
A Small NFA for {ai : i 6= n}

Exposition by William Gasarch

1 Credit where Credit is Due

These notes are based on Jeff Shallit’s slides on the Frobenius Problem [3] and some emails I had

with him. None of this is my work.

2 Introduction

Consider the following language: Ln = {ai : i 6= n}.

There is a n + 2 state DFA for Ln (we prove this later, though it’s easy). Can we do better?

How about with an NFA?

We show:

1. The n+ 2 state DFA for Ln is optimal.

2. There is a
√
n+ O((log n)2(log log n)) state NFA for Ln. a

√
n+ O((log n)2(log log n)) state

NFA for Ln for some c < 2.

3. Any NFA for Ln has >
√
n states.

There is an appendix which has some needed lemmas from Number Theory.

3 A DFA For Ln With n+ 2 States

Theorem 3.1 There is a DFA for Ln with n + 2 states; however, there is no DFA for Ln with

n+ 1 states.

Proof:

The DFA for Ln has states for how many a’s have been seen up to n, and then a state for ‘I

have seen ≥ n+ 1 states’. Formally:

There are states {0, 1, 2, . . . , n + 1}. 0 is the start state. For 0 ≤ i ≤ n state i means that i

a’s have been seen so far. State n+ 1 means ≥ n+ 1 a’s have been seen. All states are accepting

EXCEPT n.
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For 0 ≤ s ≤ n δ(s, a) = s+ 1.

δ(n+ 1, a) = n+ 1.

Let M be a DFA for Ln. We show that M has ≥ n+ 2 states. Let 0 be the start state.

Look at states:

δ(0, a0)

δ(0, a1)

δ(0, a2)

δ(0, a3)
...

δ(0, an−1)

These are all accepting states.

I claim they are all DIFFERENT states. Assume, by way of contradiction, that 1 ≤ i < j ≤ n−1

but

δ(0, ai) = δ(0, aj).

Then

δ(0, ai · an−j) = δ(0, aj · an−j)

Hence

δ(0, an+(i−j)) = δ(0, an)

Since n+ (i− j) < n, the LHS is an ACCEPT state. But the RHS is clearly a REJECT state.

This is a contradiction. Hence there are n states listed above. They are all accept states. There

is also at least one reject state. Hence there are at least n + 1 states. But there’s more! Let r be

the reject state. Hence δ(0, an) = r. Look at δ(0, an+1). We leave it to the reader to show that it

cannot be any of the states mentioned. Hence it is another state. Total number of states: n + 2.
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4 An NFA for L107 With 23 States

Theorem 4.1 There exists an NFA for L107 with 23 States.

Proof:

What is the smallest NFA for L107? Let us rephrase the question: How can a number i PROVE

that its NOT 107? The next lemma will yield a small helpful NFA.

Claim 1:

1. There DO NOT exist c, d ∈ N such that 107 = 10c+ 13d.

2. (∀i ≥ 108)(∃c, d ∈ N)[i = 10c+ 13d].

Proof of Claim 1:

1) We narrow down what c, d must be.

107 = 10c+ 13d

take this equation mod 10.

7 ≡ 3d (mod 10)

Multiply both sides by 7 (the inverse of 3 mod 10)

49 ≡ 21d (mod 10)

9 ≡ d (mod 10)

Hence d ≥ 9 so

107 = 10c+ 13d ≥ 10c+ 13× 9 = 13d+ 117

3



This cannot happen.

2) We prove this by induction on n.

We view this as expressing n in terms of 10-cent coins and 13-cent coins.

Base Case: 108 = 13× 6 + 10× 3

Ind. Hyp. Assume that n ≥ 108 and that (∃c, d ∈ N)[n = 10c+ 13d].

We prove that (∃c′, d′ ∈ N)[n+ 1 = 10c′ + 13d′]

Case 1: c ≥ 9. Intuitively we can remove nine 10-cent coins and add in seven 13-cent coins to end

up +1. Formally

10(c− 9) + 13(d+ 7) = 10c+ 13d+ 1 = n+ 1

Case 2: d ≥ 3. Intuitively we can remove three 13-cent coins and add in four 10-cent coins to end

up +1. Formally

10(c+ 4) + 13(d− 3) = 10c+ 13d+ 1 = n+ 1

Case 3: c ≤ 8 and d ≤ 2. Then n = 10c + 13d ≤ 80 + 26 = 106 < 108. Hence this case cannot

occur.

End of Proof of Claim 1:

We describe the NFA for L107

1. There is a start state s that has many e-transitions out of it which we describe.

2. One of the e transitions is to a state q that is accepting and has a loop of size 13 (of non-accept

states) but with one shortcut- there is an transition on a from the 9th element in the cycle

to q. Hence one can go from q to q with either a10 or a13. This branch will accept all strings

of the form {ai : i ≥ 108} and will NOT accept a107. This part has 13 states.

