BILL
RECORD THIS
LECTURE
Affine and Quadratic Ciphers
The Affine Ciphers
Affine Cipher

Recall: Shift cipher with shift s:

1. Encrypt via $x \rightarrow x + s \pmod{26}$.
2. Decrypt via $x \rightarrow x - s \pmod{26}$.

We replace $x + s$ with more elaborate functions.

Def The Affine cipher with a, b:

1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
2. Decrypt via $x \rightarrow a^{-1}(x - b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER.

Answer: OTHER

$2x + 1$ does not work: 0 and 13 both map to 1.

Need the map to be a bijection so it will have an inverse.

Condition on a, b so that $x \rightarrow ax + b$ is a bijection:

- a is relatively prime to 26.

Condition on a, b so that a^{-1} exists mod 26:

- a is relatively prime to 26.

This is achieved by making a relatively prime to 26.
Affine Cipher

Recall: Shift cipher with shift s:

1. Encrypt via $x \rightarrow x + s \pmod{26}$.
2. Decrypt via $x \rightarrow x - s \pmod{26}$.

We replace $x + s$ with more elaborate functions.

Def The Affine cipher with a, b:

1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
2. Decrypt via $x \rightarrow a^{-1}(x - b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER.
Affine Cipher

Recall: Shift cipher with shift s:
1. Encrypt via $x \rightarrow x + s \pmod{26}$.
2. Decrypt via $x \rightarrow x - s \pmod{26}$.

We replace $x + s$ with more elaborate functions.

Def The Affine cipher with a, b:
1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
2. Decrypt via $x \rightarrow a^{-1}(x - b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER
Affine Cipher

Recall: Shift cipher with shift s:
1. Encrypt via $x \rightarrow x + s \pmod{26}$.
2. Decrypt via $x \rightarrow x - s \pmod{26}$.

We replace $x + s$ with more elaborate functions.

Def The Affine cipher with a, b:
1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
2. Decrypt via $x \rightarrow a^{-1}(x - b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER

$2x + 1$ does not work: 0 and 13 both map to 1.
Affine Cipher

Recall: Shift cipher with shift s:
1. Encrypt via $x \rightarrow x + s \pmod{26}$.
2. Decrypt via $x \rightarrow x - s \pmod{26}$.

We replace $x + s$ with more elaborate functions.

Def The Affine cipher with a, b:
1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
2. Decrypt via $x \rightarrow a^{-1}(x - b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER

$2x + 1$ does not work: 0 and 13 both map to 1.

Need the map to be a bijection so it will have an inverse.
Affine Cipher

Recall: Shift cipher with shift s:
1. Encrypt via $x \rightarrow x + s \pmod{26}$.
2. Decrypt via $x \rightarrow x - s \pmod{26}$.

We replace $x + s$ with more elaborate functions.

Def The Affine cipher with a, b:
1. Encrypt via $x \rightarrow ax + b \pmod{26}$.
2. Decrypt via $x \rightarrow a^{-1}(x - b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER

$2x + 1$ does not work: 0 and 13 both map to 1.

Need the map to be a bijection so it will have an inverse.

Condition on a, b so that $x \rightarrow ax + b$ is a bij: a rel prime to 26.
Condition on a, b so that a has an inv mod 26: a rel prime to 26.
Affine Cipher

Recall: Shift cipher with shift s:
1. Encrypt via $x \to x + s \pmod{26}$.
2. Decrypt via $x \to x - s \pmod{26}$.

We replace $x + s$ with more elaborate functions.

Def The Affine cipher with a, b:
1. Encrypt via $x \to ax + b \pmod{26}$.
2. Decrypt via $x \to a^{-1}(x - b) \pmod{26}$.

Does this work? Vote YES or NO or OTHER. Answer: OTHER

$2x + 1$ does not work: 0 and 13 both map to 1.

Need the map to be a bijection so it will have an inverse.

Condition on a, b so that $x \to ax + b$ is a bij: a rel prime to 26.

Condition on a, b so that a has an inv mod 26: a rel prime to 26.

This is achieved by making a relatively prime to 26.
Shift vs Affine

Shift: Key space is size 26.

Affine: Key space is
\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \times \{0, \ldots, 25\} which has
12 \times 26 = 312 elements.

In an Earlier Era Affine would be harder to crack than Shift.
Shift vs Affine

Shift: Key space is size 26.

Affine: Key space is \(\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \times \{0, \ldots, 25\}\) which has \(12 \times 26 = 312\) elements.

In an Earlier Era Affine would be harder to crack than Shift.

Today They are both easy to crack.
Shift vs Affine

Shift: Key space is size 26.

Affine: Key space is
\[\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \times \{0, \ldots, 25\} \] which has
\[12 \times 26 = 312 \] elements.

In an Earlier Era Affine would be harder to crack than Shift.

Today They are both easy to crack.

Both Need: The **Is-English** algorithm. Reading through 312 transcripts to see which one **looks like English** would take A LOT of time!
Key Length of Shift and Affine Ciphers

Let’s look at the keys for Shift and Affine.

1. Shift cipher key in \(\{0, \ldots, 25\} \). 5 bits.

2. Affine cipher Key in \(\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \times \{0, \ldots, 25\} \). 312 keys, need 9 bits.
Affine Cipher: Need to Know Inverses Mod m

If Alice and Bob use the Affine Cipher with alphabet of size m:

[Note: The text is cut off, indicating it continues beyond the visible content.]
If Alice and Bob use the Affine Cipher with alphabet of size m:

1. Alice picks a, b and must make sure that a is rel prime to m.
Affine Cipher: Need to Know Inverses Mod m

If Alice and Bob use the Affine Cipher with alphabet of size m:

1. Alice picks a, b and must make sure that a is rel prime to m.
2. Bob must compute the inverse of a mod m in order to decode.
Affine Cipher: Need to Know Inverses Mod m

If Alice and Bob use the Affine Cipher with alphabet of size m:

1. Alice picks a, b and must make sure that a is rel prime to m.
2. Bob must compute the inverse of a mod m in order to decode.
3. If Alice wants to also get messages and decode them, she also has to compute the inverse of a mod m in order to decode.
Examples of Numbers Rel Prime to $|\Sigma|$

If $\Sigma = \{a, \ldots, z\}$ (size 26) then, as we saw, the set is

$$\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \text{ 12 possibilities}$$

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9\}$ (size 36) then, as we saw, the set is

$$\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\} \text{ 12 possibilities}$$

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9, \#\}$ (size 37) then, as we saw, the set is

$$\{1, \ldots, 36\} \text{ 36 possibilities}$$

If given m, want to know how many elements in $\{1, \ldots, m-1\}$ are relatively prime to m. Will be on HW.
Examples of Numbers Rel Prime to $|\Sigma|$

