A Small NFA for {a':i# n}

Exposition by William Gasarch
1 Credit where Credit is Due

These notes are based on Jeff Shallit’s slides on the Frobenius Problem [3] and some emails I had

with him. None of this is my work.
2 Introduction

Consider the following language: L, = {a’:i # n}.
There is a n + 2 state DFA for L,, (we prove this later, though it’s easy). Can we do better?
How about with an NFA?

We show:

1. The n + 2 state DFA for L,, is optimal.

2. There is a \/n + O((logn)?(loglogn)) state NFA for L,. a v/n + O((logn)?(loglogn)) state

NFA for L, for some ¢ < 2.

3. Any NFA for L,, has > /n states.

There is an appendix which has some needed lemmas from Number Theory.
3 A DFA For L, With n + 2 States

Theorem 3.1 There is a DFA for L, with n + 2 states; however, there is no DFA for L, with

n + 1 states.

Proof:

The DFA for L, has states for how many a’s have been seen up to n, and then a state for ‘I
have seen > n + 1 states’. Formally:

There are states {0,1,2,...,n+ 1}. 0 is the start state. For 0 < ¢ < n state ¢ means that ¢
a’s have been seen so far. State n + 1 means > n + 1 a’s have been seen. All states are accepting

EXCEPT n.



For 0 < s<mnd(s,a) =s+1.
o(n+1l,a)=n+1.
Let M be a DFA for L,. We show that M has > n + 2 states. Let 0 be the start state.

Look at states:

5(0,a™1)
These are all accepting states.
I claim they are all DIFFERENT states. Assume, by way of contradiction, that 1 <i < j < n-—1

but

5(0,a") = 6(0,a”).

Then

§(0,a" - a" ) = 6(0,a? - a"7)

Hence

5(0,a™*0=9)) = 5(0,a™)

Since n + (i — j) < n, the LHS is an ACCEPT state. But the RHS is clearly a REJECT state.
This is a contradiction. Hence there are n states listed above. They are all accept states. There
is also at least one reject state. Hence there are at least n + 1 states. But there’s more! Let r be
the reject state. Hence 6(0,a™) = r. Look at 6(0,a"*!). We leave it to the reader to show that it

cannot be any of the states mentioned. Hence it is another state. Total number of states: n + 2.



4 An NFA for L3y With 23 States
Theorem 4.1 There exists an NFA for Ligr with 23 States.

Proof:
What is the smallest NFA for L1977 Let us rephrase the question: How can a number i PROVE
that its NOT 1077 The next lemma will yield a small helpful NFA.

Claim 1:
1. There DO NOT exist ¢,d € N such that 107 = 10c¢ + 13d.
2. (Vi > 108)(3e,d € N)[i = 10c¢ + 13d].

Proof of Claim 1:

1) We narrow down what ¢, d must be.

107 = 10c + 13d

take this equation mod 10.

7=3d (mod 10)

Multiply both sides by 7 (the inverse of 3 mod 10)

49 =21d (mod 10)

9=d (mod 10)

Hence d > 9 so

107 = 10c+ 13d > 10c 4+ 13 x 9 = 13d + 117



This cannot happen.
2) We prove this by induction on n.
We view this as expressing n in terms of 10-cent coins and 13-cent coins.
Base Case: 108 =13 x 6+ 10 x 3
Ind. Hyp. Assume that n > 108 and that (3¢, d € N)[n = 10c + 13d].
We prove that (3¢, d’ € N)[n +1 = 10¢' + 13d']
Case 1: ¢ > 9. Intuitively we can remove nine 10-cent coins and add in seven 13-cent coins to end

up +1. Formally

10(c—9) +13(d+7) =10c+ 13d+ 1 =n+1

Case 2: d > 3. Intuitively we can remove three 13-cent coins and add in four 10-cent coins to end

up +1. Formally

10(c+4) +13(d—3) =10c+ 13d+ 1 =n+1

Case 3: c < 8and d < 2. Then n = 10c + 13d < 80 + 26 = 106 < 108. Hence this case cannot
occur.
End of Proof of Claim 1:

We describe the NFA for Lig7

1. There is a start state s that has many e-transitions out of it which we describe.

2. One of the e transitions is to a state g that is accepting and has a loop of size 13 (of non-accept
states) but with one shortcut- there is an transition on a from the 9th element in the cycle

0

to q. Hence one can go from ¢ to ¢ with either a'® or a'3. This branch will accept all strings

of the form {a’: i > 108} and will NOT accept a'?7. This part has 13 states.

