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1

Introduction

This book is intended to be an introduction to a rich and elegant area of
Ramsey theory that concerns itself with coloring infinite sequences of objects
and which is for this reason sometimes called infinite-dimensional Ramsey
theory. Transferring basic pigeon hole principles to their higher dimensional
versions to increase their applicability is thus the subject matter of this the-
ory. In fact, this tendency in Ramsey theory could be traced back to the
invention of the original Ramsey theorem, which is nothing other than a
higher dimensional version of the principle that says that a finite coloring of
an infinite set must involve at least one infinite monochromatic subset. Ram-
sey’s original application of the finite-dimensional Ramsey theorem was to
obtain a rough classification of relational structures on the set N of natural
numbers that he needed for a decision procedure that would test the validity
of a certain kind of logical sentence. This original application of the finite-
dimensional Ramsey theorem was matched in depth only forty years later by
the Brunel-Sucheston use of this theorem in showing the existence of the so-
called spreading model of a given Banach space, a notion that has eventually
triggered important developments in that area of mathematics. The infinite-
dimensional extension was also done for utilitarian reasons. It was initiated
forty years ago by Nash-Williams in the course of developing his theory of
better-quasi-ordered sets that eventually led him to the proof of that trees
are well-quasi-ordered under the embedability relation. The full statement of
the infinite-dimensional Ramsey theorem came, however, only through the
work of Galvin-Prikry, Silver, Mathias, and especially Ellentuck, who was the
first to use topological notions to describe what is today generally considered
the optimal form of this result. In this book we present a general procedure
to transfer any other Ramsey theoretic principles to higher and especially
infinite dimensions trying to match the clarity of the Ellentuck result, but
going beyond his topological Ramsey theory. As seen in the prototype ex-
ample of the Ramsey space of infinite sequences of words and variable words
over a fixed finite alphabet, topological Ramsey theory fails to capture the
situation in which the objects that generate combinatorial subspaces are not
the objects that one colors. For this, one needs the new theory of Ramsey
spaces in which there are no natural topologies to describe the complexity of
the allowed colorings. In other words, the new theory addresses not only the
challenging problem of finding the right hypothesis for the colorings but also
the problem of whether such a hypothesis can be preserved under classical
operations such as the Souslin operation. The topological Ramsey theory
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of Ellentuck relies at this point on the classical result of Nikodym asserting
that the Baire property relative to an arbitrary topology is preserved under
the Souslin operation, while general Ramsey space theory requires a special
proof of the corresponding fact. The abstract infinite-dimensional Ramsey
theorem that we prove in Chapter Four leads to many interesting exam-
ples of Ramsey spaces. We had to be quite selective when choosing which
of these Ramsey spaces to present in some detail and which not, and our
choices are all made on the basis of known applications of these spaces. It
is expected that in the years to come many other Ramsey spaces will find
similar applications explaining our main motivation for writing this book.

The book is organized as follows. The Appendix gathers some special no-
tation and supplementary material to help the reader in following the book.
Preliminaries about the Ramsey theorem are given in Chapter One. This
chapter is intended to serve as an indication of the general high-dimensional
Ramsey theory that will be developed from Chapter Four on. So the reader
who is encountering this material for the first time is kindly asked to pa-
tiently wait for a more thorough understanding until the abstract theory is
developed in later chapters. As it will be seen, however, we assume nothing
more from the reader than the familiarity with the general mathemati-
cal culture. The basic pigeon hole principles used in the rest of the book
are briefly presented in Chapters Two and Three. The reader is, however,
advised to skip these two chapters on first reading and instead return to a
particular pigeon hole principle when needed. The reason for being brief here
is that all of these pigeon hole principles are well known, and have already
whole monographs devoted to them and so we found no reason to repro-
duce more than is needed to make this book partially self-contained. The
abstract Ramsey theorem is given in Chapter Four. The two chapters that
follow Chapter Four are devoted to analysis of this theorem based on one of
the basic principles given in Chapters Two and Three. Local Ramsey theory
is presented in Chapter Seven. The optimal parametrization of the infinite-
dimensional Ramsey theorem is given in Chapter Nine, a chapter which is in
part based on Chapter Eight and deals with the Ramsey theory of products
of finite sets. Historical notes, remarks, and suggestions for further reading
and information about related developments are given at the end of each
chapter.



Chapter One

Ramsey Theory: Preliminaries

1.1 COIDEALS

Recall the notion of a coideal on some index set S, a collection H of subsets
of S with the following properties:

(1) ∅ /∈ H but S ∈ H,

(2) M ⊆ N and M ∈ H imply N ∈ H,

(3) M = N0 ∪N1 and M ∈ H imply Ni ∈ H for some i = 0, 1.

We shall be concerned here only with infinite index sets S and we shall
always make the implicit assumption that the coidealH is nonprincipal which
means that we shall consider coideals with the first condition strengthened
as follows:

(1’) S ∈ H, but {x} /∈ H for all x ∈ S.

Thus, coideals are notions of largeness for subsets of various sets S that typ-
ically carry some structure, and the purpose of Ramsey theory is to discover
and organize them, as well as to lift them to higher dimensions. Consider
the following four examples of families of subsets of some infinite index sets
S.

Example 1.1.1 (Ramsey) Let S = N be the set of natural numbers and
let H be the collection of all infinite subsets of N.

While it is difficult to imagine a more simple fact than that H of Example
1.1.1 is indeed a coideal on N, the corresponding fact in the following example
is a major result of Ramsey theory, which we introduce in Sections 2.3 and
2.6 below (Hindman’s theorem).

Example 1.1.2 (Hindman) Let S = FIN be the collection of all nonempty
finite subsets of N and let H be the collection of all subsets M of FIN for
which we can find an infinite sequence (xn) of pairwise disjoint elements
of FIN such that xn0 ∪ ... ∪ xnk

∈ M for every finite increasing sequence
n0 < ... < nk of integers.

The fact that the family H of the following example is a coideal is also a
major result of Ramsey theory, which we treat briefly in Section 2.5 below
(The Hales-Jewett Theorem).
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Example 1.1.3 (Hales-Jewett) Let S = WL be the semigroup of words
over some fixed finite alphabet L and let H be the collection of all subsets M
of WL for which one can find an infinite sequence (xn) of variable-words1

over L such that xn0 [λ0]a...axnk
[λk] ∈ M for every finite sequence n0 <

... < nk of indexes and every choice λ0, . . . , λk of letters from L to substitute
all the occurrences of the variable in variable-words xn0 , . . . , xnk

that they
are assigned to.

Finally, the fact that the family H of the following example is indeed an
example of a coideal on its index set is one of the finest results of Ramsey
theory, the Halpern-Läuchli theorem (see Sections 3.1 and 3.2 below).

Example 1.1.4 (Halpern-Läuchli) Let S =
∏

i<d Ti be the product of a
finite sequence Ti (i < d) of finitely branching rooted trees of height ω with
no terminal nodes and let H be the collection of all subsets D of S for which
we can find ti ∈ Ti (i < d) such that for every integer n the set D contains
a product

∏
i<d Xi, where for each i < d the set Xi ⊆ Ti dominates every

node of Ti at level n comparable with ti.

Remark 1.1 As already noted in the preface, one purpose of this book is to
develop methods that would step up such basic Ramsey theoretic principles
to higher dimensions. Perhaps it should also be noted that this is a nontrivial
matter even in the case of Example 1.1.1. In fact, this was the original
contribution by F. P. Ramsey himself. Perhaps at this point it is not even
clear what “higher dimension” in each of these four examples means. It is
for this reason that we reproduce Ramsey’s original contribution below not
only as a way of getting a feeling for what “dimension” means, but also as
a way of showing why there is a need for developing this higher-dimensional
Ramsey theory at all.

The notion of a coideal has an important extremal case worth pointing
out. Recall, thus, that an ultrafilter on some index set S is a coideal U of
subsets of S which in addition to (1), (2) and (3), or (1’), (2) and (3), has
the following property that makes them minimal coideals on the given index
set S :

(4) M ∈ U and N ∈ U imply M ∩N ∈ U .

A given coideal H on S can be identified with a quantifier (Hx), where
the variable x ranges over elements of S. Thus, for a given property ϕ(x) of
elements of S, we write (Hx) ϕ(x) to mean that

{x ∈ S : ϕ(x)} ∈ H.

Analyzing such quantifiers is what usually lies behind the discovery and proof
of basic Ramsey theoretic results such as these given in the four examples

1Here, a variable-word is simply a word x over the extended alphabet L∪{v} for some
symbol (“variable”) v /∈ L such that v occurs in x at least once. Given a variable-word x
and λ ∈ L, we denote by x[λ], the word obtained from x substituting by λ any occurrence
of v in x.
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above. Particularly useful are quantifiers (Ux) that correspond to ultrafilters
U on S. In this case, the quantifier (Ux) has the following pleasant properties.

(a) (Ux) ϕ0(x) ∧ (Ux) ϕ1(x) is equivalent to (Ux) (ϕ0(x) ∧ ϕ1(x)).

(b) (Ux) ϕ0(x) ∨ (Ux) ϕ1(x) is equivalent to (Ux) (ϕ0(x) ∨ ϕ1(x)).

(c) ¬(Ux) ϕ(x) is equivalent to (Ux) ¬ϕ(x).

If the index set S carries some (partial) semigroup operation, the quantifier
notation suggests the way to extend this operation on the space of all ultra-
filters on S. We shall exploit this in the next chapter, which is devoted to
semigroup colorings.

Remark 1.2 Readers not familiar with the notion of ultrafilter and the
corresponding quantifier are kindly urged to check the properties (a), (b)
and (c) of the quantifier. For these readers we have also reproduced below
proofs of some of the standard results from this theory that use this quantifier
which they can then compare with the proofs that avoid these quantifiers.
These comparisons are suggested only as a way of getting familiar with
ultrafilters as tools in this area. While ultrafilters as tools for achieving the
main goals of this book are secondary, there is a growing number of important
basic Ramsey theoretic principles (even on the level of importance of those
presented above in Examples 1–4) whose only known proofs use ultrafilters.
This situation is indeed unsatisfactory, but the objection that these proofs
fail to be satisfactory because they use the Axiom of Choice is not formally
valid. Namely, for given a Ramsey theoretic problem2 P, we consider the
field GP of subsets of S that are Gödel-constructible from P. As Gödel has
shown (without using AC!), the field of sets GP does admit a rich family of
ultrafilters suitable for any argument one ever wishes to pursue in this area.
This is much like the way the field of Lebesgue-measurable sets works for
analysts.

1.2 DIMENSIONS IN RAMSEY THEORY

The concept of dimension in Ramsey theory comes naturally when one en-
counters a problem that involves colorings of subsets of some structure S,
all of some fixed cardinality k that is typically assumed to be either finite or
countably infinite. Given a k-element subset F of S, one colors it with the
isomorphism type of the structure induced from S. It is for this reason that
one usually fixes the type τ and concentrates on solving the Ramsey theo-
retic problem that involves colorings of subsets of S of type τ. Having fixed
one such τ, one uses the notation S[k] for the family of all k-element subsets
of S of type τ. For example, if S is equal to the set N of natural numbers

2The P could be seen as a particular subset of S (a “coloring”) we wish to consider, a
set of integers of positive upper density, etc.
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with the usual ordering, N[k] is simply the set of all k-element subsets of N
that can also be viewed as the set of all increasing k-sequences of elements
of N. So the k-dimensional Ramsey theoretic result in this context is the
following famous theorem.

Theorem 1.3 (Ramsey) For every positive integer k and every finite color-
ing of the family N[k] of all k-element subsets of N, there is an infinite subset
M of N such that the set M [k] of all k-element subsets of M is monochro-
matic.

Corollary 1.4 (Ramsey) For all positive integers k, l, and m, there is a
positive integer n such that for every n-element set N and every l-coloring
of N [k], there is M ⊆ N of cardinality m such that M [k] is monochromatic.

It follows that the family H[k] of subsets X of N[k] that include some set
of the form M [k] for infinite M ⊆ N forms a coideal on N[k], a fact that is
considerably deeper than the fact that the family H of Example 1.1.1 forms
a coideal. Thus, H[k] is some sort of k-power of H = H[1]. It turns out that
the power operation is considerably easier to visualize when applying it to
ultrafilters rather than coideals. To see this, let U be a given nonprincipal
ultrafilter3 on N. For a positive integer k, let Uk be a family of subsets of
N[k] defined as follows:

A ∈ Uk iff (Ux0)(Ux1) ... (Uxk−1) {x0, x1, . . . , xk−1} ∈ A.

Then Uk is an ultrafilter on N[k]. Equivalently, one can define a quantifier
Uk~x on increasing k-sequences ~x = (x0, x1, . . . , xk−1) of elements of N as
follows:

(Uk~x) ϕ(~x) iff (Ux0)(Ux1) ... (Uxk−1) ϕ(x0, x1, . . . , xk−1).

Theorem 1.3 is proved once we establish the following fact.

Lemma 1.5 For every A ∈ Uk, there is infinite M ⊆ N such that A ⊇M [k].

Proof. Clearly, we may assume k > 1. We shall think of A as a set of in-
creasing k-sequences ~x of elements of N, we shall think of Uk as living on the
set of all increasing k-sequences, and we shall use also its lower-dimensional
versions U l (1 ≤ l ≤ k). The set M = (mi)

∞
i=0 will be picked recursively

according to its increasing enumeration. Since

(Uk~x) ~x ∈ A,

there must be an integer m0 such that

(Uk−1~y) (m0)a~y ∈ A.

Suppose we have already chosen m0, . . . ,mp such that

(∀l ≤ k)(∀~x ∈ {m0, . . . ,mp}
[l])(Uk−l~y) ~xa~y ∈ A,

3Recall that an ultrafilter on N (or any other index set, for that matter) is nonprincipal
if it is not of the form {X ⊆ N : k ∈ X} for some k ∈ N.
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where U0 is to be interpreted as containing the single set, the singleton over
the empty sequence. It follows that

(∀l < k)(∀~x ∈ {m0, . . . ,mp}
[l])(Um)(Uk−l−1~y) ~xa(m)a~y ∈ A.

Since U is nonprincipal there is mp+1 > mp such that the inductive hypoth-
esis

(∀l ≤ k)(∀~x ∈ {m0, . . . ,mp,mp+1}
[l])(Uk−l~y) ~xa~y ∈ A

remains preserved. Once the set M = (mi)
∞
i=0 has been constructed, it is

clear that we will have the inclusion M [k] ⊆ A. 2

A nonprincipal ultrafilter U on N with the property that for every positive
integer k, its k-power Uk is generated by sets of the form M [k] (M ∈ U), i.e.,
if Uk = U [k], is called a selective ultrafilter , or Ramsey ultrafilter . Thus a
Ramsey ultrafilter U has the property that for every finite coloring of some
finite power N[k], there is M ∈ U such that M [k] is monochromatic.

Let us now give Ramsey’s original application of Theorem 1.3. It is a good
example of how one applies a Ramsey theoretic result to a given problem. It
could also serve as a good indicator of which kind of problems such Ramsey
theoretic results could be relevant to.

Definition 1.6 Fix a positive integer k. For a sequence ~ρ ∈ {<,=, >}k×k,
define a relation R~ρ ⊆ Nk by

R~ρ(~x) iff (∀(i, j) ∈ k × k) xi ~ρ(i, j) xj .

Relations of the form R~ρ are called atomic canonical k-ary relations on N.
We call a relation R ⊆ Nk a canonical k-ary relation on N if R is equal to
the disjunction of a set of atomic canonical k-ary relations on N.

The point here is that there are no more than 23k2

(a list computable
from k)4 canonical k-ary relations on N and that if R is one such relation
then the structure 〈N, R〉 is isomorphic to any of its restrictions 〈M,R〉 for
M an infinite subset of N. On the other hand, note that when k ≥ 2 there
exist continuum many nonisomorphic structures of the form 〈N, R〉 for R a
k-ary relation on N. So the following “rough classification” result is quite
interesting.

Theorem 1.7 (Ramsey) For every positive integer k and every relation
S ⊆ Nk there is an infinite subset M of N and a canonical k-ary relation R
on N such that S ∩Mk = R ∩Mk.

Proof. Given a relation S ⊆ Nk consider the following equivalence relation
E on N[k] = {a ⊆ N : |a| = k}. Two k-element subsets a = {x0, . . . , xk−1}
and b = {y0, . . . , yk−1}, enumerated increasingly, are equivalent if

(∀ι ∈ kk) [S(xι(0), . . . , xι(k−1))↔ S(yι(0), . . . , yι(k−1))].

4The reader is indeed invited to make a list of all different canonical relations for small
dimensions k. For k = 2, the list is {⊥, =, <,≤, >,≥, 6=,⊤}.
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Note that E has no more than 2kk

equivalence classes, so by Theorem 1.3
there exists an infinite subset M of N such that M [k] is included in one
of the classes; i.e., every two k-element subsets of M are E-equivalent. Let
{m0, . . . ,mk−1} be the increasing enumeration of the first k members of M.
Let

Σ = {ι ∈ kk : S(mι(0), . . . ,mι(k−1)) holds}.

For ι ∈ Σ, define ~ρι ∈ {<,=, >}k×k by letting

~ρι(i, j) = ρ iff (ι(i), ι(j)) ∈ ρ,

for (i, j) ∈ k × k and ρ ∈ {<,=, >}. Let R be the disjunction of the atomic
canonical relations R~ρι

(ι ∈ Σ). Then it is straightforward to check that
S ∩Mk = R ∩Mk. 2

In the particular case of equivalence relations restricted to N[k] viewed as
the subset of Nk consisting of increasing k-tuples, one has a very clear picture
of the canonical form. The canonical equivalence relations are determined by
subsets I ⊆ {0, . . . , k − 1} as follows

(x0, . . . , xk−1)EI(y0, . . . , yk−1) iff (∀i ∈ I) xi = yi,

where the k-tuples (x0, . . . , xk−1) and (y0, . . . , yk−1) are taken to be increas-
ing according the order of N. This gives us the following well-known result,5

which we give as an application of Theorem 1.7 and therefore ultimately as
an application of the original high-dimensional Ramsey theorem 1.3.

Theorem 1.8 (Erdös-Rado) For every equivalence relation E on N[k] there
is an infinite subset M of N and an index set I ⊆ {0, . . . , k − 1} such that
E ↾ M [k] = EI ↾ M [k].

Proof. Let

RE = {(x0, . . . , x2k−1) ∈ N2k : {x0, . . . , xk−1}E{xk, . . . , x2k−1}}.

By Theorem 1.7, we get an infinite subset M of N and Σ ⊆ {<,=, >}2k×2k

such that RE is equal to the disjunction of R~ρ (~ρ ∈ Σ). Let

I = {i < k : (∀~ρ ∈ Σ) ~ρ(i, k + i) ==}.

Choose an infinite subset N of M which has the property that between every
two integers of N there is at least one integer of M. We shall show that

E ↾ N [k] = EI ↾ N [k].

Suppose s, t ∈ N [k] when enumerated increasingly as {s0, . . . , sk−1} and
{t0, . . . , tk−1}, respectively, agree on indices from I. Let us show that s and
t are E-equivalent. This is done by induction on the cardinality of the set

D(s, t) = {i < k : si 6= ti},

5Since we are still at the very basic level, the reader for whom all this is very much
new may wish to prove directly the case k = 2 of Theorem 1.8.
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which is by our assumption disjoint from the set I. If D(s, t) = ∅, then s
and t are equal and therefore E-equivalent. Suppose now that |D(s, t)| = 1,
or in other words that D(s, t) is equal to a singleton {i}. Since i /∈ I, there
is ~ρ ∈ Σ such that ~ρ(i, k + i) 6== . By the assumption that between every
two integers from N there is one from M, we can find u ∈M [k] such that

(s0, . . . , sk−1, u0, . . . , uk−1) ∈ R~ρ and (t0, . . . , tk−1, u0, . . . , uk−1) ∈ R~ρ.

It follows that sEu and tEu and therefore sEt. Consider now the case
|D(s, t)| > 2 and let i be the minimal member of D(s, t). Let t′ be ob-
tained from t by replacing its ith member with si. Then |D(s, t′)| < |D(s, t)|
and s and t′ agree on I, so sEt′ by the induction hypothesis. By the tran-
sitivity of E, we would get the desired conclusion sEt, provided we show
that tEt′. However, note that D(t, t′) = {i}, so the desired conclusion tEt′

follows from the case D(s, t) = 1.
Conversely, suppose that pairs s = {s0, . . . , sk−1} and t = {t0, . . . , tk−1}

of k-element subsets of N are E-equivalent. Let us show that si = ti for
all i ∈ I. Pick a ~ρ ∈ Σ such that (s0, . . . , sk−1, t0, . . . , tk−1) ∈ R~ρ. Then
~ρ(i, k + i) == for all i ∈ I, and therefore si = ti for all i ∈ I, as required.
This finishes the proof. 2

Corollary 1.9 For all positive integers k and m there is an integer n such
that for every equivalence relation E on {0, 1, . . . , n}[k], there is a set M ⊂
{0, 1, . . . , n} of cardinality m such that the restriction E ↾ M [k] is equal to
one of the 2k canonical equivalence relations on M [k].

Corollary 1.10 Given an integer k ≥ 1 and regressive6 map f : N[k] → N,
there is an infinite M ⊆ N such that f(s) = f(t) for all s, t ∈M [k] with the
property min(s) = min(t).

Proof. Apply Erdös-Rado theorem to the equivalence relation Ef on N[k]

induced by f, i.e., sEf t iff f(s) = f(t), and get infinite M ⊆ N and I ⊆
{0, 1, . . . , k − 1} such that Ef ↾ M [k] = EI ↾ M [k]. Since f is regressive and
since M is infinite, it must be that either I = ∅, or I = {0}, as required. 2

Corollary 1.11 For all positive integers k and m there is an integer n such
that for every regressive mapping f : {0, 1, . . . , n}[k] → N, there is M ⊆
{0, 1, ...., n} of cardinality m such that f(s) = f(t) for all s, t ∈ M [k] with
the property min(s) = min(t). 2

Note that Theorem 1.8 is a strengthening of Theorem 1.3 as it applies to
colorings of N[k] into any number of colors, not just finite. In fact, this result
suggests that many Ramsey theoretic facts have “canonical versions” that
apply to an unrestricted number of colors. Indeed, this is an important and
deep line of investigation that has already reached some maturity and that
typically also involves methods from other areas of combinatorics, such as
various methods of enumerating combinatorial configurations. However, in
order to keep this book to a reasonable length, we shall mention here very
few results of this sort.

6A map f : N[k] → N is regressive if f(s) < min(s) for all s ∈ N[k] such that min(s) 6= 0.
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1.3 HIGHER DIMENSIONS IN RAMSEY THEORY

The purpose of this section is to isolate the property of a family F of finite
subsets of N that permits us to state and prove the analog of the Ramsey
theorem for F . The analog should of course apply to the case

F = N[k] = {s ⊆ N : |s| = k}

giving us back the original Ramsey theorem, but the point here is that F
could be of a considerably higher complexity we could precisely measure.
Before we proceed further, we fix some notation. Let

N[<∞] = {s ⊆ N : s is finite}

denote the family of all finite subsets of N including the empty set ∅.7 For a
given family F of finite subsets of N and for a (typically infinite) subset M
of N, we shall consider the following kind of restriction of F on M ,

F|M = {s ∈ F : s ⊆M}.

This is of course not the only kind of restriction one can make. For example,
we can take the trace {s∩M : s ∈ F}, which is actually a quite different kind
of restriction of F on M . While in general carelessness about the distinctions
between the restrictions can lead to confusion, the notion of barrier that we
are about to define in this section will, among other things, help us avoid
these traps. Finally, we let ⊑ denote the initial segment relation on N[<∞],
or more precisely,

s ⊑ t iff s = t or s = {m ∈ t : m < n} for some n ∈ t.

Let ⊏ denote the strict version of ⊑ . We are now ready to define the three
properties of families of finite subsets of N that are the subject matter of
this section.

Definition 1.12 For a family F of finite subsets of N, we say that

(1) F is Ramsey if for every finite partition F = F0 ∪ ... ∪ Fk and for
every infinite set N ⊆ N there is an infinite set M ⊆ N such that at
most one of the restrictions F0|M, . . . ,Fk|M is nonempty;

(2) F is Nash-Williams if s 6⊑ t for every pair s 6= t ∈ F ;

(3) F is Sperner if s * t for every pair s 6= t ∈ F .

Lemma 1.13 For every Ramsey family F of finite subsets of N and every
infinite subset N of N, there is an infinite set M ⊆ N such that the restriction
F|M is Sperner and therefore Nash-Williams.

Proof. Apply the assumption that F is a Ramsey family to the partition
F = F0 ∪ F1, where F0 is the family of all ⊆-minimal elements of F . 2

The following result shows that some sort of converse to this is true.

7Recall that in Example 1.1.2 we use the notation FIN for the family of all nonempty
subsets of N, an important difference, which is going to become more clear as we go on.
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Theorem 1.14 (Nash-Williams) Every Nash-Williams family is Ramsey.

Corollary 1.15 (Ramsey) For every positive integer k, the family N[k] of
k-element subsets of N is Ramsey.

Proof. Clearly, N[k] is Sperner and, therefore, Nash-Williams. 2

The original proof of Theorem 1.14 which we now present is the first use
of combinatorial forcing a technique that plays a quite prominent role in the
rest of the book. We shall, however, not follow the original terminology and
notation. To avoid repeating certain phrases, we shall let the variable M, N ,
P , ... run over infinite subsets of N, the variables s, t, u, ... over finite subsets,
and m,n, p, ... over elements of N.

For the purpose of the next definition of combinatorial forcing and the
three lemmas that follow, we fix a Nash-Williams family F of finite subsets
of N.

Definition 1.16 We say that M accepts s if s is ⊑-comparable8 to some
t ∈ F such that t ⊆ s∪M. We say that M rejects s if there is no t ⊆ s∪M
in F that is ⊑-comparable to s. We say that M strongly accepts s if every
P ⊆M accepts s. Finally, we say that M decides s if either M rejects s or
if M strongly accepts s.

Note the following immediate properties of these notions.

Lemma 1.17 (1) For every M and s, there is N ⊆M that decides s.

(2) If M strongly accepts (respectively, rejects) s then every infinite subset
of M strongly accepts (respectively, rejects) s.

Using this and a simple diagonalization procedure we get the following.

Lemma 1.18 Every infinite subset of N can be refined to an infinite set that
decides all of its finite subsets.

Fix an M that decides all of its finite subsets.

Lemma 1.19 If M strongly accepts some subset s, then M strongly accepts
s ∪ {n} for all but finitely many n in M.

Proof. Otherwise, let

N = {n ∈M : n > max(s) and M rejects s ∪ {n}}.

ThenN is an infinite subset ofM that rejects s, contradicting the assumption
that M strongly accepts s. 2

We are now ready to complete the proof of Nash-Williams’s theorem. So
fix a partition F = F0 ∪ F1 of some Nash-Williams family F and fix some
infinite subset M of N. We need to find an infinite subset P of M such

8That is, s ⊑ t or t ⊑ s.
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that one of the restrictions F0|P or F1|P is empty. Applying the lemmas
to the first piece F0 of the partition and shrinking F , we may assume that
M F0-decides all of its finite subsets and, moreover, that if M F0-strongly
accepts one of its finite subsets, then M F0-strongly accepts s ∪ {n} for all
n ∈M such that n > max(s). If M F0-rejects ∅, then clearly F0|M = ∅. So,
suppose that M strongly accepts ∅. Then by induction on the cardinality
|s| of a subset s of M, one shows that M strongly accepts all of its finite
subsets. Since no two distinct elements of the family F = F0 ∪ F1 are ⊑-
comparable, it follows that M does not contain an element of the family F1,
which finishes the proof.

Theorem 1.14 was originally invented to facilitate the following notion
which has found many uses, not only in the original theory of well-quasi-
orderings, but also in such diverse areas as Banach space geometry.

Definition 1.20 A family F of finite subsets of N is a front on some infinite
subset M of N if F is a Nash-Williams family and if every infinite subset of
M has an initial segment in F . If, moreover, F is a Sperner family then we
say that F is a barrier on M.

Corollary 1.21 If F is a front on M, then there is an infinite subset P of
M such that the restriction F|P is a barrier on P.

Proof. Apply Theorem 1.14 to the partition F = F0 ∪ F1, where F0 is the
set of all ⊆-minimal elements of F . 2

Corollary 1.22 For every finite partition F = F0 ∪ ... ∪ Fk of a family F
that is a barrier on some infinite subset N of N, there is infinite M ⊆ N
and 1 ≤ i ≤ k such that the restriction Fi|M is a barrier on M .

The point of introducing fronts as well as barriers is that, while one usually
works with barriers, the natural recursive constructions will give us families
that are only fronts rather than barriers. For example, if for every integer
n ∈M we fix a front Fn on the tail M/n = {m ∈M : m > n} then

F = {{n} ∪ s : n ∈M and s ∈ Fn}

is a front on M. Naturally, concrete examples of fronts like F = N[k] or

S = {s ⊆ N : |s| = min(s) + 1}

are already barriers. The family S is the famous Schreier barrier , which
plays an important role in the Banach space geometry. It is in some sense
the minimal barrier of infinite rank. So let us give some information about
the rank of a barrier that will be useful in some places later in the book. The
notion of rank is facilitated by the following immediate property of barriers.

Lemma 1.23 Suppose F is a barrier on N. Letting F be the topological
closure of F inside the Cantor set 2N,9 we have the following equalities:

F = {t : (∃s ∈ F) t ⊆ s} = {t : (∃s ∈ F) t ⊑ s}.