If $\Sigma = \{a, \ldots, z\}$ (size 26) then, as we saw, the set is

$$\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \text{ 12 possibilities}$$

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9\}$ (size 36) then, as we saw, the set is

$$\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\} \text{ 12 possibilities}$$
Examples of Numbers Rel Prime to $|\Sigma|$

If $\Sigma = \{a, \ldots, z\}$ (size 26) then, as we saw, the set is

$$\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \text{ 12 possibilities}$$

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9\}$ (size 36) then, as we saw, the set is

$$\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\} \text{ 12 possibilities}$$

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9, \#\}$ (size 37) then, as we saw, the set is

$$\{1, \ldots, 36\} \text{ 36 possibilities}$$
Examples of Numbers Rel Prime to $|\Sigma|$

If $\Sigma = \{a, \ldots, z\}$ (size 26) then, as we saw, the set is

$$\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$$ 12 possibilities

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9\}$ (size 36) then, as we saw, the set is

$$\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}$$ 12 possibilities

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9, \#\}$ (size 37) then, as we saw, the set is

$$\{1, \ldots, 36\}$$ 36 possibilities

If given m, want to know how many elements in $\{1, \ldots, m - 1\}$ are relatively prime to m.
Examples of Numbers Rel Prime to $|\Sigma|$

If $\Sigma = \{a, \ldots, z\}$ (size 26) then, as we saw, the set is

$$\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \text{ 12 possibilities}$$

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9\}$ (size 36) then, as we saw, the set is

$$\{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\} \text{ 12 possibilities}$$

If $\Sigma = \{a, \ldots, z, 0, \ldots, 9, \#\}$ (size 37) then, as we saw, the set is

$$\{1, \ldots, 36\} \text{ 36 possibilities}$$

If given m, want to know how many elements in $\{1, \ldots, m - 1\}$ are relatively prime to m. Will be on HW.
Finding Inverse Mod n
The Most Used Algorithm In Crypto!

Finding Inverses

Given a, find $a^{-1} \pmod{n}$.

There is a fast algorithm for this problem.

This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.
2. (Later) Cracking pseudo-random ciphers.
3. (Later) Implementing RSA.
4. (Later) Cracking RSA.
5. (Later) Factoring Algorithms.
6. Many Many Others!
The Most Used Algorithm In Crypto!

Finding Inverses Given a, find $a^{-1} \pmod{n}$.
Finding Inverses Given a, find $a^{-1} \pmod{n}$.
There is a fast algorithm for this problem.
The Most Used Algorithm In Crypto!

Finding Inverses Given a, find $a^{-1} \pmod{n}$.
There is a fast algorithm for this problem.
This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.
2. (Later) Cracking pseudo-random ciphers.
3. (Later) Implementing RSA.
4. (Later) Cracking RSA.
5. (Later) Factoring Algorithms.
6. Many Many Others!
The Most Used Algorithm In Crypto!

Finding Inverses Given a, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.

2. (Later) Cracking pseudo-random ciphers.

3. (Later) Implementing RSA.

4. (Later) Cracking RSA.

5. (Later) Factoring Algorithms.

6. Many Many Others!
Finding Inverses Given a, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem.

This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.

2. (Later) Cracking psuedo-random ciphers.
The Most Used Algorithm In Crypto!

Finding Inverses Given a, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.
2. (Later) Cracking psuedo-random ciphers.
3. (Later) Implementing RSA.
Finding Inverses Given a, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.
2. (Later) Cracking pseudo-random ciphers.
3. (Later) Implementing RSA.
4. (Later) Cracking RSA.
Finding Inverses Given a, find $a^{-1} \pmod{n}$.
There is a fast algorithm for this problem.
This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.
2. (Later) Cracking psuedo-random ciphers.
3. (Later) Implementing RSA.
4. (Later) Cracking RSA.
5. (Later) Factoring Algorithms.
Finding Inverses Given a, find $a^{-1} \pmod{n}$. There is a fast algorithm for this problem. This algorithm is used a lot:

1. Affine cipher over alphabet of size n, need to know if a has an inverse, and if so, what it is.
2. (Later) Cracking pseudo-random ciphers.
3. (Later) Implementing RSA.
4. (Later) Cracking RSA.
5. (Later) Factoring Algorithms.
6. Many Many Others!
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.

Examples
GCD(10, 15) =
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.

Examples
GCD(10, 15) = 5
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples
- GCD\((10, 15)\) = 5
- GCD\((11, 15)\) =
- GCD\((15, 0)\) = 15 (we will discuss GCD\((a, 0)\) = a later)
Greatest Common Divisor (GCD)

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n.

Examples

GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(15, 0) = 15
GCD(15, 24) = 3
GCD(15, 25) = 5
GCD(15, 30) = 15
GCD(15, 25) = 5 (we will discuss GCD($a, 0$) = a later)
We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.

Examples

GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(12, 15) =
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.

Examples

- GCD(10, 15) = 5
- GCD(11, 15) = 1
- GCD(12, 15) = 3
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples
GCD\((10, 15) = 5\)
GCD\((11, 15) = 1\)
GCD\((12, 15) = 3\)
GCD\((13, 15) = \)
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples
- GCD\((10, 15)\) = 5
- GCD\((11, 15)\) = 1
- GCD\((12, 15)\) = 3
- GCD\((13, 15)\) = 1
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.

Examples

GCD($10, 15$) = 5
GCD($11, 15$) = 1
GCD($12, 15$) = 3
GCD($13, 15$) = 1
GCD($14, 15$) =
Greatest Common Divisor (GCD)

We first need to look at GCD.
\[
\text{GCD}(m, n) \text{ is the largest number that divides } m \text{ AND } n.
\]

Examples

GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(12, 15) = 3
GCD(13, 15) = 1
GCD(14, 15) = 1

(we will discuss GCD(a, 0) = a later)
We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.

Examples

GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(12, 15) = 3
GCD(13, 15) = 1
GCD(14, 15) = 1
GCD(15, 15) = 15

(we will discuss GCD($a, 0$) = a later)
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD(m, n) is the largest number that divides m AND n.

Examples

GCD(10, 15) = 5
GCD(11, 15) = 1
GCD(12, 15) = 3
GCD(13, 15) = 1
GCD(14, 15) = 1
GCD(15, 15) = 15
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples

\[
\begin{align*}
\text{GCD}(10, 15) &= 5 \\
\text{GCD}(11, 15) &= 1 \\
\text{GCD}(12, 15) &= 3 \\
\text{GCD}(13, 15) &= 1 \\
\text{GCD}(14, 15) &= 1 \\
\text{GCD}(15, 15) &= 15 \\
\text{GCD}(15, 24) &= \quad \\
\end{align*}
\]
Greatest Common Divisor (GCD)

We first need to look at GCD. GCD(m, n) is the largest number that divides m AND n.

