BILL
RECORD THIS
LECTURE
Gen Sub Cipher and Random-Looking Ciphers
General Substitution Cipher
The Problem with Shift and Affine

Shift and Affine both have small keyspaces. Shift and Affine both use some math—hence math can be used against them.

We present the General Substation Cipher which:

- Has a large keyspace.
- Does not use any math.
The Problem with Shift and Affine

- Shift and Affine both have small keyspaces.
The Problem with Shift and Affine

- Shift and Affine both have small keyspaces.
- Shift and Affine both use some math—hence math can be used against them.
The Problem with Shift and Affine

- Shift and Affine both have small keyspaces.
- Shift and Affine both use some math—hence math can be used against them.

We present the **General Substation Cipher** which:
The Problem with Shift and Affine

- Shift and Affine both have small keyspaces.
- Shift and Affine both use some math—hence math can be used against them.

We present the **General Substation Cipher** which:
- Has a large keyspace.
The Problem with Shift and Affine

- Shift and Affine both have small keyspaces.
- Shift and Affine both use some math—hence math can be used against them.

We present the **General Substation Cipher** which:
- Has a large keyspace.
- Does not use any math.
Def \textbf{Gen Sub Cipher} with perm f on $\{0, \ldots, 25\}$.

1. Encrypt via $x \rightarrow f(x)$.
2. Decrypt via $x \rightarrow f^{-1}(x)$.
General Substitution Cipher: Example

Assume Alphabet is just \{a, \ldots, i\}. If the message is FBI it will encrypt to GIH.
General Substitution Cipher: Example

Assume Alphabet is just \(\{a, \ldots, i\} \).

Encrypt Using:

\[
\begin{array}{cccccccc}
a & b & c & d & e & f & g & h & i \\
d & i & a & b & e & g & f & c & h \\
\end{array}
\]

If the message is FBI it will encrypt to GIH.
General Substitution Cipher: Example

Assume Alphabet is just \(\{a, \ldots, i\} \).

Encrypt Using:

\[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h & i \\
 d & i & a & b & e & g & f & c & h \\
\end{array}
\]

Decrypt Using:

\[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h & i \\
 c & d & h & a & e & g & f & i & b \\
\end{array}
\]

If the message is FBI it will encrypt to GIH.
General Substitution Cipher: Example

Assume Alphabet is just \{a, \ldots, i\}.
Encrypt Using:

\[
\begin{array}{cccccccccc}
 a & b & c & d & e & f & g & h & i \\
 d & i & a & b & e & g & f & c & h \\
\end{array}
\]

Decrypt Using:

\[
\begin{array}{cccccccccc}
 a & b & c & d & e & f & g & h & i \\
 c & d & h & a & e & g & f & i & b \\
\end{array}
\]

If the message is \textbf{FBI} it will encrypt to \textbf{GIH}.
Theorem: The Gen Sub Cipher is Uncrackable in reasonable time.

Proof: Eve sees a text T. There are $26!$ possible permutations that could have been used. Eve has to look at all of them. This takes roughly $26!$ steps which is unreasonable.

End of Proof

Why is this proof incorrect? Discuss.

The proof assumes that Eve uses brute force. Our model of what Eve can do is too limited.

Okay, the proof is wrong, but is Gen Sub crackable? Yes: Eve can use Freq Analysis.
Theorem: The Gen Sub Cipher is Uncrackable in reasonable time.

Proof: Eve sees a text T. There are $26!$ possible permutations that could have been used. Eve has to look at all of them. This takes roughly $26!$ steps which is unreasonable.
The Gen Sub Cipher is Uncrackable (a False Proof)

Theorem: The Gen Sub Cipher is Uncrackable in reasonable time.

Proof: Eve sees a text T. There are $26!$ possible permutations that could have been used. Eve has to look at all of them. This takes roughly $26!$ steps which is unreasonable.

End of Proof
The Gen Sub Cipher is Uncrackable (a False Proof)

Theorem: The Gen Sub Cipher is Uncrackable in reasonable time.