9We are using here the standard identification of sets and characteristic functions.
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Lemma 1.23 gives us two equivalent ways to define the rank of a barrier. For
example, it gives us that the topological closure F is a countable compactum,
and therefore, K = F is a compact scattered space, and so it makes sense
to talk about its Cantor-Bendixson index, the minimal ordinal α with the
property that the (α + 1)’st Cantor-Bendixson derivative K(α+1) = ∅, or
equivalently, the uniquely determined ordinal α with the property K(α) =
{∅}.10 The same index can be obtained in a purely combinatorial way by
observing that

T (F) = {s : (∃t ∈ F) s ⊑ t}

considered as a tree ordered by the relation⊑ of end-extension has no infinite
branches. This allows us to define recursively a strictly decreasing map ρ =
ρT (F) from T (F) into the ordinals by the following rule:

ρ(s) = sup{ρ(t) + 1 : t ∈ T (F) and t ⊐ s}. (1.1)

It is easily seen that α = ρT (F)(∅) is the maximal ordinal with the property

K(α) 6= ∅ for K = F , so we can make the following two equivalent definitions
of rank of a barrier.

Definition 1.24 If a family F of finite subsets of N is a barrier on some
infinite set M ⊆ N, then its rank on M, denoted by rkM (F) is defined to
be the Cantor-Bendixson index of the countable compactum F|M. Equiva-
lently, rkM (F) = ρT (F|M)(∅), where ρT (F|M) is the rank function on the
well-founded tree T (F|M).

We shall suppress the index M in the notation for the rank when this is clear
from the context, for example, when we are working with a barrier F on N.
To express better our next information about the rank of some barrier F ,
we need a notation for a section of a given barrier F over an integer n,

F{n} = {s : min(s) > n and {n} ∪ s ∈ F}.

Note that if F is a barrier on some infinite subset M of N, then for each
integer n ∈ M, if we let M/n denote the tail set {m ∈ M : m > n} of M,
the restriction F{n}|(M/n) is a barrier on M/n. Note also that for n ∈ M
the tree T (F{n}|(M/n)) is naturally isomorphic to the cone subtree

{s ∈ T (F|M) : n = min(s)} = {s ∈ T (F|M) : {n} ⊑ s}

of the tree T (F|M), so we have that

ρT (F|M)({n}) = ρT (F{n}|(M/n))(∅) for all n ∈M. (1.2)

On the other hand, from the recursive definition given in Equation (1.1), we
infer that

ρT (F|M)(∅) = sup{ρT (F|M)({n}) + 1 : n ∈M}. (1.3)

This establishes the following information about the rank of a given barrier
F , which will be quite useful in some later chapters of this book.

10Recall the definition of the standard Cantor-Bendixson derivation: K(0) = K,
K(α+1) = K(α) \ {x ∈ K(α) : x is isolated in K(α)}, and K(λ) =

⋂
α<λ K(α) for a

limit ordinal λ > 0.
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Lemma 1.25 Suppose that a family F of finite subsets of N is a barrier on
some infinite subset M of N. Then

rkM (F) = sup{rkM/n(F{n}) + 1 : n ∈M}.

It follows that rk(N[k]) = k for every positive integer k and that rk(S) = ω
for the Schreier barrier

S = {s ⊆ N : |s| = min(s) + 1}.

Lemma 1.25 allows us to prove results about barriers by induction on their
ranks. For example, we suggest the reader examine the corresponding nat-
ural inductive proof of the Nash-Williams Theorem and compare it with
the standard proof of the Ramsey Theorem which uses induction on the
dimension k.

We finish this section with an important result that relates an arbitrary
family of finite subsets to Nash-Williams notions of blocks and barriers.

Theorem 1.26 (Galvin) For every family F of finite subsets of N, there is
an infinite subset M of N such that either F|M = ∅, or else every infinite
subset of M has an initial segment in F , or in other words, the restriction
F|M contains a barrier on M.

The proof again uses combinatorial forcing, this time even more relevant
to the subject matter of this book. We adopt the previous convention about
variables and define the following notion of combinatorial forcing relative to
some fixed family F of finite subsets of N.

Definition 1.27 We say that M accepts s if every infinite subset P of s∪M
that has s as an initial segment also has an initial segment that belongs to
F . It there is no infinite subset of M that accepts s, then we say that M
rejects s. We say that M decides s if M either accepts or rejects s.

Note that this notion of “accepts” corresponds to “strongly accepts” in
the earlier version of the combinatorial forcing. We again have the following
two immediate properties.

Lemma 1.28 (1) For every M and s, there is N ⊆M which decides s.

(2) If M accepts(rejects) s, then every N ⊆M accepts(rejects) s.

Corollary 1.29 Every infinite subset N of N can be refined to an infinite
subset M that decides all of its finite subsets.

Proof. We construct recursively an infinite sequence (Mk) of infinite subsets
of N as follows. By Lemma 1.28 (1) find an infinite set M0 ⊆ N that decides
∅. Suppose we have constructed a decreasing sequence M0 ⊇ M1 ⊇ · · · ⊇
Mk of infinite sets such that m0 = min(M0) < m1 = min(M1) < · · · <
mk = min(Mk). Apply Lemma 1.28 and get an infinite subset Mk+1 of
Mk such that mk+1 = min(Mk+1) > mk and such that Mk+1 decides all
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s ⊆ {m0,m1, . . . ,mk} such that max(s) = mk. This gives us the inductive
step. Let M = {mk : k ∈ N}. Then M decides all of its finite subsets. 2

Note also the following immediate property of acceptance.

Lemma 1.30 M accepts s if and only if M accepts s ∪ {n} for all n ∈ M
such that n > max(s).

Fix an infinite subset M of N that decides all of its finite subsets.

Lemma 1.31 Suppose that M rejects one of its finite subsets s. Then M
rejects s ∪ {n} for all but finitely many n ∈M, n > max(s).

Proof. Otherwise, the set

N = {n ∈M : n > max(s) and M accepts s ∪ {n}}

is an infinite subset of M that by Lemma 1.30 accepts s, contradicting the
assumption that M rejects s and the fact that rejection is monotone. 2

We are now ready to finish the proof of Theorem 1.26. Given a family F
of finite subsets of N, we consider the corresponding notion of combinatorial
forcing. By Corollary 1.29 we fix an infinite set M that decides all of its
finite subsets. If M accepts ∅, the second alternative of Theorem 1.26 is
true. So suppose that M rejects ∅. By Lemma 1.31 we can fix n0 ∈M such
that M rejects {n} for all n ≥ n0. Having defined an increasing sequence
n0 < ... < nk of elements of M such that M rejects all s ⊆ {n0, . . . , nk}, by
Lemma 1.31, we can find nk+1 > nk in M such that M rejects s ∪ {n} for
all s ⊆ {n0, . . . , nk} and n ≥ nk+1. Finally, let N = {n0, n1, ..., nk, ...}. Then
N is an infinite subset of N such that F|N = ∅. This finishes the proof.

The following reformulation of Theorem 1.26 is worth pointing out.

Corollary 1.32 Let F be an arbitrary family of finite subsets of N and let
F0 be the collection of all ⊆-minimal members of F . Then either there is an
infinite subset M of N such that F|M = ∅, or else there is an infinite subset
M of N such that the restriction F0|M is a barrier on M.

We finish this section with some applications of this result. For this we
need the following definition.

Definition 1.33 A family F of finite subsets of N is

(1) dense if every infinite subset of N contains an element of F ,

(2) hereditary if s ⊆ t and t ∈ F imply s ∈ F ,

(3) relatively compact if the topological closure F of F viewed as a subset11

of 2N contains only finite sets,

(4) extensible if {n : s ∪ {n} /∈ F} is finite for all s ∈ F .

11We are identifying here subsets of N with their characteristics functions.
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Recall that Lemma 1.23 above says that if F is a family of finite subsets
of some infinite set M ⊆ N, which, moreover, is a barrier on M, then the
topological closure of F is equal to both versions of its downward closures,
or more precisely,

F = {s ⊆M : (∃t ∈ F) s ⊆ t} = {s ⊆M : (∃t ∈ F) s ⊑ t}. (1.4)

Corollary 1.34 Suppose F and G are two barriers on the same infinite set
N ⊆ N. Then there is an infinite M ⊆ N such that F|M ⊆ G|M, or, vice
versa, G|M ⊆ F|M.

Proof. Color a given element s from F in two colors according to whether or
not it has an initial segment in G. Similarly, color a given element t from G
in two colors according to whether or not it has an initial segment in F . By
Theorem 1.14(Nash-Williams), find infinite M ⊆ N such that the restrictions
F|M and G|M are both monochromatic. Since F and G are barriers on M,
the set M itself has an initial segment s ∈ F and another initial segment
t ∈ G. Then either s ⊑ t or else t ⊑ s. By symmetry, we may assume that
s ⊑ t. It then follows from the general Equation (1.4) for the closures of
barriers that F|M ⊆ G|M. 2

Note that from Equation (1.4) it follows, in particular, that the closure of a
barrier is a compact hereditary family of finite subsets of N. The following
result is some sort of converse of this.

Lemma 1.35 For every relatively compact family S of finite subsets of N
there is an infinite set M and a barrier F on M such that the trace of S on
M is equal to the closure of F , or more precisely, {s ∩M : s ∈ S} = F .

Proof. As before, we will recursively construct an infinite decreasing se-
quence

M0 ⊇M1 ⊇ · · · ⊇Mk ⊇ · · · (1.5)

of infinite subsets of N such that the corresponding sequence of integers
mi = min(Mi) is strictly increasing and gives us eventually the desired set
M and barrier F on M . We start by choosing an infinite set M0 ⊆ N that
has one of the following two properties,

(∀s ∈ S) s ∩M0 = ∅ or (∀n ∈M0)(∃s ∈ S) s ∩M0 = {n}. (1.6)

If Mk is defined, we choose infinite Mk+1 ⊆Mk such that min(Mk+1) > mk

and such that for all t ⊆ {m0, . . . ,mk} with the property max(t) = mk, we
have that either

(∀s ∈ S) s ⊒ t→ s ∩Mk+1 = ∅ (1.7)

or else

(∀n ∈Mk+1)(∃s ∈ S) s ⊒ t and s ∩Mk+1 = {n}. (1.8)

Let M = {mk : k ∈ N} and let F be the collection of all ⊑-maximal elements
of the trace {s ∩M : s ∈ S}. Then it follows easily from our construction
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that F is a front on the set M, i.e., that every infinite subset of M contains
an initial segment in F . Let F0 be the collection of all ⊆-minimal elements
of F . Applying Theorem 1.14 (Nash-Willams) to the coloring

F = F0 ∪ (F \ F0),

we find an infinite subset N of M such that F|N = F0|N. It follows that
F0|N is a barrier on N and that the trace {s ∩ N : s ∈ S} is equal to the
closure F0|N. This finishes the proof. 2

One may think of the following corollary as a simultaneous version of
Galvin’s lemma (Theorem 1.26), which admittedly works only in the realm
of extensible families of finite subsets of N.

Corollary 1.36 For every finite sequence S0,S1, ...,Sk of dense extensible
families of finite subsets of N, there is an infinite set M such that the inter-
section

⋂k
i=0(Si|M) contains a barrier on M.

Proof. Applying Galvin’s Lemma (Theorem 1.26), we first find an infinite set
N ⊆ N such that for every i ≤ k, the restriction Si|N contains a barrier Fi

on N. Applying Corollary 1.34 and reindexing if necessary, we may assume
that we have an infinite set M ⊆ N such that

F0|M ⊆ F1|M ⊆ · · · ⊆ Fk|M.

Using the assumption that Si is a sequence of extensible families and using
a sufficiently thin subset of M, we may further assume that for every i ≤ k,
every s ∈ Si|M, and every n ∈ M such that n > max(s), we have that

s∪{n} ∈ Si. It follows then easily that the intersection
⋂k

i=0(Si|M) contains
the barrier Fk|M, as required. 2

Remark 1.37 Note that Corollary 1.36 has Theorem 1.14(Nash-Williams)
as an immediate consequence. To see this, let F = F0∪F1 be a given coloring
of some Nash-Willams family F . For i = 0, 1, let Si be the collection of
all finite subsets of N that have initial segment in Fi. If the conclusion of
Theorem 1.14 (Nash-Williams) fails, S0 and S1 would be two dense extensible
families. Note however that these two families do not intersect, so this would
contradict Corollary 1.36.

In the rest of this section we present results surrounding an extension of
Theorem 1.8 of Erdős-Rado. It is a Ramsey classification result for equiva-
lence relations defined on barriers. First of all, note that an arbitrary equiv-
alence relation defined on some barrier F has the form Eϕ for some mapping
ϕ : F → N[<∞], where

sEϕt if and only if ϕ(s) = ϕ(t).

When E = Eϕ, we shall say that E is represented by ϕ. As we shall see, the
following definition isolates the class of mappings that represent canonical
equivalence relations defined on barriers.
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Definition 1.38 For a mapping of ϕ : F → N[<∞] defined on some barrier
F , we say that

(a) ϕ is inner if ϕ(s) ⊆ s for all s, t ∈ F ,

(b) ϕ is Nash-Williams if ϕ(s) 6⊑ ϕ(t) whenever ϕ(s) 6= ϕ(t),

(c) ϕ is Sperner if ϕ(s) * ϕ(t) whenever ϕ(s) 6= ϕ(t),

(d) ϕ is irreducible if ϕ is inner and Nash-Williams.

Note that by applying Theorem 1.14(Nash-Williams) , for every irreducible
map ϕ : F → N[<∞], we can find an infinite set M ⊆ N such that the
restriction ϕ ↾ F|M is Sperner. So we could have defined irreducible maps
as inner Sperner rather than Nash-Williams maps. However, in the infinite-
dimensional case, the inner Sperner maps could not serve our purpose here.
Note that by Galvin’s lemma (modulo restricting to an infinite set) the range
of an irreducible mapping is a barrier as well. Thus, irreducible mappings are
a special kind of mappings from one barrier to another. The following fact,
whose proof is given after Corollary 1.42 below, explains the reason behind
the name.

Lemma 1.39 Suppose ϕ0 and ϕ1 are two irreducible mappings defined on
the same barrier F that represent the same equivalence relation on F . Then
there is an infinite set M ⊆ N such that ϕ0 ↾ (F|M) = ϕ1 ↾ (F|M).

Theorem 1.40 (Pudlak-Rödl) For every barrier F on N and every equiv-
alence relation E on F , there is an infinite M ⊆ N such that the restriction
of E to F|M is represented by an irreducible mapping ϕ defined on F|M.

This result suggests that solving a mathematical problem that can be
reformulated as a problem involving barriers on N12 will likely involve an
analysis of mappings from one barrier to another. The following is one ex-
ample of a useful result of this sort.

Lemma 1.41 Let ϕ : F → N[<∞] be a mapping whose domain is a barrier F
on N and whose range is a precompact family of finite subsets of N. Suppose
that ϕ(s) ∩ s = ∅ for all s ∈ F . Then there is infinite M ⊆ N such that
ϕ(s) ∩M = ∅ for all s ∈ F|M.

Proof. The proof is by induction on the rank of the barrier F . First of all,
note that the conclusion is true for the barrier F = N[1] of rank 1. To see
this, using that the range of ϕ is precompact we first go to an infinite subset
N of N such that the sequence (ϕ({n}))n∈N converges to some finite set s.
Find now an infinite set M ⊆ N whose minimum is above s such that for
all m < n in M,

ϕ({n}) ∩ {0, 1, . . . ,m} = s and n > max(ϕ({m})).

12Indeed, there a growing number of such problems especially in the infinite-
dimensional geometry of normed spaces.
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Then ϕ({n}) ∩M = ∅ for all n ∈ M. Suppose now that F is a barrier of
some rank > 1 and that the conclusion is true for its sections F{n} (n ∈ N).
Then using the inductive hypothesis and the Ramsey property of barriers
F{n}, we can build a decreasing sequence M0 ⊇ M1 ⊇ · · · ⊇ Mk ⊇ · · · of
infinite subsets of N such that the corresponding sequence mi = min(Mi) of
minimums is strictly increasing and such that for all i we can find a single
set ti ⊆ {0, 1, . . . ,mi − 1} such that

ϕ(s) ∩ ({0, 1, . . . ,mi − 1} ∪Mi) = ti for all s ∈ F|Mi with min(s) = mi.

Let M∞ = {mi : i ∈ N}. Applying the rank 1 case of the lemma to the
mapping {mi} 7→ ti, we can find an infinite setM ⊆M∞ such thatM∩ti = ∅
for all i such that mi ∈M. Then ϕ(s)∩M = ∅ for all s ∈ F|M. This finishes
the proof. 2

Lemma 1.41 is saying in particular that maps ψ : F → N[<∞] whose
domains are barriers and ranges precompact families of finite sets are es-
sentially inner, or in other words, we can always restrict to an infinite set
M ⊆ N such that ψ(s) ∩M ⊆ s for all s ∈ F|M. (To see this, apply Lemma
1.41 to the map ϕ(s) = ψ(s) \ s.)

Corollary 1.42 For every irreducible mapping ϕ defined on some barrier
F there is an infinite set M ⊆ N such that for all s ∈ F|M there is t ∈ F
such that

ϕ(s) = ϕ(t) = s ∩ t.

Proof. Let G be the range of ϕ. We have already observed that G is a barrier
when restricted to some infinite subset of N. Choose a mapping ψ : G → F
such that ϕ(ψ(v)) = v for all v ∈ G. Apply Lemma 1.41 to the mapping
v 7→ ψ(v) \ v to obtain an infinite set M ⊆ N such that

(ψ(v) \ v) ∩M = ∅ for all v ∈ G|M.

To verify that M satisfies the conclusion, consider an s ∈ F|M and let
v = ϕ(s). Let t = ψ(v). Then v = ϕ(t) and v = t ∩M. Since v ⊆ s ⊆M, we
get the remaining conclusion, s ∩ t = v. 2

Proof of Lemma 1.39. Suppose that the conclusion of the lemma is false.
Applying the Ramsey property of F we can find an infinite set N ⊆ N such
that

ϕ0(s) 6= ϕ1(s) for all s ∈ F|N. (1.9)

Applying Corollary 1.34 (and 1.4) and shrinking further, we may assume
that, say,

(∀s ∈ G0)(∃t ∈ G1) s ⊆ t. (1.10)

By Corollary 1.42 we can find infinite M ⊆ N and a pair of finite sets
s ∈ F|M and t ∈ F such that ϕ0(s) = ϕ0(t) = s ∩ t. Since ϕ0 and ϕ1

represent the same equivalence relation (and since ϕ1 is inner), we have that
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ϕ1(s) = ϕ1(t) ⊆ s ∩ t. Using Equation (1.10) and the fact that G1 is a
Sperner family, we conclude that ϕ1(s) = ϕ1(t) = s ∩ t = ϕ0(s) = ϕ0(t),
contradicting Equation (1.9). This finishes the proof. 2

The following result extends Corollary 1.42 to the realm of arbitrary inner
maps.

Theorem 1.43 For every inner mapping ϕ defined on some barrier F there
is an infinite set M ⊆ N such that for all s ∈ F|M there exist t, u ∈ F such
that

s ∩ t = ϕ(t) ⊑ ϕ(s) and s ∩ u = ϕ(s) ⊑ ϕ(u).

1.4 RAMSEY PROPERTY AND BAIRE PROPERTY

Let us now discuss the infinite-dimensional extensions of Theorem 1.3. There
are some new phenomena that show up in the dimension k = ∞. In par-
ticular, one quickly learns that there is a need to add some restrictions on
the colorings of the infinite-dimensional space N[∞] as the following example
shows.

Example 1.4.1 Given a nonprincipal ultrafilter U on N define c : N[∞] →
{−1, 1} as follows:

c(M) = limn→U (−1)|M∩{0,...,n−1}|.

Then

c(X) 6= c(X \ {min(X)}) for every X ∈ N[∞],

so, in particular, the coloring c is not constant on any set of the form M [∞]

for an infinite set M ⊆ N.

An analysis of this example shows that c is neither Lebesgue nor Baire-
measurable relative to the standard measure and topology of the Cantor
space 2N. So it is natural to ask whether imposing Lebesgue or Baire mea-
surability on a given coloring of N[∞] would guarantee us the existence of
a monochromatic set of the form M [∞] for M ⊆ N infinite. Unfortunately,
even this is not possible, as the following example shows.

Example 1.4.2 Given the coloring c of Example 1.4.1, define b : N[∞] →
{−1, 1} as follows,

b(M) = min{c(M), minm,n∈M (−1)|m−n|}.

Note that the set O = {M ∈ N[∞] : minm,n∈M (−1)|m−n| = −1} is a dense
open subset of N[∞] of full measure,13 so the coloring b is both Lebesgue-
and Baire-measurable. On the other hand, note that for every infinite set
N ⊆ N, there is an infinite set M ⊆ N such that M [∞] ∩ O = ∅, and

13We look here at N[∞] as a subset of the Cantor space 2N equipped with the standard
topology and measure.
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therefore, b ↾ M [∞] = c ↾ M [∞]. Therefore, as in Example 1.4.1, we conclude
that there is no infinite M ⊆ N such that b is constant on M [∞].

So in order to capture the Ramsey property one has to look for some other
restriction. It turns out that the right restriction is the Baire measurability,
not relative to the usual metric topology of N[∞] but relative to the expo-
nential topology or Ellentuck topology on this set. The exponential topology,
also known under the name of Vietoris topology, in this particular case has
its basic open sets of the form14

[s,M ] = {N ∈ N[∞] : s ⊑ N and N/s ⊆M},

where s is an arbitrary finite and M an arbitrary infinite subset of N. Let
us recall also the basic Baire notions.

Definition 1.44 A subset S of a topological space X is nowhere dense if
every nonempty open subset includes a nonempty open subset that avoids S.
A subset T of X is meager if it can be covered by countably many sets that
are nowhere dense in X.

Definition 1.45 A subset Z of a topological space X has the Baire property
in X if it is equal to an open subset of X modulo the ideal of meager sets,
or in other words, can be written as the symmetric difference of an open set
and a meager set. A mapping f : X → Y is said to be Baire measurable if
f−1(U) has the property of Baire for every open subset U of the topological
space Y.

Having these notions at hand, we can state the infinite-dimensional Ram-
sey theorem, which forms a basis of a whole branch of Ramsey theory.

Theorem 1.46 (Ellentuck) Every finite coloring of N[∞] that is Baire-mea-
surable relative to the exponential topology of N[∞] is constant on a set of
the form M [∞] for some infinite M ⊆ N.

In fact, the restriction on colorings given by this theorem is optimal in the
sense that if one introduces the natural notion of a Ramsey property for
subsets of N[∞], one immediately realizes that it coincides with the Baire
property relative to the exponential topology. Since the proof of this theorem
also inspires many of the other proofs in this theory, we give it here with
some details.

The basic ingredient of the proof of Theorem 1.46 is contained in the
following notion of combinatorial forcing which is given relative to some fixed
subset X of N[∞] for which we would like to construct a Baire-measurable
envelope of X , much in the spirit of the classical theory of measure and
category.

Definition 1.47 Fixing the set X ⊆ N[∞], we say that an M ∈ N[∞] accepts
an s ∈ N[<∞] if [s,M ] ⊆ X . We say that M rejects s if there is no infinite

14Notation: N/s = {n ∈ N : n > max(s)}.
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N ⊆M that accepts s. We say that M decides s if M either accepts or rejects
s.

Note the following immediate properties of these notions.

Lemma 1.48 (a) If M accepts (rejects) s, then every infinite subset N of
M accepts (rejects) s.

(b) For every s and M, there is infinite N ⊆M such that N decides s. 2

Lemma 1.49 Every infinite subset M of N can be refined to an infinite
subset N such that every finite s ⊆ N is decided by N.

Proof. Choose infinite M0 ⊆M that decides ∅ and let n0 = minM0. Suppose
we have chosen M0 ⊇ ... ⊇ Mk with n0 = minM0 < ... < nk = minMk.
Choose Mk+1 ⊆ Mk that decides all s ⊆ {n0, . . . , nk} such that nk+1 =
minMk+1 > nk. Finally, let N = {n0, . . . , nk, ...}. Then N is as required. 2

Lemma 1.50 Suppose M decides all of its finite subsets. If M rejects its
finite subset s, then M rejects also s ∪ {n} for all but finitely many n ∈M.

Proof. Suppose the set N of all n ∈ M for which M does not reject, and
therefore accepts, s ∪ {n} is infinite. Then [s,N ] ⊆ X , and so N accepts s,
contradicting the assumption that M rejects s. 2

Lemma 1.51 Suppose M decides all of its finite subsets. If M rejects ∅,
then there is an infinite N ⊆M such that N rejects all of its finite subsets.

Proof. Let M0 = M and n0 = minM0. Suppose that for some integer k > 0
we have chosen M0 ⊇ ... ⊇ Mk−1 with n0 = minM0 < ... < nk−1 =
minMk−1 such that Mk−1 rejects every s ⊆ {n0, . . . , nk−2}. By Lemma
1.50, there is infinite Mk ⊆ Mk−1 such that nk = minMk > nk−1 and
such that M rejects s ∪ {n} for all s ⊆ {n0, . . . , nk−1} and n ∈ Mk. Let
N = {n0, . . . , nk, ...}. Then N is as required. 2

This finishes the series of lemmas about combinatorial forcing relative to a
fixed set X ⊆ N[∞].

Lemma 1.52 Let O be an exponentially open subset of N[∞]. Then for every
basic open set [s,M ], there is N ∈ [s,M ] such that [s,N ] is either included
or is disjoint from O.

Proof. We shall use the already established facts about the combinatorial
forcing applied to the set X = O, and we shall use the forcing lemmas
relativized to the basic set [s,M ] in place of [∅,N] = N[∞]. Choose N ∈
[s,M ] that O-decides all sets of the form s ∪ t, where t is a finite subset of
N/s = {n ∈ N : n > s}. If N O-accepts s, then we are done so let us assume
it rejects it. By Lemma 1.51 we can find P ∈ [s,N ] that O-rejects all finite
sets of the form s ∪ t, where t is a subset of P/s. Since O is exponentially
open, this means that [s, P ] ∩ O = ∅. 2
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Lemma 1.53 Let M be a subset that is meager relative to the exponential
topology. Then for every basic open set [s,M ], there is N ∈ [s,M ] such that
[s,N ] is disjoint from M.

Proof. First of all, note that the conclusion of the lemma is true under the
stronger assumption that the set M is nowhere dense, since by applying
Lemma 1.52 to the closure M, the alternative [s,N ] ⊆ M is impossible.
Let M =

⋃∞
k=0Mk be a decomposition of M into nowhere dense sets. Let

[s,M ] be a given basic open set. Relativizing the argument, we may assume
that in fact s = ∅. Using the fact that the conclusion of the lemma is true
for the nowhere dense sets Mk, we build a decreasing sequence M ⊇ M0 ⊇
... ⊇ Mk ⊇ ... such that n0 = minM0 < ... < nk = minMk < ... and
such that [s,Mk] ∩ Mn = ∅ for all n ≤ k and s ⊆ {n0, . . . , nk−1}. Let
N = {n0, . . . , nk, ...}. Then [s,N ] ∩M = ∅. 2

We are now ready to prove Theorem 1.46 in the following equivalent formu-
lation.

Theorem 1.54 (Ellentuck) Suppose X is a subset of N[∞] that has the
Baire property relative to the exponential topology of N[∞]. Then for every
basic open set [s,M ], there is N ∈ [s,M ] such that [s,N ] is either included
in or is disjoint from X .

Proof. Choose an open set O and a meager setM such that X△O =M. By
Lemma 1.53, we can choose N ∈ [s,M ] such that [s,N ] is disjoint from M.
By lemma 1.52, we can choose P ∈ [s,N ] such that [s, P ] is either included
in, or is disjoint from, O. It follows that [s, P ] is either included in, or disjoint
from, X . 2

Let us say that a subset X of N[∞] has the Ramsey property if it satisfies
the conclusion of Theorem 1.54. Clearly, every subset of N[∞] that has the
Ramsey property also has the Baire property, so Theorem 1.54 says that
these two properties are in fact equivalent.

Corollary 1.55 (Silver) Every analytic subset of N[∞] has the Ramsey prop-
erty.

Proof. This follows from the standard fact that the property of Baire relative
to any topological space is closed under the Souslin operation (see Section
4.1 below). 2

Corollary 1.56 (Galvin-Prikry) Every Borel subset of N[∞] has the Ram-
sey property.

It turns out that there are a number of weaker restrictions that one can
impose on colorings of N[∞] guaranteeing the conclusion of the infinite-
dimensional Ramsey theorem. In particular, the exponential topology is not
the only topology on N[∞] whose Baire measurability will give us a suffi-
cient restriction for the infinite-dimensional Ramsey theorem, but it is the
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only topology that gives us the characterization of the Ramsey property.
The power behind any result of this sort is hidden in the fact that the
Baire property relative to any topology on N[∞] that is finer than the usual
product topology on that set is a considerably weaker restriction than the
classical descriptive requirements, such as Borel or Souslin measurability. In
fact, a large body of this book is concerned with finding an abstract notion
of Baire measurability that would work in many contexts and, in particular,
in contexts where no topological approach could used.

Let us now turn to the infinite-dimensional interpretation of the Pudlak-
Rödl theorem (Theorem 1.40 above).

Theorem 1.57 (Pudlak-Rödl) For every Borel equivalence relation E on
N[∞] with countably many classes, there is infinite M ⊆ N such that the
restriction of E to M [∞] is represented by an irreducible15 1-Lipschitz map16

ϕ : M [∞] →M [<∞].