Examples
- GCD(10, 15) = 5
- GCD(11, 15) = 1
- GCD(12, 15) = 3
- GCD(13, 15) = 1
- GCD(14, 15) = 1
- GCD(15, 15) = 15
- GCD(15, 24) = 3
Greatest Common Divisor (GCD)

We first need to look at GCD. GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples

- GCD\((10, 15)\) = 5
- GCD\((11, 15)\) = 1
- GCD\((12, 15)\) = 3
- GCD\((13, 15)\) = 1
- GCD\((14, 15)\) = 1
- GCD\((15, 15)\) = 15
- GCD\((15, 24)\) = 3
- GCD\((15, 25)\) =
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples

\[
\begin{align*}
\text{GCD}(10, 15) &= 5 \\
\text{GCD}(11, 15) &= 1 \\
\text{GCD}(12, 15) &= 3 \\
\text{GCD}(13, 15) &= 1 \\
\text{GCD}(14, 15) &= 1 \\
\text{GCD}(15, 15) &= 15 \\
\text{GCD}(15, 24) &= 3 \\
\text{GCD}(15, 25) &= 5
\end{align*}
\]
Greatest Common Divisor (GCD)

We first need to look at GCD. GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples
- GCD\((10, 15)\) = 5
- GCD\((11, 15)\) = 1
- GCD\((12, 15)\) = 3
- GCD\((13, 15)\) = 1
- GCD\((14, 15)\) = 1
- GCD\((15, 15)\) = 15
- GCD\((15, 24)\) = 3
- GCD\((15, 25)\) = 5
- GCD\((15, 30)\) =
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD\((m, n) \) is the largest number that divides \(m \) AND \(n \).

Examples

\[
\begin{align*}
\text{GCD}(10, 15) &= 5 \\
\text{GCD}(11, 15) &= 1 \\
\text{GCD}(12, 15) &= 3 \\
\text{GCD}(13, 15) &= 1 \\
\text{GCD}(14, 15) &= 1 \\
\text{GCD}(15, 15) &= 15 \\
\text{GCD}(15, 24) &= 3 \\
\text{GCD}(15, 25) &= 5 \\
\text{GCD}(15, 30) &= 15
\end{align*}
\]
Greatest Common Divisor (GCD)

We first need to look at GCD. GCD\((m, n) \) is the largest number that divides \(m \) AND \(n \).

Examples

\[
\begin{align*}
\text{GCD}(10, 15) & = 5 \\
\text{GCD}(11, 15) & = 1 \\
\text{GCD}(12, 15) & = 3 \\
\text{GCD}(13, 15) & = 1 \\
\text{GCD}(14, 15) & = 1 \\
\text{GCD}(15, 15) & = 15 \\
\text{GCD}(15, 24) & = 3 \\
\text{GCD}(15, 25) & = 5 \\
\text{GCD}(15, 30) & = 15 \\
\text{GCD}(15, 0) & = \\
\end{align*}
\]
Greatest Common Divisor (GCD)

We first need to look at GCD. GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples

GCD\((10, 15) = 5\)
GCD\((11, 15) = 1\)
GCD\((12, 15) = 3\)
GCD\((13, 15) = 1\)
GCD\((14, 15) = 1\)
GCD\((15, 15) = 15\)
GCD\((15, 24) = 3\)
GCD\((15, 25) = 5\)
GCD\((15, 30) = 15\)
GCD\((15, 0) = 15\)
Greatest Common Divisor (GCD)

We first need to look at GCD.
GCD\((m, n)\) is the largest number that divides \(m\) AND \(n\).

Examples

\[
\begin{align*}
\text{GCD}(10, 15) &= 5 \\
\text{GCD}(11, 15) &= 1 \\
\text{GCD}(12, 15) &= 3 \\
\text{GCD}(13, 15) &= 1 \\
\text{GCD}(14, 15) &= 1 \\
\text{GCD}(15, 15) &= 15 \\
\text{GCD}(15, 24) &= 3 \\
\text{GCD}(15, 25) &= 5 \\
\text{GCD}(15, 30) &= 15 \\
\text{GCD}(15, 0) &= 15 \text{ (we will discuss GCD}(a, 0) = a \text{ later)}
\end{align*}
\]
GCD(404,192) The Long Way

\[d \ \text{div both} \ 404 \text{ and } 192 \]
IFF
\[d \ \text{div} \ 404 \text{ and } 404 - 192 = 212. \]
GCD(404,192) The Long Way

\(d \) div both 404 and 192
IFF
\(d \) div 404 and 404 − 192 = 212.

\(d \) is largest divisor of both 404 and 192
IFF
\(d \) is largest divisor of 404 and 404 − 192 = 212.
GCD(404, 192) The Long Way

\[d \text{ div both } 404 \text{ and } 192 \]

IFF

\[d \text{ div } 404 \text{ and } 404 - 192 = 212. \]

\[d \text{ is largest divisor of both } 404 \text{ and } 192 \]

IFF

\[d \text{ is largest divisor of } 404 \text{ and } 404 - 192 = 212. \]

Idea: Keep subtracting smaller from larger:

GCD(404, 192) =
$\text{GCD}(404, 192)$ The Long Way

d div \textbf{both} 404 and 192
IFF
d div 404 and $404 - 192 = 212$.

d is largest divisor of \textbf{both} 404 and 192
IFF
d is largest divisor of 404 and $404 - 192 = 212$.

Idea: Keep subtracting smaller from larger:
$\text{GCD}(404, 192) = \text{GCD}(404 - 192, 192) =$
GCD(404,192) The Long Way

d div both 404 and 192
IFF
d div 404 and 404 − 192 = 212.

d is largest divisor of both 404 and 192
IFF
d is largest divisor of 404 and 404 − 192 = 212.

Idea: Keep subtracting smaller from larger:
GCD(404, 192) = GCD(404 − 192, 192) = GCD(212, 192) =
GCD(404,192) The Long Way

\[d \text{ div both } 404 \text{ and } 192 \]
IFF
\[d \text{ div } 404 \text{ and } 404 - 192 = 212. \]

\[d \text{ is largest divisor of both } 404 \text{ and } 192 \]
IFF
\[d \text{ is largest divisor of } 404 \text{ and } 404 - 192 = 212. \]

Idea: Keep subtracting smaller from larger:
GCD(404, 192) = GCD(404 − 192, 192) = GCD(212, 192)
= GCD(212 − 192, 192) =
GCD(404,192) The Long Way

$d \text{ div both } 404 \text{ and } 192$

IFF

$d \text{ div } 404 \text{ and } 404 − 192 = 212$.

d is largest divisor of both 404 and 192

IFF

d is largest divisor of 404 and 404 − 192 = 212.

