A Small NFA for $\{a^i : i \neq n\}$

Exposition by William Gasarch

1 Credit where Credit is Due

These notes are based on Jeff Shallit's slides on the Frobenius Problem [3] and some emails I had with him. None of this is my work.

2 Introduction

Consider the following language: $L_n = \{a^i : i \neq n\}.$

There is a n + 2 state DFA for L_n (we prove this later, though it's easy). Can we do better? How about with an NFA?

We show:

- 1. The n+2 state DFA for L_n is optimal.
- 2. There is a $\sqrt{n} + O((\log n)^2(\log \log n))$ state NFA for L_n . a $\sqrt{n} + O((\log n)^2(\log \log n))$ state NFA for L_n for some c < 2.
- 3. Any NFA for L_n has $> \sqrt{n}$ states.

There is an appendix which has some needed lemmas from Number Theory.

3 A DFA For L_n With n+2 States

Theorem 3.1 There is a DFA for L_n with n + 2 states; however, there is no DFA for L_n with n + 1 states.

Proof:

The DFA for L_n has states for how many *a*'s have been seen up to *n*, and then a state for 'I have seen $\ge n + 1$ states'. Formally:

There are states $\{0, 1, 2, ..., n + 1\}$. 0 is the start state. For $0 \le i \le n$ state *i* means that *i* a's have been seen so far. State n + 1 means $\ge n + 1$ a's have been seen. All states are accepting EXCEPT *n*.

 $\delta(n+1,a)=n+1.$ Let M be a DFA for $L_n.$ We show that M has $\geq n+2$ states. Let 0 be the start state. Look at states: $\delta(0,a^0)$ $\delta(0,a^1)$ $\delta(0,a^2)$ $\delta(0,a^3)$

For $0 \le s \le n \ \delta(s, a) = s + 1$.

÷

 $\delta(0, a^{n-1})$

These are all accepting states.

I claim they are all DIFFERENT states. Assume, by way of contradiction, that $1 \le i < j \le n-1$ but

$$\delta(0, a^i) = \delta(0, a^j).$$

Then

$$\delta(0,a^i\cdot a^{n-j})=\delta(0,a^j\cdot a^{n-j})$$

Hence

$$\delta(0, a^{n+(i-j)}) = \delta(0, a^n)$$

Since n + (i - j) < n, the LHS is an ACCEPT state. But the RHS is clearly a REJECT state. This is a contradiction. Hence there are n states listed above. They are all accept states. There is also at least one reject state. Hence there are at least n + 1 states. But there's more! Let r be the reject state. Hence $\delta(0, a^n) = r$. Look at $\delta(0, a^{n+1})$. We leave it to the reader to show that it cannot be any of the states mentioned. Hence it is another state. Total number of states: n + 2.

4 An NFA for L_{107} With 23 States

Theorem 4.1 There exists an NFA for L_{107} with 23 States.

Proof:

What is the smallest NFA for L_{107} ? Let us rephrase the question: How can a number *i* PROVE that its NOT 107? The next lemma will yield a small helpful NFA.

Claim 1:

- 1. There DO NOT exist $c, d \in \mathbb{N}$ such that 107 = 10c + 13d.
- 2. $(\forall i \ge 108) (\exists c, d \in \mathsf{N}) [i = 10c + 13d].$

Proof of Claim 1:

1) We narrow down what c, d must be.

107 = 10c + 13d

take this equation mod 10.

 $7 \equiv 3d \pmod{10}$

Multiply both sides by 7 (the inverse of $3 \mod 10$)

$$49 \equiv 21d \pmod{10}$$

$$9 \equiv d \pmod{10}$$

Hence $d \geq 9$ so

$$107 = 10c + 13d \ge 10c + 13 \times 9 = 13d + 117$$

This cannot happen.

2) We prove this by induction on n.

We view this as expressing n in terms of 10-cent coins and 13-cent coins.

Base Case: $108 = 13 \times 6 + 10 \times 3$

Ind. Hyp. Assume that $n \ge 108$ and that $(\exists c, d \in \mathsf{N})[n = 10c + 13d]$.