Proof: Eve sees a text T. There are $26!$ possible permutations that could have been used. Eve has to look at all of them. This takes roughly $26!$ steps which is unreasonable.

End of Proof

Why is this proof incorrect? Discuss.
The Gen Sub Cipher is Uncrackable (a False Proof)

Theorem: The Gen Sub Cipher is Uncrackable in reasonable time.

Proof: Eve sees a text T. There are $26!$ possible permutations that could have been used. Eve has to look at all of them. This takes roughly $26!$ steps which is unreasonable.

End of Proof

Why is this proof incorrect? Discuss.

The proof assumes that Eve uses brute force. Our model of what Eve can do is too limited.

Okay, the proof is wrong, but is Gen Sub crackable?
Theorem: The Gen Sub Cipher is Uncrackable in reasonable time.

Proof: Eve sees a text T. There are $26!$ possible permutations that could have been used. Eve has to look at all of them. This takes roughly $26!$ steps which is unreasonable.

End of Proof

Why is this proof incorrect? Discuss.

The proof assumes that Eve uses brute force. Our model of what Eve can do is too limited.

Okay, the proof is wrong, but is Gen Sub crackable?

Yes: Eve can use Freq Analysis
Freq Analysis

Alice sends Bob a LONG text encrypted by Gen Sub Cipher. Eve finds freq of letters, pairs, triples,

Text in English.

1. Can use known freq: e is most common letter, th is most common pair.

2. If Alice is telling Bob about Mid East Politics than may need to adjust: q is more common (Iraq, Qatar) and some words more common.
Counter Example – Pangrams

Pangrams:
Sentence where each letter occurs at least once.

Short Pangrams ruin Freq analysis. Here are some:
1. The quick brown fox jumps over the lazy dog.
2. Pack my box with five dozen liquor jugs.
3. Amazingly few discotheques provide jukeboxes.
4. Watch Jeopardy! Alex Trebek’s fun TV quiz game.
Counter Example – Pangrams

Pangrams: Sentence where each letter occurs at least once.

1. The quick brown fox jumps over the lazy dog.
2. Pack my box with five dozen liquor jugs.
3. Amazingly few discotheques provide jukeboxes.
4. Watch Jeopardy! Alex Trebek's fun TV quiz game.
Counter Example – Pangrams

Pangrams: Sentence where each letter occurs at least once.

Short Pangrams ruin Freq analysis. Here are some:
Counter Example – Pangrams

Pangrams: Sentence where each letter occurs at least once.

Short Pangrams ruin Freq analysis. Here are some:

1. The quick brown fox jumps over the lazy dog.
Pangrams: Sentence where each letter occurs at least once.

Short Pangrams ruin Freq analysis. Here are some:
1. The quick brown fox jumps over the lazy dog.
2. Pack my box with five dozen liquor jugs.
Counter Example – Pangrams

Pangrams: Sentence where each letter occurs at least once.

Short Pangrams ruin Freq analysis. Here are some:

1. The quick brown fox jumps over the lazy dog.
2. Pack my box with five dozen liquor jugs.
3. Amazingly few discotheques provide jukeboxes.
Counter Example – Pangrams

Pangrams: Sentence where each letter occurs at least once.

Short Pangrams ruin Freq analysis. Here are some:

1. The quick brown fox jumps over the lazy dog.
2. Pack my box with five dozen liquor jugs.
3. Amazingly few discotheques provide jukeboxes.
4. Watch Jeopardy! Alex Trebek’s fun TV quiz game.
Counter Example – Lipograms

1. *Gadsby* is a 50,000-word novel with no e's in English. This inspired a French novel, *A Void* that also has no e's.

2. Many Book Review of *Gadsby* and *A Void* used no e's.

3. *Eunoia* is a 5-chapter novel, indexed by vowels. Chapter A only use the vowel A, etc.

4. *How I met your mother*, Season 9, Episode 9: Lily and Robin challenge Barney to get a girl's phone number without using the letter e. We are not going to deal with this silliness! We assume long normal texts!
Counter Example – Lipograms

Lipograms: A work that omits one letter.