The Lipschitz condition here is really only to ensure the continuity of
the mapping ϕ. The reader will have no difficulty showing that for every
irreducible map ϕ defined on a barrier F , there is an infinite set M ⊆ N
such that the restriction of ϕ to F|M is 1-Lipschitz. So this new condition
makes no difference in the old formulation of the Pudlak-Rödl theorem. In
the new formulation, however, the Pudlak-Rödl theorem naturally leads to an
analogous result that applies to a larger class of Borel equivalence relations.
Before we state this result, let us recall that a Borel equivalence relation E
on a Polish space X is smooth if there is Borel map f from X into some
other Polish space Y , such that f indices E, or in other words, for every
x, y ∈ X, we have xEy if and only if f(x) = f(y).

Theorem 1.58 (Mathias, Prömel-Voigt) For every smooth Borel equivalen-
ce relation E on N[∞], there is infinite M ⊆ N such that the restriction of
E to M [∞] is induced by an 1-Lipschitz irreducible map ϕ : M [∞] → P(M).

Note that the second condition of irreducibility, condition (b) of Definition
1.38, plays little or no role in the Mathias-Prömel-Voigt theorem unless E
has countably many classes on M [∞], in which case the result adds noth-
ing more to the Pudlak-Rödl theorem. Namely, assuming that E has un-
countably many classes on any symmetric cube N [∞] over an infinite set
N ⊆M and applying the Galvin-Prikry theorem, we can find infinite N ⊆M
such that the ϕ(X) is infinite for every X ∈ N [∞]. So, in particular, for no
X,Y ∈ N [∞], ϕ(X) can be a strict initial segment of ϕ(Y ). Thus, ϕ ↾ N [∞]

automatically satisfies the second condition of Definition 1.38. Thus unless
Theorem 1.58 reduces to Theorem 1.57, its conclusion is really saying that
E on M [∞] is represented by 1-Lipschitz inner map.

15In the sense of Definition 1.38, which works equally well for arbitrary maps of the
form ϕ : P(N) → P(N).

16That is, if min(ϕ(X)△ϕ(Y )) ≥ min(X△Y ), or equivalently, if for all n, X∩n = Y ∩n
implies ϕ(X) ∩ n = ϕ(Y ) ∩ n.
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We finish this section with a result that shows that the field of Ramsey sets
behaves quite analogously to the classical fields of sets such as, for example,
the field of Lebesgue measurable sets of reals or the field of sets of reals with
the property of Baire.

Theorem 1.59 (Ramsey Uniformization Theorem) Suppose X is a Polish
space and R is a coanalytic subset of the product N[∞]×X with the property
that for all M ∈ N[∞] there is x ∈ X such that R(M,x) holds. Then there is
an infinite subset M of N and a continuous map F : M [∞] → X such that
R(N,F (N)) holds for all N ∈M [∞].

The proof of this theorem is closely related to Silver’s original proof of his
theorem and it is beyond the scope of this book. We mention it here be-
cause it exposes a rather important phenomenon true in all other infinite-
dimensional Ramsey theoretic contexts encountered here. We shall, however,
explicitly mention this phenomenon only when we consider it useful.

NOTES TO CHAPTER ONE

Theorems 1.3 and 1.7 both appear in the original paper [93] of F. P. Ramsey.
The idea behind Theorem 1.7 has led to important developments in practi-
cally every area of modern mathematical logic (see, for example, [26]). The
canonical version of Ramsey’s theorem, Theorem 1.8, appears in the paper
of Erdös-Rado [30]. Similar results about unrestricted number of colors are
valid in many other Ramsey theoretic contexts that we study in the fol-
lowing chapters of this book. Note that to each infinitary Ramsey theoretic
result corresponds its finitary form deduced from it using the standard com-
pactness argument. It should be mentioned, however, that finitary Ramsey
theoretic results are of independent interest and are studied as a separate
subject (see, for example, [41]). It is interesting that sometimes substantial
infinitary methods are necessary when proving finitary Ramsey theoretic re-
sults. The first such phenomenon was that of Paris and Harrington (see, for
example, [55]), but another one is the result of Corollary 1.11, which requires
a theory stronger than Peano arithmetic for its proof (see [52]). Regarding
the comments in Remark 1.2, we mention monograph [36] as the original
reference for Gödel constructibility, but the reader will find its exposition
in almost every standard text in axiomatic set theory. The generalization of
Ramsey’s theorem due to Nash-Williams [82] is the first result of infinite-
dimensional Ramsey theory. Its extension due to Galvin appears originally
in his announcement [33] and is in some sense more relevant to the infinite-
dimensional theory, since it is equivalent to the fact that open subsets of
N[∞] are Ramsey. The notion of barrier, due to Nash-Williams [82], has seen
many applications far beyond its original use in the development of the the-
ory of well-quasi-orderings. The notion makes perfect sense for every other
Ramsey space that we develop later in this book, although, we hope, ap-
plications of comparable wealth are still to come. Corollary 1.36 appears in
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the Galvin-Prikry paper [35], where it is deduced from the main result of
the paper, which says that the infinite-dimensional Ramsey theorem is true
for Borel colorings. The Pudlak-Rödl theorem appears in their paper [92],
and the reader can find its proof also in [3]. Theorem 1.43 appears in the
paper of Lopez-Abad and Todorcevic [66], where we refer the reader for a
wealth of information on uses of barriers in problems about unconditional
convergence in Banach spaces. The first counterexample to the unrestricted
infinite-dimensional Ramsey theorem is due to R. Rado (see, e.g., [29]) who
used a well ordering of the continuum for its construction. In [73] Mathias
shows that the existence of a q-point ultrafilter on N also leads to a counterex-
ample to the unrestricted infinite-dimensional Ramsey theorem. It turns out
that an arbitrary nonprincipal ultrafilter on N is sufficient for this. This was
shown by Baumgartner (see [73]) and it is his proof that we reproduce above
in Example 1.4.1. Example 1.4.2 is due to Galvin-Prikry [35]. Baire category
notions for sets of reals were originally introduced in Baire’s thesis [4]. Ellen-
tuck [27] proved his theorem in order to supply a proof of Silver’s Theorem
[99] stating that analytic sets have the Ramsey property thus starting the
whole area of topological Ramsey theory. He seems to have rediscovered the
Vietoris topology of N[∞] although he does have in his reference list Kura-
towski’s book [58], whose Section I.17 is devoted to this topology. As can
be seen from the proofs we present, the combinatorial forcing encountered
above in the proof of Ellentuck’s Theorem is due to Galvin and Prikry [35]
using some ideas of Nash-Williams [82]. As stated, Theorem 1.58 appears in
the paper of Prömel and Voigt [91] although an equivalent formulation (to
the effect that the restriction of the equivalence relation is represented by a
1-Lipschitz inner map) appears in the much earlier paper of Mathias [74].



Chapter Two

Semigroup Colorings

2.1 IDEMPOTENTS IN COMPACT SEMIGROUPS

A compact semigroup S is a nonempty semigroup with a compact Hausdorff
topology for which

x 7→ xs

is a continuous map for all s ∈ S. The reader should be warned that this
terminology is nonstandard, since usually “compact semigroup” means that
the semigroup operation is jointly continuous in both factors. We chose this
terminology only to avoid the somewhat awkward “compact semitopological
semigroup” that corresponds better to the notion we study here.

Example 2.1.1 If X is a compact Hausdorff space, then the Tychonov cube
XX is a compact semigroup with the composition operation, since for each g
the map f 7→ f ◦ g is continuous on XX . Note that in general the operation
of composition from the right f 7→ g ◦f is not necessarily continuous on XX

unless g : X → X is continuous.

An element x of a (compact) semigroup S is idempotent if x2 = x. We shall
need the following important fact about this notion

Lemma 2.1 (Ellis) Every compact semigroup S has an idempotent.

Proof. Pick by Zorn’s Lemma a minimal compact subsemigroup R ⊆ S and
an arbitrary s ∈ R. Then Rs is also a compact subsemigroup and Rs ⊆ R.
Hence Rs = R. Let P = {x ∈ R : xs = s}. Then P 6= ∅, since s ∈ Rs. Note
that P is also a compact subsemigroup of S. Hence P = R and therefore
s2 = s. 2

Fix from now on a compact semigroup S. A left-ideal of S is a nonempty
subset I of S such that SI ⊆ I. A right-ideal of S is a nonempty subset I of
S such that IS ⊆ I. A two-sided ideal of S is a nonempty subset of S which
is both left and right ideal. In this context, left-ideals seem to be richer in
properties than right-ideals. For example, note that for every x ∈ S, Sx is
a closed left-ideal, so every minimal left-ideal is closed and if a left-ideal is
minimal among all closed left-ideals, then it is also minimal among all left-
ideals. Clearly every closed ideal (one-sided or two-sided) of S is a compact
subsemigroup of S, so by Lemma 2.1 it contains idempotents. Idempotents
belonging to minimal left ideals are rather special. To state this property,
we need the following important relation on S :



28 CHAPTER 2

x ≤ y iff xy = yx = x.

Note that ≤ is transitive and antisymmetric on S. Note also that x ≤ x
only when x2 = x. Thus ≤ is a partial order on the idempotents of S.

Lemma 2.2 An idempotent belonging to a minimal left ideal is minimal in
the ordering ≤.

Proof. Let y be an idempotent belonging to a minimal left-ideal I of S and
let x ≤ y be a given idempotent. Since xy = x we conclude that x ∈ I and
therefore Ix = I by the minimality of I. Choose z ∈ I such that y = zx.
Then yx = zx2 = zx = y. From x ≤ y, we have that yx = x. Hence x = y.
2

Example 2.1.2 Note that an element f of the compact semigroup XX is
idempotent if and only if it is a retraction, i.e., if the restriction of f to its
range is the identity map. Note also that in this semigroup f ≤ g implies
that the range of g includes the range of f, so minimal idempotents of XX

are the constant maps.

Lemma 2.3 If y is an idempotent and if I is a closed left-ideal, then the
left-ideal Iy contains an idempotent x such that x ≤ y.

Proof. By Lemma 2.1, we can find an idempotent w in Iy. Choose v ∈ I
such that w = vy. Put x = yw (= yvy). Then

x2 = yvyyw = yvyw = yww = yw = x,

so x is an idempotent. The relation x ≤ y follows from

yx = yyw = yw = x

and

xy = yvyy = yvy = x.

2

Corollary 2.4 An idempotent is minimal if and only if it belongs to some
minimal left-ideal.

Proof. By Lemma 2.2, only the direct implication needs a proof. Consider a
minimal idempotent y. Choose an arbitrary minimal left-ideal I of S. Then
I is closed and Iy is also a minimal left ideal. By Lemma 2.3, the left-ideal
Iy contains an idempotent x such that x ≤ y. Since y is minimal we have
that x = y and therefore y ∈ Iy. 2

Corollary 2.5 Any two-sided ideal of S contains all the minimal idempo-
tents of S.
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Proof. Let J be a given two-sided ideal and let y be a minimal idempotent
of S. By Corollary 2.4, there is a minimal left-ideal I such that y ∈ I. Note
that JI ⊆ I ∩ J, so I ∩ J is a nonempty left-ideal included in I. It follows
that I ∩ J = I and therefore that y ∈ I ⊆ J . 2

Let us reformulate this result in the form that is used in the rest of this
chapter.

Corollary 2.6 If y is an idempotent and J is a two-sided ideal of S then
there is an idempotent x ∈ J such that x ≤ y.

The following is yet another interesting property of any minimal idempo-
tent of S.

Lemma 2.7 If a is a minimal idempotent of S then Sa is a minimal left-
ideal of S.

Proof. By Lemma 2.4, there is a mimimal left ideal I of S such that a ∈ I.
Then Sa ⊆ I, and since Sa is a left ideal of S, we must have the equality
Sa = I. So, indeed, Sa is a minimal left ideal of S. 2

Lemma 2.8 If a is a minimal idempotent of S, then a is an identity of aSa
and every element of aSa has a right inverse as well as a left inverse relative
to a. In other words, aSa is a group with identity a.

Proof. The fact that a is an identity of aSa is clear. Let x = asa be a given
member of aSa. Then x ∈ Sa, so Sx is a (closed) left ideal of Sa. By Lemma
2.7, Sx = Sa. It follows that a ∈ Sx, so we can find t ∈ S such that a = tx.
Let y = ata. Then y ∈ aSa, and

yx = atax = ataasa = atasa = atx = aa = a.

So, y is a left-inverse of x relative to a. To show that y is also a right-inverse
of x in aSa relative to a, let z be left-inverse of y in aSa relative to a, i.e.,
zy = a. Multiplying the equation yx = a by y from the right and using the
fact that a is an identity of aSa, we get yxy = y. Multiplying this equation
by z from the left, we get zyxy = zy = a. Since zy = a, this gives us axy = a.
Since a is an identity of aSa this gives us the desired conclusion, xy = a. 2

We have already pointed out that in this context right ideals of S enjoy
fewer properties than left-ideals. However, they do have some useful proper-
ties.

Lemma 2.9 For every minimal idempotent a of S, the set aS is a minimal
right ideal of S.

Proof. Suppose ∅ 6= J ⊆ aS and that JS ⊆ J. Pick x ∈ J. Then x ∈ aS, and
so xa ∈ aSa. By Lemma 2.8, we can find y ∈ aSa, which is the right inverse
of xa relative to a, i.e., such that (xa)y = a. It follows that

a = (xa)y = x(ay) ∈ JS ⊆ J.

Hence a ∈ J and therefore aS ⊆ JS ⊆ J, as required. 2



30 CHAPTER 2

Lemma 2.10 Every right ideal J of S includes a minimal right ideal.

Proof. Let J be a given right ideal of S. Pick b ∈ J. We have just seen that S
has a minimal right ideal, so let us fix one of them, R. We claim that bR ⊆ J
is a minimal right ideal of S and this will finish the proof. So let Q ⊆ bR be
a given right ideal of S. Let

P = {x ∈ R : bx ∈ Q}.

Then P is a nonempty subset of R. Consider a p ∈ P and y ∈ S. Then
bp ∈ Q, so bpy ∈ Q. Note that since p ∈ R, we have that py ∈ RS ⊆ R. It
follows that py ∈ P. This shows that P is a right ideal of S, and therefore
P = R. It follows that bR = bP ⊆ Q, as required. 2

Lemma 2.11 If x is a minimal idempotent and J is a right ideal of S, then
there is an idempotent y ∈ J such that xy = x.

Proof. By Corollary 2.4 we can choose a minimal left-ideal I of S containing
x. Moreover, we may assume that J is a minimal right ideal of S. Then IJ
is a two-sided ideal of S, so by Corollary 2.5, x ∈ IJ . Find u ∈ I and v ∈ J
such that uv = x. Since J is a minimal right ideal, vJ = J . So there is w ∈ J
such that vw = v. Then

xw = uvw = uv = x. (2.1)

Let y = wxw. Then y ∈ J . Note that

y2 = wxwwxw = wxwxw = wxxw = wxw = y, (2.2)

so y is idempotent. Note also that

xy = xwxw = x2 = x, (2.3)

as required. 2

Remark 2.12 Note that replacing y by yx, we obtain an idempotent in J
that besides xy = x has the additional property yx = y.

2.2 THE GALVIN-GLAZER THEOREM

A partial semigroup is a nonempty set S with a partial map ∗ : S2 → S that
satisfies the associative law

(x ∗ y) ∗ z = x ∗ (y ∗ z), (2.4)

i.e., whenever one side of the equation is defined, so is the other, and they are
equal. A partial semigroup is directed if for every finite sequence x1, . . . , xn

of elements of S there exists y ∈ S such that y 6= xi for all i = 1, . . . , n and
such that x1 ∗ y, . . . , xn ∗ y are all defined.

Example 2.2.1 For a fixed positive integer k, an example of a directed
partial semigroup is the collection FINk of all maps

p : N→ {0, . . . , k}
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that have finite supports supp(p) = {n : p(n) 6= 0} and that always achieve
the maximal value k. We let the partial semigroup operation be the coordinate-
wise addition

(p+ q)(n) = p(n) + q(n),

defined only in the case when p and q have disjoint supports.

Given a directed partial semigroup (S, ∗), let γS be the space of all ultra-
filters U on S such that

(∀x ∈ S) {y ∈ S : x ∗ y is defined} ∈ U .

We consider γS a nonempty (closed) subspace of the Čech-Stone compacti-
fication βS, i.e., we consider it a compact Hausdorff space with the topology
generated by the sets of the form

A = {U ∈ γS : A ∈ U}, (A ⊆ S).

We extend the partial semigroup operation * of S to a total operation * on
γS defined as

U ∗ V = {A ⊆ S : {x ∈ S : {y ∈ S : x ∗ y ∈ A} ∈ V} ∈ U},

or equivalently,

U ∗ V = {A ⊆ S : (Ux)(Vy) x ∗ y ∈ A}.

Lemma 2.13 U ∗ V ∈ γS whenever U ,V ∈ γS.

Proof. Given U ,V ∈ γS, we need to check that U ∗ V is also an ultrafilter
and member of γS. For this, it is convenient to have the notation

A/x = {y ∈ S : x ∗ y ∈ A}

for A ⊆ S and x ∈ S. Thus A ∈ U ∗ V iff {x ∈ S : A/x ∈ V} ∈ U . Note that
A ⊆ B implies A/x ⊆ B/x, giving easily the closure of U ∗ V under taking
supersets. It is also clear that ∅ 6∈ U ∗V . Note also that (A∩B)/x = (A/x)∩
(B/x) and (S \ A)/x = S \ (A/x). This is useful in checking the remaining
ultrafilter properties of U ∗ V . To handle the closure under intersection note
that

{x ∈ S : (A ∩B)/x ∈ V} = {x ∈ S : (A/x) ∩ (B/x) ∈ V}

= {x ∈ S : A/x ∈ V} ∩ {x ∈ S : B/x ∈ V}.

Suppose now that A 6∈ U ∗ V . Then {x ∈ S : A/x ∈ V} 6∈ U , or equivalently,
{x ∈ S : A/x 6∈ V} ∈ U , or equivalently {x ∈ S : (S \ A)/x ∈ V} ∈ U .
Hence S \A ∈ U ∗ V .

To check that U ∗ V ∈ γS, note that this is equivalent to the following
formula written using ultrafilter quantifiers

(∀x)(Uy)(Vz) x ∗ (y ∗ z) is defined.

This is clearly a consequence of our two assumptions,

(∀x)(Uy) x ∗ y is defined and (∀x)(Vy) x ∗ y is defined.

2
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Remark 2.14 Readers familiar with the ultrafilter quantifier have noticed
that above proof can be shortened and perhaps made more clear if one uses
the fact that ultrafilter quantifiers commute with all propositional connec-
tives. This remark will apply to many proofs that follow, which are, however,
written for readers who may lack this experience.

Lemma 2.15 (U ∗ V) ∗W = U ∗ (V ∗W).

Proof. To see this first note that

A ∈ U ∗ (V ∗W) iff {x ∈ S : A/x ∈ V ∗W} ∈ U
iff {x ∈ S : {y ∈ S : (A/x)/y ∈ W} ∈ V} ∈ U
iff {x ∈ S : {y ∈ S : A/y ∈ W}/x ∈ V} ∈ U ,

since {y ∈ S : A/y ∈ W}/x = {y ∈ S : (A/x)/y ∈ W}. On the other hand,
note that

A ∈ (U ∗ V) ∗W iff {x ∈ S : A/x ∈ W} ∈ U ∗ V
iff {y ∈ S : {x ∈ S : A/x ∈ W}/y ∈ V} ∈ U .

2

Lemma 2.16 For every V ∈ γS, the map U 7→ U ∗ V is a continuous map
from γS into γS.

Proof. Fix V ∈ γS and A ⊆ S. Let B = {x ∈ S : A/x ∈ V}. It suffices to
show that that the preimage of A under the map U 7→ U ∗ V is equal to B.
This amounts to showing that for an arbitrary U ∈ γS,

A ∈ U ∗ V if and only if B = {x ∈ S : A/x ∈ V} ∈ U .

2

Corollary 2.17 The space (γS, ∗) is a compact semigroup for every partial
directed semigroup (S, ∗). 2

Remark 2.18 Note that another way to achieve the compactification when
S is actually a full semigroup with identity is by taking the topological
closure of the set of τs ∈ X

X (s ∈ S), where X = 2S and τs(x)(t) = x(st).

Corollary 2.19 For every directed partial semigroup (S, ∗) that does not
have idempotents itself or is left cancellative, there is a nonprincipal ultra-
filter U in S such that U ∗ U = U .

Proof. Note that if U ∈ γS is an idempotent ultrafilter that is principal,
i.e., contains some singleton {a}, then a ∗ a = a. Note also that if (S, ∗) is
left cancellative, then γS \ S is a left ideal of γS, so it would contain an
idempotent by Lemma 2.1. 2

Given a directed partial semigroup (S, ∗), a (finite or infinite) sequence X =
〈x0, x1, . . . , xn, . . . 〉 of elements of S is basic if its elements are pairwise
distinct and if

xn0 ∗ xn1 ∗ · · · ∗ xnk
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is defined for every finite sequence n0 < n1 < · · · < nk of indexes from the
domain |X | of X . For a given basic sequence X = 〈xn〉, let

[X ] = {xn0 ∗ · · · ∗ xnk
: k ∈ N, n0 < n1 < · · · < nk < |X |}.

Note that if X is an infinite basic sequence of elements of S, then ([X ], ∗) is
also a directed partial semigroup.

Theorem 2.20 (Galvin-Glazer) Suppose that (S, ∗) is a partial semigroup
that either has no idempotents or is left cancellative. Then for every finite
coloring of (S, ∗), there is an infinite basic sequence X = 〈xn〉∞n=0 of elements
of S such that [X ] is monochromatic.

Proof. Choose an ultrafilter U ∈ γS \ S such that U ∗ U = U and let P0 ∈ U
be a fixed monochromatic set relative to the given coloring of S. Then by
the definition of ∗ on γS and the idempotence of U ,

(Ux)(Uy) x ∗ y ∈ P0,

so we can choose x0 ∈ P0 such that

P1 = {y ∈ P0 : x0 ∗ y ∈ P0} ∈ U .

Similarly,

(Ux)(Uy) x ∗ y ∈ P1,

so we can choose x1 ∈ P1 such that

P2 = {y ∈ P1 : x1 ∗ y ∈ P1} ∈ U ,

and so on. This procedure gives us an infinite basic sequence X = 〈xn〉∞n=0 ⊆
S with the following property.

Claim 2.20.1 xn0 ∗xn1 ∗· · ·∗xnk
∈ Pn0 for every finite sequence n0 < n1 <

· · · < nk of nonnegative integers.

Proof. Induction on k. The initial step xn0 ∈ Pn0 is given by our construc-
tion. To see the inductive step from k to k+ 1, let x = xn1 ∗ · · · ∗ xnk

. Then
x ∈ Pn1 by the inductive hypothesis. Since n1 ≥ n0 + 1, we have that

x ∈ Pn1 ⊆ Pn0+1 = {y ∈ Pn0 : xn0 ∗ y ∈ Pn0}.

It follows that xn0 ∗ x ∈ Pn0 , as required. 2

Note that this gives us the desired inclusion [X ] ⊆ P0. 2

Corollary 2.21 (Hindman) For every finite coloring of N there is an infi-
nite sequence x0 < x1 < · · · < xn < · · · of elements of N such that the set
of all finite nonrepeating sums xn0 + · · ·+ xnk

is monochromatic. 2
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2.3 GOWERS’S THEOREM

Throughout this section, k will denote a positive integer. For p : N →
{0, 1, . . . , k}, let supp(p) = {n : p(n) 6= 0} and define

FINk = {p : N→ {0, 1, . . . , k} : supp(p) is finite & k ∈ rang(p)}.

We consider FINk as a directed partial semigroup endowed with the oper-
ation x + y of summing two disjointly supported elements. We extend this
partial semigroup operation to the set

FIN[1,k] =
k⋃

j=1

FINj ,

which will also be a partial semigroup of interest here. Thus, if x ∈ FINi and
y ∈ FINj have disjoint supports, then their coordinatewise addition x+y is a
member of FINl, where l = max{i, j}. Sometimes it will be convenient to add
the identity to these semigroups, the mapping constantly equal to 0, though
we do not change the notation for the semigroup when we make this addition.
A block sequence is any finite or infinite sequence B = {bn}

≤∞
n=0 ⊆ FINk such

that

supp(bi) < supp(bj) whenever i < j.

Define T : FINk → FINk−1 by

T (p)(n) = max{p(n)− 1, 0}.

We call T a tetris operation. We shall soon see that there is a natural iden-
tification between FINk with an ε-net of the positive part of the sphere of
the Banach space c0 with 1 > ε > 0 and k related by ε(1 + ε)k−1 = 1.
In this identification the tetris operation T corresponds to scalar multipli-
cation, and the following notion of a partial semigroup (or a combinatorial
subspace) generated by a block sequence corresponds to talking about a
linear subspace generated by the corresponding sequence of vectors in c0.

For a given basic block sequence B = {bn}
≤∞
n=0, we let the partial subsemi-

group of FINk generated by B be the family of vectors of the forms

T (j0)(bn0) + . . .+ T (jl)(bnl
),

where n0 < . . . < nl is a finite sequence from the domain of B and j0, . . . , jl is
a sequence of elements of {0, 1, . . . , k} such that at least one of the j0, . . . , jl
is 0.

The purpose of this section is to prove the following result.

Theorem 2.22 (Gowers) For every finite coloring of FINk there is an infi-
nite block sequence B of elements of FINk such that the partial subsemigroup
generated by B is monochromatic.
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We say that an ultrafilter U on FINk is cofinite if

{p ∈ FINk : supp(p) ∩ {0, . . . , n} = ∅} ∈ U

for all n ∈ N. As in the proof of the Galvin-Glazer theorem, let γFINk denote
the family of all cofinite ultrafilters on FINk endowed with the topology
generated by the basis

A = {U ∈ γFINk : A ∈ U} (A ⊆ FINk),

which is the same as the one induced from the Čech-Stone compactification
of the discrete FINk with the extension of the partial operation +:

A ∈ U + V iff (Ux)(Vy) x+ y ∈ A.

This gives us a compact semigroup (γFINk,+). Note also that for each k > 1,
the set γFINk is a two-sided ideal of any of the semigroups

γFIN[j,k] =
k⋃

i=j

γFINi

for 1 ≤ j ≤ k, and in particular in the semigroup γFIN[1,k] which we work
with from now on. We also need to extend the tetris operation on the space
of ultrafilters as follows: T : γFINk → γFINk−1,

T (U) = {A ⊆ FINk−1 : {x ∈ FINk : T (x) ∈ A} ∈ U}

Note that for k > 1, T (U) is indeed a cofinite ultrafilter on FINk−1.

Lemma 2.23 T : γFINk → γFINk−1 is a continuous onto homomorphism.

Proof. To check that T preserves +, note that T (U+V) is a cofinite ultrafilter
generated by

{TA : {x : {y : x+ y ∈ A} ∈ V} ∈ U}

= {B : {x : {y : T (x+ y) ∈ B} ∈ V} ∈ U}

= {B : {x : {y : T (x) + T (y) ∈ B} ∈ V} ∈ U}

= {B : {p : {y : p+ T (y) ∈ B} ∈ V} ∈ T (U)}

= {B : {p : {q : p+ q ∈ B} ∈ T (V)} ∈ T (U)}.

It follows that T (U + V) = T (U) + T (V). 2

Lemma 2.24 For every positive integer k, one can choose an idempotent
Uk ∈ γFINk such that for all positive integers i < j :

(1) Ui ≥ Uj ,

(2) T (j−i)(Uj) = Ui.
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Proof. The idempotents are chosen by induction on k. For k = 1 we let U1

be an arbitrary minimal idempotent of the semigroup γFIN1. Suppose that
Uj (1 ≤ j < k) have been selected satisfying (1) and (2). Let

Sk = {X ∈ γFINk : T (X ) = Uk−1}.

By Lemma 2.23, Sk is a nonempty closed subset of γFINk and so is Sk+Uk−1.
Note that Sk +Uk−1 is a subsemigroup of γFINk, since the sum V +Uk−1 +
W+Uk−1 of two members of Sk +Uk−1 belongs to Sk +Uk−1 by the equation

T (V + Uk−1 +W) = Uk−1 + Uk−2 + Uk−1 = Uk−1,

where in the case k − 2 the Uk−2 is to be interpreted to be equal to the
identity (say, the principal ultrafilter concentrating on the constant map 0)
of all our semigroups. Pick an idempotentW in Sk +Uk−1 and let V ∈ Sk be
such thatW = V+Uk−1. Finally, let Uk = Uk−1+V+Uk−1. Then Uk ∈ FIN∗

k

and T (Uk) = Uk−1. Note that

Uk + Uk = Uk−1 + V + Uk−1 + Uk−1 + V + Uk−1

= Uk−1 + V + Uk−1 + V + Uk−1

= Uk−1 + V + Uk−1 = Uk.

Thus Uk is an idempotent. Note that
Uk + Uk−1 = Uk−1 + Uk = Uk,
which checks the inequality Uk−1 ≥ Uk. This finishes the inductive step as
well as the proof of the lemma. 2

Proof of Theorem 2.22. Pick a piece P of the given finite partition of FINk

such that P ∈ Uk. Now we recursively build an infinite basic block sequence
x0, x1, . . . of elements of FINk and for each 1 ≤ l ≤ k a decreasing sequence
Al

0 ⊇ A
l
1 ⊇ . . . of elements of Ul such that

(a) Ak
0 = P,

(b) xn ∈ Ak
n and T (k−l)[Ak

n] = Al
n,

(c) (Ukx)[T (k−i)(xn) + T (k−j)(x) ∈ A
max{i,j}
n ] for 1 ≤ i, j ≤ k.