Idea: Keep subtracting smaller from larger:

\[
\text{GCD}(404, 192) = \text{GCD}(404 − 192, 192) = \text{GCD}(212, 192) \\
= \text{GCD}(212 − 192, 192) = \text{GCD}(20, 192).
\]
GCD(404,192) The Long Way

\(d\) div both 404 and 192
IFF
\(d\) div 404 and 404 − 192 = 212.

\(d\) is largest divisor of both 404 and 192
IFF
\(d\) is largest divisor of 404 and 404 − 192 = 212.

Idea: Keep subtracting smaller from larger:
GCD(404, 192) = GCD(404 − 192, 192) = GCD(212, 192)
= GCD(212 − 192, 192) = GCD(20, 192).
Could keep going, but will be subtracting 20’s for a while.
GCD(404, 192) The Long Way

d div both 404 and 192
IFF
d div 404 and $404 - 192 = 212$.

d is largest divisor of both 404 and 192
IFF
d is largest divisor of 404 and $404 - 192 = 212$.

Idea: Keep subtracting smaller from larger:
$\text{GCD}(404, 192) = \text{GCD}(404 - 192, 192) = \text{GCD}(212, 192)$
$= \text{GCD}(212 - 192, 192) = \text{GCD}(20, 192)$.
Could keep going, but will be subtracting 20’s for a while.

Idea: Subtract LOTS of 20’s.
GCD(404,192) The Long Way

\[d \text{ div both } 404 \text{ and } 192 \]
IFF
\[d \text{ div } 404 \text{ and } 404 - 192 = 212. \]

\[d \text{ is largest divisor of both } 404 \text{ and } 192 \]
IFF
\[d \text{ is largest divisor of } 404 \text{ and } 404 - 192 = 212. \]

Idea: Keep subtracting smaller from larger:
\[\text{GCD}(404, 192) = \text{GCD}(404 - 192, 192) = \text{GCD}(212, 192) \]
\[= \text{GCD}(212 - 192, 192) = \text{GCD}(20, 192). \]
Could keep going, but will be subtracting 20’s for a while.

Idea: Subtract LOTS of 20’s. Largest \(x : 192 - 20x \geq 0, \quad x = 9. \)
GCD(404, 192) The Long Way

\(d\) div both 404 and 192
IFF
\(d\) div 404 and 404 – 192 = 212.

\(d\) is largest divisor of both 404 and 192
IFF
\(d\) is largest divisor of 404 and 404 – 192 = 212.

Idea: Keep subtracting smaller from larger:
\[
\text{GCD}(404, 192) = \text{GCD}(404 - 192, 192) = \text{GCD}(212, 192) = \text{GCD}(212 - 192, 192) = \text{GCD}(20, 192).
\]
Could keep going, but will be subtracting 20’s for a while.

Idea: Subtract LOTS of 20’s. Largest \(x\): 192 – 20\(x\) ≥ 0, \(x = 9\).
\[
= \text{GCD}(20, 192 - 20 \times 9 = 12) = \text{GCD}(20 - 12, 12) = \text{GCD}(8, 12)
= \text{GCD}(8, 12 - 8 = 4) = \text{GCD}(8 - 2 \times 4, 4) = \text{GCD}(0, 4) = 4.
\]
404 = 2 × 192 + 20
GCD(404,192) The Short Way and More Info

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
GCD(404,192) The Short Way and More Info

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
GCD(404,192) The Short Way and More Info

\[
\begin{align*}
404 & = 2 \times 192 + 20 \\
192 & = 9 \times 20 + 12 \\
20 & = 1 \times 12 + 8 \\
12 & = 1 \times 8 + 4
\end{align*}
\]
GCD(404, 192) The Short Way and More Info

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
8 = 4 \times 2 + 0 STOP HERE and go back one: 4 is the GCD.
GCD(404,192) The Short Way and More Info

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
8 = 4 \times 2 + 0 \text{ STOP HERE and go back one: 4 is the GCD.}

Can use this to write 4 as a combination of 404 and 192
GCD(404, 192) The Short Way and More Info

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
8 = 4 \times 2 + 0 \text{ STOP HERE and go back one: } 4 \text{ is the GCD.}

Can use this to write 4 as a combination of 404 and 192

Write 4 as a combo of 12’s and 8’s:
4 = 12 - 1 \times 8
GCD(404, 192) The Short Way and More Info

404 = 2 × 192 + 20
192 = 9 × 20 + 12
20 = 1 × 12 + 8
12 = 1 × 8 + 4
8 = 4 × 2 + 0 STOP HERE and go back one: 4 is the GCD. Can use this to write 4 as a combination of 404 and 192

Write 4 as a combo of 12’s and 8’s:
4 = 12 − 1 × 8

Write 8 as a combo of 20’s and 12’s:
4 = 12 − 1 × (20 − 12) = 2 × 12 − 1 × 20
GCD(404,192) The Short Way and More Info

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
8 = 4 \times 2 + 0 \text{ STOP HERE and go back one: } 4 \text{ is the GCD.}

Can use this to write 4 as a combination of 404 and 192

Write 4 as a combo of 12’s and 8’s:
4 = 12 - 1 \times 8

Write 8 as a combo of 20’s and 12’s:
4 = 12 - 1 \times (20 - 12) = 2 \times 12 - 1 \times 20

Write 12 as combo of 192’s and 20’s:
4 = 2 \times (192 - 9 \times 20) - 1 \times 20 = 2 \times 192 - 19 \times 20
$GCD(404, 192)$ The Short Way and More Info

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
8 = 4 \times 2 + 0$ STOP HERE and go back one: 4 is the GCD.

Can use this to write 4 as a combination of 404 and 192

Write 4 as a combo of 12’s and 8’s:
4 = 12 − 1 \times 8

Write 8 as a combo of 20’s and 12’s:
4 = 12 − 1 \times (20 − 12) = 2 \times 12 − 1 \times 20

Write 12 as a combo of 192’s and 20’s:
4 = 2 \times (192 − 9 \times 20) − 1 \times 20 = 2 \times 192 − 19 \times 20

Write 20 as a combo of 404 and 192:
4 = 2 \times 192 − 19 \times (404 − 2 \times 192) = 39 \times 192 − 19 \times 404

Upshot: $GCD(m, n)$ is a combo of m and n
A More Interesting Case: $\text{GCD}(38,101)$

$$101 = 2 \times 38 + 25$$
A More Interesting Case: GCD(38, 101)

101 = 2 \times 38 + 25
38 = 1 \times 25 + 13

Why is this interesting?
Hint: What was our original goal?
Take both sides mod 101
1 \equiv 8 \times 38 \pmod{101}
8 is the inverse of 38 mod 101
A More Interesting Case: GCD(38,101)

101 = 2 \times 38 + 25
38 = 1 \times 25 + 13
25 = 1 \times 13 + 12

Why is this interesting?