3. For each m € {4,5,7} (1) let 107 = a,, (mod m), (2) create DFA M,, that accepts

{a":i# ap (modm)}



(3) put a transition between s and the start state of M,,. Clearly none of these loops accept

a'%7. This part has 4 +5 4 7 = 16 states.

Let @' be a string that is rejected. Since a’ is not accepted by the first branch, i < 107.
Since they are not accepted by ANY other branch, for all m € {4,5,7}, i = a,,, (mod m). Since
4 x5 x 7=140 > 107, by Lemma A.1 there is at most one such i. Since i = 107 does work, a'07;
is the only string thats accepted.

The total number of states is 13 + 16 =23. |

5 Rel Prime Convention AND Loop Notation

In the description of the NFA in the proof of Theorem 4.1 we needed a set of rel prime numbers
with product > 107 and (we hope) a small sum. We will use this technique in this paper many
times. Rather than repeat the details, we will just give the rel prime numbers.

We will need the Loop-and-shortcut from the proof of Theorem 4.1 later.

Def 5.1 Let z < y € N. Then LOOP(y, z) is the NFA that has (1) a start state s which is also
the only accept state, (2) a loop of size y around s, and (3) a shortcut— a transition on a from the
x — 1’s state in the cycle to s. Note that LOOP(y, x) accepts {a’ : (3c,d € N)[i = cx + dy]} and

has y states.

We will later need a generalization of LOOP(y, x).

Def 5.2 Let x <y € N and let m € N. Then LOOP(y, x,m) is the NFA that has (1) has a chain of
accept states from the start to a state s’ which is also an accept state, (2) a loop of size y around s,
and (3) a shortcut— a transition on a from the x — 1’s state in the cycle to s. Note that LOOP(y, x)

accepts {a' : (3¢,d € N)[i = cz + dy + m]} and has y states.
We will later need a generalization of LOOP(y, x).
6 The Inverse Frobenius Problem

What was special about 107 that made the NFA for Lqp7 small? The key was (1) any ¢ > 108 can

be written as a sum of 10’s and 13’s, (2) 107 CANNOT be written as a sum of 10’s and 13’s.



Given a number, n, I want to find two numbers x1, z9 such that
e 1, cannot be written as a sum of x1’s and z2’s
o (Vi >n+1)(3c,d)[i = cxy + dxa).

This is the inverse the Frobenius problem:

Frobenius problem: Given coins of denominations (x1,...,Ty) find n such that n cannot be formed

with those coins but all numbers > n+ 1 can.

The following lemma solves the m = 2 case of the Frobenius problem and will give us an infinite

number of n such that L,, has an NFA with < \/n + O((logn)?(loglogn)) states.

Lemma 6.1 Let x,y € N, relatively prime. Let n = xy —x — y.

1. There DO NOT exist ¢c,d € N such that n = zc + yd.
2. (Vi>n+1)(3e,d € N)[i = zc+ yd].

3. Assume y > x. LOOP(y,x) (1) does not accept a™, (2) accepts all of the strings in {a’ :i >

n+ 1}, (3) we not care what else it accepts. This follows from (1) and (2).

Proof:

1) Assume, by way of contradiction, that there exists ¢, d such that

xy —x —y =xc+yd

Take this mod =
—y=yd (mod x)
Since z and y are rel prime y has an inverse so we get
b=-1 (mod z).

Since b > 0 we get b > = — 1.



Similarly we get a > y — 1. Hence

zy—x—y=xzctyd>zx(y—1)+ylx—1)=22y—z—y

ry > 2wy

Since z,y > 1 we get

which is a contradiction.

2) Omitted for now but the proof is on Shallit’s Slides [3].
|

We show one example.
Theorem 6.2 There exists an NFA for Loggg with 75 States.
Proof:  Since 46 and 47 are relatively prime and 46 x 47 — 46 — 47 = 2069, by Lemma 6.1,
1. There DO NOT exist ¢,d € N such that 2069 = 46¢ + 47d.
2. (Vi >2070)(3c,d € N)[i = 46¢ + 47d].
We can now present the NFA for Loggg.
1. There is a start state s that has many e-transitions out of it which we describe.

2. One of the e transitions is to LOOP(47,46). This branch will accept all strings of the form

{a® : i > 2070} and will NOT accept a?°%?. This part has 47 states.