We start the recursion by letting Al
0 = T (k−l)(P ), (1 ≤ l ≤ k). By Lemma

2.24(2), Uk-almost all x0 ∈ Ak
0 satisfy (c) so there is a way to choose x0 ∈ A0

k

satisfying (a),(b) and (c). To see how to handle the inductive step, suppose
x0, . . . , xn−1 and Al

0 ⊇ . . . ⊇ Al
n−1 (1 ≤ l ≤ k) have been constructed

satisfying (a)− (c). For 1 ≤ i, j ≤ k, and m < n, define

Cij
m = {x ∈ FINk : T (k−i)(xm) + T (k−j)(x) ∈ Amax{i,j}

m }.

Set

Ak
n = Ak

n−1 ∩
⋂

i,j≤k, m<n

Cij
m
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Al
n = T (k−l)[Ak

n], (1 ≤ l < k).

Then Al
n ∈ Ul (1 ≤ l ≤ k). Note that by Lemma 2.24(2), Uk-almost all

xn ∈ Ak
n satisfy requirement (c), so we can choose xn keeping the inductive

hypothesis (a) − (c) and moreover making sure that the support of xn lies
above the support of xn−1. This finishes the inductive step.

Let us now show that the infinite basic block sequence {xn}∞n=0 that we
have just constructed generates a subspace that is included in P. This will
follow once we show by induction on p that

(d) T (k−l0)(xn0) + . . .+ T (k−lp−1)(xnp−1) + y ∈ A
max{l0,...,lp}
n0

for every choice of n0 < . . . < np, l0, . . . , lp ∈ {1, . . . k}, and y ∈ A
lp
np . The

case p = 0 follows from (c). To see the inductive step, let p > 0 and consider

y′ = T (k−l1)(xn1) + . . .+ T (k−lp−1)(Xnp−1) + y.

By the inductive hypothesis we know that y′ belongs to A
max{l1,...,lp}
n1 . Let l =

max{1, . . . , lp}. Pick y∗ ∈ Ak
n1

such that y′ = T (k−l)(y∗). Then y∗ ∈ Ak
n0+1.

Thus, in particular y∗ belongs to the set Cl0l
n0

as formed at the inductive step
from n0 to n0 + 1 above. It follows that

T (k−l0)(xn0) + T (k−l)(y∗) ∈ Amax{l0,l}
n0

,

as required. This finishes the proof. 2

Corollary 2.25 (Hindman) For every finite partition of the family FIN of
all finite nonempty subsets of N, there is an infinite block sequence B = (bn)
of finite subsets of N such that the subsemigroup [B] generated by B, i.e., the
family of all unions of finite nonempty subfamilies of B, is monochromatic.

Proof. This is just the case k = 1 of Theorem 2.22. 2

The relationship between FINk and the positive part PSc0 of the sphere
of c0 can be explained as follows. Find a 0 < δ < 1 such that

1

(1 + δ)k−1
= δ.

Let ∆k be the collection of all finitely supported mappings

ξ : N→

{
0,

1

(1 + δ)k−1
,

1

(1 + δ)k−2
, . . . ,

1

1 + δ
, 1

}

such that 1 ∈ rang(ξ). Note that ∆k forms a δ-net in PSc0 and that it is
naturally isomorphic to FINk via the mapping

Φ(x)(n) = max

{
k −

[
log x(n)

log (1 + δ)−1

]
, 0

}
.

In this correspondence the tetris operation corresponds to a scalar multipli-
cation. This establishes the following corollary of Theorem 2.22.
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Corollary 2.26 For every 0 < δ < 1 there is a δ-net ∆ in PSc0 with the
property that for every finite partition of ∆ there is an infinite-dimensional
block subspace X of c0 such that SX ∩∆ is included in one of the pieces of
the partition.

In one of the following sections we shall present a corresponding result
about δ-nets on the whole sphere of c0.

2.4 A SEMIGROUP OF SUBSYMMETRIC ULTRAFILTERS

For a positive integer k, let FIN±
k be the collection of all finitely supported

functions

p : N→ {0,±1, . . . ,±k}

that attain at least one of the values ±k. The tetris operation T : FIN±
k →

FIN±
k−1 in this context is defined as follows:

T (p)(n) =






p(n)− 1 if p(n) > 0,
0 if p(n) = 0,
p(n) + 1 if p(n) < 0.

A block sequence of elements of FIN±
k is defined as before. A partial sub-

semigroup of FIN±
k generated by a basic block sequence B = {bn}∞n=0 is the

family of all functions of the form

ǫ0T
(j0)(bn0) + ǫ1T

(j1)(bn1) + . . .+ ǫlT
(jl)(bnl

),

where ǫi = ±1 for 0 ≤ i ≤ l, n0 < . . . < nl is a finite sequence of elements of
the index set of B, j0, . . . , jl ∈ {0, . . . , k−1} and at least one of the j0, . . . , jl
is equal to 0.

We shall again consider only cofinite ultrafilters (or filters) on FIN±
k . We

say that an ultrafilter U on FIN±
k is subsymmetric if

−(A)1 ∈ U for all A ∈ U

Notation.

−B = {−x : x ∈ B} and (A)ǫ = {q ∈ FIN±
k : ∃p ∈ A ‖p− q‖∞ ≤ ǫ}.

As in the case of FINk we define the operation + on the space γFIN±
k of

all cofinite ultrafilters on FIN±
k and extend the tetris operation

T : γFIN±
k → γFIN±

k−1.

This makes (γFIN±
k ,+) (k ≥ 1) a compact semigroup and T a continuous

homomorphism. Let S±
k be the collection of all cofinite subsymmetric ultra-

filters on FIN±
k . The following is immediate from the definition and the way

the topology of FIN±
k is defined.
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Lemma 2.27 S±
k is a closed subsemigroup of γFIN±

k .

Lemma 2.28 S±
k 6= ∅ for all k ≥ 1.

Proof. Pick a cofinite ultrafilter V on FIN±
k and set1

U = T (k−1)(V)− T (k−1)(V) + T (k−2)(V)− T (k−2)(V)+
. . .+ T (V)− T (V) + V − V + T (V)− T (V)+

. . .+ T (k−2)(V)− T (k−2)(V) + T (k−1)(V)− T (k−1)(V).

It is routine to check that U is a subsymmetric ultrafilter. 2

Lemma 2.29 T (U) ∈ S±
k−1 for all U ∈ S±

k .

Proof. This follows from the fact that −T (x) = T (−x) and the fact that
T [(B)1] ⊆ (T [B])1 for B ∈ FIN±

k . 2

Thus we have a sequence S±
j (1 ≤ j ≤ k) of compact semigroups and

homomorphisms T (l−j) : S±
l → S±

j between them.

Lemma 2.30 There is a sequence Uj ∈ S
±
j (1 ≤ j ≤ k) such that for all

1 ≤ i ≤ j ≤ k :

(1) Ui + Ui = Ui,

(2) Ui + Uj = Uj + Ui = Uj (i.e.,Ui ≥ Uj),

(3) T (j−i)(Uj) = Ui.

Proof. Let R±
i = T (k−i)[S±

k ] (1 ≤ i ≤ k). Then R±
i is a nonempty compact

subsemigroup of S±i and T (i−j) : R±
j → R±

i is onto whenever 1 ≤ i ≤ j ≤ k.

We shall pick Uj in R±
j (1 ≤ i ≤ k) satisfying (1)−(3). Let U1 be an arbitrary

idempotent of R±
1 . Suppose 1 ≤ j ≤ k and Ui ∈ R

±
i (1 ≤ i < j) have been

selected satisfying (1)− (3). Let

P±
j = {x ∈ R±

j : T (x) ∈ Uj−1}.

Then P±
j is a nonempty closed semigroup of R±

j . As in the proof of Lemma

2.24, P±
j + Uj−1 is also a closed subsemigroup of R±

j , so we can pick an

idempotent W that belongs to it. Pick V ∈ P±
j such that W = V + Uj−1.

Let

Uj = Uj−1 + V + Uj−1.

As before, one shows that Uj ∈ R
±
j continue to satisfy (1)− (3). 2

Theorem 2.31 (Gowers) For every finite partition of FIN±
k , there is a piece

P of the partition such that (P )1 contains a partial subsemigroup of FIN±
k

generated by an infinite basic block sequence.

1The subtraction −W of an ultrafilter W here means the image of W the under the
reflection map x 7→ −x, i.e., W = {−A : A ∈ W}.
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Proof. We shall use the sequence Uj (1 ≤ j ≤ k) of ultrafilters given by
Lemma 2.30. Let P be a piece of the partition such that P ∈ Uk. Since Uk

is subsymmetric, we know that −(P )1 ∈ Uk. So (P )1 ∩ −(P )1 is a symmet-
ric element of Uk. As before, we recursively define a basic block sequence
{xn}∞n=0, and for each l such that 1 ≤ l ≤ k, a decreasing sequence {Al

n}
∞
n=0

of sets such that

(1) Ak
0 = (P )1 ∩−(P )1, Al

n = T (k−l)[Ak
n],

(2) Al
n = −Al

n ∈ Ul,

(3) ±xn ∈ Ak
n and ±T (k−l)(xn) ∈ Al

n,

(4) (Uly)[±T (k−j)(xn)± y ∈ A
max{j,l}
n ] for 1 ≤ j, l ≤ k.

The fact that for Uk-almost all choices of x0 ∈ Ak
0 satisfy (3) and (4) follows

from the basic relationships between the ultrafilters Ui given in Lemma 2.30.
At the inductive step at some n > 1, for 1 ≤ l ≤ k, let Al

n be the intersection
of all sets of the form

{y ∈ Al
n−1 : ±T (k−j)(xn)± y ∈ A

max{j,l}
n−1 }, (1 ≤ j ≤ k).

By the inductive hypothesis, Al
n is a symmetric member of Ul for all 1 ≤

l ≤ k. Again, the fact that Uk-almost all choices of xn ∈ Ak
n satisfy (3) and

(4) follows from the basic relationships between the ultrafilters Ul given in
Lemma 2.30.

The proof of Theorem 2.31 is complete once we show, by induction on p,
that

(5)p ǫ0T
(k−l0)(xn0) + . . .+ ǫpT

(k−lp−1)(xnp−1) + ǫpy ∈ A
max{l0,...,lp}
n0

for all choices of n0 < . . . < np in N, l0, . . . lp in {1, . . . , k}, ǫ0, . . . , ǫp ∈ {±1},

and y ∈ A
lp
np . The case p = 1 reduces to (4) above, so let us assume p > 1

and that (5)p−1 is true. This in particular means that

y1 = ǫ1T
(k−l1)(Xn1) + . . .+ ǫp−1T

(k−lp−1)(Xnp−1) + ǫpy ∈ A
max{l1,...,lp}
n1

.

Let l = max{l1, . . . , lp}. Then Al
n1
⊆ Al

n0+1 so at the inductive step from n0

to n0 + 1, we have made sure that from y1 ∈ Al
n1
⊆ Al

n0+1 we can conclude
that

ǫ0T
(k−l0)(Xn0) + y1 ∈ A

max{l0,l1}
n0

,

and this is exactly the conclusion of (5)p. 2

Pick 0 < δ < 1 such that (1 + δ)(1−k) = δ and let ∆±
k be the collection of

all finitely supported maps

p : N→ {0,±(1 + δ)1−k,±(1 + δ)2−k, . . . ,±(1 + δ)−1,±1}

that attain at least one of the values ±1. Note that ∆±
k is a δ-net on the

sphere Sc0 and that the distance between distinct members of ∆±
k is at least

δ2. Define ϕ : R→ R ∪ {+∞} by

ϕ(w) =
log |w|

log(1 + δ)−1
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with the convention that log 0 = +∞. Note that ϕ(±(1 + δ)−l) = ±l for
every positive integer l.

Define Φ : Sc0 → FIN±
k by

Φ(x)(n) = sign(x(n)) ·max{k − ⌊ϕ(x(n))⌋, 0}.

Note that

Φ(−x) = −Φ(x) and Φ(x+ y) = Φ(x) + Φ(y)

for every x, y ∈ Sc0 such that supp(x)∩ supp(y) = ∅. Let Ψ = Φ ↾ ∆±
k . Note

that Ψ is a bijection and that supp(p) = supp(Ψ(p)) for all p ∈ ∆±
K .The

following is also easy to check.

Lemma 2.32 For every x ∈ ∆±
k and 0 ≤ λ ≤ 1,

φ(λ · x) = T (j)(ψ(x))

for j = min{k, ⌊ϕ(λ)⌋}.

This leads us to the following geometrical interpretation of Theorem 2.31.

Corollary 2.33 For every finite partition of ∆±
k , there is an infinite dimen-

sional block subspace X of c0 and there is some piece P of the partition such
that SX ⊆ (P )δ.

Corollary 2.34 For every Lipschitz map f : Sc0 → R and ǫ > 0, there is
an infinite-dimensional block subspace X of c0 such that osc(f, SX) ≤ ǫ.

Proof. Let K be the Lipschitz constant of f. Find a sufficiently large integer
k ≥ 1 such that if (1 + δ)(1−k) = δ then δ · K ≤ ǫ

2 . Let {A} be a finite
partition of the range of f into sets of diameter ≤ ǫ

2 . Now apply Corollary

2.33 to the partition {f−1(A) ∩∆±
k }. 2

2.5 THE HALES-JEWETT THEOREM

Let L =
⋃∞

n=0 Ln be a given alphabet decomposed into an increasing chain
of finite subsets Ln and v be a variable distinct from all the symbols from
L. We let WL (or simply W ) denote the set of all words over L and let WLv

be the set of all variable-words over L, i.e., all finite strings of elements of
L ∪ {v} in which v occurs at least once. If s = s[v] ∈ W (v) and a ∈ L ∪ {v}
then by s[a] we denote the element of W or WLv depending on whether
a 6= v or not, obtained by replacing every occurrence of v in s by a.

For a (finite or infinite) sequence X = 〈x0, x1, . . .〉 of elements of WLv,
we denote by [X ]L, respectively by [X ]Lv, the partial subsemigroup of WL,
respectively of WLv, generated by X defined as follows:

[X ]L = {xn0 [λ0]a . . .axnk
[λk] ∈ WL : n0 < . . . < nk, λi ∈ Lni

(i ≤ k)}
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[X ]Lv = {xn0 [λ0]a . . .axnk
[λk] ∈WLv : n0 < . . . < nk,

λi ∈ Lni
∪ {v} (i ≤ k)}.

Theorem 2.35 (Infinite Hales-Jewett Theorem) For every finite coloring of
WL ∪WLv, there is an infinite sequence X = (xn) of elements of WLv such
that the partial subsemigroups [X ]L and [X ]Lv are both monochromatic.

Proof. We use Glazer’s idea and extend the word semigroup S = WL ∪WLv

to its compactification (βS,a). We shall actually work only with the closed
subsemigroup S∗ = βS \S, consisting of nonprincipal ultrafilters on S. Note
that

S∗
L = {U ∈ S∗ : WL ∈ U}

is a closed subsemigroup of S∗ and that

S∗
Lv = {U ∈ S∗ : WLv ∈ U}

is a two-sided ideal of S∗. By Lemma 2.3, we can choose a minimal idempo-
tentW in S∗

L. Applying again Lemma 2.3, we can find a minimal idempotent
V ≤ W belonging to the two-sided ideal S∗

Lv. Each letter λ ∈ L determines
the substitution map x 7→ x[λ] from WLv ∪WL into WL, which is clearly the
identity on WL and which extends to a continuous homomorphism U 7→ U [λ]
from S∗

Lv ∪ S
∗
L into S∗

L, which is the identity on S∗
L.

Claim 2.35.1 V [λ] =W for all λ ∈ L.

Proof. Since U 7→ U [λ] is a homomorphism, V [λ] is an idempotent of S∗
L and

V [λ] ≤ W [λ] =W . Since W is minimal in S∗
L, we have that V [λ] =W . 2

Let Pv be the color of the given coloring that belongs to V and let PW

be the color which belongs to W . By recursion on n, we build an infinite
sequence X = (xk) of variable-words and two infinite decreasing sequences
{Pn

W } and {Pn
v } of elements of W and V , respectively, such that for all n

(a)n xn ∈ Pn
v ,

(b)n ∀λ ∈ Ln ∀x ∈ Pn
v x[λ] ∈ Pn

W ,
(c)n (Vy)(∀λ ∈ Ln ∪ {v}) xn[λ]ay ∈ Pn

v ,
(d)n (Wt) xn

a t ∈ Pn
v .

We start by letting P 0
W = PW ∩WL and

P 0
v = {x ∈ Pv ∩WLv : ∀λ ∈ L0 x[λ] ∈ P 0

W }.

By Claim 2.35.1 and the fact that P 0
W ∈ W , the set P 0

v , being a finite
intersection of members of V , belongs to V . Rewriting the fact

(∀λ ∈ L0 ∪ {v}) P 0
v ∈ V [λ]aV
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using the ultrafilter quantifier, we get

(Vx)(Vy)(∀λ ∈ L0 ∪ {v}) x[λ]ay ∈ P 0
v .

Similarly, reading the fact P 0
v ∈ V = VaW , we get

(Vx)(Wt) x at ∈ P 0
v .

It follows that we can choose x0 ∈ P 0
v such that (a)0 − (d)0 are satisfied.

The inductive step from n to n+ 1 is done similarly. By (d)n the set

Pn+1
W = {t ∈ Pn

W : xn
a t ∈ Pn

v }

belongs to W . By (c)n, the set

Qn
v = {y ∈ Pn

v : (∀λ ∈ Ln ∪ {v})xn[λ]ay ∈ Pn
v }

belongs to V . So, as before it follows from Claim 2.35.1 that the set

Pn+1
v = {x ∈ Qn

v : (∀λ ∈ Ln+1)x[λ] ∈ Pn+1
W }

belongs to V . As before, we argue that V-almost all choices of xn+1 from
Pn+1

v satisfy (c)n+1 and (d)n+1.

Claim 2.35.2

(1) xn0 [λ0]a . . .axnk−1[λk−1]ay ∈ Pn0
v for every k > 0, n0 < . . . < nk,

λi ∈ Lni
∪ {v} (i < k) and y ∈ Pnk

v .

(2) xn0
a xn1 [λ1]a . . .axnk

[λk] ∈ Pn0
v for every k ≥ 0, n0 < . . . < nk,

λi ∈ Lni
(0 < i ≤ k).

(3) xn0 [λ0]a . . .axnk
[λk] ∈ Pn0

W for every k ≥ 0, n0 < . . . < nk,
λi ∈ Lni

(i ≤ k).

Proof. The proof is by induction on k. The case k = 1 of (1) follows from the
way we have made the recursive step from n0 to n0+1 : Pn1

v ⊆ Pn0+1
v ⊆ Qn0

v .
So, let us suppose (1) at k and prove it for k+1. So let n0 < . . . < nk+1, λi ∈
Lni
∪ {v} (i < k) and y ∈ P

nk+1
v be given. Let

y′ = xn1 [λ1]a . . .axnk
[λk]ay.

Then y′ ∈ Pn1
v by the inductive hypothesis. By the way that we made the

recursive step from n0 to n0 + 1, we have that y′ ∈ Pn1

V ⊆ Pn0+1
v ⊆ Qn0

v .
It follows that y = xn0 [λ0] a y′ ∈ Pn0

v . Note that (3) follows from (1) with
y = xnk

and (b)n0 . It remains to prove (2). So let k ≥ 0, n0 < . . . < nk and
λi ∈ Lni

(0 < i ≤ k) be given. Let

t′ = xn1 [λ1] a . . .axnk
[λk].

By (3) we know that t′ ∈ Pn1

W . According to the recursion step from n0 to
n0 + 1 we have that

t′ ∈ Pn1

W ⊆ Pn0+1
W = {t ∈ Pn0

W : xn0

a t ∈ Pn0
v },

hence xn0
a t′ ∈ Pn0

v , which is the conclusion of (2). 2
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We are now in a situation to finish the proof of the infinitary Hales-Jewett
theorem by showing that if X = (xn)∞n=0 is the sequence just produced,
then [X ]L ⊆ PW and [X ]Lv ⊆ Pv. The first conclusion follows from Claim
2.35.2(3). To show the second, consider an expression of the form

x = xn0 [λ0] a . . .axnk
[λk],

where n0 < . . . < nk and λi ∈ Lni
∪ {v} (i < k) are such that at least one

of the λi is equal to v. Let l = max{i ≤ k : λi = v}. By Claim 2.35.2(2),

y = xnl
[λl]

a xnl+1
[λl+1] a . . .axnk

[λk] ∈ Pnl
v .

It follows that

x = xn0 [λ0] a . . .axnl−1
[λl−1] a y.

is an expression whose terms satisfy the hypothesis of Claim 2.35.2(1). There-
fore, we can conclude that x ∈ Pn0

v ⊆ Pv. This completes the proof. 2

Remark 2.36 Note that the above proof shows that whenever we have an
idempotent U concentrating on variable-words and a set P of nonvariable
words such that (∀λ ∈ L)(Ux) x[λ] ∈ P, then there is a procedure that gives
us an infinite sequence X = (xn) of variable-words such that [X ]L ⊆ P .

The proof of Theorem 2.35 admits many variations. To state one, working
still with L, WL and WLv as above, we say that an x ∈ WLv is a left variable
word if the first letter of x is v.

Theorem 2.37 (Infinite Hales-Jewett Theorem for Left Variable Words) If
the alphabet L is finite, then for every finite coloring of WL there is an infinite
sequence X = (xn)∞n=0 of left variable-words and a variable-free word w0 such
that the translate w0

a[X ]L of the partial subsemigroup of WL generated by
X is monochromatic.

Proof. As in the proof of Theorem 2.35, we work with the semigroup

(S = WL ∪WLv,
a)

and its extension (S∗,a) where S∗ = βS \ S. As before we take a minimal
idempotentW in the subsemigroup {X ∈ S∗ : WL ∈ X} and an idempotent
V ≤ W minimal in S∗. Since {X ∈ S∗ : WLv ∈ X} is a two-sided ideal of
S∗, the ultrafilter V must belong to it, or in other words, V concentrates
on variable-words. Let vaWLv denote the right-ideal of S consisting of all
left-sided variable-words over L. Then J = {X ∈ S∗ : vaWLv ∈ X} is a
right-ideal of S∗. So, by Lemma 2.11 and Remark 2.12 there is idempotent
U ∈ J such that

VaU = V and UaV = U .

Using this and the Claim 2.35.1 from the proof of Theorem 2.35, we get that

(∀λ ∈ L) WaU [λ] =W and U [λ]aW = U [λ].
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As before, for a subset Q of WL and w ∈WL, let

Q/w = {t ∈WL : wat ∈ Q}.

Note that the equationsWaW =W andWaU [λ] =W for λ ∈ L mean that
if Q ∈ W , then the set of all w ∈ Q such that

Q/w ∈ W and Q/w ∈ U [λ] for all λ ∈ L

belongs to W . Let ∂Q denote this subset of Q.
Let P ∈ W be a set that is monochromatic relative to the given coloring.

Then ∂P belongs to W and so in particular is nonempty, which means that
we can pick w0 ∈ P such that P/w0 belongs to W and all the ultrafilters
U [λ] for (λ ∈ L). It follows, in particular, that

(Ux)(∀λ ∈ L) x[λ] ∈ P/w0.

Using this and the equations U [λ]aW = U [λ], for λ ∈ L, we can find a left
variable-word x0 such that for all λ ∈ L there is a set Pλ ∈ W such that
x0[λ] ∈ P/w0 and x0[λ]aw ∈ P/w0 for all w ∈ Pλ. Let Q0 be the intersection
of P and the finitely many sets Pλ (λ ∈ L). Then Q0 ∈ W and therefore
∂Q0 ∈ W as well. So in particular, we can pick w1 ∈ Q0 such that

(∀λ ∈ L)[Q0/w0
ax0[λ]aw1 ∈ W and (∀µ ∈ L) Q0/w0

ax0[λ]aw1 ∈ U [µ]].

Let P1 be the intersection of Q0 and the finitely many sets

Q0/w0
ax0[λ]aw1(λ ∈ L).

Working as above, we can find a left variable-word x1 and for each λ ∈ L a
set P1λ ∈ W such that x1[λ] ∈ P1 and x1[λ]aw ∈ P1 for all w ∈ P1λ. Let Q1

be the intersection of P1 and the finitely many sets P1λ (λ ∈ L), and so on.
Proceeding in this way, we construct a decreasing sequence P1 ⊇ P2 ⊇ ... of
subsets of P and a sequence

w0, x0, w1, x1, . . . , wn, xn, ...

of variable-free words wn and left variable words xn such that

w0
axn0 [λ0]awn0+1

a....axnk
[λk]awnk+1 ∈ Pn0 ⊆ P

for all n0 < ... < nk and λi ∈ L for 0 ≤ i ≤ k. It follows that if we let
yn = xn

awn+1 for n = 0, 1, . . . , then we get a sequence of left variable-
words together with the variable-free word w0, satisfies the conclusion of the
theorem. 2

Remark 2.38 Note that Theorem 2.37 is no longer true if we allow infinite
alphabets L even if we restrict the substitutions xn[λ] in the nth variable-
word xn to letters λ belonging to the nth piece Ln of a fixed increasing
decomposition L =

⋃∞
n=0 Ln of L into its finite subalphabets. Fixing an

enumeration of L, for a given w in WL, let Mw be the set of all integers k
with the property that kth letter of L is in the kth position in w. Then if
we color w from WL by the parity of the cardinality of the set Mw, then no
combinatorial subspace of the form w0

a[X ]L could be monochromatic.
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We finish this section with the original Hales-Jewett theorem which is
clearly an immediate consequence of Theorem 2.35.

Theorem 2.39 (Finite Hales-Jewett Theorem) For every finite alphabet L
and a positive integer k, there corresponds a positive integer n such that
for every k-coloring of the set WL(n) of all L-words of length n there is a
variable-word x of length n such that the set {x[λ] : λ ∈ L} is monochro-
matic.

2.6 PARTIAL SEMIGROUP OF LOCATED WORDS

We start again with an alphabet L =
⋃∞

n=0 Ln expressed as an increasing
union of finite alphabets Ln. Let v 6∈ L be a fixed variable. A located word
over L is a function from a finite nonempty subset of N into L. Let FINL be
the collection of all located words over L. A located variable word over L is
a finite partial function from N into L ∪ {v} that takes the value v at least
once. Let FINLv be the collection of all located variable-words. A sequence
(finite or infinite) X = (xn) of elements of FINL or FINLv is a block sequence
if

dom(xn) < dom(xm) whenever n < m.

For a given block sequence X = (xn) of located variable-words, we define
the corresponding subspaces of FINL and FINLv as before,

[X ]L = {xn0 [λ0] ∪ . . . ∪ xnk
[λk] ∈ FINL : n0 < . . . < nk,

λi ∈ Lni
(i ≤ k)},

[X ]Lv = {xn0 [λ0] ∪ . . . ∪ xnk
[λk] ∈ FINLv : n0 < . . . < nk,

λi ∈ Lni
∪ {v} (i ≤ k)}.

(For x ∈ FINLv and λ ∈ L ∪ {v}, we denote by x[λ] the function with the
same domain as x that agrees with x on all places where x does not take
the value v and that is equal to λ at any place where x is equal to v.) The
proof of the infinitary Hales-Jewett theorem easily adapts to a proof of the
following result.

Theorem 2.40 (Infinite Hales-Jewett Theorem for Located Words) For ev-
ery finite coloring of the set FINL ∪ FINLv, there is an infinite block se-
quence X = (xn) of variable located words such that [X ]L and [X ]Lv are
both monochromatic.

Proof. Let S be the collection of all cofinite ultrafilters on FINL ∪ FINLv,
i.e., ultrafilters that contain each of the sets of the form

{x ∈ FINL ∪ FINLv : dom(x) ∩ {0, . . . , n} = ∅}
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for n ∈ N. For U ,V ∈ S, let U ∗ V be the collection of all subsets A of
FINL ∪ FINLv such that

{x ∈ FINL ∪ FINLv : {y ∈ FINL ∪ FINLv : x < y & x ∪ y ∈ A} ∈ V} ∈ U .

Then as in the case of the Galvin-Glazer theorem, one has that ∗ is an
associative operation on S and that U 7→ U ∗ V is continuous for all V ∈ S.
Thus (S, ∗) is a topological semigroup, so we can apply the theory of minimal
idempotents.

Let SL be the closed subsemigroup of S consisting of all cofinite ultra-
filters that concentrate on FINL and let SLv be the two sided ideal of S
consisting of all cofinite ultrafilters that concentrate on FINLv. Choose a
minimal idempotent W of SL. Using Lemma 2.3 again, we can find a min-
imal idempotent V of S such that V ≤ W and V ∈ SLv. For λ ∈ L ∪ {v},
the map x 7→ x[λ] from FINL ∪ FINLv into itself extends to a continuous
homomorphism U 7→ U [λ] from S into S. Note that this map is the identity
on SL if λ ∈ L, and the identity on SLv if λ = v.

Claim 2.40.1 V [λ] =W for all λ ∈ L.

Proof. Since U 7→ U [λ] is a homomorphism from S into SL, the ultrafilter
V [λ] is an idempotent of SL. Moreover V ≤ W implies V [λ] ≤ W =W . Since
W is minimal in SL, we have that V [λ] =W . 2

Let Pv be the color of the given coloring of FINL ∪FINLv that belongs to
V and let PW be the color that belongs to W . As in the proof of the infinite
Hales-Jewett theorem, starting from Pv and PW we build the sequences
{Pn

v } and {Pn
W } of members of V and W , respectively, and the infinite

block-sequence X = (xn) of variable located words, such that [X ]Lv ⊆ Pv

and [X ]L ⊆ PW . 2

Theorem 2.41 (Hindman) For every finite coloring of the set FIN of all
nonempty finite subsets of N, there is an infinite block sequence X = (xn) of
members of FIN such that the set [X ] of all finite unions of members of X
is monochromatic.