Hint: What was our original goal?

Take both sides mod 101

1 \equiv 8 \times 38 \pmod{101}

8 is the inverse of 38 mod 101
A More Interesting Case: GCD(38,101)

\[
\begin{align*}
101 &= 2 \times 38 + 25 \\
38 &= 1 \times 25 + 13 \\
25 &= 1 \times 13 + 12 \\
13 &= 12 + 1
\end{align*}
\]

Why is this interesting?

Hint: What was our original goal?

Take both sides mod 101

\[
1 \equiv 8 \times 38 \pmod{101}
\]

8 is the inverse of 38 mod 101
A More Interesting Case: GCD(38,101)

101 = 2 \times 38 + 25
38 = 1 \times 25 + 13
25 = 1 \times 13 + 12
13 = 12 + 1
12 = 12 \times 1 + 0. \text{ Go back one: 1 is the GCD. }
A More Interesting Case: GCD(38,101)

\[101 = 2 \times 38 + 25 \]
\[38 = 1 \times 25 + 13 \]
\[25 = 1 \times 13 + 12 \]
\[13 = 12 + 1 \]
\[12 = 12 \times 1 + 0. \text{ Go back one: } 1 \text{ is the GCD.} \]

\[1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \]
A More Interesting Case: \(\text{GCD}(38, 101) \)

\[
101 = 2 \times 38 + 25 \\
38 = 1 \times 25 + 13 \\
25 = 1 \times 13 + 12 \\
13 = 12 + 1 \\
12 = 12 \times 1 + 0. \text{ Go back one: } 1 \text{ is the GCD.}
\]

\[
1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\
1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25
\]
A More Interesting Case: GCD(38,101)

101 = 2 × 38 + 25
38 = 1 × 25 + 13
25 = 1 × 13 + 12
13 = 12 + 1
12 = 12 × 1 + 0. Go back one: 1 is the GCD.

1 = 13 − 12 = 13 − (25 − 13) = 2 × 13 − 25
1 = 2(38 − 25) − 25 = 2 × 38 − 3 × 25
1 = 2 × 38 − 3 × (101 − 2 × 38) = 8 × 38 − 3 × 101

Why is this interesting?

Hint: What was our original goal?

Take both sides mod 101

1 ≡ 8 × 38 (mod 101)
8 is the inverse of 38 mod 101
A More Interesting Case: GCD(38, 101)

\[101 = 2 \times 38 + 25\]
\[38 = 1 \times 25 + 13\]
\[25 = 1 \times 13 + 12\]
\[13 = 12 + 1\]
\[12 = 12 \times 1 + 0. \text{ Go back one: 1 is the GCD.}\]

\[1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25\]
\[1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25\]
\[1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101\]
\[1 = 8 \times 38 - 3 \times 101\]

Why is this interesting? **Hint:** What was our original goal?
A More Interesting Case: \(\text{GCD}(38, 101) \)

\[
101 = 2 \times 38 + 25 \\
38 = 1 \times 25 + 13 \\
25 = 1 \times 13 + 12 \\
13 = 12 + 1 \\
12 = 12 \times 1 + 0. \text{ Go back one: 1 is the GCD.}
\]

\[
1 = 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\
1 = 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25 \\
1 = 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101 \\
1 = 8 \times 38 - 3 \times 101
\]

Why is this interesting? **Hint:** What was our original goal?

Take both sides \(\text{mod} \ 101 \)

\[1 \equiv 8 \times 38 \pmod{101}\]
A More Interesting Case: GCD(38,101)

\[
\begin{align*}
101 &= 2 \times 38 + 25 \\
38 &= 1 \times 25 + 13 \\
25 &= 1 \times 13 + 12 \\
13 &= 12 + 1 \\
12 &= 12 \times 1 + 0. \text{ Go back one: 1 is the GCD.}
\end{align*}
\]

\[
\begin{align*}
1 &= 13 - 12 = 13 - (25 - 13) = 2 \times 13 - 25 \\
1 &= 2(38 - 25) - 25 = 2 \times 38 - 3 \times 25 \\
1 &= 2 \times 38 - 3 \times (101 - 2 \times 38) = 8 \times 38 - 3 \times 101 \\
1 &= 8 \times 38 - 3 \times 101
\end{align*}
\]

Why is this interesting? **Hint:** What was our original goal?
Take both sides mod 101
\[
1 \equiv 8 \times 38 \pmod{101}
\]
8 is the inverse of 38 mod 101
Two things about GCD I want to clarify.

- Why is $\text{GCD}(x, 0) = x$ for $x \geq 1$?
- When does the algorithm stop?
GCD(404,192): I Now Supply Last Step

404 = 2 \times 192 + 20
GCD(404,192): I Now Supply Last Step

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
GCD(404,192): I Now Supply Last Step

\[
\begin{align*}
404 &= 2 \times 192 + 20 \\
192 &= 9 \times 20 + 12 \\
20 &= 1 \times 12 + 8
\end{align*}
\]
GCD(404,192): I Now Supply Last Step

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
GCD(404,192): I Now Supply Last Step

\[
\begin{align*}
404 &= 2 \times 192 + 20 \\
192 &= 9 \times 20 + 12 \\
20 &= 1 \times 12 + 8 \\
12 &= 1 \times 8 + 4 \\
8 &= 4 \times 2 + 0 \text{ STOP WHEN GET 0. Go back one: 4 is GCD.}
\end{align*}
\]
GCD(404,192): I Now Supply Last Step

\[404 = 2 \times 192 + 20 \]
\[192 = 9 \times 20 + 12 \]
\[20 = 1 \times 12 + 8 \]
\[12 = 1 \times 8 + 4 \]
\[8 = 4 \times \underline{2} + 0 \] STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
GCD(404, 192): I Now Supply Last Step

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
8 = 4 \times 2 + 0 \text{ STOP WHEN GET 0. Go back one: 4 is GCD.}