3. For each m ∈ {4, 5, 7} (1) let 107 ≡ am (mod m), (2) create DFA Mp that accepts

{ai : i 6≡ am (mod m)}
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(3) put a transition between s and the start state of Mm. Clearly none of these loops accept

a107. This part has 4 + 5 + 7 = 16 states.

Let ai be a string that is rejected. Since ai is not accepted by the first branch, i ≤ 107.

Since they are not accepted by ANY other branch, for all m ∈ {4, 5, 7}, i ≡ am (mod m). Since

4× 5× 7 = 140 > 107, by Lemma A.1 there is at most one such i. Since i = 107 does work, a107i

is the only string thats accepted.

The total number of states is 13 + 16 = 23.

5 Rel Prime Convention AND Loop Notation

In the description of the NFA in the proof of Theorem 4.1 we needed a set of rel prime numbers

with product ≥ 107 and (we hope) a small sum. We will use this technique in this paper many

times. Rather than repeat the details, we will just give the rel prime numbers.

We will need the Loop-and-shortcut from the proof of Theorem 4.1 later.

Def 5.1 Let x < y ∈ N. Then LOOP(y, x) is the NFA that has (1) a start state s which is also

the only accept state, (2) a loop of size y around s, and (3) a shortcut– a transition on a from the

x − 1’s state in the cycle to s. Note that LOOP(y, x) accepts {ai : (∃c, d ∈ N)[i = cx + dy]} and

has y states.

We will later need a generalization of LOOP(y, x).

Def 5.2 Let x < y ∈ N and let m ∈ N. Then LOOP(y, x,m) is the NFA that has (1) has a chain of

accept states from the start to a state s′ which is also an accept state, (2) a loop of size y around s′,

and (3) a shortcut– a transition on a from the x−1’s state in the cycle to s. Note that LOOP(y, x)

accepts {ai : (∃c, d ∈ N)[i = cx+ dy +m]} and has y states.

We will later need a generalization of LOOP(y, x).

6 The Inverse Frobenius Problem

What was special about 107 that made the NFA for L107 small? The key was (1) any i ≥ 108 can

be written as a sum of 10’s and 13’s, (2) 107 CANNOT be written as a sum of 10’s and 13’s.

5



Given a number, n, I want to find two numbers x1, x2 such that

• n cannot be written as a sum of x1’s and x2’s

• (∀i ≥ n+ 1)(∃c, d)[i = cx1 + dx2].

This is the inverse the Frobenius problem:

Frobenius problem: Given coins of denominations (x1, . . . , xm) find n such that n cannot be formed

with those coins but all numbers ≥ n+ 1 can.

The following lemma solves the m = 2 case of the Frobenius problem and will give us an infinite

number of n such that Ln has an NFA with ≤
√
n+O((log n)2(log log n)) states.

Lemma 6.1 Let x, y ∈ N, relatively prime. Let n = xy − x− y.

1. There DO NOT exist c, d ∈ N such that n = xc+ yd.

2. (∀i ≥ n+ 1)(∃c, d ∈ N)[i = xc+ yd].

3. Assume y > x. LOOP(y, x) (1) does not accept an, (2) accepts all of the strings in {ai : i ≥

n+ 1}, (3) we not care what else it accepts. This follows from (1) and (2).

Proof:

1) Assume, by way of contradiction, that there exists c, d such that

xy − x− y = xc+ yd

Take this mod x

−y ≡ yd (mod x)

Since x and y are rel prime y has an inverse so we get

b ≡ −1 (mod x).

Since b ≥ 0 we get b ≥ x− 1.
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Similarly we get a ≥ y − 1. Hence

xy − x− y = xc+ yd ≥ x(y − 1) + y(x− 1) = 2xy − x− y

xy ≥ 2xy

Since x, y ≥ 1 we get

1 ≥ 2

which is a contradiction.

2) Omitted for now but the proof is on Shallit’s Slides [3].

We show one example.

Theorem 6.2 There exists an NFA for L2069 with 75 States.

Proof: Since 46 and 47 are relatively prime and 46× 47− 46− 47 = 2069, by Lemma 6.1,

1. There DO NOT exist c, d ∈ N such that 2069 = 46c+ 47d.

2. (∀i ≥ 2070)(∃c, d ∈ N)[i = 46c+ 47d].

We can now present the NFA for L2069.

1. There is a start state s that has many e-transitions out of it which we describe.

2. One of the e transitions is to LOOP(47, 46). This branch will accept all strings of the form

{ai : i ≥ 2070} and will NOT accept a2069. This part has 47 states.

3. Use the set of rel prime numbers {2, 3, 5, 7, 11}. Note that 2× 3× 5× 7× 11 = 2310 > 2069

and 2 + 3 + 5 + 7 + 11 = 28.