Proof. This is just the case L = ∅ of the previous result. 2

NOTES TO CHAPTER TWO

The theory of compact left-topological semigroups exposed above is an old
subject of topological dynamics (see, e.g., Ellis [28], Furstenberg-Katznelson
[32], Hindman-Strauss [49]). Glazer’s proof of Hindman’s theorem (see, e.g.,
Comfort [17]) gives the added feature to classical theory of enveloping semi-
groups that even partial semigroups lead to compact left-topological semi-
groups whose idempotents have meaningful Ramsey theoretic interpretations
back in the original partial semigroups. The extent of the applicability of this
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observation can perhaps be most easily seen in the proofs of the two the-
orems of Gowers (Theorems 2.22 and 2.31 above), appearing originally in
his paper [37] and giving the positive solution to the distortion problem
for the Banach space c0. This could be seen equally well in the proof of
the Bergelson-Blass-Hindman theorem (Theorem 2.40 above) which appears
originally in [8] and is also inspired by Glazer’s proof of the well-known theo-
rem of Hindman [47]. The finite version of the Hales-Jewett theorem appears
in the original paper [43] of Hales and Jewett. The first infinite versions of
the Hales-Jewett theorem were proved by Carlson-Simpson [16] and Carlson
[13] although the proofs of these extensions presented above are more closely
related to the proofs appearing in [32], [49], and [48]. Needless to say, they
are all inspired by Glazer’s proof of Hindman’s theorem, but of course they
have some added features such as the use of more than one idempotent or
the use of the ordering ≤ between idempotents.



Chapter Three

Trees and Products

3.1 VERSIONS OF THE HALPERN-LÄUCHLI THEOREM

In this section by a tree we mean a rooted finitely branching tree of height ω
with no terminal nodes. Given a tree T, and n ∈ ω, let T (n) denote the nth
level of T. A subtree of T is a subset of T with an induced tree-ordering. Note
that in general for a subtree S of T the nth level S(n) may not be a level
set, i.e., included in some level T (m) of T although we typically work with
subsets S of T for which all levels are level subsets of T. One such subtree
is the subtree

T (A) =
⋃

n∈A

T (n)

for some infinite set A ⊆ ω. Another such subtree is a so-called strong subtree
of T, i.e., a subtree S of T for which we can find an infinite set A ⊆ ω of
levels such that

(1) S ⊆ T (A) and S ∩ T (n) 6= ∅ for all n ∈ A,

(2) if m < n are two successive elements of A and if s is a node belonging
to S ∩T (m), then every immediate successor of s in T has exactly one
extension in S ∩ T (n).

Figure 3.1 A strong subtree.
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Any tree T has its natural topology τ0 generated by sets of the form
T s = {t ∈ T : s ≤ t} for s ∈ T. This topology has its standard notions like
nowhere dense, somewhere dense and dense, but in order to avoid confusions
with similar notions for trees that we introduce below, we shall keep the
reference to τ0 whenever we use this topological notions. Thus, we say that
a subset X of T is nowhere τ0-dense if for every t ∈ T, there is a u ≥ t such
that x /∈ X for all x ≥ u. On the other hand, a subset X of T is τ0-dense if
for every t ∈ T, there is an x ∈ X such that t ≤ x. If there is an s ∈ T such
that for every t ∈ T with t ≥ s there is x ∈ X such that t ≤ x, then we say
that X is somewhere τ0-dense. Thus, X is somewhere τ0-dense if it is dense
in a subtree of T of the form

T [s] = {x ∈ T : x ≤ s or s ≤ x}.

The Halpern-Läuchli theorem is about finite analogs of these standard no-
tions. A subset X of T is k-dense if it dominates every node of T of height
k. For x ∈ T and k ∈ ω we say that a subset X of T is k-x-dense if X
dominates every node of T [x] ∩ T (k). If X ⊆ T is k-x-dense for some x ∈ T
and some k > level(x), or equivalently for k = level(x) + 1, then X is said
to be somewhere dense.

Figure 3.2 A k-dense set and a k-x-dense set.

Suppose now we are given a (finite) sequence Ti (i < d) of trees. We con-
sider their product

∏
i<d Ti an ordered set with the coordinatewise ordering.

A k-dense matrix of
∏

i<d Ti is a subproduct of the form
∏

i<d Xi, where
Xi is a k-dense subset of Ti for all i. A k-dense subset of

∏
i<d Ti is a sub-

set P of
∏

i<d Ti that dominates (in the cartesian ordering) every element
of
∏

i<d Ti(k). Thus, every k-dense matrix is a k-dense subset but not vice
versa. For ~x ∈

∏
i<d Ti and k ∈ ω, a k-~x-dense matrix is a product of the

form
∏

i<d Xi, where Xi is k-xi-dense for each i < d. A product
∏

i<d Xi is
called a somewhere dense matrix if

∏
i<d Xi is k-~x-dense for some k ∈ ω and

~x ∈
∏

i<d Ti such that

k > max
i<d

(level(xi)).

In the next section we shall actually prove the following version of the
well-known partition theorem of Halpern and Läuchli.
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Figure 3.3 A k-dense matrix.

Theorem 3.1 (Halpern-Läuchli) For every finite sequence Ti (i < d) of
trees and every finite partition of their product

∏
i<d Ti, one of the pieces of

the partition must contain a somewhere dense matrix.

As we shall consider several equivalent formulations of this result, let us call
this version, the somewhere dense matrix version and denote it by SDHLd

to emphasize the dimension d as well. To state another formulation of this
result we need a higher-dimensional version of the notion of strong subtree.
Thus, we say that a sequence Si (i < d) is a sequence of strong subtrees of
Ti (i < d) if there is a single infinite set A ⊆ ω such that for all i < d, Si

is a strong subtree of Ti with A as the witness, i.e., satisfying conditions (1)
and (2) above.

Theorem 3.2 (Strong Subtree Version of the Halpern-Läuchli Theorem)
For every finite partition of a finite product

∏
i<d Ti of trees, there is one

piece P of the partition and there is a sequence Si (i < d) of strong sub-
trees of Ti (i < d) as witnessed by the same infinite set A ⊆ ω such that⋃

n∈A

∏
i<d Si(n) ⊆ P.

Proof. Note that by applying the compactness principle, Theorem 3.1 gives
us the following finite version of SDHLd: For every integer l ≥ 1, there is an
integer n such that every partition

c :
∏

i<d

(Ti ↾ n)→ l = {0, 1, . . . , l − 1}

is constant on a somewhere dense matrix
∏

i<d Xi such that Xi ⊆ Ti ↾ n for
i < d.

Let c :
∏

i<d Ti → l be a given partition and let n be an integer which
satisfies the finite form of SDHLd for this l. Choose

hi : Ti ↾ n→ Ti(n) (i < d)

such that hi(t) ≥Ti
t for all i < d and t ∈ Ti ↾ n. Define

c :
∏

i<d

(Ti ↾ n)→ l
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by

c(t0, . . . , td−1) = c(h0(t0), . . . , hd−1(td−1)).

By finite SDHLd(l) for the trees Ti ↾ n (i < d), the coloring c is constant on
some somewhere dense matrix

∏
i<d Xi such that Xi ⊆ Ti ↾ n for all i < d.

Let

X̄i = hi[Xi] (i < d).

Then X̄i (i < d) is a sequence of level subsets of Ti (i < d) forming a
somewhere dense matrix

∏
i<d X̄i of

∏
i<d Ti on which c is constant. It fol-

lows that without loss of generality we may assume that SDHLd(l) gives
us a monochromatic matrix of level subsets. Given this observation, we
now claim that for a given c :

∏
i<d Ti → l, there is a level sequence

(x0, . . . , xd−1) ∈
∏

i<d Ti such that for all k there is a sequence Xi (i < d) of
level subsets of Ti (i < d) such that Xi is k-dense in Ti[xi] for all i < d and
such that c is constant on

∏
i<d Xi. From this, the conclusion of the strong

subtree version of the Halpern-Läuchli theorem follows easily. Toward a con-
tradiction, suppose that this strengthening of SDHLd(l) is false. So for each
~x ∈

∏
i<d Ti we can associate the maximal integer k(~x) for which we can

find a c-homogeneous k(~x)-~x-dense sequence of level subsets of Ti (i < d).
So we can build a strictly increasing sequence {nj}∞j=0 of positive integers
such that for every j,

nj+1 > k(~x) for all ~x ∈
⋃

n≤nj

∏

i<d

Ti(n).

For i < d, set

T ∗
i =

∞⋃

j=0

Ti(nj).

Applying SDHLd(l) to the restriction of c to
∏

i<d T
∗
i , we find a somewhere

dense level matrix
∏

i<d X
∗
i of

∏
i<d T

∗
i on which c is constant. This means

that there exists j < j+ < ω and ~x ∈
∏

i<d Ti(nj) such that for all i < d,

X∗
i dominates Ti[xi] ∩ Ti(nj+).

It follows that
∏

i<d X
∗
i is an nj+ -~x-dense c-monochromatic level matrix,

contradicting the definition of k(~x) and the fact that

nj+ ≥ nj+1 > k(~x).

This finishes the proof. 2

Remark 3.3 Note that the proof just given shows that in either of the
two versions of the Halpern-Läuchli theorem we may restrict ourselves to
partitions with just two pieces without losing any generality. This leads us
to an asymmetric version of this result. To state this version we need a
definition.
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Definition 3.4 A subset P of some finite product
∏

i<d Ti of trees is highly
dense if for every k there is some n such that P ∩M is a k-dense subset of∏

i<d Ti for every n-dense matrix M =
∏

i<d Xi of
∏

i<d Ti.

Note that a subset P of
∏

i<d Ti whose complement does not include a
somewhere dense matrix is a highly dense set since for a given integer k the
value n = k + 1 works. The following is a restatement of this observation.

Lemma 3.5 A given subset P of
∏

i<d Ti is either highly dense in the full
product, or there is ~x ∈

∏
i<d Ti such that its complement P c contains a

k-~x-dense matrix for every positive integer k.

The following is yet another formulation of the Halpern-Läuchli theorem.

Theorem 3.6 (Highly Dense Set Version of the Halpern-Läuchli Theorem)
Every highly dense subset of some finite product

∏
i<d Ti of trees contains a

k-dense matrix for every positive integer k.

Corollary 3.7 (Asymmetric Version of the Halpern-Läuchli Theorem) For
every coloring

∏
i<d Ti = K0 ∪K1 of some finite product

∏
i<d Ti of finitely

branching trees either the first color K0 contains a k-dense matrix for ev-
ery integer k, or there is some ~x ∈

∏
i<d Ti such that the second color K1

contains a k-~x-dense matrix for every integer k.

Remark 3.8 (1) It is clear that the version of the Halpern-Läuchli theorem
appearing in Theorem 3.6, call it HDHL, has the somewhere dense matrix
version SDHL as immediate corollary. As we see later, a simple argument
gives HDHL as a corollary of SDHL. It turns out, however, that it is more
convenient to prove HDHLd by induction on d rather than SDHLd.
(2) Note that by replacing Ti by Ti \

⋃
0<n<k Ti(n) (i < d), HDHLd is equiv-

alent to the statement that any highly dense subset of
∏

i<d Ti contains a
1-dense matrix. Note also that by replacing Ti with Ti(A) for an appro-
priately chosen set of levels, HDHLd is equivalent to the statement that a
subset P of some product

∏
i<d Ti of trees is either disjoint from a some-

where dense matrix or it includes a 1-dense matrix (and therefore includes
a k-dense matrix for all k). This suggests the following finitary formulation
of the Halpern-Läuchli theorem.

Theorem 3.9 (Finite Halpern-Läuchli Theorem) For every finite product∏
i<d Ti of trees and for every integer k, there is an integer l such that for

every l-dense matrix M of
∏

i<d Ti and every coloring c : M → 2, either
there is a somewhere dense matrix M1 ⊆M such that c[M1] = {1}, or there
is a k-dense matrix M0 ⊆M such that c[M0] = {0}.

We finish this section with a metric reformulation of the Halpern-Läuchli
theorem.
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Definition 3.10 For a given ε > 0, a subset D of some metric space (X, ρ)
is ε-dense if for every x ∈ X, there is a y ∈ D such that ρ(x, y) < ε.
A subset D of some product

∏
i<d(Xi, ρi) of metric spaces is an ε-dense

matrix if D =
∏

i<d Di, where Di is ε-dense in Xi for i < d.

Recall also that a metric space (X, ρ) is totally bounded if for every ε > 0
there is a finite ε-dense subset of X .

Definition 3.11 A subset D of some finite product
∏

i<d(Xi, ρi) of metric
spaces is large if it contains an ε-dense matrix for every ε > 0.We say that D
is somewhere large if there is a sequence Ui ⊆ Xi (i < d) of nonempty open
sets such that the intersection of D with

∏
i<d Ui is large in that subproduct.

Theorem 3.12 (Metric Halpern-Läuchli Theorem) Let D =
⋃k

l=0 Cl be a
finite coloring of a large subset D of some finite product

∏
i<d(Xi, ρi) of

totally bounded metric spaces. Then one of the colors Cl must be somewhere
large.

Proof. Since the metric spaces are totally bounded, our assumption that D
is large in the product

∏
i<d(Xi, ρi) permits us to construct a sequence Ti

(i < d) of finitely branching rooted trees such that

(1)
⋃∞

n=0

∏
i<d Ti(n) ⊆ D,

(2) for every i < d and t ∈ Ti there is a δ > 0 such that for every ε > 0
there is an integer m such that for all n ≥ m, the set

{x ∈ Ti(n) : t ≤ x} ∩Bδ(t)

is ε-dense in the ball Bδ(t) = {x ∈ Xi : ρi(t, x) < δ}.

By (1) the coloring of D transfers to a coloring of
∏

i<d Ti in a natural
way. More precisely, we have a coloring of level-sequences ~x ∈

∏
i<d Ti. One

extends the coloring to the rest of the product by taking the projection of
~x on mini<dlevel(xi). It is clear that the conclusion of the Halpern-Läuchli
theorem applied to this coloring via the condition (2) gives us the conclusion
of the theorem. 2

It should now be clear that we can similarly reformulate the highly dense
set version of the Halpern-Läuchli theorem. The following notion corresponds
to the notion of a highly dense subset of some product of trees introduced
above in Definition 3.4.

Definition 3.13 Fix a large subset D of some finite product
∏

i<d(Xi, ρi)
of metric spaces. We shall say that a subset P of D is highly dense in
D if for every ε > 0 there is a δ > 0 such that for every δ-dense matrix
C =

∏
i<d Ci ⊆ D, the intersection P ∩

∏
i<d Ci is ε-dense in the product

metric space (Y, ρ) =
∏

i<d(Xi, ρi).

By embedding a product
∏

i<d Ti of finitely branching trees inside D as in
the proof of Theorem 3.12 one gets the following result out of the highly
dense set version of the Halpern-Läuchli theorem.
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Theorem 3.14 (Highly Dense Metric Halpern-Läuchli Theorem) A highly
dense subset of a large subset of some finite product of totally bounded metric
spaces is itself a large subset of that product.

3.2 A PROOF OF THE HALPERN-LÄUCHLI THEOREM

In this section we give a proof of HDHLd. As indicated above the proof will
be done by induction on d. The case d = 1 is immediate, so we concentrate on
the induction step from d to d+1. So, let P be a given subset of some product∏

i≤d Ti of trees such that its complement does not include any somewhere
dense matrix. We need to show that P includes a 1-dense matrix. For y ∈ Td,
we need to consider its section,

Py = {~x ∈
∏

i<d

Ti : ~xay ∈ P}.

Applying the inductive assumption HDHLd in the strong-subtree form and
using a simple fusion procedure, we find strong subtrees Si ⊆ Ti (i < d)
as witnessed by the same infinite subset A = {nk}∞k=0 of ω enumerated
increasingly such that n0 = 0, i.e., root(Si) = root(Ti) for all i < d, and such
that for all k, y ∈ Td(k) and ~x ∈

⋃
l>k

∏
i<d Si(l),

(
⊆
⋃

l>k

∏
i<d Ti(nl)

)
,

~x
a

y ∈ P iff (~x ↾ nk+1)ay ∈ P.

So, to simplify the notation we assume that our initial trees Ti (i ≤ d) and
the set P ⊆

∏
i≤d Ti already have this property, or in other words,

(∗) For every y ∈ Td and every level-vector ~x ∈
∏

i<d Ti with level(~x) >
level(y) = k, ~x ∈ Py iff ~x ↾ k + 1 ∈ Py.

To take the full advantage of this property and the same time avoid rep-
etitions, in what follows, matrices and vectors of

∏
i<d Ti are implicitly as-

sumed to be level-matrices and level-vectors, respectively. Considering Td

a topological space with the topology τ0 generated by the basic open sets
{y : x ≤ y} (x ∈ Td), we have the following fact.

Lemma 3.15 For every k and every somewhere τ0-dense X ⊆ Td there
exists an integer n and somewhere τ0-dense Y ⊆ X such that for every
y ∈ Y and every n-dense matrix M of

∏
i<d Ti, the intersection M ∩ Py is

a k-dense subset of
∏

i<d Ti.

Proof. Suppose the conclusion of the lemma fails for some k and X. Then
for every n the set

Xn = {y ∈ X : there is n-dense matrix M such thatPy ∩M is not k-dense}

has a nowhere τ0-dense complement in X . Choose a minimal subset D ⊆∏
i<d Ti(k) with the property that for some integer n0 and somewhere τ0-

dense Y ⊆ X the following holds:
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(1) (∀n ≥ n0)(∀y ∈ Y ∩Xn)(∃~x ∈ D)(∃n-~x-dense matrix M) M ∩Py = ∅.

Then for every ~x ∈ D and every integer n, the set

Yn(~x) = {y ∈ Y ∩Xn : (∃n-~x-dense matrix M) M ∩ Py = ∅}

is τ0-dense in Y , since otherwise, removing ~x from D, we obtain a smaller
set satisfying (1).

Fix Y and D satisfying (1) and an arbitrary ~x = (x0, . . . , xd−1) ∈ D. Pick
t ∈ Td of some height l ≥ k such that Y is τ0-dense in Td[t]. Let t0, . . . , tp be
a list of all immediate successors of t in Td. Then

(2) (∀q ≤ p)(∀n)(∃y ∈ Y ∩Xn ∩ T tq)(∃n-~x-dense matrix M) M ∩ Py = ∅.

Apply (2) for q = 0 and get y0 ≥ t0 in Y ∩Xl+1 such that for some ~x-(l+1)-
dense matrix M0 of

∏
i<d Ti, the intersection M0 ∩ Py0 is empty. Let n1 be

an integer that is bigger than the level set of the matrix M0 and the height
of y0. Apply (2) for q = 1 and get y1 ≥ t1 in Y ∩Xn1 such that for some
~x-n1-dense matrix M1 of

∏
i<d Ti, we have that M1 ∩ Py1 = ∅, and so on.

Proceeding in this way, we obtain np > np−1 > . . . > n0 = l + 1, yp ≥ tp
in Y ∩Xnp

, and some ~x-np-dense matrix Mp such that Mp ∩ Pyp
= ∅. Note

that by the property (∗) and the choices of np > . . . > n0 we have that

(3) (∀q ≤ p) Mp ∩ Pyq
= ∅.

It follows that M = Mp × {y0, . . . , yp} is an (l + 1)-(~xat)-dense matrix of∏
i≤d Ti that avoids P. Since l + 1 is bigger than the height of any of the

nodes of ~xat, this contradicts our initial assumption about P. This proves
the lemma. 2

Lemma 3.16 For every t ∈ Td and k ∈ ω, there is y ≥ t in Td and a k-
dense matrix M of

∏
i<d Ti such that the level of M lies above the level of y

and such that M ⊆ Py.

Proof. By Lemma 3.15, starting from n0 = k and X0 = {y ∈ Td : y ≥ t},
we build a strictly increasing sequence {np}

∞
p=0 of integers and a decreasing

sequence {Xp}∞p=0 of somewhere τ0-dense-sets such that

(4) For every p ∈ ω, every y ∈ Xp+1 and every np+1-dense matrix M, the
intersection M ∩ Py is an np-dense subset of

∏
i<d Ti.

Applying now the finite version of the Halpern-Läuchli theorem for the se-
quence of trees

T ∗
i = {root(Ti)} ∪

∞⋃

p=0

Ti(np) (i < d),

we find an integer l > 1 with the property that for every l-dense matrix
M of

∏
i<d T

∗
i and every c : M → 2, either there is a somewhere dense

matrix M1 ⊆ M of the product
∏

i<d T
∗
i on which c is constantly 1, or a
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1-dense matrix M0 ⊆ M of
∏

i<d T
∗
i on which c is constantly 0. Choose

y ∈ Xl and choose l∗ ≥ l such that nl∗ > level(y). Chose an nl-dense matrix
M =

∏
i<d Ei ⊆

∏
i<d Ti(nl∗) such that the projections from Ei onto Ti(nl)

are all one-to-one. Define c : M → 2 by

c(~x) = 0 iff ~x ∈ Py.

Using (4), we conclude that c cannot be constantly 1 on any somewhere dense
submatrix of M relative to

∏
i<d T

∗
i . So there is a 1-dense submatrix M0 of

M relative to
∏

i<d T
∗
i on which c is constantly 0, i.e., such that M0 ⊆ Py.

Now note that being 1-dense in
∏

i<d T
∗
i implies being k-dense in

∏
i<d Ti.

This completes the proof. 2

We are now ready to finish the proof of HDHLd+1. Let t0, . . . , tp be a list
of all immediate successors of the root of Td. Apply Lemma 3.16 to t = t0
and k = 1 we get y0 ≥ t0 and a 1-dense matrix M0 of

∏
i<d Ti such that

M0 ⊆ Py0 and levelset(M0) > level(y0). Let l0 be the level of the matrix
M0 and choose u1 ≥ t1 at level l0. Apply now Lemma 3.16 to k = l0 and
t = u1 and obtain an l0-dense matrix M1 of

∏
i<d Ti and y1 ≥ u1 such that

M1 ⊆ Py1 and levelset(M1) > level(y1), and so on. Proceeding in this way,
we arrive at lp−1(=the level of Mp−1)-dense matrix Mp and yp ≥ up ≥ tp
such that Mp ⊆ Pyp

. Note that by (∗),

(5) Mp ⊆ Pyq
for all q ≤ p.

It follows that M = Mp × {y0, . . . , yp} is a 1-dense matrix of
∏

i<d Ti such
that M ⊆ P. This completes the inductive step and therefore the proof of
the highly dense set version of the Halpern-Läuchli theorem. 2

3.3 PRODUCTS OF FINITE SETS

The purpose of this section is to present a basic Ramsey theoretic result
about a special kind of finitely branching tree of height ω, the trees of the
form

T ( ~H) =
⋃

k

∏

i<k

Hi

for some infinite sequence ~H = (Hi)
∞
i=0 of nonempty finite sets of integers.

We call such trees product trees . A product tree T ( ~H) is also called an ~m-
tree for some infinite sequence ~m = (mi)

∞
i=0 of positive integers provided

that mi = |Hi| for all i. A product tree T ( ~J) is a subtree of a product tree

T ( ~H) if Ji ⊆ Hi for all i. In this section we prove a particular strengthening
of the following basic Ramsey theoretic result about product trees.

Theorem 3.17 (Product Tree Ramsey Theorem) For every infinite se-
quence ~m of positive integers there is an infinite sequence ~n of positive in-
tegers such that for every 2-coloring c of an ~n-tree T ( ~H) there exists an

~m-subtree T ( ~J) of T ( ~H) such that c is constant on infinitely many levels of

T ( ~J).
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We shall use the symbol ~n → ~m to denote conclusion of this theorem
and ~n 9 ~m to denote its negation. Identifying an infinite subset M of N
with its increasing enumeration M = (mi)

∞
i=0, we extend the arrow-notation

N → M to pairs N and M of infinite subsets of N. Let N[∞] denote the
collection of all infinite subsets of N. The Product Tree Ramsey Theorem
follows from the following result, where for an infinite subset M = (mi)

∞
i=0

of N enumerated increasingly, we let

Me = (m2i)
∞
i=0 and Mo = (m2i+1)∞i=0.

Lemma 3.18 There is an infinite subset N of N such that Mo → Me for
all infinite subsets M of N .

The most natural way to try to prove this lemma is to apply the infinite-
dimensional Ramsey theorem to the coloring

N[∞] = {M : Mo →Me} ∪ {M : Mo 9 Me}

by eliminating the possibility that the second color contains an infinite-
dimensional cube N [∞] for some infinite subset N of N. In Section 1.4 above,
we found an optimal condition on such colorings that guarantees the exis-
tence of a monochromatic cube N [∞], a condition that in particular allows
all colorings of certain descriptive complexity. Observant readers will notice
that here we need exactly the infinite-dimensional Ramsey theorem for col-
ors belonging to the second level of the projective hierarchy, a result that is
not exactly provable without use of some additional axioms of set theory so
we have to find a different route to prove Lemma 3.18.

Before starting the proof we need the following definition and lemma.

Definition 3.19 Define1 S : N<∞
+ → N+, by letting S(∅) = 0, S(m0) =

2m0 − 1, and

S(m0, . . . ,mk+1) = 2(mk+1 − 1)

k∏

i=0

(
S(m0, . . . ,mi)

mi

)
+ 1.

Lemma 3.20 For every finite sequence m0, . . . ,mk of positive integers and
every coloring

c :

k∏

i=0

S(m0, . . . ,mi)→ {0, 1},

there exist Hi ⊆ S(m0, . . . ,mi),
2 |Hi| = mi for i ≤ k such that the subprod-

uct
∏k

i=1Hi is monochromatic.

Proof. The proof is by induction on k. It clearly holds for k = 0. So let us as-
sume the conclusion if true for m0, . . . ,mk and prove it for m0, . . . ,mk,mk+1.

1Recall that by N+, we denote the set of all positive integers.
2Recall that we identify the integer n = S(m0, . . . , mk+1) with the set {0, 1, . . . , n−1}

of nonnegative integers smaller than n.
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Let c :
∏k+1

i=0 S(m0, . . . ,mi)→ 2 be a given coloring. Then for every 0 ≤ x <
n we can consider the induced coloring

cx :
k∏

i=0

S(m0, . . . ,mi)→ 2

defined by cx(x0, . . . , xk) = c(x0, . . . , xk, x). By the induction hypothesis for
each 0 ≤ x < n, we can fix sets Hx

i ⊆ S(m0, . . . ,mi), |Hx
i | = mi for i ≤ k

such that cx is constant on their product
∏k

i=1H
x
i . Let εx be the constant

value of cx on that product. From the definition of n = S(m0, . . . ,mk,mk+1),
we infer that there must be Hk+1 ⊆ n, ε ∈ {0, 1}, and Hi ⊆ S(m0, . . . ,mi),
|Hi| = mi for i ≤ k such that εx = ε and Hi = Hx

i for all i ≤ k and

x ∈ Hk+1. Then c is constant on
∏k+1

i=1 Hi, as required. 2

Now, we are ready to start with the proof of Lemma 3.18. Suppose that
the conclusion of Lemma 3.18 is false. Thus, for every infinite subset N of
N, there is an infinite subset M of N such that Mo 9 Me. Let R be the
collection of all pairs (N,M, c), where M = (mi)

∞
i=0 ⊆ N are infinite subsets

of N and c : N<∞ → 2 is a mapping whose restriction to the product tree

T (Mo) =
∞⋃

k=0

k∏

i=0

m2i+1

is a witness of Mo 9 Me. Clearly, R is a coanalytic subset of the product-
space N[∞] × N[∞] × 2(N<∞) with the property that for every N ∈ N[∞],
there exists (M, c) ∈ N[∞] × 2(N<∞) such that R(N,M, c) holds. By the
Ramsey Uniformization Theorem 1.59 there is an infinite subset P of N and
a continuous map

F : P [∞] → N[∞] × 2(N<∞)

such that R(N,F (N)) for all N ∈ P [∞]. Let F0 : P [∞] → N[∞] and

F1 : P [∞] → 2(N<∞) be the compositions of F with the first and second
projections of the product space N[∞] × 2(N<∞), respectively. Thus F (N) =
(F0(N), F1(N)) for every N ∈ P [∞]. Let X be the range of F0. Then X is
an analytic subset of P [∞] with the property that for all N ∈ P [∞] there
is an M ∈ X such that M ⊆ N. Applying Silver’s theorem we conclude
that there is an N ∈ P [∞] such that N [∞] ⊆ X . Working directly from the
given mapping F, or applying the Ramsey-Uniformization theorem again
and shrinking N if necessary, we may assume we have a continuous map
M 7→ cM from N [∞] into 2(N<∞) such that the restriction of cM to the prod-
uct tree T (Mo) =

⋃∞
k=0

∏k
i=0m2i+1 is a witness of Mo 9 Me. From now on,

we fix such an infinite subset N of N and a continuous map M 7→ cM from
N [∞] into 2(N<∞) with this property and work towards a contradiction that
will finish the proof of Lemma 3.18.

Given an infinite set M = (mi)
∞
i=0 of N, let M∗ = (mσ(i))

∞
i=0 denote its

subset determined by the strictly increasing map σ : N → N defined by
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σ(0) = 0, σ(2k + 2) = σ(2k + 1) + 1, and

σ(2k + 1) = 1 + 2k +
k∑

i=1

2mσ(2i).

Thus, M∗ is obtained by taking the first element m0 of M and if m ∈M is
chosen to occupy the index 2k in the increasing enumeration of M∗, or in
other words m = mσ(2k), then between m and the next element of M∗ there
are exactly 2m elements of M. We let H0

k(M) be the set formed by the first m
members of M after m and H1

k(M) be the set formed by the next m members

of M . Note that the corresponding product trees T ( ~H0
k(M)) and T ( ~H1

k(M))
are both subtrees of the product tree T (M∗

o ) and that both of them are
M∗

e = (mσ(2i))
∞
i=0-trees. It follows that cM∗ cannot be constant on infinitely

many levels of either of these two product subtrees. So for ε ∈ {0, 1}, we can
define

kε(M) = max

{
k : cM∗ ↾

k∏

i=0

Hε
i (M) is constant

}
.

