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Exposition by William Gasarch

1 Introduction

We use communication complexity to (1) show that certain languages are not regular, and

(2) show lower bounds on the number of states for some regular languages. The techniques

are not new. They are essentially in papers by Birget [1] and Galister and Shallit [2].

For more on communication complexity see [3]. We only prove as much as we need to

show certain languages are not regular.

2 Communication Complexity

Def 2.1 Let A ⊆ {0, 1}n × {0, 1}n. Imagine that Alice has x ∈ {0, 1}n and Bob has y ∈

{0, 1}n. They want to determine if (x, y) ∈ A. The Communication Complexity of A is

the minimum number of bits they need to communicate in order for them both to know if

(x, y) ∈ A. We allow them unlimited computation. That is Alice and Bob can do anything

they want privately (e.g, Solve SAT, Solve the HALTING problem) – our concern will only

be with communication. We denote this D(A) since our protocol is deterministic. We will

assume that in each round the communicating player sends either a 0 or a 1.

Examples

1) For any set A, D(A) ≤ n+1 since Alice can just GIVE Bob x, Bob determines if (x, y) ∈ A

and then sends the answer to Alice.

2) Consider the set

MAJ = {(x, y) ∈ {0, 1}n × {0, 1}n : #1(xy) ≥ n/2}

D(MAJ) ≤ log(n) by having Alice send Bob #1(x).

3) Consider the set
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EQ = {(x, x) ∈ {0, 1}n × {0, 1}n}

We will later show that D(EQ) ≥ n + 1. There is a randomized algorithm that takes

O(log n) bits [4]; however, that is now our concern here. The slides (on the course website)

show this protocol.

3 Lower Bound on D(EQ)

The following theorem is due to Yao [5].

Def 3.1 Let P be a protocol for A ⊆ {0, 1}n × {0, 1}n. Let (x, y) ∈ {0, 1}n × {0, 1}n. If we

run P on (x, y) Alice says a1 then Bob says b1, etc, until it ends. The string a1b1a2b2 · · · ambm

(it might end on am) is called The Transcript of P (x, y) and denoted Tx,y.

Theorem 3.2 D(EQ) ≥ n + 1.

Proof:

Claim: If x 6= y then Tx,x 6= Ty,y.

Proof of Claim: Assume, by way of contradiction, that x 6= y and

Tx,x = Ty,y = a1b1a2b2 · · · ambm

Now look at Tx,y.

Alice has x so she sends a bit a1. Bob sees a1 and has y so he sends b1. Etc. Hence

Tx,y = a1b1a2b2 · · · ambm

Since x = x the transcript Tx,x accepts (x, x). Hence the transcript Tx,y = Tx,x accepts

(x, y). This is a contradiction since x 6= y.

End of Proof of Claim
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So all Tx are different. Hence there are ≥ 2n transcripts. There must be at least 1

rejecting leave. So there are at least 2n + 1 transcripts. Hence some transcript must be of

length ≥ n + 1.

4 A General Technique

The following theorem is due to Yao [5]. All the ideas for it are in the proof of Theorem 3.2.

Def 4.1 Let A ⊆ {0, 1}n×{0, 1}n. A fooling set is a set (x1, y1), . . ., (xM , yM) such that (1)

for all i, (xi, yi) ∈ A, and (2) for all i < j, (xi, yj) /∈ A.

Theorem 4.2 Let A ⊆ {0, 1}n × {0, 1}n. If there is a fooling set of size M then D(f) ≥

dlog2(M)e.

5 Lower Bound on D(MAJ)

The following theorem is due to Yao [5].

Theorem 5.1 D(MAJ) ≥ log n.

Proof: We assume n is even (the n odd case is similar).

We find a fooling set of size n/2 + 1:

(0n/2, 1n/2)

(0n/2−11, 10n/2−1)

(0n/2−212, 120n/2−2)

(0n/2−313, 130n/2−3)
...

(1n/2, 1n/2)

Clearly every ordered pair is in MAJ . If i < j then (1i0n/2−i, 1n/2−j0j) /∈MAJ since the

number of 1’s is n/2 + i− j < n/2,
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6 An Example of a prove that a Language is not Regular Using Comm Comp

Theorem 6.1 The language L = {ww : w ∈ {0, 1}∗} is not regular. Hence L is also no

regular.

Proof: Assume, by way of contradiction, that L is regular via DFA M which has s (a

constant!) states. Both Alice and Bob are given M . We now give a protocol that shows

D(EQ) = O(1) which contradicts D(EQ) ≥ n + 1.

Alice gets x, Bob gets y, both of length n. Alice runs M(x) and sees that it ends in state

p. Alice sends p to Bob. Note that |p| = lg(s) + O(1) = O(1). Then Bob runs M on y

starting at state p. If the result is a final state then he’ll send Alice a 1 (for YES x = y),

otherwise he’ll send Alice a 0 (for NO x 6= y). This shows D(EQ) = O(1) which contradicts

Theorem 3.2.

7 General Technique for Proving a Language is Not Regular

We generalize the technique from Section 6.

Theorem 7.1 Let L be a language. Let n ∈ N. Let

Ln = {(x, y) : |x| = |y| = n ∧ xy ∈ L}.

Let f be an increasing function (it might increase very slowly). If for infinitely many n there

exists a fooling set for Ln of size ≥ f(n) then L is not regular, and L is not regular.

Proof:

Since for infinitely many n there exists a fooling set for Ln of size ≥ f(n), for infinitely

many n D(Ln) ≥ f(n). In particular D(Ln) is NOT O(1).

