Converting a DFA to a REG EXP: An Example
Exposition by William Gasarch

$M = (Q, \Sigma, \delta, s, F)$ is a DFA. $R(i, j, k)$ is a reg exp for \{ $x \mid \delta(i, x) = j$ \}.

Recall:

\[
R(i, j, 0) = \{ \sigma \in \Sigma \mid \delta(i, \sigma) = j \}.
\]

\[
R(i, i, 0) = \{ e \} \cup \{ \sigma \in \Sigma \mid \delta(i, \sigma) = j \}.
\]

\[
R(i, j, k) = R(i, j, k - 1) \cup R(i, k, k - 1)R(k, k, k - 1)^* R(k, j, k - 1)
\]

The regular expression for the language accepted by M is $\bigcup_{f \in F} R(1, f, n)$

We will look at the DFA on the other sheet. (NOTE- its actually an NDFA since state 2 has no transition on a b. The method still works.) 1 is the start state, 3 is the only final state.

We want to know $R(1, 3, 3)$. Rather than compute all $3 \times 3 \times 4 = 36$ $R(i, j, k)$’s, we see which ones we need.

ALL OF THE $R(\cdot, \cdot, 3)$ THAT WE NEED: $R(1, 3, 3)$. (only 1)

Since $R(1, 3, 3) = R(1, 3, 2) \cup R(1, 3, 2)R(3, 3, 2)^* R(3, 3, 2)$

ALL OF THE $R(\cdot, \cdot, 2)$ THAT WE NEED: $R(1, 3, 2), R(3, 3, 2)$. (only 2)

We need $R(1, 3, 2)$. We use

\[
R(1, 3, 2) = R(1, 3, 1) \cup R(1, 2, 1)R(2, 2, 1)^* R(2, 3, 1)
\]

Hence we need $R(1, 3, 1), R(1, 2, 1), R(2, 2, 1), R(2, 3, 1)$.

We need $R(3, 3, 2)$.

ANOTHER SHORTCUT: Since state 3 is a self-loop it cannot ever use any other state, so $R(3, 3, 2) = R(3, 3, 0)$. We keep this in mind for later.

ALL OF THE $R(\cdot, \cdot, 1)$ THAT WE NEED:

$R(1, 2, 1), R(1, 3, 1), R(2, 2, 1), R(2, 3, 1)$ (only 4).

We are not going to bother to figure out which $R(\cdot, \cdot, 0)$ we need since its easier to just computer all nine of them. Note that we will get $R(3, 3, 0)$ which we need.

We first look at ALL of the $R(i, j, 0)$.

\[
R(1, 1, 0) = e
\]

\[
R(1, 2, 0) = a
\]

\[
R(1, 3, 0) = b
\]

\[
R(2, 1, 0) = \emptyset.
\]

\[
R(2, 2, 0) = e
\]

\[
R(2, 3, 0) = a
\]

\[
R(3, 1, 0) = \emptyset
\]

\[
R(3, 2, 0) = \emptyset
\]

\[
R(3, 3, 0) = e \cup a \cup b
\]
We now look at all of the $R(i,j,1)$ that we need.

$R(1,2,1) = R(1,2,0) \cup R(1,1,0)R(1,1,0)^*R(1,2,0) = a \cup ee^*a = a$

$R(1,3,1) = R(1,3,0) \cup R(1,1,0)R(1,1,0)^*R(1,3,0) = b \cup ee^*b = b$

$R(2,2,1) = R(2,2,0) \cup R(2,1,0)R(1,1,0)^*R(1,2,0) = e \cup \emptyset e^*a = e \cup \emptyset = e$

$R(2,3,1) = R(2,3,0) \cup R(2,1,0)R(1,1,0)^*R(1,3,0) = a \cup \emptyset e^*b = e \cup \emptyset = a$

We now look at all of the $R(i,j,2)$ that we need.

$R(1,3,2) = R(1,3,1) \cup R(1,2,1)R(2,2,1)^*R(2,3,1) = b \cup ae^*a = b \cup aa$

$R(3,3,2) = R(3,3,0) = e \cup a \cup b$

We now look at all of the $R(i,j,3)$, just $R(1,3,3)$.

$R(1,3,3) = R(1,3,2) \cup R(1,3,2)R(3,3,2)^*R(3,3,2) = (b \cup aa) \cup (b \cup aa)(e \cup a \cup b)^*(a \cup b)$.

Reg Exp for the language is $R(1,3,3)$ above.