This allows us to consider the coloring

N [∞] = {M : k0(M) < k1(M)} ∪ {M : k0(M) ≥ k1(M)},

which is clearly a Borel coloring, given the fact that our mapping M 7→ cM
is continuous. Applying the Galvin-Prikry theorem, we will reach the desired
contradiction if we show that neither of the two colors can contain a cube
of the form M [∞], where M is an infinite subset of N . Since the two colors
are rather symmetric, it suffices to show the following.

Claim 3.20.1 Every infinite subset X = (xi)
∞
i=0 of N contains an infinite

subset M such that k0(M) > k1(M).

Proof. Let Y = (xτ (i))∞i=0, where τ : N → N is the strictly increasing map
defined by τ(0) = 0, τ(2k + 2) = τ(2k + 1) + 1, and

τ(2k + 1) = 1 + 2k + xτ(2k) + S(xτ(0), xτ(2), . . . , xτ(2k)),

where S : N<∞ → N is the map given above in Definition 3.19. Then
for each k, the open interval between xτ(2k) and xτ(2k+1) contains exactly
xτ(2k) + S(xτ(0), xτ(2), . . . , xτ(2k)) many elements of X, so let Jk denote the
S(xτ(0), xτ(2), . . . , xτ(2k)) elements, and let H1

k denote the last xτ(2k) ele-

ments of X in this interval. This gives us an infinite sequence ~H1 = (H1
i )∞i=0

such that the corresponding product tree T ( ~H1) is a subtree of the product
tree T (Yo), so by the choice of cY , there is a maximal integer k such that cY
is constant on

∏k
i=0H

1
i . By the property of S stated in Lemma 3.20 there

exist sets H0
i ⊆ Ji for 0 ≤ i ≤ k + 1 such that

(1) |H0
i | = xτ(2i), and

(2) cY is constant on the product
∏k+1

i=0 H
0
i .
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For i > k + 1, choose H0
i ⊆ Ji, |H0

i | = xτ(2i) arbitrarily. Let

M = Y ∪
∞⋃

i=0

(H0
i ∪H

1
i ).

Then M is an infinite subset of X, M∗ = Y, and Hε
i (M) = Hε

i for all i ∈ N
and ε ∈ {0, 1}. It follows that

k0(M) = k < k + 1 ≤ k1(M).

Thus, we have found an infinite subset of X of the second color. Clearly, a
symmetric argument will give us an infinite subset of X of the first color.
So we have reached the desired contradiction that finishes the proof of the
claim and therefore the proof of Lemma 3.18. 2

We now state a theorem that is stronger than Theorem 3.17 and which
we use in Chapter Nine below.

Theorem 3.21 There is an R : N<∞
+ → N+ such that for every infinite

sequence (mi)
∞
i=0 of positive integers and for every coloring

c :

∞⋃

k=0

k∏

i=0

R(m0, . . . ,mi)→ 2,

there exist Hi ⊆ R(m0, . . . ,mi), |Hi| = mi, for i ∈ N, such that c is constant
on the product

k∏

i=0

Hi

for infinitely many k.

Proof. Pick an infinite subset N = (ni)
∞
i=0 of N+ enumerated increasingly

and satisfying Lemma 3.18. Set

R(m0, . . . ,mk) = n2(
∑

k
i=0 mi)+1.

Then for every infinite sequence (mi)
∞
i=0 of positive integers, if we let

P = {n2(
∑

k
i=0 mi)+ε : k ∈ N, ε ∈ {0, 1}},

we get an infinite subset of N such that

Po = (R(m0, . . . ,mi))
∞
i=0,

while the sequence Pe pointwise dominates our given sequence (mi)
∞
i=0. It

follows that Po → Pe gives us the desired conclusion of Theorem 3.21. 2

We finish this section with the following natural question regarding the
Product Tree Ramsey Theorem.

Question 3.22 Is there a (primitive) recursive sequence (ni)
∞
i=0 of positive

integers such that for every coloring

c :
∞⋃

k=0

k∏

i=0

{0, 1, . . . , ni} → {0, 1}
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there exists sets Hi ⊆ {0, 1, . . . , ni}, |Hi| = 2, (i = 0, 1, 2, . . . ) such that the
restriction

c ↾

k∏

i=0

Hi

is constant for infinitely many k?

NOTES TO CHAPTER THREE

The Halpern-Läuchli theorem was originally proved by Halpern and Läuchli
[44] as a lemma that was needed for a construction of a model of set theory
in which the Boolean Prime Ideal Theorem (BPI) is true but not the full
Axiom of Choice (AC). This consistency result itself appears in the paper of
Halpern-Levy [45]. It turns out that the Halpern-Läuchli theorem can in fact
be deduced from this consistency result, provided one states it in the form
that every countable transitive model of set theory has a forcing extension
satisfying BPI but failing to satisfy AC in the particular way described by
Halpern-Levy [45]. This information may have been motivation for a proof
of the Halpern-Läuchli theorem due to L. Harrington (unpublished), which
uses analysis of the forcing relation of the poset CI of all finite partial func-
tions from I into {0, 1} for a sufficiently large index set I that depends on
the dimension d. Harrington’s proof appears to us as the conceptually sim-
plest proof of this deep result, but there are several other proofs that, unlike
Harrington’s, all use induction on the the dimension d and which vary in
complexity depending on which form of the theorem they are proving. The
first known reformulation of the Halpern-Läuchli theorem in terms of metric
spaces appears in the paper of Argyros-Felouzis-Kanellopoulos [2] and goes
in a slightly different direction than the one given above in Theorem 3.12.
The Product Tree Ramsey Theorems 3.17 and 3.21 appear in the paper of
DiPrisco-Llopis-Todorcevic [22], but the proof there uses an additional set
theoretic assumption that we know now is unnecessary. It should be men-
tioned that the original motivation for this result was again in finding a
consistency proof, this time the consistency proof showing that the infinite-
dimensional form of the Ramsey theorem is not a consequence of its “polar-
ized” (product) version. It turns out that Theorem 3.17 can be deduced from
the fact that a generic extension of L(R) (the Gödel constructible universe
over the reals) satisfies the infinite-dimensional polarized Ramsey theorem
that we give in Chapter Eight of this book. So this is another instance where
a consistency question is essentially equivalent to a Ramsey-theoretic prob-
lem.



Chapter Four

Abstract Ramsey Theory

4.1 ABSTRACT BAIRE PROPERTY

An infinite-dimensional Ramsey theoretic result is usually given under some
restriction on the colorings. It turns out that an appropriate variation of
the classical topological notion of sets with the Baire property leads us to
a restriction that seems optimal. The purpose of this section is to present a
variation that is used in the rest of the book.

Definition 4.1 Let X be a given set and let P be a collection of nonempty
subsets of X that we call basic sets. For P ∈ P , let

P ↾ P = {Q ∈ P : Q ⊆ P}.

We say that a subset Y of X is P-Baire if for every P ∈ P there is a
Q ∈ P ↾ P such that Q ⊆ Y or Q ∩ Y = ∅. If for every P ∈ P we can find
Q ∈ P ↾ P such that Q ∩ Y = ∅, we say that Y is P-meager.

Clearly, P-Baire sets form a field of subsets of X , and the collection of
P-meager subsets of X forms an ideal of subsets of X , i.e., it is closed under
taking subsets and finite unions.

Lemma 4.2 If every member of P is P-Baire and if the ideal of P-meager
sets is a σ-ideal, then the collection of all P-Baire subsets of X is a σ-field.

Proof. Let (Yn) be a given sequence of P-Baire sets, let Y =
⋃∞

n=0 Yn and
let P be a given member of P . If there is n such that Yn∩P is not P-meager
i.e., it includes a basic set Q, we would be done. So we are left with the case
that Yn ∩ P is P-meager for all n.
By the assumption of the lemma,

Y ∩ P =
∞⋃

n=0

(Yn ∩ P )

is also P-meager. So there is a basic set Q ⊆ P such that Q ∩ Y = ∅ as
required. 2

Example 4.1.1 Let X be a topological space in which no nonempty open
set is meager and let P be the collection of all nonempty subsets of X of the
form G \

⋃∞
k=0 Nk where G ⊆ X is open and all the Nk are nowhere dense
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in X. Then a subset Y of X is P-Baire if and only if Y has the property of
Baire in X, i.e., Y can be written as

Y = (U \M) ∪ (M \ U)

for some open set U ⊆ X and a meager subset M of X, i.e., a subset that can
be covered by countably many nowhere dense subsets of X. It is also clear
that a subset Y of X is P-meager if and only if it is meager in X. Clearly,
the ideal of meager subsets of X is σ-additive so we have that the property
of Baire subsets of X form a σ-field.

Example 4.1.2 Let X = [0, 1] and let P be the collection of all compact
subsets of [0, 1] of positive Lebesgue measure. Then a subset Y of [0, 1] is P-
Baire if and only if it is Lebesgue-measurable. Moreover, a subset Y of [0, 1]
is P-meager if and only if it has Lebesgue measure-zero. So in this case, we
also have that P-Baire subsets form a σ-field.

Definition 4.3 A P-envelope of a subset Y of X is any P-Baire set Φ(Y )
that includes Y and has the property that every P-Baire subset of the differ-
ence Φ(Y ) \ Y must be P-meager.

Lemma 4.4 Let X be a topological space and let P be the collection of basic
subsets given above in Example 4.1.1. Then every subset of X admits an
Fσ-envelope relative to P.

Proof. For a subset Y of X , let D(Y ) be the set of all x ∈ X such that Y ∩U
is not meager for any open subset U of X containing x. Then by the Banach
Category Theorem, Y \ D(Y ) is a meager set, so there is a meager Fσ-set
M(Y ) including Y \D(Y ). Let

Φ(Y ) = D(Y ) ∪M(Y ).

Then Φ(Y ) is an Fσ-superset of Y and every property of Baire subset of
Φ(Y ) \ Y is meager. 2

Similarly, one has the following result about the family of basic sets given
in Example 4.1.2.

Lemma 4.5 Let X = [0, 1] and P be the family of the compact subsets of
[0, 1] of positive measure. Then every Y ⊆ X has a P-envelope. In particular,
we can take Φ(Y ) to be a Gδ-superset of Y whose measure is equal to the
outer measure of Y .

Definition 4.6 Recall that a Souslin operation A is an operation that turns
a family Ys (s ∈ N<∞) of sets indexed by finite sequences of nonnegative
integers, a Souslin scheme, into the set

A(Ys : s ∈ N<∞) =
⋃

x∈N∞

⋂
n∈N

Yx↾n.
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Theorem 4.7 (Marczewski) Suppose P is a family of nonempty subsets of
some set X such that every member of P is P-Baire and such that the ideal of
P-meager sets is σ-additive. Suppose further that every subset of X admits
a P-envelope. Then the field of P-Baire subsets of X is closed under the
Souslin operation.

Proof. Let Ys (s ∈ N<∞) be a given Souslin scheme of subsets of X that are
P-Baire. Let Y = A(Ys : s ∈ N<∞) be the result of the Souslin operation
and let P ∈ P be a given basic set. We need to find Q ⊆ P in P such that
Q ⊆ Y or Q ∩ Y = ∅.
Clearly, we may assume that Yt ⊆ Ys whenever s ⊑ t. For s ∈ N<∞, set

Y ∗
s =

⋃
x⊐s

⋂
n
Yx↾n,

and pick a P-envelope Φ(Y ∗
s ) of Y ∗

s such that

Y ∗
s ⊆ Φ(Y ∗

s ) ⊆ Ys.

Let

Ms = Φ(Y ∗
s ) \

⋃
n
Φ(Y ∗

san).

Then Ms is a P-Baire set that is included in the difference Φ(Y ∗
s )\Y ∗

s , since
clearly

Y ∗
s =

⋃
n
Y ∗

san.

It follows that Ms is a P-meager set for all s ∈ N<∞. So we can find Q0 ⊆ P
in P such that

Q0 ∩
(⋃

s∈N<∞
Ms

)
= ∅.

Since Y ∗
∅ = Y , the proof is finished once we show that

Q0 ∩ Φ(Y ∗
∅ ) = Q0 ∩ Y

∗
∅ ,

since by our assumption the set Q0 ∩ Φ(Y ∗
∅ ) is a P-Baire set and so we can

find Q ⊆ Q0 that is either contained in or is disjoint from this set. To check
the equality, pick an x ∈ Q0∩Φ(Y ∗

∅ ). Since Q0∩M∅ = ∅, there is n0 such that
x ∈ Φ(Y ∗

〈n0〉
). Since Q0 ∩M〈n0〉 = ∅, there is n1 such that x ∈ Φ(Y ∗

〈n0 n1〉
),

and so on. Continuing this way we obtain an infinite sequence a = (nk) ∈ N∞

such that x ∈ Φ(Y ∗
a↾k) for all k. Since Φ(Y ∗

s ) ⊆ Ys for all s, we conclude that

x ∈
⋂

k

Φ(Y ∗
a↾k) ⊆

⋂

k

Ya↾k ⊆ Y = Y∅.

This finishes the proof. 2
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Corollary 4.8 (Nikodym) The field of property of Baire subsets of any
topological space is closed under the Souslin operation.

Let us now give one sufficient condition for the existence of P-envelopes.

Definition 4.9 A subset D of P is predense in P if for every P ∈ P there
exist D ∈ D and Q ∈ P such that Q ⊆ P ∩D. A subset D ∈ P is dense in
P if for every P ∈ P , there exists a D ∈ D such that D ⊆ P . A subset O of
P is open if P ⊆ Q, P ∈ P , and Q ∈ O imply P ∈ O.

Note that every predense-set that is open is in fact dense.

Definition 4.10 We say that P has the disjoint-refinement property if for
every dense-open D ⊆ P there is an A ⊆ D that is predense in P and that
consists of pairwise disjoint basic sets.

Example 4.1.3 Let X = [0, 1] and let P be the collection of all compact
subsets of [0, 1] of positive Lebesgue measure. Then P has the disjoint refine-
ment property.

Theorem 4.11 If P has the disjoint-refinement property then every subset
of X has a P-envelope.

Proof. Let Y be a given subset of X and consider the following set

D = {P ∈ P : P ∩ Y = ∅ ∨ (∀Q ∈ P)(Q ⊆ P → Q ∩ Y 6= ∅)}.

Then D is a dense open subset of P . Choose a predense-set A ⊆ D consisting
of pairwise disjoint basic sets. Let

Φ(Y ) = X \
⋃
{P ∈ A : P ∩ Y = ∅}.

We need to check that every P-Baire subset M of Φ(Y ) \ Y must be P-
meager. Otherwise, using the fact that Φ(Y ) is P-Baire, we can find P ∈ P
such that P ⊆ M . Since A is predense in P , there are Q ∈ A and R ∈ P
such that

R ⊆ P ∩Q.

Since Q ∈ D and we have found R ∈ P such that R ⊆ Q and R ∩ Y = ∅, it
must be that Q∩Y = ∅. It follows that Q∩Φ(Y ) = ∅, a contradiction. This
finishes the proof. 2

Corollary 4.12 Suppose that every P ∈ P is P-Baire and that the ideal of
P-meager sets is σ-additive. If P has the disjoint-refinement property then
the σ-field of P-Baire sets is closed under the Souslin operation.
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Corollary 4.13 (Luzin-Sierpinski) Lebesgue measurability is invariant un-
der the Souslin operation.

It turns out that the disjoint-refinement property is shared by many families
of basic sets that are considered in this book. To establish that a given family
P of basic sets has the disjoint-refinement property, one usually uses some
sort of noneffective method, like the well-ordering principle or Zorn’s lemma.
As one might have expected, these uses can be avoided in all cases considered
here by applying some local version of the disjoint refinement lemma that
involves only countably many sets. It is still of interest to know under which
conditions every subset Y of X does have a P-envelope. So let us give an
example of one such condition.

Definition 4.14 A family P of basic subsets of some set X is regular if for
every P ∈ P and A ⊆ P consisting of pairwise disjoint basic sets, either P
has a non-P-meager intersection with one member of A, or else there is a
Q ∈ P such that Q ⊆ P and Q ∩R = ∅ for all R ∈ A.

Example 4.1.4 Let X be a topological space in which no nonempty open
subset is meager. Let P be the collection of all subsets of X of the form
G \M, where G is a nonempty open subset of X and M is a meager subset
of X. Then P is regular.

Theorem 4.15 Every regular family P of basic subsets of some set X has
the disjoint-refinement property.

Proof. We may assume that P is infinite. Let ≤w be a well-ordering of P
of minimal possible order type. Let D ⊆ P be dense-open. Recursively on
≤w, for each P ∈ P , we choose QP ⊆ P in D ∪ {∅} as follows. If there is a
P ′ <w P such that QP ′ ∩ P is not P-meager, we let QP = ∅; otherwise, we
choose QP ∈ D such that QP ⊆ P and such that

QP ′ ∩QP = ∅ for all P ′ <w P.

To show that the choice of QP is possible, one uses the regularity of P and
the inductive assumption that {QP ′ : P ′ <w P} consists of pairwise disjoint
sets. This finishes the proof. 2

Corollary 4.16 Suppose P is a regular family of basic subsets of some set
X, that every member of P is P-Baire, and that the ideal of P-meager sets
is σ-additive. Then the σ-field of P-Baire subsets of X is closed under the
Souslin operation.

We finish this section with a standard example of a regular family of basic
sets.

Example 4.1.5 Let X = R and let P be the family of all perfect subsets
of R, i.e., nonempty compact subsets of R that do not have isolated points.
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The field of subsets of R that are P-Baire is known in the literature as the
Marczewski field. The ideal of P-meager sets of reals is σ-additive and it is
known in the literature as the Marczewski ideal or the s0-ideal.

Lemma 4.17 The family P of perfect subsets of R has the disjoint refine-
ment property.

Proof. To see that P has the disjoint refinement property via a recursive
construction of length continuum, it suffices to show for every P ∈ P and
every family A of disjoint perfect subsets of R of size smaller than the con-
tinuum, there is a perfect set Q ⊆ P that is either disjoint from every set
from A, or there is Q ∈ A such that Q ∩P contains a perfect set of reals. If
there is a Q ∈ A such that Q∩P is uncountable, the intersection contains a
perfect set as required. If Q∩P is countable for all Q ∈ A, the set (

⋃
A)∩P

has size less than continuum. Splitting P into a family of size continuum
disjoint perfect subsets yields that one of the perfect sets does not intersect⋃
A, as required. 2

Corollary 4.18 The Marczewski field on R generated by the family P of all
perfect subsets of R is closed under the Souslin operation.

4.2 THE ABSTRACT RAMSEY THEOREM

In this section we introduce the basic notion of this book, the notion of
Ramsey space, a structure of the form

(R,S,≤,≤o, r, s),

satisfying certain conditions. We shall think of R, S as families of infinite
sequences of objects and

r : R× ω → AR , s : S × ω → AS

as functions giving us finite approximations

rn(A) = r(A, n) and sn(X) = s(X,n)

to these objects. We let ARn be the range of rn and ASn the range of sn,
and we assume that

AR =
⋃

n∈N

ARn and AS =
⋃

n∈N

ASn.

The relation ≤ is a reflexive and transitive relation on S while ≤o is a subset
of R×S, i.e., a relation between elements of R and elements of S such that

A ≤o X ≤ Y implies A ≤o Y.
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We introduce the following axiom about these objects which tells us that R
and S are collections of infinite sequences of objects and that, on the other
hand, AR and AS are collections of finite sequences that approximate them.

A.1. (Sequencing) For any choice of (P , p) ∈ {(R, r), (S, s)} the following
conditions are satisfied:

(1) p0(P ) = p0(Q) for all P,Q ∈ P ,

(2) P 6= Q implies that pn(P ) 6= pn(Q) for some n,

(3) pn(P ) = pm(Q) implies n = m and pk(P ) = pk(Q) for all k ≤ m.

On the basis of this axiom, we can make identifications of objects fromR and
S with the infinite sequences (rn(A)), (sn(X)) of objects. Similarly, a ∈ AR
and x ∈ AS are identified with finite sequences

(rk(A))k<n and (sk(X))k<m,

where n and m are unique integers such that a = rn(A) for some A ∈ R
and x = sm(X) for some X ∈ S. We call n the length of a and m the
length of x and use the notation length(a) and length(x), or |a| and |x|,
respectively. This identification of AR and AS gives us also the relation ⊑
of end-extension defined naturally on these sets of finite approximations.

Notation. In what follows we shall reserve the letters A,B,C, ... for members
ofR, the lettersX,Y, Z, ... for members of S, the letters a, b, c, ... for members
of AR, and the letters x, y, z, ... for members of AS. We let a ⊑ b mean that
there exist m ≤ n and A ∈ R such that a = rm(A) and b = rn(A). Similarly,
we let x ⊑ y mean that there exist m ≤ n and X ∈ S such that x = sm(X)
and y = sn(X).

We shall continue our description of (R,S,≤,≤o, r, s) having in mind the
following prototype example.

The Hales-Jewett space. We fix a countable alphabet L =
⋃∞

n=0 Ln and
its decomposition into an increasing union of finite alphabets Ln. We also fix
a variable v /∈ L and consider the corresponding semigroups WL and WLv

of words over L and variable-words over L, respectively.
A finite or infinite sequence X = (xn) of elements of WL ∪WLv is said to

be rapidly increasing if

|xn| >
n−1∑

i=0

|xi| for all n.

Let W
[∞]

L and W
[∞]

Lv denote the collection of all infinite rapidly increasing
sequences of elements of WL and WLv, respectively. Of course one similarly
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considers the families W
[<∞]

L and W
[<∞]

Lv the finite rapidly increasing se-

quences to serve as families of finite approximations to W
[∞]

L and W
[∞]

Lv ,
respectively, using the usual restriction maps

rn : W
[∞]

L →W
[n]

L and sn : W
[∞]

Lv →W
[n]

Lv

over the nonnegative integers n. Recall the notion of the combinatorial sub-
spaces

[X ]L ⊆WL and [X ]Lv ⊆WLv

generated by an X = (xn) ∈W
[∞]

Lv given above in Section 2.5. Note that the
fact that X is rapidly increasing gives us that every w ∈ [X ]L ∪ [X ]Lv has
uniquely defined support suppX(w) the set n0 < . . . < nk of indexes such
that

w = xn0 [λ0]a . . .axnk
[λk]

for some choices of λi ∈ Lni
or λi ∈ Lni

∪{v} (i ≤ k) depending on whether
w is simply a word over L or it has a variable v as one of its entries. We

shall say that Y = (yn) ∈ W
[∞]

Lv is a block subsequence of X = (xn) ∈ W
[∞]

Lv

if yn ∈ [X ]Lv for all n, and

suppX(yn) < suppX(ym) whenever n < m.

We use the notation Y ≤ X to denote this relation between X and Y .
Similarly we define W = (wn) ≤o X = (xn) for W ∈ W

[∞]
L and X ∈ W

[∞]
Lv

if wn ∈ [X ]L for all n and if

suppX(wn) < suppX(wm) whenever n < m.

Of course, all these notions also make perfect sense for the families W
[<∞]

L

and W
[<∞]

Lv of finite rapidly increasing sequences. In other words, the rela-
tions ≤ and ≤o admit finitizations ≤fin and ≤o

fin, respectively:

y ≤fin x iff y ≤ x and y � x↾ l for all l < length(x)

a ≤o
fin x iff a ≤o x and y �o x↾ l for all l < length(x).

This leads us to the following condition on the space (R,S,≤,≤o, r, s) we
are trying to describe.

A.2. (Finitization) There is a relation ≤o
fin⊆ AR×AS and there is a tran-

sitive and reflexive relation ≤fin⊆ AS ×AS such that

(1) {a : a ≤o
fin x} and {y : y ≤fin x} are finite for all x ∈ AS,
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(2) X ≤ Y iff ∀n ∃m sn(X) ≤fin sm(Y ),

(3) A ≤o X iff ∀n ∃m rn(A) ≤o
fin sm(X),

(4) ∀ a ∈ AR ∀x, y ∈ AS [a ≤o
fin x ≤fin y → a ≤o

fin y],

(5) ∀ a, b ∈ AR ∀x ∈ AS [a ⊑ b & b ≤o
fin x→ ∃ y ⊑ x a ≤o

fin y].

The basic sets. For a ∈ AR, x ∈ AS, m ∈ N, and Y ∈ S, set

[a, Y ] = {A ∈ R : A ≤o Y & ∃n rn(A) = a},

[x, Y ] = {X ∈ S : X ≤ Y & ∃n sn(X) = x},

[m,Y ] = [sm(Y ), Y ].

For a ∈ AR, let

[a] = {A ∈ R : r|a|(A) = a}.

The sets of the form [a] (a ∈ AR) form a neighborhood base of the metrizable
topology of R. Note the following immediate consequence of the two axioms
A.1 and A.2, where by metric on R we mean the first difference metric
obtained by its identification with a subset of ARN as discussed above.

Lemma 4.19 Suppose (R,S,≤,≤o, r, s), satisfies A.1 and A.2. Then every
basic set [a,X ] is closed relative to the metrizable topology of R.

Notation. For a ∈ AR and Y ∈ S,

depthY (a) =

{
min{k : a ≤o

fin sk(Y )} if (∃k) a ≤o
fin sk(Y ),

∞ otherwise.

The notion of depth leads us to the following natural requirement on our
space (R,S,≤,≤o, r, s):

A.3. (Amalgamation)

(1) ∀ a ∈ AR ∀Y ∈ S

[d = depthY (a) <∞→ ∀X ∈ [d, Y ] ([a,X ] 6= ∅)],

(2) ∀ a ∈ AR ∀X,Y ∈ S

[X ≤ Y & [a,X ] 6= ∅ → ∃Y ′ ∈ [depthY (a), Y ] ([a, Y ′] ⊆ [a,X ])].

Note that in A.3(2) we have [a, Y ′] 6= ∅ by A.3(1). We shall frequently use
the following immediate fact.
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Lemma 4.20 Suppose (R,S,≤,≤o, r, s) satisfies A.1, A.2 and A.3. If a ⊑ b
and if [b, Y ] 6= ∅ then [a, Y ] 6= ∅ and depthY (a) ≤ depthY (b) <∞.

The Hales-Jewett space (cont.) Let us check that

(W
[∞]

L ,W
[∞]

Lv ,≤,≤o, r, s)

has the amalgamation property. Suppose a ∈ AR and Y = (yn) satisfy the
hypothesis of A.3(1). Note that d = depthY (a) is the minimal integer ≥ 0
such that a is a block sequence in [(yn)d−1

n=0]L. Consider an X = (xn) from
[d, Y ]. Then X is an infinite block subsequence of Y such that xn = yn for
all n < d. It follows that a is a finite block sequence in [(xn)d−1

n=0]L and d is
the minimal integer with this property. Pick an arbitrary letter λ0 ∈ L0 and
for i ≥ 0, set

wl+i = xd+i[λ0],

where l = length(a). This defines an element A = aa(wi)i≥l of R such that
A ∈ [a,X ]. This shows that [a,X ] 6= ∅ for all X ∈ [d, Y ].

To check A.3(2), let a ∈W
[<∞]

L , X,Y ∈W
[<∞]

Lv be such that X ≤ Y and
[a,X ] 6= ∅. Then a is a finite block subsequence of both X and Y . Hence,
the top term of a, call it wl−1 where l = length(a), has two representations

wl−1 = xn0 [λ0]a . . .axnk
[λk], and

wl−1 = ym0 [µ0]a . . .axmp
[µp].

Since X = (xn) and Y = (yn) are assumed to be rapidly increasing, both
representations are unique. From X ≤ Y we know that each xni

has a unique
representation as

xni
= ymi

0
[µi

0]a . . .aymi
pi

[µi
pi

].

It follows that Ii = {mi
0 < . . . < mi

pi
} (i ≤ k) must be convex subsets of

{m0 < . . . < mp} and they must cover the set. In particular, mk
pk

= mp. Let
Y ′ = (y′i) be determined as follows:

y′i = yi for i ≤ mp,

y′mp+i = xnk+i for i > 0.

Note that depthY (a) = mp + 1, so Y ′ ∈ [depthY (a), Y ]. Note also that any
A ∈ [a, Y ′] must start like a, i.e., have the (l − 1)st term equal to wl−1

and the l-tail A/l of A must be a block subsequence of the tail Y ′/mp + 1,
which by definition is a subsequence of the tail X/nk + 1. This shows that
[a, Y ′] ⊆ [a,X ].

The following is the final but most important condition that we put on
our space (R,S,≤,≤o, r, s).

A.4. (Pigeon hole) Suppose a ∈ AR has length l and O is a subset of
ARl+1. Then for every Y ∈ S such that [a, Y ] 6= ∅, there exists X ∈
[depthY (a), Y ] such that rl+1[a,X ] ⊆ O or rl+1[a,X ] ⊆ Oc.
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The Hales-Jewett space (cont.) Let us check that the space

(W
[∞]

L ,W
[∞]

Lv ,≤,≤o, r, s)

satisfies A.4. Let Y = yn be a given member of W
[∞]

Lv , let a be a finite block
sequence of elements of [Y ]L of some length l, and let O be a given subset of
ARl+1. Let d = depthY (a). Let S be the collection of all cofinite ultrafilters
on the partial semigroup

[Y/d]L ∪ [Y/d]Lv

i.e., ultrafilters U on [Y/d]L ∪ [Y/d]Lv with the property that

[Y/k]L ∪ [Y/k]Lv ∈ U for all k ≥ d,

or in other words, ultrafilters U such that {w : suppY (w) > k} ∈ U for
all k. Note that S is a closed subsemigroup of the semigroup S∗ considered
in Section 2.5 above. Let SL be the closed subsemigroup of S consisting
of ultrafilters concentrating on [Y/d]L and let SLv be the two-sided ideal
consisting of ultrafilters from S concentrating on [Y/d]Lv. As before we pick
idempotents W ∈ SL and V ∈ SLv such that V ≤ W and V [λ] = W for
all λ ∈ L. Let O0 be the collection of all w ∈ WL such that aaw ∈ O
and let O1 = WL \ O0. Then there is PW ∈ {O0,O1} such that PW ∈ W .
Repeating the argument from the proof of the infinite Hales-Jewett theorem
given above in Section 2.5, and using the fact thatW and V are idempotent
ultrafilters that are cofinite relative to Y/d, it is clear that we can construct
an infinite rapidly increasing sequence X ′ = (x′n) of members of [Y/d]Lv

such that [X ′]L ⊆ PW and such that

|x′0| >
d−1∑

n=0

|yn|.