The total number of states is 47 + 28 = 75.
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7 For Infinitely Many n There is a
√
n+O((log n)2(log log n)) State NFA for Ln

Theorem 7.1 Let x ∈ N, x ≥ 2. Let n = x2 − x− 1 ∈ N. (Note that x =
√
n+O(1).) There is a

√
n+O((log n)2(log log n)) state NFA for Ln.

Proof:

We describe the NFA for Ln:

1. There is a start state s. There will be many e-transitions from it.

2. One of the e transitions is to LOOP(x + 1, x). This branch (1) does not accept an, (2)

accepts {ai : i ≥ n + 1}, (3) we don’t care what else it accepts. The number of states is

x+ 1 ≤
√
n+O(1).

3. Let ` be the least number such that the product of the first ` primes is ≥ n. Use the set of

rel prime numbers {p1, . . . , p`} (pi is the ith prime). By Lemma B.1
∑`

i=1 pi = O(`2 log `) =

O((log n)2 log log n).

The total number of states is:

√
n+O((log n)2(log log n))

8 A
√
n+O((log n)2(log log n)) State NFA for Ln and Some Tips on Getting Less States

Is there always a small NFA for Ln? Yes. We show three ways of obtaining a small NFA for

L1000. After the first way we have a general theorem. We then give two smaller NFA’s and some

non-rigorous advice on how to get a smaller NFAs in general.

8.1 An NFA for L1000 With 68 States

Theorem 8.1 There exists an NFA for L1000 with 68 States.
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Proof: Let x =
⌊√

1000
⌋

= 32 and y = x + 1 = 33. Note that xy − x − y = 991. By an easy

variant of Lemma 6.1 (1) there does not exist c, d such that 1000 = 32c+33d+9, (2) for all i ≥ 1001

there does exist c, d such that n = 32c+ 33d+ 9.

Note that LOOP(33, 32, 9) (1) does not accept a1000, (2) accepts {ai : i ≥ 1001} (3) we don’t

care what else it accepts.

We describe the NFA for L1000

1. There is a start state s that will have many transitions out of it.

2. (This does not need an e-transition.) LOOP(33, 32, 9) comes out of the start state. The

number of states on this branch is 33 + 9 = 42 (this includes the start state).

3. We use the set of rel prime numbers {3, 5, 7, 11}. Note that 3× 5× 7× 11 = 1155 > 1000 and

that 3 + 5 + 7 + 11 = 26.

The total number of states is and has 42 + 26 = 68 states.

The proof of Theorem 8.1 generalizes.

Theorem 8.2 Let n ∈ N. There exists a
√
n+O((log n)2(log log n)) state NFA for Ln.

Proof:

Let x = b
√
nc and y = b

√
nc+ 1. Note that

xy − x− y = (
√
n)(
√
n+ 1)− 2

√
n+O(1) = n−

√
n+O(1) = n−m

where m is within O(1) of
√
n.

We describe the NFA for Ln.

1. There is a start state s that will have many transitions out of it.

2. (This does not need an e-transition.) From the start state have LOOP(y, x,m). This takes

m+ y =
√
n+O(1) states.
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3. This part of the NFA is identical to that in Theorem 7.1. The number of states isO((log n)2 log logn).

The total number of states is
√
n+O((log n)2(log log n)).

8.2 NFA for L1000 With 65 States

Theorem 8.3 There exists an NFA for L1000 with 65 states.

Proof: Let x = 34, y = 39, and n = 39 × 34 − 39 − 34 = 1253. Hence LOOP(39, 34) (1) does

not accept a1253 (this does not help us), and (2) accepts {ai : i ≥ 1253}.

We need to NOT get 1000.

We show that there is NO c, d such that 34c + 39d = 1000. Assme, by way of contradiction,

that

1000 = 34c+ 39d

Mod out by 34

14 ≡ 5d (mod 34)

Multiply both sides by 7 since 5× 7 = 35 ≡ 1 (mod 34).

14× 7 ≡ d (mod 34)

d ≡ 14× 7 ≡ 98 ≡ 30 (mod 34)

SO d ≡ 30 (mod 34). Hence d ≥ 30. But then

34c+ 39d ≥ 34c+ 39× 30 = 1170 > 1000.

Hence LOOP(39, 34) does not accept 1000.

We describe the NFA for L1000.

1. There is a start state s that will have many transitions out of it.
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2. From the start state there is an e-transition to LOOP(39, 34). This takes 39 states.

3. We use the set of rel prime numbers {3, 5, 7, 11}. Note that 3× 5× 7× 11 = 1155 > 1000 and

that 3 + 5 + 7 + 11 = 26.

The total number of states is 39 + 26 = 65.