Lets look at what the algorithm actually does:
GCD(404, 192) = GCD(404 - 2 \times 192, 192) = GCD(20, 192) =
GCD(404,192): I Now Supply Last Step

\[
\begin{align*}
404 &= 2 \times 192 + 20 \\
192 &= 9 \times 20 + 12 \\
20 &= 1 \times 12 + 8 \\
12 &= 1 \times 8 + 4 \\
8 &= 4 \times 2 + 0 \\
\text{STOP WHEN GET 0. Go back one: 4 is GCD.}
\end{align*}
\]

Let's look at what the algorithm actually does:

\[
\begin{align*}
\text{GCD}(404, 192) &= \text{GCD}(404-2 \times 192, 192) = \text{GCD}(20, 192) = \\
&= \text{GCD}(20, 192-9 \times 20) = \text{GCD}(20, 12) = \text{GCD}(20-1 \times 12, 12) = \\
\end{align*}
\]
GCD(404, 192): I Now Supply Last Step

404 = 2 \times 192 + 20
192 = 9 \times 20 + 12
20 = 1 \times 12 + 8
12 = 1 \times 8 + 4
8 = 4 \times 2 + 0 \text{ STOP WHEN GET } 0. \text{ Go back one: } 4 \text{ is GCD.}

Let's look at what the algorithm actually does:
\[\text{GCD}(404, 192) = \text{GCD}(404 - 2 \times 192, 192) = \text{GCD}(20, 192) = \]
\[\text{GCD}(20, 192 - 9 \times 20) = \text{GCD}(20, 12) = \text{GCD}(20 - 1 \times 12, 12) = \]
\[\text{GCD}(8, 12) = \text{GCD}(8, 12 - 8) = \text{GCD}(8, 4) = \]
GCD(404, 192): I Now Supply Last Step

\[
\begin{align*}
404 &= 2 \times 192 + 20 \\
192 &= 9 \times 20 + 12 \\
20 &= 1 \times 12 + 8 \\
12 &= 1 \times 8 + 4 \\
8 &= 4 \times 2 + 0 \\
\end{align*}
\]

STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:

\[
\begin{align*}
\text{GCD}(404, 192) &= \text{GCD}(404 - 2 \times 192, 192) = \text{GCD}(20, 192) = \\
&= \text{GCD}(20, 192 - 9 \times 20) = \text{GCD}(20, 12) = \text{GCD}(20 - 1 \times 12, 12) = \\
&= \text{GCD}(8, 12) = \text{GCD}(8, 12 - 8) = \text{GCD}(8, 4) = \\
&= \text{GCD}(8 - 2 \times 4, 4) = \text{GCD}(0, 4)
\end{align*}
\]
GCD(404, 192): I Now Supply Last Step

\[
\begin{align*}
404 &= 2 \times 192 + 20 \\
192 &= 9 \times 20 + 12 \\
20 &= 1 \times 12 + 8 \\
12 &= 1 \times 8 + 4 \\
8 &= 4 \times 2 + 0 \\
\end{align*}
\]
STOP WHEN GET 0. Go back one: 4 is GCD.

Lets look at what the algorithm actually does:
\[
\begin{align*}
\text{GCD}(404, 192) &= \text{GCD}(404 - 2 \times 192, 192) = \text{GCD}(20, 192) = \\
&= \text{GCD}(20, 192 - 9 \times 20) = \text{GCD}(20, 12) = \text{GCD}(20 - 1 \times 12, 12) = \\
&= \text{GCD}(8, 12) = \text{GCD}(8, 12 - 8) = \text{GCD}(8, 4) = \\
&= \text{GCD}(8 - 2 \times 4, 4) = \text{GCD}(0, 4) \\
\end{align*}
\]
To make our formula \(\text{GCD}(x, y) = \text{GCD}(x - ky, x) \) work all the way to 0, we define \(\text{GCD}(0, x) = x \).
Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time?
Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss.
Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. No.
Why is $5^{1/2} = \sqrt{5}$?

Why is $5^{1/2} = \sqrt{5}$?

Are we multiplying a number by itself half a time? Discuss. **No.**

For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$
Why is $5^{1/2} = \sqrt{5}$?

Why is $5^{1/2} = \sqrt{5}$?

Are we multiplying a number by itself half a time? Discuss. **No.**

For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$.
Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. **No.**

For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$
Why is $5^{1/2} = \sqrt{5}$?

Why is $5^{1/2} = \sqrt{5}$?

Are we multiplying a number by itself half a time? Discuss. No.

For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$

Hence we define $5^{1/2} = \sqrt{5}$ to make that rule work out.
Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. **No.**

For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5.$$

Hence we **define** $5^{1/2} = \sqrt{5}$ to make that rule work out.

Similar for 5^0 and 5^{-a}.

How is 5^{π} defined? Discuss.
Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}?$$

Are we multiplying a number by itself half a time? Discuss. **No.**

For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5$$

Hence we **define** $5^{1/2} = \sqrt{5}$ to make that rule work out.

Similar for 5^0 and 5^{-a}.

How is 5^π defined?
Why is $5^{1/2} = \sqrt{5}$?

Why is

$$5^{1/2} = \sqrt{5}$$?

Are we multiplying a number by itself half a time? Discuss. No.

For $a, b \in \mathbb{N}$ we have

$$5^a \times 5^b = 5^{a+b}.$$

We want this rule to still apply when $a, b \in \mathbb{Q}$. So we want

$$5^{1/2} \times 5^{1/2} = 5^{1/2+1/2} = 5.$$

Hence we define $5^{1/2} = \sqrt{5}$ to make that rule work out.

Similar for 5^0 and 5^{-a}.

How is 5^π defined? Discuss.
What is 5^π?

We want

$$5^{3.14159} < 5^\pi < 5^{3.141593}.$$
What is 5^π?

We want

$$5^{3.14159} < 5^\pi < 5^{3.141593}.$$

We can replace with approximations to π that are lower and that are higher.
What is 5^π?

We want

$$5^{3.14159} < 5^\pi < 5^{3.141593}.$$

We can replace with approximations to π that are lower and that are higher.

So, with this in mind, how do we define 5^π?
What is 5π?

We want

$$5^{3.14159} < 5\pi < 5^{3.141593}.$$

We can replace with approximations to π that are lower and that are higher.

So, with this in mind, how do we define 5π?

Let $\alpha_1, \alpha_2, \ldots$, be an infinite sequence of rationals that cvg to π.
What is 5^π?

We want

$$5^{3.14159} < 5^\pi < 5^{3.141593}.$$

We can replace with approximations to π that are lower and that are higher.

So, with this in mind, how do we define 5^π?

Let $\alpha_1, \alpha_2, \ldots$, be an infinite sequence of rationals that cvg to π. 5^π is defined to be $\lim_{i \to \infty} 5^{\alpha_i}$.
What is 5^π?