Define X = (xn) ∈W
[∞]

Lv by the following two requirements

xn = yn for n < d

xd+i = x′i for i ≥ 0.

Then X ∈ [d, Y ] and rl+1[a,X ] ⊆ O or rl+1[a,X ] ⊆ Oc, depending whether
PW = O0 or O1. This establishes A.4 for the Hales-Jewett space, which can
be restated in the following form which is slightly stronger that Theorem
2.35 above.

Theorem 4.21 (Infinite Hales-Jewett Theorem) For every finite coloring

of WL ∪WLv and every Y ∈ W
[∞]

Lv , there is X ≤ Y in W
[∞]

Lv such that [X ]L
and [X ]Lv are both monochromatic.

The following definition gives us the main notions to study in this section.

Definition 4.22 A set X ⊆ R is S-Ramsey if for every nonempty basic set
[a, Y ] there is X ∈ [depthY (a), Y ] such that [a,X ] ⊆ X or [a,X ] ⊆ X c.

If for every [a, Y ] 6= ∅ we can find X ∈ [depthY (a), Y ] such that [a,X ] ∩
X = ∅ we call X an S-Ramsey null set of R.
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Any infinite-dimensional Ramsey result says in some way or other that
the family of Ramsey subsets of a given Ramsey space is in some sense large.
The following seemingly less restrictive condition on a subset of R will give
us the language to express how rich is the field of S-Ramsey subsets of R.

Definition 4.23 A set X ⊆ R is S-Baire if for every nonempty basic set
[a,X ] there exist a ⊑ b ∈ AR and Y ≤ X such that [b, Y ] 6= ∅ and [b, Y ] ⊆ X
or [b, Y ] ⊆ X c. If for every [a,X ] 6= ∅ we can find a ⊑ b ∈ AR and Y ≤ X
such that [b, Y ] 6= ∅ and [b, Y ] ∩ X = ∅, then X is said to be S-meager.

Recall that we identify R with a subset of the infinite power ARN. The
power ARN has its natural first-difference metric, so our identification in-
duces a metric on R. The following simple fact shows that our notion of
S-Baire agrees well with this topology on R.

Lemma 4.24 Suppose (R,S,≤,≤o, r, s), satisfies A.1 and A.2. Then every
metrically open subset of R is S-Baire.

Proof. Consider a metrically open subset O of R and a basic set [a,X ] and
assume [a,X ] * Oc. Choose A ∈ [a,X ] ∩ O. Choose l ≥ |a| such that if
b = rl(A) then A ∈ [b] ⊆ O. Then [b,X ] is a nonempty basic subset of [a,X ]
included in O, which is what we wanted to find. 2

Thus, in analogy, S-Baire sets correspond to S-Ramsey sets and S-meager
sets to S-Ramsey null sets. As the definitions suggest one should expect S-
meager sets to form a σ-ideal of subsets of R. It turns out that it is much
easier to show that S-Ramsey null subsets of R form a σ-ideal under a
suitable assumption on S. Considering AS as a discrete space, the infinite
power ASN gets its Tychonov product topology, a completely metrizable
topology. We have already remarked that we consider S a subset of ASN

via the identification X → (sn(X)). Thus it is natural to call S closed if in
this identification it corresponds to a closed subset of ASN. Whenever S is
closed, the following procedure will be quite useful in building members of
S with desired properties.

Definition 4.25 A sequence ([nk, Yk]) of basic subsets of S is a fusion se-
quence if it is infinite and if

(1) (nk) is a nondecreasing sequence of integers converging to ∞,

(2) Yk+1 ∈ [nk, Yk] for all k.

The limit of the fusion sequence (if it exists) is the unique element Y∞ of S
such that rnk

(Y∞) = rnk
(Yk) for all k.

Note that when S is closed and when (R,S,≤,≤o, r, s) satisfies A.1 and
A.2, the limit Y∞ of any fusion sequence exists and Y∞ ∈ [nk, Yk] for all k.

Lemma 4.26 Suppose (R,S,≤,≤o, r, s) satisfies A.1 to A.3 and also that
S is closed. Then S-Ramsey null subsets of R form a σ-ideal.
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Proof. Suppose X =
⋃∞

k=0 Xk, where each Xk is S-Ramsey null. Since the
union of two S-Ramsey null sets is a S-Ramsey null set, we may assume that
Xn ⊆ Xm whenever n ≤ m. Let [a,X ] be a given nonempty basic subset of
R. Let d = depthX(a). We build a fusion sequence ([nk, Xk]) such that

(1) X0 = X ,

(2) nk = d+ k,

(3) [b,Xk+1] ∩ Xk = ∅ for all b ∈ AR such that depthXk
(b) = nk.

To see that this can be done assume [nk, Xk] has been defined. By A.2 the
set

{b ∈ AR : depthXk
(b) = nk}

is finite so we can list it as b0, . . . , bp−1 for some integer p. Using the as-
sumption that the set Xk is S-Ramsey null, we can recursively on i, choose
Yi (0 ≤ i ≤ p) in S such that

(4) Y0 = Xk,

(5) Yi+1 ∈ [nk, Yi],

(6) [bi, Yi+1] ∩ Xk = ∅.

Let Xk+1 = Yp. It is clear that (1)− (3) remain satisfied. Finally, let X∞ =
limk Xk be the limit of the fusion sequence ([nk, Xk]) that exists by our
assumption that S is closed. Moreover X∞ ∈ [nk, Xk] for all k. We claim
that [a,X∞] is the desired basic subset of R i.e., that [a,X∞] ∩ X = ∅.
Suppose not and pick A in the intersection. Pick a minimal k such that
A ∈ Xk. By A.2(3) and A.2(1), we can find n such that

∞ > depthX∞
(rn(A)) ≥ nk.

Let b = rn(A). Then depthX∞
(b) = nl for some l ≥ k. From (3), we conclude

that [b,Xl+1] ∩ Xl = ∅, and therefore [b,Xl+1] ∩ Xk = ∅ since Xk ⊆ Xl. But
X∞ ∈ [nl, Xl] and therefore [b,X∞], which is a subset of [b,Xl+1], does not
intersect Xk, a contradiction, since clearly A ∈ [b,X∞]∩Xk. This completes
the proof. 2

We finish this section with the statement of the Abstract Ramsey Theo-
rem, whose proof is given in the following section.

Theorem 4.27 (Abstract Ramsey Theorem) Suppose we are given a struc-
ture (R,S,≤,≤o, r, s) that satisfies axioms A.1 to A.4 and that S is closed.
Then the field of S-Ramsey subsets of R is closed under the Souslin oper-
ation and it coincides with the field of S-Baire subsets of R. Moreover, the
ideals of S-Ramsey null subsets of R and S-meager subsets of R are σ-ideals
and they also coincide.

To state a useful consequence of this result, we need a definition.
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Definition 4.28 Let T be a given topological space. The field of Souslin-
measurable subsets of T is the minimal field of subsets of T that contains
all open subsets and that is closed under the Souslin operation. Thus, in
particular, every Borel or analytic subset of T is Souslin-measurable.

By Lemma 4.24, we have the following immediate consequence of the Ab-
stract Ramsey Theorem, which gives us some idea about the richness of the
field of S-Ramsey sets and therefore an idea about the potential applicability
and power behind the Abstract Ramsey Theorem.

Corollary 4.29 Suppose we are given a structure (R,S,≤,≤o, r, s) that sat-
isfies axioms A.1 to A.4 and that S is closed. Then for every finite coloring
of R that is Souslin-measurable relative to the metric topology of R, there is
X in S such that the basic subset [∅, X ] of R is monochromatic.

4.3 COMBINATORIAL FORCING

The purpose of this section is to give the proof of the Abstract Ramsey
Theorem. We fix for a while a subset X of R. So throughout this section
we suppose that we are given a structure (R,S,≤,≤o, r, s) satisfying axioms
A.1 to A.4 and that S is closed. We reserve the letters X,Y, Z to denote
members of S; A,B,C to denote members of R; a, b, c to denote members
of AR, and x, y, z to denote members of AS.

Definition 4.30 (combinatorial forcing) We say that Y accepts a if
[a, Y ] ⊆ X. We say that Y rejects a if [a, Y ] 6= ∅ and there is no X ∈
[depthY (a), Y ] accepting a. We say that Y decides a if Y accepts a or if Y
rejects a.

The following summarizes the immediate properties of these notions.

Lemma 4.31 (1) Y accepts any a such that [a, Y ] = ∅.

(2) If Y accepts a and X ≤ Y , then X accepts a.

(3) If Y rejects a, X ≤ Y and [a,X ] 6= ∅, then X rejects a.

(4) If Y decides a and X ≤ Y , then X decides a.

(5) If depthY (a) <∞, then there is X ∈ [depthY (a), Y ], which decides a.

(6) If depthY (a) < ∞ and Y decides a, then every X ∈ [depthY (a), Y ]
decides a in the same way Y does.

(7) If Y accepts a, then Y accepts every member of r|a|+1[a, Y ].
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Proof. To check (3), let a,X ≤ Y be given and assume that [a,X ] 6= ∅, yet
X does not reject a. So there is X ′ ∈ [depthX(a), X ] which accepts a. By
A.3(1), [a,X ′] 6= ∅ and X ′ ≤ Y . By A.3(2) there is Y ′ ∈ [depthY (a), Y ] such
that [a, Y ′] ⊆ [a,X ′] ⊆ X. Then Y ′ accepts a, and therefore, Y does not
reject a.

To check (7), assume that Y accepts a and let l = |a|(= length(a)). Con-
sider b ∈ rl+1[a, Y ]. Then [b, Y ] ⊆ [a, Y ], so Y also accepts b. 2

Lemma 4.32 Given that Y rejects some a ∈ AR, then there is no X in
[depthY (a), Y ] that accepts every member of r|a|+1[a,X ].

Proof. Assume such an X exists. Consider an A ∈ [a,X ]. Then

A ∈ [r|a|+1(A), X ] ⊆ X.

Since A was an arbitrary member of [a,X ] this shows that [a,X ] ⊆ X, and
so X accepts a. This contradicts the hypothesis that Y rejects a. 2

Lemma 4.33 For every n ≥ 0 and Y ∈ S there is X ∈ [n, Y ] that decides
every b ∈ AR such that depthX(b) ≥ n.

Proof. We construct a fusion sequence ([nk, Yk])k such that

(1) Y0 = Y,

(2) nk = n+ k,

(3) Yk+1 decides every b ∈ AR such that depthYk
(b) = nk.

Suppose Yk has been defined. Let b1, . . . , bp be an enumeration of

{b ∈ AR : depthYk
(b) = nk} (4.1)

We define Xi (0 ≤ i ≤ p) by recursion on i so that

(4) X0 = Yk,

(5) Xi+1 ∈ [nk, Xi],

(6) Xi decides bi.

Suppose Xi has been defined. By A.3(1), [bi+1, Xi] 6= ∅. Note also that

depthXi
(bi+1) = depthYk

(bi+1) = nk.

By Lemma 4.31 (5) there exists Xi+1 ∈ [nk, Xi] which decides bi+1. This
defines Xi (0 ≤ i ≤ p).

Let Yk+1 = Xp. Then Yk+1 ∈ [nk, Yk], and by lemma 4.31 (4), Yk+1 decides
every b ∈ AR such that

depthYk+1
(b) = depthYk

(b) = nk. (4.2)

Let X = limk Yk. We claim that X satisfies the conclusion of the Lemma.
Consider a b ∈ AR such that depthX(b) ≥ n. Then depthX(b) = nk for some
k ≥ 0. Since X ∈ [nk, Yk] we have that

depthYk
(b) = depthX(b) = nk. (4.3)

So b appears in the list used in constructing Yk+1. Hence, Yk+1 decides b.
Since X ≤ Yk+1 by Lemma 4.31 (4), X also decides b. 2
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Lemma 4.34 If Y rejects some a ∈ AR of length l, then there exists an
X ∈ [depthY (a), Y ] such that X rejects every member of rl+1[a,X ].

Proof. Put n = depthY (a) ≥ 0. Use Lemma 4.33 to obtain Z ∈ [n, Y ], which
decides every b with depthZ(b) ≥ n. By A.3(1), [a, Z] 6= ∅ and therefore Z
rejects a (see Lemma 4.31(3)). Let

O = {b ∈ ARl+1 : Z accepts b}. (4.4)

By A.4, there is X ∈ [n,Z] such that either

(a) rl+1[a,X ] ⊆ O, or

(b) rl+1[a,X ] ⊆ Oc.

By A.3(1), we have that [a,X ] 6= ∅. So, by Lemma 4.31 (3), X rejects
a because Z does. By Lemma 4.32, alternative (a) is not possible, so we
have that the second alternative rl+1[a,X ] ⊆ Oc must hold. Consider b ∈
rl+1[a,X ]. Then [b, Z] 6= ∅, or else b would belong to O (by Lemma 4.31(1)).
By Lemma 4.20, depthZ(b) ≥ depthZ(a) = n, so Z decides b. It must reject
it or else we would have that b ∈ O. By Lemma 4.31(3) and the facts that
X ≤ Z and [b,X ] 6= ∅, we conclude that X rejects b. 2

Lemma 4.35 Suppose [a, Y ] 6= ∅ and that Y decides every b ∈ AR such that
depthY (b) ≥ depthY (a). If Y rejects a, then there is X ∈ [depthY (a), Y ],
which rejects every b ∈ AR end-extending a such that [b,X ] 6= ∅.

Proof. We construct by recursion a fusion sequence ([nk, Yk])k so that

(1) Y0 = Y and n0 = depthY (a),

(2) nk = n0 + k,

(3) if depthYk
(b) = nk and Yk rejects b, then Yk+1 rejects every member

of rl+1[b, Yk+1], where l = length(b).

Assume Yk has been defined and list the elements of the finite set

{b ∈ AR : a ⊑ b, depthYk
(b) = nk and Yk rejects b} (4.5)

as b0, . . . , bp−1. Define now recursively on i a sequence Xi (0 ≤ i ≤ p) so
that

(4) X0 = Yk,

(5) Xi+1 ∈ [nk, Xi],

(6) Xi+1 rejects every member of rl+1[bi, Xi+1], where l = length(b).

AssumeXi has been defined. By (4) and (5), depthXi
(bi) = nk, and moreover

by A.3(1), [bi, Xi] 6= ∅. By Lemma 4.31 (3), we conclude that Xi rejects bi.
By Lemma 4.34, we obtain Xi+1 ∈ [nk, Xi] which rejects every member of
r|bi|+1[bi, Xi+1]. Having obtained Xp, set Yk+1 = Xp. By A.3(1) and Lemma
4.31(3), for all i < p, Yk+1 rejects every member of r|bi|+1[bi, Yk+1].
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Having completed the recursion on k, let X = limk Yk. We show that
X rejects every b such that [b,X ] 6= ∅ and such that b end-extends a, by
induction on |b|. The case b = a has been taken care of by the assumption.
Suppose that |b| = j + 1 > |a| and [b,X ] 6= ∅. Pick C ∈ [b,X ] and let
c = rj(C). Then c end-extends a and therefore

depthX(c) ≥ depthX(a) = depthY (a) = n0. (4.6)

Hence there is a k ≥ 0 such that nk = depthX(c). Since snk
(X) = snk

(Yk),
we conclude that depthYk

(c) = nk. By the induction hypothesis, X rejects
c. Since depthY (c) ≥ depthY (a), by the hypothesis of the lemma, Y decides
c. By Lemma 4.31(4), Yk decides c. But Yk must reject c, since X ∈ [nk, Yk]
rejects it. By (3), Yk+1 rejects every member of rj+1[c, Yk+1]. Note that
b ∈ rj+1[c, Yk+1], so Yk+1 rejects b, and therefore X rejects b. This finishes
the proof. 2

This finishes the sequence of basic Lemmas about combinatorial forcing
relative to a fixed subset X of R. From now on, we apply these lemmas for
various X ⊆ R, and therefore we use the terms “X-accepts”, “X-rejects” and
“X-decides.”

Lemma 4.36 The field of S-Ramsey subsets of R coincides with the field
of S-Baire subsets of R.

Proof. It is clear that every S-Ramsey set is S-Baire so the content of this
lemma is in the converse. Let X ⊆ R be a given S-Baire set and let [a, Y ] 6= ∅
be a given basic set. Let

n = depthY (a). (4.7)

By Lemma 4.33 there is an X ∈ [n, Y ] that X-decides as well as Xc-decides
every b ∈ AR such that depthX(b) ≥ n.

If X either X-accepts a or Xc-accepts a, we are done. Assume then, for a
proof by a contradiction, that X both X-rejects a and Xc-rejects a. Applying
Lemma 4.35 twice, we obtain Z ∈ [n,X ], which both X-rejects and Xc-rejects
every b end-extending a such that [b, Z] 6= ∅.

Since X is S-Baire, there are b end-extending a and Z0 ≤ Z such that
[b, Z0] 6= ∅, and either

(a) [b, Z0] ⊆ X, or

(b) [b, Z0] ⊆ Xc.

By A.3(2) there is a Z ′
0 ∈ [depthZ(b), Z] such that ∅ 6= [b, Z ′

0] ⊆ [b, Z0].
If alternative (a) holds, then Z ′

0 is X-accepting b, which contradicts the
fact that Z X-rejects b (see Lemma 4.31(3)). If alternative (b) holds then
Z ′

0 is Xc-accepting b, which contradicts the fact that Z X c-rejects b. This
contradiction finishes the proof of this lemma. 2

Lemma 4.37 The field of S-Ramsey subsets of R is a σ-field.
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Proof. Let X =
⋃∞

k=0 Xk, where each Xk is S-Ramsey. Let [a, Y ] 6= ∅ be
given. Let n0 = depthY (a). By Lemma 4.33, there is an X ∈ [n, Y ] that
X-decides every b such that depthX(b) ≥ n0. If X X-accepts a, we are done.
Assume that X X-rejects a. Applying Lemma 4.35, we obtain Y0 ∈ [n0, X ],
which X-rejects every b ∈ AR end-extending a such that [b, Y0] 6= ∅.

Starting with [n0, Y0], we build a fusion sequence ([nk, Yk])k such that

(1) nk = n0 + k,

(2) for every b ∈ AR such that depthYk
(b) = nk and for all n ≤ k either

[b, Yk+1] ⊆ Xn or [b, Yk+1] ⊆ Xc
n.

Assume Yk has been defined. Let b0, . . . , bp−1 be a list of all

{b ∈ AR : depthYk
= nk}. (4.8)

Build Xi (0 ≤ i ≤ p) such that

(3) X0 = Yk,

(4) Xi+1 ∈ [nk, Xi],

(5) for all n ≤ nk, either [bi, Xi+1] ⊆ Xn or [bi, Xi+1] ⊆ Xc
n.

Clearly, there is no problem in producing such a sequence Xi (0 ≤ i ≤ p)
since Xn (n ≤ k) are all S-Ramsey. Let Yk+1 = Xp. Then Yk+1 satisfies (2).
Let Y∞ = limk Yk. It suffices to show that [a, Y∞] ⊆ Xc. Take A ∈ [a, Y∞] and
n ∈ N. Then by A.2 there exists l ≥ length(a) such that depthY∞

(rl(A)) ≥ n.
Let b = rl(A). Find k such that nk = depthY∞

(b). Since

rnk
(Y∞) = rnk

(Yk), (4.9)

we conclude that depthYk
(b) = nk. Applying (2), we conclude that either

(a) [b, Yk+1] ⊆ Xn or

(b) [b, Yk+1] ⊆ Xc
n.

We claim that the alternative (b) must hold. This follows from our assump-
tion that Y0 X-rejects any b ∈ AR that end-extends a and has the property
that [b, Y0] 6= ∅.

It follows that A ∈ [b, Yk+1] ⊆ Xc
n. Since n was chosen arbitrarily, we

conclude that A ∈ Xc, as claimed. 2

Lemma 4.38 The ideals of S-meager and S-Ramsey null subsets of R co-
incide, and therefore they are both σ-ideals.

Proof. Let X be a given S-meager set and let [a, Y ] 6= ∅ be a given basic
set. By Lemma 4.36, there is an X ∈ [depthY (a), Y ] such that [a,X ] ⊆ X or
[a,X ] ⊆ Xc. The first alternative is impossible, since applying the assumption
that X is S-meager to the nonempty basic set [a,X ], we would get Z ≤ X
and b ∈ AR end-extending a such that [b, Z] 6= ∅ and [b, Z]∩X = ∅. However,
note that [a,X ] includes [b, Z]. 2

The following lemma is the crucial step toward the proof of the Abstract
Ramsey Theorem.
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Lemma 4.39 The field of S-Ramsey subsets of R is closed under the Souslin
operation.

Proof. Let Xs (s ∈ N[<∞]) be a given Souslin scheme of S-Ramsey subsets
of R indexed by the family N[<∞] of all finite subsets of N. Consider the
corresponding result of the Souslin operation

X =
⋃

A∈N[∞]

⋂

n∈N

Xrn(A), (4.10)

where N[∞] denotes the family of all infinite subsets of N and where rn(A)
is the finite set formed by taking the first n elements of A according to its
increasing enumeration. Thus, if A = (ni)

∞
i=0 is a member of N[∞] given

with its increasing enumeration and if l ∈ N then rl(A) = {n0, . . . , nl−1}.
For s ∈ N[<∞], let

X̃s =
⋃

A∈N[∞], A⊐s

⋂

n≥|s|

Xrn(A). (4.11)

Note that X̃s ⊆ Xs and that X̃∅ = X. To show that X is S-Ramsey we
start from a given basic set [a, Y ] 6= ∅. By recursion on k, we define a fusion
sequence ([nk, Yk])k such that

(1) n0 = depthY (a), Y0 = Y ,

(2) nk = n0 + k,

(3) for every s ⊆ {0, . . . , nk} and every b ∈ AR such that depthYk
(b) = nk,

Yk+1 (X̃s)c-decides b.

Clearly there is no problem in getting Yk+1 starting from [nk, Yk] by a suc-
cessive application of Lemma 4.31 (5) treating each b ∈ AR such that
depthYk

(b) = nk and each s ⊆ {0, . . . , nk}. Let X = limk Yk. For s ∈ N[<∞],
set

Os = {b ∈ AR : X (X̃s)c-accepts b}, (4.12)

Φ(X̃s) = ([a,X ] ∩ Xs) \
⋃

b∈Os

[b,X ]. (4.13)

Then Φ(X̃s) ⊇ [a,X ]∩ X̃s and we claim that Φ(X̃s) serves as an envelope of

the restriction of X̃s to the basic set [a,X ]. First of all, note that each basic
set [b,X ] is S(≤ X)-Ramsey, where

S(≤ X) = {Y ∈ S : Y ≤ X}.

Note also that by A.2 there exist only countably many b ∈ AR such that
[b,X ] 6= ∅. So by Lemma 4.37, we conclude that each set of the form Φ(X̃s)
is S(≤ X)-Ramsey.

Claim 4.39.1 For every s ∈ N[<∞], every S(≤ X)-Baire subset Y of the

difference Φ(X̃s) \ X̃s must be S(≤ X)-meager, and therefore, S(≤ X)-
Ramsey null.
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Proof. Fix s and Y. Consider a nonempty [b, Y ] for some Y ≤ X. We need
to find c ⊒ b and Z ≤ Y such that [c, Z] 6= ∅ and [c, Z] ∩Y = ∅. We may
assume that b ⊒ a, or else, we are done. Pick B ∈ [b, Y ]. By A.2 there is an
l ≥ length(b) such that if b′ = rl(B), then depthX(b′) = ni for some i such
that s ⊆ {0, . . . , ni}. Since Y is S(≤ X)-Baire, we can find c ⊒ b′ and Z ≤ Y
such that [c, Z] 6= ∅ and either [c, Z] ⊆ Y or [c, Z] ⊆ Yc. Since the second
alternative would give us the desired conclusion, we assume that [c, Z] ⊆ Y

and work toward a contradiction. Find a k ≥ i such that depthX(c) = nk.
By property (3) of the fusion sequence ([nk, Yk])k and the fact that

nk = depthX(c) = depthYk
(c),

we conclude that Yk+1 (X̃s)c-decides c. Our assumption [c, Z] ⊆ Y and the

fact that Y is disjoint from (X̃s) means in particular that Z (X̃s)c-accepts c.

So by Lemma 4.31 it must be that Yk+1, and therefore X , (X̃s)c-accepts c.
It follows that c ∈ Os, and therefore by Equation (4.13), we conclude that

[c,X ] ∩ Φ(X̃s) = ∅, a contradiction. 2

Note that for every s ∈ N[<∞],

[a,X ] ∩ X̃s = [a,X ] ∩
⋃

n≥max(s)+1

X̃s∪{n}. (4.14)

It follows that

Ys = Φ(X̃s) \
⋃

n≥max(s)+1

Φ(X̃s∪{n}) (4.15)

is a S(≤ X)-Ramsey set that is disjoint from X̃s, and therefore must be
S(≤ X)-Ramsey null by Claim 4.39.1. By Lemma 4.38, the S(≤ X)-Ramsey
null sets form a σ-ideal, so there is Z ∈ [depthX(a), X ] such that

[a, Z] ∩Ys = ∅ for all s ∈ N[<∞]. (4.16)

Applying the inclusion

Φ(X) \ X ⊆
⋃

s∈N[<∞]


Φ(X̃s) \

⋃

n≥max(s)+1

Φ(X̃s∪{n})


 , (4.17)

which follows immediately from Equation (4.14), it follows that

[a, Z] ∩ X = [a, Z] ∩Φ(X). (4.18)

Since Φ(X) is S(≤ X)-Ramsey, we can find Z0 ∈ [depthZ(a), Z] such that
[a, Z0] ⊆ Φ(X) or [a, Z0]∩Φ(X) = ∅. It follows that Z0 ∈ [depthY (a), Y ] and
[a, Z0] ⊆ X or [a, Z0] ⊆ Xc, as required. 2

The Abstract Ramsey Theorem suggests the following definition giving us
the primary concept of study in this book.

Definition 4.40 Any structure of the form (R,S,≤,≤0, r, s) satisfying the
conclusion of the Abstract Ramsey Theorem is called a Ramsey space.

The main goal of this book is to present some of the most important exam-
ples of Ramsey spaces as well as to give some applications and connections
between different spaces.
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4.4 THE HALES-JEWETT SPACE

Let L =
⋃∞

n=0 Ln be a given alphabet written as an increasing union of finite
alphabets Ln and let v 6∈ L. Let WL be the semigroup of words over L and
let WLv be the semigroup of variable-words over L (i.e., words over L∪{v} in

which v occurs at least once). By W
[∞]
L and W

[∞]
Lv we denote the collections

of all infinite rapidly increasing infinite sequences of elements of WL and
WLv, respectively. (Recall that a sequence X = (xn) is rapidly increasing if

|xn| >
∑

i<n |xi| for all n.) For X = (xn) ∈ W
[∞]
Lv , let

[X ]L = {xn0 [λ0]a . . .axnk
[λk] ∈ WL : n0 < . . . < nk, λi ∈ Lni

(i ≤ k)}

and

[X ]Lv = {xn0 [λ0]a . . .axnk
[λk] ∈WLv : n0 < . . . < nk,

λi ∈ Lni
∪ {v} (i ≤ k)}

be the partial subsemigroups of WL and WLv, respectively, generated by X .
The assumption that X is rapidly increasing has the consequence that for
every w ∈ [X ]L and x ∈ [X ]Lv, the finite sets of integers {n0 < . . . < nk}
and {m0 < . . . < mℓ} such that

w = xn0 [λ0]a . . .axnk
[λk]

for some λi ∈ Lni
(i ≤ k) and

x = xm0 [µ0]a . . .axmℓ
[µℓ]

for some µi ∈ Lni
∪ {v}(i ≤ ℓ) are unique. We denote these two finite sets

by suppX(w) and suppX(x), respectively. For two finite sets of integers F

and G, write F < G if ∀m ∈ F ∀n ∈ G m < n. Define ≤ on W
[∞]
Lv by letting

X = (xn) ≤ Y = (yn) if X ⊂ [Y ]Lv and

suppY (xm) < suppY (xn) whenever m < n. (4.19)

Similarly, for W = (wn) ∈ W
[∞]
L and X = (xn) ∈ W

[∞]
Lv , we write W ≤◦ X

if W ⊂ [X ]L and

suppX(wm) < suppX(wn) whenever m < n. (4.20)

When X = (xn) ≤ Y = (yn) happens, it is natural to say that X is a block
subsequence of Y, and similarly for W = (wn) ≤◦ X = (xn). The relations ≤
and ≤◦ come with their natural finitizations by letting

x = (xm)m<p ≤fin y = (yn)n<q,

if xm ∈ [y]Lv for all n < p and (q − 1) ∈ suppy(x) (i.e., x 6≤fin y ↾ q′ for all
q′ < q) and similarly for w = (wm)m<p ≤◦

fin y = (yn)n<q. During the course
of developing axioms A.1 to A.4 in Section 4.3 we checked that
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(W
[∞]
L ,W

[∞]
Lv ,≤,≤◦, r, s) (4.21)

(where r and s are the restriction maps) satisfies all the requirements A.1 to

A.4. Since W
[∞]
Lv is clearly a closed subset of (W

[<∞]
Lv )N we have all the inputs

of the Abstract Ramsey Theorem, and so we can conclude the following.