We prove that $(\exists c', d' \in \mathsf{N})[n+1 = 10c' + 13d']$

Case 1: $c \ge 9$. Intuitively we can remove nine 10-cent coins and add in seven 13-cent coins to end up +1. Formally

$$10(c-9) + 13(d+7) = 10c + 13d + 1 = n + 1$$

Case 2: $d \ge 3$. Intuitively we can remove three 13-cent coins and add in four 10-cent coins to end up +1. Formally

$$10(c+4) + 13(d-3) = 10c + 13d + 1 = n + 1$$

Case 3: $c \leq 8$ and $d \leq 2$. Then $n = 10c + 13d \leq 80 + 26 = 106 < 108$. Hence this case cannot occur.

End of Proof of Claim 1:

We describe the NFA for L_{107}

- 1. There is a start state s that has many e-transitions out of it which we describe.
- 2. One of the *e* transitions is to a state *q* that is accepting and has a loop of size 13 (of non-accept states) but with one shortcut- there is an transition on *a* from the 9th element in the cycle to *q*. Hence one can go from *q* to *q* with either a^{10} or a^{13} . This branch will accept all strings of the form $\{a^i : i \ge 108\}$ and will NOT accept a^{107} . This part has 13 states.
- 3. For each $m \in \{4, 5, 7\}$ (1) let $107 \equiv a_m \pmod{m}$, (2) create DFA M_p that accepts

$$\{a^i : i \not\equiv a_m \pmod{m}\}$$

(3) put a transition between s and the start state of M_m . Clearly none of these loops accept a^{107} . This part has 4 + 5 + 7 = 16 states.

Let a^i be a string that is rejected. Since a^i is not accepted by the first branch, $i \leq 107$. Since they are not accepted by ANY other branch, for all $m \in \{4, 5, 7\}$, $i \equiv a_m \pmod{m}$. Since $4 \times 5 \times 7 = 140 > 107$, by Lemma A.1 there is at most one such *i*. Since i = 107 does work, $a^{107}i$ is the only string thats accepted.

The total number of states is 13 + 16 = 23.

5 Rel Prime Convention AND Loop Notation

In the description of the NFA in the proof of Theorem 4.1 we needed a set of rel prime numbers with product ≥ 107 and (we hope) a small sum. We will use this technique in this paper many times. Rather than repeat the details, we will just give the rel prime numbers.

We will need the Loop-and-shortcut from the proof of Theorem 4.1 later.

Def 5.1 Let $x < y \in \mathbb{N}$. Then LOOP(y, x) is the NFA that has (1) a start state s which is also the only accept state, (2) a loop of size y around s, and (3) a shortcut- a transition on a from the x - 1's state in the cycle to s. Note that LOOP(y, x) accepts $\{a^i : (\exists c, d \in \mathbb{N}) | i = cx + dy]\}$ and has y states.

We will later need a generalization of LOOP(y, x).

Def 5.2 Let $x < y \in \mathbb{N}$ and let $m \in \mathbb{N}$. Then LOOP(y, x, m) is the NFA that has (1) has a chain of accept states from the start to a state s' which is also an accept state, (2) a loop of size y around s', and (3) a shortcut- a transition on a from the x - 1's state in the cycle to s. Note that LOOP(y, x) accepts $\{a^i : (\exists c, d \in \mathbb{N}) | i = cx + dy + m]\}$ and has y states.

We will later need a generalization of LOOP(y, x).

6 The Inverse Frobenius Problem

What was special about 107 that made the NFA for L_{107} small? The key was (1) any $i \ge 108$ can be written as a sum of 10's and 13's, (2) 107 CANNOT be written as a sum of 10's and 13's. Given a number, n, I want to find two numbers x_1, x_2 such that

- *n* cannot be written as a sum of x_1 's and x_2 's
- $(\forall i \ge n+1)(\exists c, d)[i = cx_1 + dx_2].$

This is the inverse the Frobenius problem:

Frobenius problem: Given coins of denominations (x_1, \ldots, x_m) find n such that n cannot be formed with those coins but all numbers $\ge n + 1$ can.

The following lemma solves the m = 2 case of the Frobenius problem and will give us an infinite number of n such that L_n has an NFA with $\leq \sqrt{n} + O((\log n)^2 (\log \log n))$ states.

Lemma 6.1 Let $x, y \in N$, relatively prime. Let n = xy - x - y.

- 1. There DO NOT exist $c, d \in N$ such that n = xc + yd.
- 2. $(\forall i \ge n+1)(\exists c, d \in \mathsf{N})[i = xc + yd].$
- 3. Assume y > x. LOOP(y, x) (1) does not accept a^n , (2) accepts all of the strings in $\{a^i : i \ge n+1\}$, (3) we not care what else it accepts. This follows from (1) and (2).