1. *Gadsby* is a 50,000-word novel with no 'e's in English. This inspired a French novel, *A Void* that also has no 'e's.

2. Many Book Review of *Gadsby* and *A Void* used no 'e's.

3. *Eunoia* is a 5-chapter novel, indexed by vowels. Chapter A only use the vowel A, etc.

4. How I met your mother, Season 9, Episode 9: Lily and Robin challenge Barney to get a girl's phone number without using the letter 'e'.

We are not going to deal with this silliness! We assume long normal texts!
Counter Example – Lipograms

Lipograms: A work that omits one letter.

1. **Gadsby** is a 50,000-word novel with no e’s in English. This inspired a French novel, **A Void** that also has no e’s.
Lipograms: A work that omits one letter.

1. **Gadsby** is a 50,000-word novel with no e’s in English. This inspired a French novel, **A Void** that also has no e’s.

2. Many Book Review of **Gadsby** and **A Void** used no e’s.
Counter Example – Lipograms

Lipograms: A work that omits one letter.

1. **Gadsby** is a 50,000-word novel with no e’s in English. This inspired a French novel, **A Void** that also has no e’s.
2. Many Book Review of **Gadsby** and **A Void** used no e’s.
3. **Eunoia** is a 5-chapter novel, indexed by vowels. Chapter A only use the vowel A, etc.
Counter Example – Lipograms

Lipograms: A work that omits one letter.

1. **Gadsby** is a 50,000-word novel with no e’s in English. This inspired a French novel, **A Void** that also has no e’s.
2. Many Book Review of **Gadsby** and **A Void** used no e’s.
3. **Eunoia** is a 5-chapter novel, indexed by vowels. Chapter A only use the vowel A, etc.
4. **How I met your mother, Season 9, Episode 9**: Lily and Robin challenge Barney to get a girl’s phone number without using the letter e.
Counter Example – Lipograms

Lipograms: A work that omits one letter.
1. Gadsby is a 50,000-word novel with no e’s in English. This inspired a French novel, A Void that also has no e’s.
2. Many Book Review of Gadsby and A Void used no e’s.
3. Eunoia is a 5-chapter novel, indexed by vowels. Chapter A only use the vowel A, etc.
4. How I met your mother, Season 9, Episode 9: Lily and Robin challenge Barney to get a girl’s phone number without using the letter e.

We are not going to deal with this silliness!
Counter Example – Lipograms

Lipograms: A work that omits one letter.

1. **Gadsby** is a 50,000-word novel with no e’s in English. This inspired a French novel, **A Void** that also has no e’s.
2. Many Book Review of **Gadsby** and **A Void** used no e’s.
3. **Eunoia** is a 5-chapter novel, indexed by vowels. Chapter A only use the vowel A, etc.
4. **How I met your mother, Season 9, Episode 9:** Lily and Robin challenge Barney to get a girl’s phone number without using the letter e.

We are not going to deal with this silliness!

We assume long normal texts!
“Just Use Freq Analysis” - Yeah, Right

All of the textbooks I have looked at say

The Gen Sub Cipher is crackable using Freq Analysis
All of the textbooks I have looked at say
The Gen Sub Cipher is crackable using Freq Analysis
But they do not actually say quite how to really do that.
All of the textbooks I have looked at say

The Gen Sub Cipher is crackable using Freq Analysis
But they do not actually say quite how to really do that.

1. They can’t tell me– its classified.
All of the textbooks I have looked at say

The Gen Sub Cipher is crackable using Freq Analysis

But they do not actually say quite how to really do that.

1. They can’t tell me—its classified. Unlikely.
All of the textbooks I have looked at say
The Gen Sub Cipher is crackable using Freq Analysis
But they do not actually say quite how to really do that.

1. They can’t tell me— its classified. Unlikely.
2. It’s complicated so people haven’t bothered writing it down.
"Just Use Freq Analysis" - Yeah, Right

All of the textbooks I have looked at say

The Gen Sub Cipher is crackable using Freq Analysis

But they do not actually say quite how to really do that.