8.3 One More Potential Tip for Reducing the Number of States

In the proof of Theorem 8.1 we constructed an NFA M2 that used the set of rel primes numbers

{3, 5, 7, 11} since 3× 5× 7× 11 = 1155 ≥ 1000. We noted that M2 has 3 + 5 + 7 + 11 = 26 states

Could we have picked a set of rel primes numbers with product ≥ 1000 but sum ≤ 26? One can

show NO. But for Ln there may be a clever way to pick the set which leads to some savings. We

suspect the savings is not much since this is part of the log-term.

Another possible savings: We have been ignoring what the big loop part accepts that is under

n. It is plausible that the big loop part ends up accepting all i ≤ n− 1 with n having the correct

equivalence classes mod some prime. This may enable you to use less primes.

8.4 Finding a Small NFA for Ln

Given n we want to find a small NFA for Ln. Here is a procedure.

1) Find x < y such that xy − x− y is closer to n and y is small. There are several cases.

1. n = xy − x− y. Build an NFA with loops of size y with a shortcut to create an x-loop. This

NFA has y states.

2. xy − x− y < n. Use a chain of size n− (xy − x− y) from the initial state to the state where

you the loop of size y. This NFA has y + (n− xy + x+ y) = x+ 2y + n− xy states.

3. xy − x − y > n. We also need that n cannot be written as cx + dy. Then can use a loop of

y. This NFA has y states.

Take the smallest of these three NFA’s and call it M1. If case 1 happens that will surely be the

smallest.
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2) Find a set or rel primes numbers A such that
∏

i∈A i ≥ n and
∑

i∈A i is minimized. Use this to

build part of the NFA as in Theorem 7.1.

3) The final NFA is an OR of M1 and M2.

9 Every NFA for Ln has ≥
√
n States

Chroback [2] proved the following.

Theorem 9.1 Let L be a co-finite unary regular language. If there is an NFA for L with n states

then there is an NFA for L of the following form:

• There is a sequence of ≤ n2 states from the start state to a state we will call X. Note that

there is no nondeterminism involved yet.

• From X there are e-transitions to X1, . . . , Xm. (This is nondeterministic.)

• Each Xi is part of a cycle Ci. All of the Ci are disjoint.

The following theorem is due to Jeff Shallit and was communicated to me by email.

Theorem 9.2 Let L be a cofinite unary language where the shortest string that is not in L is of

length n. Any NFA for L requires Ω(
√
n) states

Proof:

Assume there was an NFA with <
√
n states for Ln. Then by Theorem 9.1 there would be an

NFA for L with a path from the start state to a state X of length < n and then from X a branch

to many cycles. Let Xi and cycle’s Ci as described in Theorem 9.1.

Run an through the NFA and try out all paths. For each i there will be a point in Ci that you

end up at. Let ni be the length of Ci. For every i there is a state on Ci that rejects. Hence the

strings an+Kn1n2···nm are all rejected. This is an infinite number of strings. This is a contradiction.
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10 Open Problems

For every n, (1) there is an NFA for Ln with
√
n states (omitting some log terms), but (2) there

is no NFA for Ln with
√
n states. We would like to close this gap. The upper bound might be

improved with some lemmas from number theory. The lower bound might be improved by a more

in depth study of Theorem 9.1. And, of course, its possible either or both require new techniques.

A A Lemma from Easy Number Theory

We use the following well known lemma. We include the proof for completeness.

Lemma A.1

1. Let m1,m2 be relatively prime. Let 0 ≤ a1 ≤ m1 − 1 and Let 0 ≤ a2 ≤ m2 − 1. Let A be the

set

A = {i : i ≡ a1 (mod m1)} ∩ {i : i ≡ a2 (mod m2)} ∩ {i : i ≤ m1m2}

Then |A| ≤ 1.

2. Let m1, . . . ,m` be relatively prime. Let a1, . . . , a` be such that, for all 1 ≤ i ≤ `, 0 ≤ ai ≤

mi − 1, and n ≡ ai (mod mi). Let A be the set

(⋂̀
i=1

{i : i ≡ ai (mod mi)}
)
∩{i : i ≤ m1m2 · · ·m`}.

Then |A| ≤ 1. (This follows from part 1 and induction so we omit the proof of this part.)

Proof:

Assume x, y ∈ A and x < y. Then x ≡ y (mod m1) and x ≡ y (mod m2).

Since x − y is a multiple of both m1 and m2, and m1,m2 are rel prime, x − y is a multiple of

m1m2. But then y = x+ km1m2 > m1m2. This is a contradiction.
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B A Lemma from Hard Number Theory

We use the following lemma. We do not include the proof; however, see [1] for both references and

more precise estimates.

Lemma B.1 Let ` ∈ N. Let p1, . . . , p` be the first ` primes. Then
∑

p≤` p = O(`2 log `).
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