Proof:

1) Assume, by way of contradiction, that there exists c, d such that

$$xy - x - y = xc + yd$$

Take this mod x

$$-y \equiv yd \pmod{x}$$

Since x and y are rel prime y has an inverse so we get

$$b \equiv -1 \pmod{x}$$
.

Since $b \ge 0$ we get $b \ge x - 1$.

Similarly we get $a \ge y - 1$. Hence

$$xy - x - y = xc + yd \ge x(y - 1) + y(x - 1) = 2xy - x - y$$

 $xy \ge 2xy$

Since $x, y \ge 1$ we get

$1 \ge 2$

which is a contradiction.

2) Omitted for now but the proof is on Shallit's Slides [3].

We show one example.

Theorem 6.2 There exists an NFA for L_{2069} with 75 States.

Proof: Since 46 and 47 are relatively prime and $46 \times 47 - 46 - 47 = 2069$, by Lemma 6.1,

- 1. There DO NOT exist $c, d \in \mathbb{N}$ such that 2069 = 46c + 47d.
- 2. $(\forall i \ge 2070)(\exists c, d \in \mathsf{N})[i = 46c + 47d].$

We can now present the NFA for L_{2069} .

- 1. There is a start state s that has many e-transitions out of it which we describe.
- 2. One of the *e* transitions is to LOOP(47, 46). This branch will accept all strings of the form $\{a^i : i \ge 2070\}$ and will NOT accept a^{2069} . This part has 47 states.
- 3. Use the set of rel prime numbers $\{2, 3, 5, 7, 11\}$. Note that $2 \times 3 \times 5 \times 7 \times 11 = 2310 > 2069$ and 2 + 3 + 5 + 7 + 11 = 28.

The total number of states is 47 + 28 = 75.

7 For Infinitely Many *n* There is a $\sqrt{n} + O((\log n)^2(\log \log n))$ State NFA for L_n

Theorem 7.1 Let $x \in \mathbb{N}$, $x \ge 2$. Let $n = x^2 - x - 1 \in \mathbb{N}$. (Note that $x = \sqrt{n} + O(1)$.) There is a $\sqrt{n} + O((\log n)^2 (\log \log n))$ state NFA for L_n .

Proof:

We describe the NFA for L_n :

- 1. There is a start state s. There will be many e-transitions from it.
- 2. One of the *e* transitions is to LOOP(x + 1, x). This branch (1) does not accept a^n , (2) accepts $\{a^i : i \ge n + 1\}$, (3) we don't care what else it accepts. The number of states is $x + 1 \le \sqrt{n} + O(1)$.
- 3. Let ℓ be the least number such that the product of the first ℓ primes is $\geq n$. Use the set of rel prime numbers $\{p_1, \ldots, p_\ell\}$ (p_i is the *i*th prime). By Lemma B.1 $\sum_{i=1}^{\ell} p_i = O(\ell^2 \log \ell) = O((\log n)^2 \log \log n)$.

The total number of states is:

$$\sqrt{n} + O((\log n)^2 (\log \log n))$$

8 A $\sqrt{n} + O((\log n)^2(\log \log n))$ State NFA for L_n and Some Tips on Getting Less States Is there always a small NFA for L_n ? Yes. We show three ways of obtaining a small NFA for L_{1000} . After the first way we have a general theorem. We then give two smaller NFA's and some non-rigorous advice on how to get a smaller NFAs in general.

8.1 An NFA for L_{1000} With 68 States

Theorem 8.1 There exists an NFA for L_{1000} with 68 States.

Proof: Let $x = \lfloor \sqrt{1000} \rfloor = 32$ and y = x + 1 = 33. Note that xy - x - y = 991. By an easy variant of Lemma 6.1 (1) there does not exist c, d such that 1000 = 32c + 33d + 9, (2) for all $i \ge 1001$ there does exist c, d such that n = 32c + 33d + 9.

Note that LOOP(33, 32, 9) (1) does not accept a^{1000} , (2) accepts $\{a^i : i \ge 1001\}$ (3) we don't care what else it accepts.