1. They can’t tell me– its classified. Unlikely.
2. It’s complicated so people haven’t bothered writing it down. Likely.
All of the textbooks I have looked at say

The Gen Sub Cipher is crackable using Freq Analysis

But they do not actually say quite **how to really do that**.

1. They can’t tell me— its classified. Unlikely.
2. It’s complicated so people haven’t bothered writing it down. Likely.
3. In Summer 2019 I had a student, David Zhen, work on cracking gen sub cipher. We will later present what he did.
All of the textbooks I have looked at say

The Gen Sub Cipher is crackable using Freq Analysis

But they do not actually say quite how to really do that.

1. They can’t tell me– its classified. Unlikely.
2. It’s complicated so people haven’t bothered writing it down. Likely.
3. In Summer 2019 I had a student, David Zhen, work on cracking gen sub cipher. We will later present what he did.
4. Spoiler Alert:
All of the textbooks I have looked at say

The Gen Sub Cipher is crackable using Freq Analysis

But they do not actually say quite how to really do that.

1. They can’t tell me– it’s classified. Unlikely.
2. It’s complicated so people haven’t bothered writing it down. Likely.
3. In Summer 2019 I had a student, David Zhen, work on cracking gen sub cipher. We will later present what he did.
4. Spoiler Alert: David Zhen has a program that cracks the gen sub cipher.
Random-Looking Ciphers
In the Year 2020 Alice can easily generate a random permutation of \{a, \ldots, z\} and send it to Bob. Key length is not a problem.
In the Year 2020 Alice can easily generate a random permutation of \{a, \ldots, z\} and send it to Bob. Key length is not a problem.

In the Year 1020 it was hard for Alice to generate a random perm and impossible to give it a short description. Hence she generates a random-looking permutation of \{a, \ldots, z\} with a short key.
In the Year 2020 Alice can easily generate a random permutation of \(\{a, \ldots, z\} \) and send it to Bob. Key length is not a problem.

In the Year 1020 it was hard for Alice to generate a random perm and impossible to give it a short description. Hence she generates a random-looking permutation of \(\{a, \ldots, z\} \) with a short key.

1. We show one such methods.
Alternatives to Gen Sub (History)

In the Year 2020 Alice can easily generate a random permutation of \{a, \ldots, z\} and send it to Bob. Key length is not a problem.

In the Year 1020 it was hard for Alice to generate a random perm and impossible to give it a short description. Hence she generates a random-looking permutation of \{a, \ldots, z\} with a short key.

1. We show one such methods.

2. These methods are primitive examples of psuedo-random generators which take a short string and make a random-looking much longer string. These are important in crypto. We will encounter them again.
Keyword-Shift Cipher. Key is (Word, Shift)

\[\Sigma = \{a, \ldots, k\}. \textbf{Key:} (jack, 4). \]
Keyword-Shift Cipher. Key is (Word, Shift)

\[\Sigma = \{a, \ldots, k\}. \textbf{Key:} (j\text{ack}, 4). \]

Alice then does the following:
Keyword-Shift Cipher. Key is (Word, Shift)

$\Sigma = \{a, \ldots, k\}$. Key: (jack, 4).

Alice then does the following:

1. List out the key word and then the remaining letters:

 | j | a | c | k | b | d | e | f | g | h | i |

 This is where a, b, c, . . . go, so:
Keyword-Shift Cipher. Key is (Word, Shift)

\[\Sigma = \{a, \ldots, k\} \]. **Key:** (jack, 4).

Alice then does the following:

1. List out the key word and then the remaining letters:

 \[
 \begin{array}{cccccccccc}
 j & a & c & k & b & d & e & f & g & h & i \\
 \end{array}
 \]

2. Now do Shift 4 on this:

 \[
 \begin{array}{cccccccccc}
 f & g & h & i & j & a & c & k & b & d & e \\
 \end{array}
 \]

This is where \(a, b, c, \ldots\) go, so:

\[
\begin{array}{cccccccccc}
 a & b & c & d & e & f & g & h & i & j & k \\
 f & g & h & i & j & a & c & k & b & d & e \\
 \end{array}
\]
Keyword-Shift Cipher. Key is (Word, Shift) (cont)

To encrypt use:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>a</td>
<td>c</td>
<td>k</td>
<td>b</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
Keyword-Shift Cipher. Key is (Word, Shift) (cont)

To encrypt use:

```
a b c d e f g h i j k
f g h i j a c k b d e
```

To decrypt you invert the table:

```
a b c d e f g h i j k
f i g j k a b c d e h
```
From Short Key Got Rand-Looking Perm(?)

