?
VOTE Both hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.

Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is as easy as ga.

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga

Discrete Log-Example: 3x ≡ 93 (mod 101)

Fact: 3 is a generator mod 101. All math is mod 101.
Is there a trick for g x ≡ 93 (mod 101)? Not that I know of.

Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.

Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.

Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.

Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.

Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.

Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.

Formally Discrete Log is. . .

Def The Discrete Log (DL) problem is a follows:

1. Input g , a, p. With 1 ≤ g , a ≤ p − 1. g is a gen for Z∗
p.

2. Output x such that g x ≡ a (mod p).

Recall

I A good alg would be time (log p)O(1).

I A bad alg would be time pO(1).

I If an algorithm is in time (say) p1/10 still not efficient but will
force Alice and Bob to up their game.

The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.

The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.

The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.

The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.

The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.

The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.

The Complexity of Discrete Log?

Input is (g , a, p).

1. Naive algorithm is O(p) time.

2. Exists an O(
√
p) time, O(

√
p) space alg. Time and Space

makes it NOT practical.

3. Exists an O(
√
p) time, (log p)O(1) space alg. Space fine, but

time still a problem.

4. Not much progress on theory front since 1985.

5. Discrete Log is in QuantumP.

Good Candidate for a hard problem for Eve.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen

in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime.

In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime.

Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants.

Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters

they don’t.They say
It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.

They say
It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me

Until it does.

Bill’s Opinion on DL. Also Applies to Factoring

1. Fact: DL in in QuantumP.

2. BILL Opinion: Quantum computers that can do DL fast
won’t happen in my lifetime. In your lifetime. Ever.

3. Fact: Good classical algorithms using hard number theory
exist and have been implemented. Still exponential but low
constants. Some are amenable to parallelism.

4. BILL Opinion: The biggest threat to crypto is from hard
math combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(p1/10)) then
Alice and Bob can increase size of p and be fine. Still, Eve
has made them work harder.

6. BILL Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.

Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem:
Given a ∈ {1, . . . , p}, find x such that g x ≡ a (mod p). We call
this DLp,g (a).

1. If g is small then DL(ga) might be easy: DL1009,7(49) = 2
since 72 ≡ 49 (mod 1009).

2. If g is small then DL(p − ga) might be easy:
DL1009,7(1009− 49) = 506 since 750472 ≡ −72 ≡ 1009− 49
(mod 1009).

3. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

4. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Consider What We Already Have Here

I Exponentiation mod p is Easy.

I Discrete Log is thought to be Hard.

We want a crypto system where:

I Alice and Bob do Exponentiation mod p to encrypt and
decrypt.

I Eve has to do Discrete Log to crack it.

Do we have this?

No. But we’ll come close.

Convention

For the rest of the slides on Diffie-Hellman Key Exchange there
will always be a prime p that we are considering.

ALL math done from that point on is mod p.

ALL numbers are in {1, . . . , p − 1}.

Finding Generators

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens? Θ(p
log log p)

Hence if you just look for a gen you will find one soon.

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens? Θ(p
log log p)

Hence if you just look for a gen you will find one soon.

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens?

Θ(p
log log p)

Hence if you just look for a gen you will find one soon.

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens? Θ(p
log log p)

Hence if you just look for a gen you will find one soon.

Finding Gens; How Many Gens Are There?

Problem Given p, find g such that

I g generates Z∗
p.

I g ∈ {p3 , . . . ,
2p
3 }. (We ignore floors and ceilings for notational

convenience.)

We could test p
3 , then p

3 + 1, etc. Will we hit a generator soon?

How many elts of {1, . . . ,p− 1} are gens? Θ(p
log log p)

Hence if you just look for a gen you will find one soon.

Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g. If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.

Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g. If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.

Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g. If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.

Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g. If finishes then output g and stop.

PRO You will find a gen fairly soon.

CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.

Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g. If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.

Bad! Recall (log p)O(1) is fast, O(p) is slow.

Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p.

2. For g = p
3 to 2p

3 :

Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g. If finishes then output g and stop.

PRO You will find a gen fairly soon.
CON Computing g1, . . . , gp−1 is O(p log p) operations.
Bad! Recall (log p)O(1) is fast, O(p) is slow.

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?

Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..

BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1?

Really?
Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?

Borrow Leo’s Quantum Computer?

Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p.

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?
Time Every iteration takes O(|F |(log p)) ops. |F | might be huge!
So no good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really?
Borrow Leo’s Quantum Computer?

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.

We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.

We will make p− 1 have few factors.

Factoring is Hard. Or is it?

Second Attempt had two problems:

1. Factoring is hard.

2. p − 1 may have many factors.

We want p − 1 to be easy to factor and have few factors.

There are three kinds of people in the world:

1. Those who make things happen.

2. Those who watch things happen.

3. Those who wonder what happened.

We will make things happen.
We will make p− 1 easy to factor.
We will make p− 1 have few factors.

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.

Given prime p, find a gen for Z∗
p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.

CON: Need both p and p−1
2 are primes.

CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.

CAVEAT We need to pick certain kinds of primes. Can do that!

Finding Gens: Third Attempt

Idea: Pick p such that p − 1 = 2q where q is prime.
Given prime p, find a gen for Z∗

p

1. Input p a prime such that p − 1 = 2q where q is prime. (We
later explore how we can find such a prime.)

2. Factor p − 1. Let F be the set of its factors except p − 1.
That’s EASY: F = {2, q}.

3. For g = p
3 to 2p

3 :

Compute g x for all x ∈ F . If any = 1 then g NOT
generator. If none are 1 then output g and stop.

Is this a good algorithm?
PRO Every iteration does O(log p) operations.
CON: Need both p and p−1

2 are primes.
CAVEAT We need to pick certain kinds of primes. Can do that!

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!