We describe the NFA for L_{1000}

- 1. There is a start state s that will have many transitions out of it.
- 2. (This does not need an *e*-transition.) LOOP(33, 32, 9) comes out of the start state. The number of states on this branch is 33 + 9 = 42 (this includes the start state).
- 3. We use the set of rel prime numbers $\{3, 5, 7, 11\}$. Note that $3 \times 5 \times 7 \times 11 = 1155 > 1000$ and that 3 + 5 + 7 + 11 = 26.

The total number of states is and has 42 + 26 = 68 states.

The proof of Theorem 8.1 generalizes.

Theorem 8.2 Let $n \in \mathbb{N}$. There exists a $\sqrt{n} + O((\log n)^2(\log \log n))$ state NFA for L_n .

Proof:

Let $x = \lfloor \sqrt{n} \rfloor$ and $y = \lfloor \sqrt{n} \rfloor + 1$. Note that

 $xy - x - y = (\sqrt{n})(\sqrt{n} + 1) - 2\sqrt{n} + O(1) = n - \sqrt{n} + O(1) = n - m$

where *m* is within O(1) of \sqrt{n} .

We describe the NFA for L_n .

- 1. There is a start state s that will have many transitions out of it.
- 2. (This does not need an *e*-transition.) From the start state have LOOP(y, x, m). This takes $m + y = \sqrt{n} + O(1)$ states.

3. This part of the NFA is identical to that in Theorem 7.1. The number of states is $O((\log n)^2 \log \log n)$.

The total number of states is $\sqrt{n} + O((\log n)^2(\log \log n))$.

8.2 NFA for L_{1000} With 65 States

Theorem 8.3 There exists an NFA for L_{1000} with 65 states.

Proof: Let x = 34, y = 39, and $n = 39 \times 34 - 39 - 34 = 1253$. Hence LOOP(39, 34) (1) does not accept a^{1253} (this does not help us), and (2) accepts $\{a^i : i \ge 1253\}$.

We need to NOT get 1000.

We show that there is NO c, d such that 34c + 39d = 1000. Assme, by way of contradiction, that

$$1000 = 34c + 39d$$

Mod out by 34

 $14 \equiv 5d \pmod{34}$

Multiply both sides by 7 since $5 \times 7 = 35 \equiv 1 \pmod{34}$.

 $14 \times 7 \equiv d \pmod{34}$

$$d \equiv 14 \times 7 \equiv 98 \equiv 30 \pmod{34}$$

SO $d \equiv 30 \pmod{34}$. Hence $d \geq 30$. But then $34c + 39d \geq 34c + 39 \times 30 = 1170 > 1000$. Hence LOOP(39, 34) does not accept 1000. We describe the NFA for L_{1000} .

1. There is a start state s that will have many transitions out of it.

- 2. From the start state there is an e-transition to LOOP(39, 34). This takes 39 states.
- 3. We use the set of rel prime numbers $\{3, 5, 7, 11\}$. Note that $3 \times 5 \times 7 \times 11 = 1155 > 1000$ and that 3 + 5 + 7 + 11 = 26.

The total number of states is 39 + 26 = 65.

8.3 One More Potential Tip for Reducing the Number of States

In the proof of Theorem 8.1 we constructed an NFA M_2 that used the set of rel primes numbers $\{3, 5, 7, 11\}$ since $3 \times 5 \times 7 \times 11 = 1155 \ge 1000$. We noted that M_2 has 3 + 5 + 7 + 11 = 26 states Could we have picked a set of rel primes numbers with product ≥ 1000 but sum ≤ 26 ? One can show NO. But for L_n there may be a clever way to pick the set which leads to some savings. We suspect the savings is not much since this is part of the log-term.

Another possible savings: We have been ignoring what the big loop part accepts that is under n. It is plausible that the big loop part ends up accepting all $i \leq n - 1$ with n having the correct equivalence classes mod some prime. This may enable you to use less primes.

8.4 Finding a Small NFA for L_n

Given n we want to find a small NFA for L_n . Here is a procedure.

- 1) Find x < y such that xy x y is closer to n and y is small. There are several cases.
 - 1. n = xy x y. Build an NFA with loops of size y with a shortcut to create an x-loop. This NFA has y states.
 - 2. xy x y < n. Use a chain of size n (xy x y) from the initial state to the state where you the loop of size y. This NFA has y + (n - xy + x + y) = x + 2y + n - xy states.
 - 3. xy x y > n. We also need that n cannot be written as cx + dy. Then can use a loop of y. This NFA has y states.