We want

$$5^{3.14159} < 5^\pi < 5^{3.141593}.$$

We can replace with approximations to π that are lower and that are higher.

So, with this in mind, how do we define 5^π?

Let $\alpha_1, \alpha_2, \ldots$, be an infinite sequence of rationals that cvg to π. 5^π is defined to be $\lim_{i \to \infty} 5^{\alpha_i}$.

Need to prove that all choices of sequences yield the same result. We won’t do that here.
Sometimes functions are defined on certain values not because it's the most natural way to do it, but because it makes prior rules work out.

- \(\text{GCD}(x, 0) = x \)
- \(\frac{5}{1} = \sqrt{5} \)
- \(\frac{1}{2}! = \sqrt{\pi} \)

Don't ask me why. The answer it's the \(\Gamma \) function is (a) true, and (b) truly unenlightening.
Sometimes functions are defined on certain values \textbf{not} because its the most natural way to do it, but because it makes prior rules work out.

This is the case for

\begin{itemize}
 \item \texttt{GCD}(x, 0) = x.
 \item \frac{1}{2} = \sqrt{5}.
 \item \frac{1}{2}! = \sqrt{\pi}.
\end{itemize}

Don't ask me why. The answer it's the \texttt{\Gamma} function is \textbf{(a)} true, and \textbf{(b)} truly UNenlightening.
Sometimes functions are defined on certain values not because it's the most natural way to do it, but because it makes prior rules work out.

This is the case for

- \(\text{GCD}(x, 0) = x. \)
Upshot

Sometimes functions are defined on certain values not because it's the most natural way to do it, but because it makes prior rules work out.

This is the case for

- \(\text{GCD}(x, 0) = x \).
- \(5^{1/2} = \sqrt{5} \).
Sometimes functions are defined on certain values not because it's the most natural way to do it, but because it makes prior rules work out.

This is the case for

- \(\text{GCD}(x, 0) = x. \)
- \(5^{1/2} = \sqrt{5}. \)
- \(\frac{1}{2}! = \sqrt{\pi}. \)
Sometimes functions are defined on certain values **not** because it's the most natural way to do it, but because it makes prior rules work out.

This is the case for

- \(\text{GCD}(x, 0) = x \).
- \(5^{1/2} = \sqrt{5} \).
- \(\frac{1}{2}! = \sqrt{\pi} \). Don’t ask me why.
Sometimes functions are defined on certain values not because its the most natural way to do it, but because it makes prior rules work out.

This is the case for

- $\text{GCD}(x, 0) = x$.
- $5^{1/2} = \sqrt{5}$.
- $\frac{1}{2}! = \sqrt{\pi}$. Don’t ask me why. The answer it’s the Γ function is
Sometimes functions are defined on certain values not because it's the most natural way to do it, but because it makes prior rules work out.

This is the case for

- \(\text{GCD}(x, 0) = x \).
- \(5^{1/2} = \sqrt{5} \).
- \(\frac{1}{2}! = \sqrt{\pi} \). Don’t ask me why. The answer it's the \(\Gamma \) function is (a) true, and
Sometimes functions are defined on certain values not because it’s the most natural way to do it, but because it makes prior rules work out.

This is the case for

- $\text{GCD}(x, 0) = x$.
- $5^{1/2} = \sqrt{5}$.
- $\frac{1}{2}! = \sqrt{\pi}$. Don’t ask me why. The answer it’s the Γ function is (a) true, and (b) truly UNenlightening.
Gen Sub Cipher: How to Really Crack
General Substitution Cipher

Definition of Gen Sub Cipher with perm f on $\{0, \ldots, 25\}$.

1. Encrypt via $x \rightarrow f(x)$.
2. Decrypt via $x \rightarrow f^{-1}(x)$.

Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.
Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The **1-grams** of T are just the letters in T, counting repeats.
Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The **1-grams** of T are just the letters in T, counting repeats.
2. The **2-grams** of T are just the contiguous pairs of letters in T, counting repeats. Also called **bigrams**.
Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The **1-grams** of T are just the letters in T, counting repeats.
2. The **2-grams** of T are just the contiguous pairs of letters in T, counting repeats. Also called **bigrams**.
3. The **3-grams** of T you can guess. Also called **trigrams**.
Terminology: 1-Gram, 2-Gram, 3-Gram

Notation Let T be a text.

1. The 1-grams of T are just the letters in T, counting repeats.
2. The 2-grams of T are just the contiguous pairs of letters in T, counting repeats. Also called bigrams.
3. The 3-grams of T you can guess. Also called trigrams.
4. One usually talks about the freq of n-grams.
Example of 1-Grams

Let the text be:

Ever notice how sometimes people use math words incorrectly?
Example of 1-Grams

Let the text be:

Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.
Example of 1-Grams

Let the text be:

Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.

The following 1-grams occur 2 times: h,l,n,p,w.
Example of 1-Grams

Let the text be:

Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.
The following 1-grams occur 2 times: h,l,n,p,w.
The following 1-grams occur 3 times: c,i,m.
Example of 1-Grams

Let the text be:

Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.
The following 1-grams occur 2 times: h,l,n,p,w.
The following 1-grams occur 3 times: c,i,m.
The following 1-grams occur 4 times: r,s,t.
Example of 1-Grams

Let the text be:

Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.
The following 1-grams occur 2 times: h,l,n,p,w.
The following 1-grams occur 3 times: c,i,m.
The following 1-grams occur 4 times: r,s,t.
The following 1-gram occurs 6 times: o.
Example of 1-Grams

Let the text be:

Ever notice how sometimes people use math words incorrectly?

The following 1-grams occur 1 time: a,d,u,v,y.
The following 1-grams occur 2 times: h,l,n,p,w.
The following 1-grams occur 3 times: c,i,m.
The following 1-grams occur 4 times: r,s,t.
The following 1-gram occurs 6 times: o.
The following 1-gram occurs 9 times: e.
How to find inverse of $m \mod n$

Given m, n with $m < n$ we want to know

1. Find $\gcd(m, n)$. If it is NOT 1 then NO inverse.
2. If it IS 1 then use the work you did to find $\gcd(m, n)$ to find $a, b \in \mathbb{Z}$

 $am + bn = 1$

 $am \equiv 1 \pmod{n}$

3. a is the inverse of $m \mod n$.

 Not quite: (1) a might be negative (2) a might be $> n$. That won't do!

 Take $a \pmod{n}$.
How to find inverse of \(m \mod n \)

Given \(m, n \) with \(m < n \) we want to know

- Is there an inverse of \(m \mod n \)

1. Find \(\gcd(m, n) \). If it is NOT 1 then NO inverse.
2. If it IS 1 then use the work you did to find \(\gcd(m, n) \) to find \(a, b \in \mathbb{Z} \)

\[am + bn = 1 \]

3. \(a \) is the inverse of \(m \mod n \).