3. Use the set of rel prime numbers {2,3,5,7,11}. Note that 2 x 3 x 5 x 7 x 11 = 2310 > 2069
and 2+3+5+ 7+ 11 =28.

The total number of states is 47 +28 = 75. |



7 For Infinitely Many n There is a \/n + O((logn)?(loglogn)) State NFA for L,

Theorem 7.1 Let x € N, x > 2. Letn=2%—x— 1€ N. (Note that x = \/n+ O(1).) There is a
vn + O((logn)?(loglogn)) state NFA for L.

Proof:
We describe the NFA for L,,:

1. There is a start state s. There will be many e-transitions from it.

2. One of the e transitions is to LOOP(z + 1,z). This branch (1) does not accept a”, (2)
accepts {a’ : i > n + 1}, (3) we don’t care what else it accepts. The number of states is

r+1<yn+0(1).

3. Let £ be the least number such that the product of the first ¢ primes is > n. Use the set of
rel prime numbers {p1,...,p¢} (p; is the ith prime). By Lemma B.1 Zlepi = O(logl) =
O((logn)?loglogn).

The total number of states is:

vn+ O((log n)*(log log n))

8 A /n+0((logn)?*(loglogn)) State NFA for L,, and Some Tips on Getting Less States

Is there always a small NFA for L,? Yes. We show three ways of obtaining a small NFA for
L1goo. After the first way we have a general theorem. We then give two smaller NFA’s and some
non-rigorous advice on how to get a smaller NFAs in general.

8.1 An NFA for Ly With 68 States

Theorem 8.1 There exists an NFA for Liggg with 68 States.



Proof: Let x = LMJ =32 and y = x+ 1 = 33. Note that xy — ¢ —y = 991. By an easy
variant of Lemma 6.1 (1) there does not exist ¢, d such that 1000 = 32¢+33d+9, (2) for all ¢ > 1001
there does exist ¢, d such that n = 32¢ + 33d + 9.

Note that LOOP(33,32,9) (1) does not accept a'® (2) accepts {a’ : i > 1001} (3) we don’t
care what else it accepts.

We describe the NFA for Liggo

1. There is a start state s that will have many transitions out of it.

2. (This does not need an e-transition.) LOOP(33,32,9) comes out of the start state. The

number of states on this branch is 33 +9 = 42 (this includes the start state).

3. We use the set of rel prime numbers {3,5,7,11}. Note that 3 x5 x 7 x 11 = 1155 > 1000 and

that 3+5+7+ 11 = 26.

The total number of states is and has 42 4+ 26 = 68 states. |

The proof of Theorem 8.1 generalizes.
Theorem 8.2 Let n € N. There exists a \/n + O((logn)?(loglogn)) state NFA for L.

Proof:
Let x = |[/n] and y = |/n] + 1. Note that

ry—z—y=(H/n)(vVn+1l)—2yn+0(1)=n—vn+0(1)=n—-m

where m is within O(1) of \/n.
We describe the NFA for L,,.

1. There is a start state s that will have many transitions out of it.

2. (This does not need an e-transition.) From the start state have LOOP(y,xz,m). This takes

m+y = /n+ O(1) states.



3. This part of the NFA is identical to that in Theorem 7.1. The number of states is O((logn)? log log n).

The total number of states is \/n + O((logn)?(loglogn)). |

8.2 NFA for Ligg0 With 65 States

Theorem 8.3 There exists an NFA for Ligyg with 65 states.

Proof: Let x =34, y = 39, and n = 39 x 34 — 39 — 34 = 1253. Hence LOOP(39,34) (1) does
not accept a'?%? (this does not help us), and (2) accepts {a’ : i > 1253}.

We need to NOT get 1000.

We show that there is NO ¢, d such that 34c 4+ 39d = 1000. Assme, by way of contradiction,

that

1000 = 34c + 39d

Mod out by 34

14=5d (mod 34)

Multiply both sides by 7 since 5 x 7 =35 =1 (mod 34).

14x7=d (mod 34)

SO d = 30 (mod 34). Hence d > 30. But then
34c + 39d > 34c¢+ 39 x 30 = 1170 > 1000.
Hence LOOP(39, 34) does not accept 1000.
We describe the NFA for Liggo.

1. There is a start state s that will have many transitions out of it.

10



2. From the start state there is an e-transition to LOOP(39, 34). This takes 39 states.

3. We use the set of rel prime numbers {3,5,7,11}. Note that 3 x5 x 7 x 11 = 1155 > 1000 and

that 3+5+ 7+ 11 = 26.