From (jack,4) (which is short) we got

\[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h \\
 f & g & h & i & j & a & c & k \\
\end{array}
\]

Does this cipher look like it was generated randomly? Discuss.

1. No—Note the f-g-h-i-j all in order.
2. The f-g-h-i-j is not an accident. The keyword-Shift cipher tends to have streaks like that.
3. Keyword-Shift Cipher, 4-let keywords, prob of 5-in-a-row is large.
4. Truly random perm, prob of 5-in-a-row is small.
5. Keyword-Shift Cipher, 4-let keywords, not that rand looking.
From (jack,4) (which is short) we got

\[
\begin{array}{ccccccccccc}
 a & b & c & d & e & f & g & h & i & j & k \\
 f & g & h & i & j & a & c & k & b & d & e \\
\end{array}
\]

Does this cipher look like it was generated randomly? Discuss.
From (jack,4) (which is short) we got

\[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h \\
 f & g & h & i & j & a & c & k \\
 b & d & e
\end{array}
\]

Does this cipher look like it was generated randomly? Discuss.

1. No- Note the f-g-h-i-j all in order.
From Short Key Got Rand-Looking Perm(?)

From (jack,4) (which is short) we got

\[
\begin{array}{ccccccccccc}
 a & b & c & d & e & f & g & h & i & j & k \\
 f & g & h & i & j & a & c & k & b & d & e \\
\end{array}
\]

Does this cipher look like it was generated randomly? Discuss.

1. No- Note the f-g-h-i-j all in order.
2. The f-g-h-i-j is not an accident. The keyword-Shift cipher tends to have streaks like that.
From Short Key Got Rand-Looking Perm(?)

From (jack,4) (which is short) we got

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>a</td>
<td>c</td>
<td>k</td>
<td>b</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

Does this cipher look like it was generated randomly? Discuss.

1. No- Note the f-g-h-i-j all in order.
2. The f-g-h-i-j is not an accident. The keyword-Shift cipher tends to have streaks like that.
3. Keyword-Shift Cipher, 4-let keywords, prob of 5-in-a-row is large.
From (jack,4) (which is short) we got

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>a</td>
<td>c</td>
<td>k</td>
<td>b</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>
```

Does this cipher look like it was generated randomly? Discuss.

1. No- Note the f-g-h-i-j all in order.
2. The f-g-h-i-j is not an accident. The keyword-Shift cipher tends to have streaks like that.
3. Keyword-Shift Cipher, 4-let keywords, prob of 5-in-a-row is **large**.
4. Truly random perm, prob of 5-in-a-row is **small**.
From Short Key Got Rand-Looking Perm(?)

From (jack,4) (which is short) we got

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>a</td>
<td>c</td>
<td>k</td>
<td>b</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

Does this cipher look like it was generated randomly? Discuss.

1. No- Note the f-g-h-i-j all in order.
2. The f-g-h-i-j is not an accident. The keyword-Shift cipher tends to have streaks like that.
3. Keyword-Shift Cipher, 4-let keywords, prob of 5-in-a-row is large.
4. Truly random perm, prob of 5-in-a-row is small.
5. Keyword-Shift Cipher, 4-let keywords, not that rand looking.
What about Longer Keywords?

Longer keywords would help
What about Longer Keywords?

Longer keywords would help if you use

Garey and Johnson: A guide to NP-completeness

and eliminate repeats, get:

`gareyndjohsuitpcml`
What about Longer Keywords?

Longer keywords would help

If you use

Garey and Johnson: A guide to NP-completeness

and eliminate repeats, get:

`gareyndjohsuitpcml`

I suspect this would not leave a tell-tale sign of not being random.