Not quite: (1) \(a \) might be negative (2) \(a \) might be \(> n \). That won't do!

Take \(a \mod n \).
How to find inverse of $m \mod n$

Given m, n with $m < n$ we want to know

- Is there an inverse of $m \mod n$
- If so then find it

1. Find $\text{GCD}(m, n)$. If it is NOT 1 then NO inverse.
2. If it IS 1 then use the work you did to find $\text{GCD}(m, n)$ to find $a, b \in \mathbb{Z} \quad am + bn = 1$
3. a is the inverse of $m \mod n$.

Not quite: (1) a might be negative (2) a might be $> n$. That won't do! Take $a \pmod n$.
How to find inverse of m mod n

Given m, n with $m < n$ we want to know

- Is there an inverse of m mod n
- If so then find it

1. Find $\text{GCD}(m, n)$. If it is NOT 1 then NO inverse.
How to find inverse of $m \mod n$

Given m, n with $m < n$ we want to know

- Is there an inverse of $m \mod n$
- If so then find it

1. Find $\gcd(m, n)$. If it is NOT 1 then NO inverse.
2. If it IS 1 then use the work you did to find $\gcd(m, n)$ to find $a, b \in \mathbb{Z}$

$$am + bn = 1$$

$$am \equiv 1 \pmod{n}$$

3. a is the inverse of $m \mod n$.

Not quite: (1) a might be negative (2) a might be $> n$. That won't do! Take $a \pmod{n}$.
How to find inverse of $m \mod n$

Given m, n with $m < n$ we want to know

- Is there an inverse of $m \mod n$
- If so then find it

1. Find $\text{GCD}(m, n)$. If it is NOT 1 then NO inverse.
2. If it IS 1 then use the work you did to find $\text{GCD}(m, n)$ to find $a, b \in \mathbb{Z}$

$$am + bn = 1$$

$$am \equiv 1 \pmod{n}$$

3. a is the inverse of $m \mod n$. Not quite: (1) a might be negative (2) a might be $> n$. That won’t do!
How to find inverse of \(m \mod n \)

Given \(m, n \) with \(m < n \) we want to know

- Is there an inverse of \(m \mod n \)?
- If so then find it

1. Find \(\text{GCD}(m, n) \). If it is NOT 1 then NO inverse.
2. If it IS 1 then use the work you did to find \(\text{GCD}(m, n) \) to find \(a, b \in \mathbb{Z} \)

\[
am + bn = 1
\]

\[
am \equiv 1 \pmod{n}
\]

3. \(a \) is the inverse of \(m \mod n \). Not quite: (1) \(a \) might be negative (2) \(a \) might be \(> n \). That won’t do! Take \(a \pmod{n} \).
The Quadratic Ciphers
The Quadratic Cipher

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c \pmod{26}$.

Does this work? Vote YES or NO.

Answer: NO

No easy test for Invertibility (depends on def of easy).

How Easy?

1. This takes too long.
2. The security is not good enough to justify taking this long setting it up.
The Quadratic Cipher

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c \pmod{26}$.

Does this work? Vote YES or NO.
The Quadratic Cipher

Def The Quadratic cipher with a, b, c: Encrypt via
$x \rightarrow ax^2 + bx + c \pmod{26}$.

Does this work? Vote YES or NO. Answer: NO
The Quadratic Cipher

Def The Quadratic cipher with a, b, c: Encrypt via
$x \rightarrow ax^2 + bx + c \pmod{26}$.

Does this work? Vote YES or NO. Answer: NO

No easy test for Invertibility (depends on def of easy).

How Easy?: Given a quadratic $f(x)$ one could compute $f(0), \ldots, f(25)$ all mod 26 and see if all are different.
The Quadratic Cipher

Def The Quadratic cipher with a, b, c: Encrypt via $x \rightarrow ax^2 + bx + c \pmod{26}$.

Does this work? Vote YES or NO. Answer: NO

No easy test for Invertibility (depends on def of easy).

How Easy?: Given a quadratic $f(x)$ one could compute $f(0), \ldots, f(25)$ all mod 26 and see if all are different.

1. This takes too long.
2. The security is not good enough to justify taking this long setting it up.
History of the Quadratic Cipher

The first place The Quadratic Cipher appeared was

The first place The Quadratic Cipher appeared was my 3-week course on crypto for High School Students in 2010.
The first place *The Quadratic Cipher* appeared was my 3-week course on crypto for High School Students in 2010.

So, as the kids say, *it’s not a thing.*
When looking at a cipher one usually asks:
The Point of Presenting the Quadratic Cipher

When looking at a cipher one usually asks:

Is the cipher secure?
The Point of Presenting the Quadratic Cipher

When looking at a cipher one usually asks:

Is the cipher secure?

That is a good question.
The Point of Presenting the Quadratic Cipher

When looking at a cipher one usually asks:

Is the cipher secure?

That is a good question.

But there is another important one:
The Point of Presenting the Quadratic Cipher

When looking at a cipher one usually asks:

Is the cipher secure?
That is a good question.
But there is another important one:

Is the cipher easy to use?

Quadratic Cipher fails the ease of use test. It is also insecure.
The Point of Presenting the Quadratic Cipher

When looking at a cipher one usually asks:

Is the cipher secure?

That is a good question.

But there is another important one:

Is the cipher easy to use?

Quadratic Cipher fails the ease of use test.
The Point of Presenting the Quadratic Cipher

When looking at a cipher one usually asks:

Is the cipher secure?

That is a good question.

But there is another important one:

Is the cipher easy to use?

Quadratic Cipher fails the ease of use test.

It is also insecure.
Ease of Use VS Easy to Crack

Shift and Affine:
Ease of Use VS Easy to Crack

Shift and Affine:

- Some math is used to encrypt and decrypt.
Ease of Use VS Easy to Crack

Shift and Affine:
- Some math is used to encrypt and decrypt.
- The math makes it easy to use. Short Key!

Next slide packet: We present a cipher with less math so more secure in next slide packet.
Ease of Use VS Easy to Crack

Shift and Affine:

- Some math is used to encrypt and decrypt.
- The math makes it easy to use. Short Key!
- The math makes it insecure. Few Keys!
Ease of Use VS Easy to Crack

Shift and Affine:
- Some math is used to encrypt and decrypt.
- The math makes it easy to use. Short Key!
- The math makes it insecure. Few Keys!

Next slide packet: We present a cipher with less math so more secure in next slide packet.
BILL
STOP RECORDING THIS LECTURE