Assume, by way of contradiction, that L is regular via DFA M which has s (a constant!)

states. Both Alice and Bob are given M . We now give a protocol that shows D(Ln) = O(1).
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Alice gets x, Bob gets y, both of length n. Alice runs M(x) and sees that it ends in state

p. Alice sends p to Bob. Note that |p| = lg(s) + O(1) = O(1). Then Bob runs M on y

starting at state p. If the result is a final state then he’ll send Alice a 1 (for YES x = y),

otherwise he’ll send Alice a 0 (for NO x 6= y). This shows D(EQ) = O(1) which contradicts

Theorem 3.2.

8 More Examples

Theorem 8.1 The alphabet is {a, b}

1. Lsq:a,b = {w : #a(w) is a square } is not regular.

2. Lsq:a = {an2
: n ∈ N} is not regular.

3. Lsq:a,b and Lsq:a are not regular.

Proof:

1) Let Lsq:a,b,n2 = {(x, y) : |x| = |y| = n2 ∧ xy ∈ Lsq:a,b}

We will only be looking at

We produce, for every n, a fooling set for Lsq:q,b,n2 of size n.

(an
2
, bn

2
)

(an
2−1b, abn

2−1)

(an
2−2b2, a2bn

2−2)
...

(an
2−ibi, aibn

2−i)
...

(an
2−nbn, anbn

2−n)

All of the ordered pairs are in Lsq:a,b,n2 . We want that if you take the LHS of any of them

with the RHS of any other one the resulting pair is NOT in Lsq:a,b,n2 . Let i < j.
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(an
2−ibi, ajbn

2−j)

We want that

n2 − i + j is NOT a square.

So we want

n2 − i + j < (n + 1)2 = n2 + 2n + 1

j − i < 2n + 1

What is the largest j − i can be? The largest j can be is n The smallest i can be is 0.

j − i ≤ n− 1 < 2n + 1.

Therefore n2 − i + j is NOT a square. Hence we have a fooling set.

2) Assume Lsq:a is regular. Let M be its DFA. Attach to every state a self loop for whenever

b is the input. This is a DFA for Lsq:a,b. This contradicts part 1.

We leave the proof of the following theorem to the reader

Theorem 8.2 Let A ⊆ N such that A is infinite, co-infinite, and there exists arbitrarily

large gaps in A (formally: for all n there exists n1 such that n1, n1 + 1, . . . , n1 + n /∈ A).

1. LA:a,b = {w : #a(w) ∈ A} is not regular.

2. LA:a = {ai : i ∈ A} is not regular.

3. LA:a,b and LA:a are not regular.

9 Number of States

Lets look at a finite version of the set {ww : w ∈ Σ∗}.

Let

Ln = {ww : |w| = n}
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Theorem 9.1

1. There is a DFA for Ln with 2n+1 + 1 states.

2. Any DFA for Ln has at least 2n+1 states.

Proof:

1) Let s be the start state. For every w ∈ {0, 1}≤n there is a state. On input w the DFA

ends in state w. For every w ∈ {0, 1}n there is a chain of n states so that if w is the next n

letters you go to an accept state. Anything else goes to a reject state. There is only 1 reject

and 1 accept state. The total number of states is |{0, 1}≤n|+ 2 = 2n+1 − 1 + 2 = 2n+1 + 1.

2) Let M be a DFA for Ln. Let s be the number of states. By the proof of Theorem 8.1 M

can be used to show that D(EQ) ≤ lg(s). By Theorem 3.2 D(EQ) ≥ n + 1. Hence

lg(s) ≥ n + 1

s ≥ 2n+1

Lower bounds on the number of states for other regular languages can be obtained in a

similar manner.

10 Limitations of the Method

Let L be a langauge and Ln = {(x, y) : |x| = |y| = n ∧ xy ∈ L}. We have essentially proven

and used the following:

If Ln has nonconstant size fooling set then L is not regular.

If L is regular then L is regular.

If L is regular then inserting a new letter anywhere you want keeps the language regular.
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Can every non-regular language be proven regular with these techniques? No.

Let X be any subset of N. Let

LX = {w : #a(w) ≡ 1 (mod 2) ∨#a(w)/2 ∈ X}.

Let

LX
n = {(x, y) : xy ∈ LX}

For any value of X this set does not have a large fooling set. If X is not decidable then

LX is not regular. This is not quite a counterexample. We need to show that D(LX) is

nonconstant which may be possible without the fooling set method.

Another counterexample, but its really stupid, is the following

LZ = {xy : |x| = |y| ∧ x ∈ Z}

LZ
n = {(x, y) : |x| = |y| ∧ xy ∈ Z}

For any Z, D(LZ
n ) = 1: Alice just tells Bob if x ∈ Z or not. If Z is the halting set or

some other non-regular set, then LZ is not regular.

References

[1] J.-C. Birget. Intersection and union of regular languages and state complexity. Informa-

tion Processing Letters, 28, 1992.

[2] I. Glaister and J. Shallit. A lower bound technique for the size of nondterministic finite

automata. Information Processing Letters, 52, 1996.

8



[3] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,

Cambridge, England, 1997.

[4] Mehlhorn and Schmidt. Las vegas is better than determinism in vlsi and distributed

computing. In Proceedings of the Twenty-fourth Annual ACM Symposium on the Theory

of Computing, Victoria, British Columbia, Canada, New York, 1982. ACM.

[5] A. Yao. Some complexity questions related to distributive computing. In Proceedings of

the Eleventh Annual ACM Symposium on the Theory of Computing, Atlanta GA, 1979.

9