The total number of states is 39 + 26 = 65. |

8.3 One More Potential Tip for Reducing the Number of States

In the proof of Theorem 8.1 we constructed an NFA M, that used the set of rel primes numbers
{3,5,7,11} since 3 x 5 x 7 x 11 = 1155 > 1000. We noted that My has 3+ 54 7+ 11 = 26 states
Could we have picked a set of rel primes numbers with product > 1000 but sum < 267 One can
show NO. But for L, there may be a clever way to pick the set which leads to some savings. We
suspect the savings is not much since this is part of the log-term.

Another possible savings: We have been ignoring what the big loop part accepts that is under
n. It is plausible that the big loop part ends up accepting all ¢ < n — 1 with n having the correct

equivalence classes mod some prime. This may enable you to use less primes.

8.4 Finding a Small NFA for L,

Given n we want to find a small NFA for L,,. Here is a procedure.

1) Find z < y such that zy — x — y is closer to n and y is small. There are several cases.

1. n =2y — r —y. Build an NFA with loops of size y with a shortcut to create an xz-loop. This
NFA has y states.

2. zy —x —y < n. Use a chain of size n — (xy — x — y) from the initial state to the state where

you the loop of size y. This NFA has y + (n — 2y + x + y) = = + 2y + n — xy states.

3. zy — x —y > n. We also need that n cannot be written as cx + dy. Then can use a loop of

y. This NFA has y states.

Take the smallest of these three NFA’s and call it M;. If case 1 happens that will surely be the

smallest.

11



2) Find a set or rel primes numbers A such that [[,. 44 >n and ), 4 ¢ is minimized. Use this to
build part of the NFA as in Theorem 7.1.
3) The final NFA is an OR of M; and M,.

9 Every NFA for L, has > /n States

Chroback [2] proved the following.

Theorem 9.1 Let L be a co-finite unary reqular language. If there is an NFA for L with n states
then there is an NFA for L of the following form:

o There is a sequence of < n® states from the start state to a state we will call X. Note that

there is no nondeterminism involved yet.
e From X there are e-transitions to X1, ..., Xm. (This is nondeterministic.)

e Fach X; is part of a cycle C;. All of the C; are disjoint.
The following theorem is due to Jeff Shallit and was communicated to me by email.

Theorem 9.2 Let L be a cofinite unary language where the shortest string that is not in L is of

length n. Any NFA for L requires Q(y/n) states

Proof:

Assume there was an NFA with < /n states for L,. Then by Theorem 9.1 there would be an
NFA for L with a path from the start state to a state X of length < n and then from X a branch
to many cycles. Let X; and cycle’s C; as described in Theorem 9.1.

Run a” through the NFA and try out all paths. For each i there will be a point in C; that you
end up at. Let n; be the length of C;. For every ¢ there is a state on C; that rejects. Hence the

strings a"TE™m2 " are all rejected. This is an infinite number of strings. This is a contradiction.
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10 Open Problems

For every n, (1) there is an NFA for L, with \/n states (omitting some log terms), but (2) there
is no NFA for L, with /n states. We would like to close this gap. The upper bound might be
improved with some lemmas from number theory. The lower bound might be improved by a more

in depth study of Theorem 9.1. And, of course, its possible either or both require new techniques.
A A Lemma from Easy Number Theory

We use the following well known lemma. We include the proof for completeness.

Lemma A.1

1. Let my,mo be relatively prime. Let 0 < a1 <mq—1 and Let 0 < ag < mgo — 1. Let A be the

set
A={i:i=a1 (modmi)}N{i:i=az (modma)}N{i:i<mime}
Then |A| < 1.
2. Let my,...,my be relatively prime. Let ay,...,ay be such that, for all1 < i </, 0 < a; <

m; — 1, and n = a; (mod m;). Let A be the set

0
<ﬂ{z :1=a; (mod m,)})ﬂ{z ct < mimg---my}.
=1
Then |A| < 1. (This follows from part 1 and induction so we omit the proof of this part.)

Proof:
Assume z,y € A and x < y. Then x =y (mod m;) and x =y (mod my).
Since x — y is a multiple of both my and ms, and m1, ms are rel prime, x — y is a multiple of

mimsy. But then y = x + kmims > mymo. This is a contradiction. |

13



B A Lemma from Hard Number Theory

We use the following lemma. We do not include the proof; however, see [1] for both references and

more precise estimates.

Lemma B.1 Let £ € N. Let p1,...,ps be the first £ primes. Then Zpgp =O(logt).
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