Take the smallest of these three NFA's and call it M_1 . If case 1 happens that will surely be the smallest.

2) Find a set or rel primes numbers A such that $\prod_{i \in A} i \ge n$ and $\sum_{i \in A} i$ is minimized. Use this to build part of the NFA as in Theorem 7.1.

3) The final NFA is an OR of M_1 and M_2 .

9 Every NFA for L_n has $\geq \sqrt{n}$ States

Chroback [2] proved the following.

Theorem 9.1 Let L be a co-finite unary regular language. If there is an NFA for L with n states then there is an NFA for L of the following form:

- There is a sequence of ≤ n² states from the start state to a state we will call X. Note that there is no nondeterminism involved yet.
- From X there are e-transitions to X_1, \ldots, X_m . (This is nondeterministic.)
- Each X_i is part of a cycle C_i . All of the C_i are disjoint.

The following theorem is due to Jeff Shallit and was communicated to me by email.

Theorem 9.2 Let L be a cofinite unary language where the shortest string that is not in L is of length n. Any NFA for L requires $\Omega(\sqrt{n})$ states

Proof:

Assume there was an NFA with $<\sqrt{n}$ states for L_n . Then by Theorem 9.1 there would be an NFA for L with a path from the start state to a state X of length < n and then from X a branch to many cycles. Let X_i and cycle's C_i as described in Theorem 9.1.

Run a^n through the NFA and try out all paths. For each *i* there will be a point in C_i that you end up at. Let n_i be the length of C_i . For every *i* there is a state on C_i that rejects. Hence the strings $a^{n+Kn_1n_2\cdots n_m}$ are all rejected. This is an infinite number of strings. This is a contradiction.

10 Open Problems

For every n, (1) there is an NFA for L_n with \sqrt{n} states (omitting some log terms), but (2) there is no NFA for L_n with \sqrt{n} states. We would like to close this gap. The upper bound might be improved with some lemmas from number theory. The lower bound might be improved by a more in depth study of Theorem 9.1. And, of course, its possible either or both require new techniques.

A A Lemma from Easy Number Theory

We use the following well known lemma. We include the proof for completeness.

Lemma A.1

1. Let m_1, m_2 be relatively prime. Let $0 \le a_1 \le m_1 - 1$ and Let $0 \le a_2 \le m_2 - 1$. Let A be the set

$$A = \{i : i \equiv a_1 \pmod{m_1}\} \cap \{i : i \equiv a_2 \pmod{m_2}\} \cap \{i : i \leq m_1 m_2\}$$

Then $|A| \leq 1$.

2. Let m_1, \ldots, m_ℓ be relatively prime. Let a_1, \ldots, a_ℓ be such that, for all $1 \le i \le \ell$, $0 \le a_i \le m_i - 1$, and $n \equiv a_i \pmod{m_i}$. Let A be the set

$$\left(\bigcap_{i=1}^{\ell} \{i : i \equiv a_i \pmod{m_i}\}\right) \cap \{i : i \leq m_1 m_2 \cdots m_\ell\}.$$

Then $|A| \leq 1$. (This follows from part 1 and induction so we omit the proof of this part.)

Proof:

Assume $x, y \in A$ and x < y. Then $x \equiv y \pmod{m_1}$ and $x \equiv y \pmod{m_2}$.

Since x - y is a multiple of both m_1 and m_2 , and m_1, m_2 are rel prime, x - y is a multiple of m_1m_2 . But then $y = x + km_1m_2 > m_1m_2$. This is a contradiction.

B A Lemma from Hard Number Theory

We use the following lemma. We do not include the proof; however, see [1] for both references and more precise estimates.

Lemma B.1 Let $\ell \in \mathbb{N}$. Let p_1, \ldots, p_ℓ be the first ℓ primes. Then $\sum_{p \leq \ell} p = O(\ell^2 \log \ell)$.

References

- [1] C. Axler. On the sum of the first n primes, 2014. https://arxiv.org/pdf/1409.1777.pdf.
- M. Chrobak. Finite automata and unary languages. TCS, 47:149-158, 1986. http://www.sciencedirect.com/science/article/pii/0304397586901428.
- [3] J. Shallit. The Frobenius problem and its generalization. slides:https://cs.uwaterloo.ca/ ~shallit/Talks/frob14.pdf.