Theorem 4.41 (W
[∞]
L ,W

[∞]
Lv ,≤,≤◦, r, s) is a Ramsey space.

The purpose of this section is to present some applications of this result.
First of all let us state the following consequence of the Abstract Ramsey
Theorem.

Theorem 4.42 (Infinite-Dimensional Hales-Jewett Theorem) For every fi-

nite Souslin-measurable coloring of W
[∞]
L there is an X = (xn) ∈W

[∞]
Lv such

that [X ]
[∞]
L is monochromatic.

Notation: [X ]
[∞]
L = {W ∈ W

[∞]
L : W ≤◦ X}.

As indicated before, various consequences of this sort of abstract Ramsey
theoretic result tend to be related to each other. The following application

exploits a relation between the Hales-Jewett space (W
[∞]
L ,W

[∞]
Lv ,≤,≤◦, r, s)

and the original Ellentuck space (N[∞],⊆, r), leading to a parametrized ver-
sion of the infinite-dimensional Ramsey theorem.

Theorem 4.43 For every finite Souslin-measurable coloring of N[∞] × RN,
there is an M ∈ N[∞] and an infinite sequence (Pi) of nonempty perfect
subsets of R such that the product M [∞] ×

∏∞
i=0 Pi is monochromatic. The

same conclusion holds for countable Souslin-measurable colorings, provided
the colors are invariant under finite changes of sets on the first coordinate.

Proof. Let L =
⋃∞

n=0 Ln, where

Ln = {σ ∈ 2N : ∀i > n σ(i) = 0}. (4.22)

Define ϕ : W
[∞]
L → N[∞] by

ϕ((wk)) = {|w0|+ . . .+ |wk| : k ∈ N}, (4.23)

and define ψ : W
[∞]
L → 2N×N by

ψ((wk))(n, i) = σ(i), (4.24)

where σ occupies the nth place in the infinite word

w0
aw1

a . . .awk
a . . . (4.25)
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Instead of R, we shall work with the Cantor space 2N, and instead of RN

we work with (2N)N, which we identify with 2N×N and make no difference
between the sequence ((xni)n)i of sequences and the doubly indexed sequence
(xni)n,i. So let c : N[∞] × (2N)N → N be a given Souslin-measurable coloring
that has either a finite range or has its colors invariant under changes of sets

appearing on the first coordinate. Define c∗ : W
[∞]
L → N by

c∗((wn)) = c(ϕ((wn)), ψ((wn))). (4.26)

By the Infinite-Dimensional Hales-Jewett Theorem (or more precisely from

the fact that (W
[∞]
L ,W

[∞]
Lv ,≤,≤◦, r, s) forms a Ramsey space), we can find

X = (xk) ∈ W
[∞]
Lv such that c∗ is constant in

[X ]
[∞]
L = {W = (wk) ∈ W

[∞]
L : W ≤◦ X}. (4.27)

Let

M = {|x0|+ . . .+ |xk| : k ∈ N}. (4.28)

Let P ⊆ (2N)N be the collection of all doubly-indexed sequences (εni)n,i for
which one can find (σk) ∈

∏∞
k=0 Lk such that when we form the infinite word

w(σk) = x0[σ0]a . . .axk[σk]a . . . , (4.29)

then εni = σ(i), where σ occupies the nth place in this infinite word. Note
that P is a closed subset of (2N)N.

Claim 4.43.1 There is an infinite sequence (Pi) of perfect subsets of the
Cantor space 2N such that

∏∞
i=0 Pi ⊆ P .

Proof. Let Pi be the collection of all δ ∈ 2N that satisfies the following
conditions, where x denotes the infinite variable-word x0

a . . .axn
a . . ..

(1) If at some place ℓ we find a letter σ ∈ L in x, then δ(ℓ) = σ(i).

(2) If ℓ < |x0| + . . . + |xi−1| and at the ℓth place in x we find a variable,
then δ(ℓ) = 0.

(3) If nk−1 = |x0|+. . .+|xk−1| ≤ ℓ < |x0|+. . .+|xk−1|+|xk| = nk for some
k ≥ i and we find a variable at the ℓth place in x, then δ(ℓ) = δ(ℓ′),
where ℓ′ ∈ [nk−1, nk) is the minimal place where x has a variable.

Thus, Pi has no restrictions at the minimal place of some interval of the
form

Ik = [|x0|+ . . .+ |xk−1|, |x0|+ . . .+ |xk−1|+ |xk|) (4.30)

for k ≥ i, where a variable occurs. From this, one easily concludes that Pi is
indeed perfect. Consider a sequence (δi) such that δi ∈ Pi for all i. For each
k, choose σk ∈ 2N such that
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(4) σk(i) = 0 for i > k,

(5) σk(i) = δi(ℓ) where ℓ is the minimal integer of the interval Ik where a
variable occurs in x.

Clearly, σk ∈ Lk for all k. Form the corresponding infinite word.

w(σk) = x0[σ0]a . . .axk[σk]a . . . (4.31)

Let (εni)n,i be the doubly-indexed sequence such that εni = σ(i), where σ
occupies the nth place in the infinite word w(σk). Tracing back the definitions
from (5) to (1), we see that εni = δi(n) for all n and i. It follows that (σi) ∈ P .
This shows that

∏∞
i=0 Pi ⊆ P . 2

Claim 4.43.2 M [∞] × P ⊆ (ϕ× ψ)[[X ]
[∞]
L ].

Proof. Consider (N, (εni)) ∈M [∞]×P . Find (σk) ∈
∏

k Lk such that (εni) =
ψ((xk[σk])). Thus, εni = σ(i) where σ occupies the nth place in the infinite
word

w(σk) = x0[σ0]a . . .axk[σk]a . . . (4.32)

Let (kℓ) be the increasing sequence of integers such that

N = {|x0|+ . . .+ |xkℓ
| : ℓ ∈ N}. (4.33)

For ℓ ∈ N, let

uℓ = xkℓ−1+1[σkℓ−1+1]a . . .axkℓ
[σkℓ

], (4.34)

where k−1 = −1. Then (uℓ) ∈ [X ]
[∞]
L and the infinite concatenation

u0
a . . .auℓ

a . . .

is still equal to the same infinite word wσk
determined by the sequence (σk) ∈∏

k Lk. It follows that ψ((uℓ)) = ψ((xk[σk])) = (εni). Also ϕ((uℓ)) = N , and
therefore (ϕ× ψ)((uℓ)) = (N, (εni)). 2

Note that this finishes the proof of the theorem, since Claim 4.43.2 yields
that c is constant on M [∞] ×

∏∞
i=0 Pi. 2

Corollary 4.44 (Laver) Suppose {fn}
∞
n=0 is a uniformly bounded sequence

of Baire- of Lebesgue-measurable functions from RN into R. Then some sub-
sequence of {fn} converges monotonically and uniformly on some product∏∞

n=0 Pn of perfect subsets of R.

Proof. Assume first that {fn}∞n=0 is a uniformly bounded sequence of con-
tinuous functions. Let C be the subset of N[∞]×RN consisting of pairs (A,~t)
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for which {fn(~t)}n∈A is a monotonically convergent sequence of reals. Ap-
plying Theorem 4.43, we obtain M ∈ N[∞] and a sequence (Pn)∞n=0 of perfect
subsets of R such that

M [∞] ×
∏∞

n=0 Pn ⊆ C or (M [∞] ×
∏∞

n=0 Pn) ∩ C = ∅. (4.35)

Note that the second alternative is impossible. Since C splits into two Borel

pieces C↑ and C↓ consisting of pairs for which the convergence is nonde-
creasing and nonincreasing, respectively, we may further assume that, for
example,

M [∞] ×
∏∞

n=0 Pn ⊆ C↑. (4.36)

Shrinking the product even further, we may assume that the pointwise limit

of the subsequence {fn}n∈M is continuous on
∏∞

n=0 Pn. By Dini’s theorem,
we conclude that the convergence is in fact uniform.

The reduction of the Baire-measurable case to the assumption that the
sequence {fn} consists of continuous functions is simple. One first finds a
dense Gδ-subset G ⊂ RN such that fn ↾ G is continuous for all n. Then
a simple fusion argument using the Fubini theorem for category gives us a
sequence (Pn)∞n=0 of perfect subsets of R such that

∏∞
n=0 Pn ⊂ G.

To take care of the Lebesgue-measurable case, applying Egoroff’s theorem,
one first obtains a compact subset H ⊂ RN of positive measure such that
fn ↾ H is continuous for all n ∈ N. Using the Brodski-Eggleston lemma
(see Theorem 9.44 and Corollary 9.45 below), we can recursively construct
a sequence (Pn)∞n=0 of perfect subsets of R such that

∏∞
n=0 Pn ⊆ H. 2

For finite powers of R, one can do a bit better than in Corollary 4.44

Corollary 4.45 (Harrington) For every positive integer d and every uni-
formly bounded sequence (fn)∞n=0 of Baire- or Lebesgue-measurable functions
from Rd into R, there is a subsequence {fnk

}∞k=0 and a perfect set P ⊂ R
such that {fnk

}∞k=0 is uniformly convergent on P d.

Proof. We first show by induction on d that there is a perfect set P ⊆ R
such that fn ↾ P d is continuous for all n. The case d = 1 is an immediate
consequence of the fact that every Baire (Lebesgue) measurable function is
continuous on a dense Gδ-subset of R (Fσ-subset of R of full measure) and
that countable intersections of such sets contain nonempty perfect subsets.
To see the inductive step from d − 1 to d, we first find a dense Gδ-set
G ⊂ Rd, respectively an Fσ-subset H ⊂ Rd of full measure such that fn ↾ G,
respectively, fn ↾ H , is continuous for all n. Then we use Mycielski’s theorem
(see Theorem 6.40 below) to find a perfect set P ⊂ R such that the set

P (d) = {(xi)i<d ∈ P
d : xi 6= xj whenever i 6= j}

is included in G, respectively, in H .
Thus, without loss of generality, we may suppose that in the hypothesis of

Corollary 4.45 we are in fact given a sequence {fn} of continuous functions
on Rd. By Corollary 4.44, using a subsequence of (fn) and a perfect subset
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of P, we may assume that the sequence (fn) is uniformly convergent on
the diagonal of P d. So we concentrate on getting uniform convergence off
the diagonal of P d. To this end, we prove by induction on d the following
stronger statement:

(∗) For every uniformly bounded sequence {fn} of continuous real-valued
functions on some finite-dimensional cube Rℓ and every decomposition
ℓ = ℓ0+ℓ1+. . .+ℓm−1 where 1 ≤ ℓi ≤ d for i < m, there exist perfect sets
Pi ⊂ R(i < m) and a subsequence {fnk

} that is uniformly convergent
on
∏

i<m P ℓi

i .

Corollary 4.44 gives us the case d = 1 of (∗), so let us assume (∗)d and prove
(∗)d+1. In fact we show only the case m = 1 of (∗)d+1, since the general
case follows from an obvious modification of this argument. To this end,
we construct a fusion sequence Pσ(σ ∈ 2<∞) of perfect subsets of R and a
decreasing sequence M0 ⊇M1 ⊇ . . . ⊇Mk ⊇ . . . of infinite subsets of N such
that

(1) Pσa0, Pσa1 ⊂ Pσ and Pσa0 ∩ Pσa1 = ∅,

(2) diam(Pσ) ≤ 2−|σ|,

(3) For every k ∈ N and every decomposition

ℓ0 + ℓ1 + . . .+ ℓm−1 = d+ 1 (4.37)

such that 1 ≤ ℓi ≤ d(1 < m) and every one-to-one sequence σi ∈
2k(i < m), the subsequence {fn}n∈Mk

is uniformly convergent or Q =∏
i<m P ℓi

σi
. Moreover, for all n,m ∈Mk,

‖fn ↾ Q− fm ↾ Q‖∞ ≤ 2−k. (4.38)

Clearly, the induction hypothesis (∗)d is exactly what is needed to complete
the construction of the fusion sequence Pσ(σ ∈ 2<∞) satisfying (1),(2), and
(3).
Pick N ∈ N[∞] such that N\Mk is finite for all k. Let

P =
⋃

σ∈2N

⋂

k∈N

Pσ|k. (4.39)

Then P is a perfect subset of R and the subsequence {fn}n∈N is uniformly
convergent on P d+1. This completes the description of the inductive step
from (∗)d to (∗)d+1 and finishes the proof of the corollary. 2

Remark 4.46 Note that the sequence of projections

{πn : RN → R}∞n=0 (4.40)

contains no subsequence that is convergent on any set of the form PN where
P is a perfect subset of R. In the next chapter we shall present a proof of the
Rosenthal Dichotomy Theorem, which shows that the sequence {πn}∞n=0 of
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projection is a rather typical such example in the sense that any uniformly
bounded sequence {fn} of continuous functions defined on some Polish space
X contains either a subsequence {fnk

} that pointwise converges on the whole
space X or a subsequence {fnk

} that on some copy of the Cantor space 2N

behaves like the sequence {πk : 2N → 2}∞k=0 of projections.

4.5 RAMSEY SPACES OF INFINITE BLOCK SEQUENCES OF

LOCATED WORDS

We start with an alphabet L =
⋃∞

n=0 Ln written as an increasing union of
finite alphabets Ln and a variable v 6∈ L. A located word is a function from
a finite nonempty subset of N into L, while a located variable-word is such
a function with range in L ∪ {v} with the value v achieved at least once.
Let FINL and FINLv denote the collections of located words and located
variable-words, respectively.

For x ∈ FINLv and λ ∈ L ∪ {v}, let x[λ] be the function such that

(1) dom(x[λ]) = dom(x),

(2) if i ∈ dom(x) and xi ∈ L, then x[λ]i = xi,

(3) if i ∈ dom(x) and xi = v, then x[λ]i = λ.

A block sequence is a finite or infinite sequence X = (xn) of members of
FINL or FINLv such that

dom(xm) < dom(xn) whenever m < n.

Let FIN
[∞]
L and FIN

[∞]
Lv denote the collection of all infinite block sequences

of elements of FINL and FINLv, respectively. We consider FINL and FINLv

partial semigroups under the operation of taking the union of two partial

functions when their domains are disjoint. For X = (xn) ∈ FIN
[∞]
Lv , we

consider the following two partial subsemigroups of FINL and FINLv, re-
spectively, generated by X :

[X ]L = {xn0 [λ0] ∪ . . . ∪ xnk
[λk] ∈ FINL : n0 < . . . < nk, λi ∈ Lni

(i ≤ k)}

[X ]Lv = {xn0 [λ0] ∪ . . . ∪ xnk
[λk] ∈ FINLv : n0 < . . . < nk,

λi ∈ Lni
∪ {v}(i ≤ k)}.

For X = (xn) and Y = (yn) from FIN
[∞]
Lv , we say that X is a block-

subsequence of Y and write X ≤ Y if xn ∈ [Y ]Lv for all n. Similarly for

A = (an) ∈ FIN
[∞]
L and X = (xn) ∈ FIN

[∞]
Lv , we say that A ≤◦ X if

an ∈ [X ]L for all n. We extend these relations to the families FIN
[<∞]
L and

FIN
[<∞]
Lv of finite block sequences of located words and variable-words. This

gives us the finitizations ≤fin and ≤◦
fin of ≤ and ≤◦, respectively:
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(xn)k
0 ≤fin (yn)ℓ

0 iff (xn)k
0 ≤ (yn)ℓ

0 and (∀ℓ′ < ℓ) (xn)k
0 6≤ (yn)ℓ′

0 ,

(an)k
0 ≤

o
fin (xn)ℓ

0 iff (an)k
0 ≤ (xn)ℓ

0 and (∀ℓ′ < ℓ) (an)k
0 6≤ (xn)ℓ′

0 .
(4.41)

The proofs that ≤fin and ≤◦
fin are finitizations of ≤ and ≤◦ and that

(FIN
[∞]
L ,FIN

[∞]
Lv ,≤,≤

◦, r, s)

satisfies A.1−A.3 are straightforward. The fact that this space satisfies A.4
reduces to the following block sequence reformulation of Theorem 2.35.

Theorem 4.47 For every finite coloring of FINL ∪ FINLv and every Y =

(yn) ∈ FIN
[∞]
Lv , there is X ≤ Y in FIN

[∞]
Lv such that [X ]L and [X ]Lv are both

monochromatic.

Proof. The proof is identical to the proof of Theorem 2.22 except that we
now restrict to the semigroup S of cofinite ultrafilters concentrating on the
union [Y ]L ∪ [Y ]Lv. 2

Clearly, FIN
[∞]
Lv is a closed subset of the product (FIN

[<∞]
Lv )N, so applying

the Abstract Ramsey Theorem gives us the following result.

Theorem 4.48 (FIN
[∞]
L ,FIN

[∞]
Lv ,≤,≤

◦, r, s) is a Ramsey space.

Corollary 4.49 (Bergelson-Blass-Hindman) For every finite Souslin-mea-

surable coloring of the space FIN
[∞]
L , there is X = (xn) ∈ FIN

[∞]
Lv such that

{W ∈ FIN
[∞]
L : W ≤◦ X} is monochromatic.

The following result compares the relative strengths of two Ramsey spaces
encountered so far.

Theorem 4.50 There is a natural surjection

π∞ : (FIN
[∞]
L ,FIN

[∞]
Lv ,≤,≤

◦, r, s)→ (W
[∞]
L ,W

[∞]
Lv ,≤,≤◦, r, s)

that transfers the Ramsey theoretic properties from one space onto the other.

Proof. Let

π : FINL ∪ FINLv →WL ∪WLv

be the mapping which associates with each located word x the word π(x) of
length |dom(x)| that in the ith place has the letter xj , where j ∈ dom(x)
occupies the ith place in the increasing enumeration of dom(x). The mapping
π extends to

π∞ : FIN
[∞]
L ∪ FIN

[∞]
Lv → W

[∞]
L ∪W

[∞]
Lv

in the natural way,

π∞((xn)) = (π(xn)).
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Note, however, that in W
[∞]
L andW

[∞]
Lv we have restricted ourselves to rapidly

increasing sequences of words, i.e., sequences X = (xn) that satisfy the
requirement |xn| >

∑
i<n |xi| for all n. Hence, strictly speaking, we have to

restrict the projection π to the Ramsey space

(FIN
[∞]
L ,FIN

[∞]
Lv ,≤,≤

◦, r, s)

of rapidly increasing block sequences of words. In any case, it is clear that
the mapping so-defined is indeed a projection, i.e., it is open, 1-Lipschitz,
maps basic sets to basic sets, and therefore, transfers the Ramsey theoretic

properties from the space (FIN
[∞]
L ,FIN

[∞]
Lv ,≤,≤

◦, r, s) of block sequences of

located words to the Hales-Jewett space (W
[∞]
L ,W

[∞]
Lv ,≤,≤◦, r, s). 2

It follows that the fact that (FIN
[∞]
L ,FIN

[∞]
Lv ,≤,≤

◦, r, s) is a Ramsey space

is more fundamental than the fact that (W
[∞]
L ,W

[∞]
Lv ,≤,≤◦, r, s) is a Ram-

sey space in the sense that any application of the latter space can also be
obtained as an application of the former.

NOTES TO CHAPTER FOUR

Abstract Baire theory was initiated in the 1930’s by E. Marczewski [71]
and completed more recently through the work of J.C. Morgan [79], J. Paw-
likowski [85], and others. One of the goals of abstract Baire theory was to find
a unified approach towards the classical results of Lusin and Nykodim show-
ing that the Lebesgue measurability and the Baire property are preserved
under the Souslin operation. This theory did arrive at the elegant combina-
torial proofs of these classical results based on the notion of envelope for an
arbitrary subset of the index set. As we have seen above during the course of
the proof of Lemma 4.39, the idea of global enveloping needed an essential
adjustment to the more flexible notion of local envelope for an arbitrary sub-
set of the index set. We shall encounter the idea of local enveloping again in
Chapter Seven of this book when proving analogous results in the context of
local Ramsey theory. The first instance of combinatorial forcing appears in a
paper of Nash-Williams [82], from where we can taken the terminology “ac-
cepts”, “rejects” and “decides”, although our combinatorial forcing is more
closely related to that of Galvin-Prikry [35]. More recently the combinatorial
forcing has found one of its deepest applications in the work of Gowers [38]
(see also [3]), where it is used to show than an infinite-dimensional Banach
space conains either an infinite basic unconditional sequence or an infinite-
dimensional hereditarily indecomposable closed subspace, a key step towards
the solution of Banach’s homogeneous space problem. In hindsight one can
see that Baumgartner’s proof ([6]) of Hindman’s theorem also uses a combi-
natorial forcing and this suggests the natural question of whether there is an
analogous proof that would establish Gowers’s pigeon hole principle for FINk

(Theorem 2.22 above), originally proved using the methods of topological dy-
namics. The work in set theory (see for example [97]) that deals with forcing
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descriptions of generic reals contains deep applications of combinatorial forc-
ing and could serve as inspiration for further applications of this method in
Ramsey theory per se. Corollary 4.49 is due to Bergelson-Blass-Hindman
[8], although their argument is not sufficient to prove the full Theorem 4.48.
The first parametrization of the infinite-dimensional Ramsey theorem ap-
peared in the paper of Miller [76]. Pawlikowski [85] gives an Ellentuck-style
extension of that result. The results of Harrington and Laver appear in [61]
and were originally based on the Halpern-Läuchli theorem rather than the
Hales-Jewett theorem. We give the Halpern-Läuchli treatment of these two
results in Chapter Six of this book.



Chapter Five

Topological Ramsey Theory

5.1 TOPOLOGICAL RAMSEY SPACES

The special case of the Abstract Ramsey Theorem whenR = S, when≤=≤◦,
and when r = s is of independent interest since in this case the basic sets

[a,B] = {A ∈ R : A ≤ B & (∃n) rn(A) = a}

for a ∈ AR and B ∈ R = S form a base for a topology on R that we call the
natural topology of R and which extends the usual metrizable topology on
R when we consider it a subspace of the Tychonov cube ARN. The axioms
A.1, A.2, A.3, and A.4 from the previous chapter reduce to the following set
of axioms (still denoted the same way) about a triple

(R,≤, r)

of objects, where R is a nonempty set, where ≤ is a quasi-ordering on R,
and where

r : R× ω → AR

is a mapping giving us the sequence (rn(·) = r(·, n)) of approximation map-
pings.

A.1. (1) r0(A) = ∅ for all A ∈ R.

(2) A 6= B implies rn(A) 6= rn(B) for some n.

(3) rn(A) = rm(B) implies n = m and rk(A) = rk(B) for all k < n.

A.2. There is a quasi-ordering ≤fin on AR such that

(1) {a ∈ AR : a ≤fin b} is finite for all b ∈ AR,

(2) A ≤ B iff (∀n)(∃m) rn(A) ≤fin rm(B),

(3) ∀a, b ∈ AR[a ⊑ b ∧ b ≤fin c→ ∃d ⊑ c a ≤fin d].

A.3. (1) If depthB(a) <∞ then [a,A] 6= ∅ for all A ∈ [depthB(a), B].

(2) A ≤ B and [a,A] 6= ∅ imply that there is A′ ∈ [depthB(a), B]
such that ∅ 6= [a,A′] ⊆ [a,A].

A.4. If depthB(a) <∞ and ifO ⊆ AR|a|+1, then there isA ∈ [depthB(a), B]
such that r|a|+1[a,A] ⊆ O or r|a|+1[a,A] ⊆ Oc.
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Recall the notation used above

depthB(a) = min{n : a ≤fin rn(B)}

if there is an n such that a ≤fin rn(B) and depthB(a) =∞, otherwise. The
length |a| of a finite approximation a is the integer n such that a = rn(A)
for some A ∈ R. For a, b ∈ AR, we say that a is an initial segment of b
and write a ⊑ b if there is B ∈ AR and m ≤ n < ω such that a = rm(B)
and b = rn(B); the strict version a ⊏ b corresponds to the case m < n. For
B ∈ R and n < ω, set

[n,B] = [rn(B), B].

We shall freely carry on all other conventions and notation encountered in
the previous Chapter.

Example 5.1.1 A prototype example of a triple (R,≤, r) satisfying axioms
A.1, A.2, A.3, and A.4 is the Ellentuck space (N[∞],⊆, r) already encountered
above in Chapter One, where

N [∞] = {M ⊆ N : M infinite }

is the set of all infinite subsets of N, where rn(A) is the initial segment of
A formed by taking the first n elements of A and where the relation ⊆fin is
defined on

AN[∞] = N[<∞] = {a ⊆ N : a finite }

(= the family of all finite subsets of N) as follows:

a ⊆fin b iff a = b = 0 or a ⊆ b and max(a) = max(b).

Note that the topology of the prototype example is equal to the topology N[∞]

gets as a subset of the exponential space exp(N).

From now on whenever we duscuss a topological property of (R,≤, r), we
refer of course to the natural, or the Ellentuck, topology on R, i.e. the one
induced by the basis [a,A] (a ∈ AR, A ∈ R). One example of this is the
following definition.

Definition 5.1 A subset X of R has the property of Baire if X = O∆M
for some Ellentuck open O ⊆ R and Ellentuck meager M⊆R.

Note that when Ellentuck meager subsets of R are in fact nowhere dense
(which will be true in all cases of interest), this notion coincides with the
notion of R-Baire subsets of R introduced in the previous chapter of this
book. Let us recall also Definition 4.22 in this special case.

Definition 5.2 A subset X of R is Ramsey if for every ∅ 6= [a,A] there is
a B ∈ [a,A] such that [a,B] ⊂ X or [a,B] ⊂ Xc. A subset X of R is Ramsey
null if for every ∅ 6= [a,A], there is a B ∈ [a,A] such that [a,B] ∩X = ∅.

These notions are leading us naturally to the following analog of Definition
4.40 that gives us another primary object of study in this book.
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Definition 5.3 A triple (R,≤, r) is a topological Ramsey space if every
property of Baire subset of R is Ramsey and if every meager subset of R is
Ramsey null.

It is now clear that the Abstract Ramsey Theorem specializes to the following
result, where we recall that (R,≤, r) is said to be closed wheneverR is closed
when identified with a subset of the Tychonov power ARN of AR with its
discrete topology.

Theorem 5.4 (Abstract Ellentuck Theorem) If (R,≤, r) is closed and if it
satisfies axioms A.1, A.2, A.3, and A.4, then every property of Baire subset
of R is Ramsey and every meager subset is Ramsey null, or in other words,
the triple (R,≤, r) forms a topological Ramsey space.

Proof. The Abstract Ramsey Theorem in this special case gives us in par-
ticular that Ellentuck nowhere dense subsets of R are all Ramsey null. Since
Ramsey null subsets of R form a σ-ideal, it follows that Ellentuck meager
subsets of R are in fact nowhere dense, so as explained above, the property
of Baire subsets R relative to the Ellentuck topology are all R-Baire in the
sense of Definition 4.23. 2

Corollary 5.5 (Ellentuck) The space (N[∞],⊆, r) is a topological Ramsey
space.

Let us now recall a notion introduced in the previous chapter but speci-
fied here in the special case of R as a topological space with its Ellentuck
topology.

Definition 5.6 A subset X of R is said to be Souslin, or more explicitly,
Souslin-measurable, if it belongs to the minimal field of subsets of R that
contains all Ellentuck open subsets of R and that is closed under the Souslin
operation.

Using the classical result that in any topological space the property of Baire
is preserved under the Souslin operation (see Corollary 4.8) we get the other
part of the conclusion of the Abstract Ramsey Theorem.

Corollary 5.7 If (R,≤, p) is closed and if it satisfies A.1, A.2, A.3, and
A.4, then every Souslin-measurable subset of R is Ramsey.

Remark 5.8 Recall our convention that whenever we do not otherwise spec-
ify the topology on R to which the notion of Souslin measurability refers in
this corollary, it is the Ellentuck topology of R. In most applications, how-
ever, one needs only the Souslin measurability relative to the metrizable
topology of R, i.e., the one induced from ARN.

Corollary 5.9 (Abstract Silver Theorem) If (R,≤, p) is closed and if it
satisfies A.1, A.2, A.3, and A.4, then every metrically Souslin-measurable
subset of R is Ramsey.
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Corollary 5.10 (Silver) Every metrically Souslin-measurable subset of N[∞]

is Ramsey.

Corollary 5.11 (Abstract Galvin-Prikry Theorem) If (R,≤, p) is closed
and if it satisfies A.1, A.2, A.3, and A.4, then every metrically Borel subset
of R is Ramsey.

Corollary 5.12 (Galvin-Prikry) Every metrically Borel subset of N[∞] is
Ramsey.

Remark 5.13 We shall see that many Ramsey spaces are related to each
other in the sense that there exist maps that transfer metric corollaries like
the Galvin-Prikry or Silver theorems from one space to the other. These
transfer results give us a sense that one space is “stronger” than other. The
price of the “strength” is typically hidden in the fact that it is considerably
harder to prove the corresponding pigeon-hole principle, A.4. We would like
to note, however, that the transfer procedure rarely reduces the full strength
of the Abstract Ramsey Theorem from one space to the other, since the
theorem really describes a particular σ-field of sets that is typically quite
different from the others. There are applications for which one does need the
full description of the field of Ramsey sets. This happens, for example, when
one is proving, under suitable set-theoretic assumptions, that all definable
subsets of R are Ramsey.

As already pointed out in Chapter One, in which we consider the prototype
topological Ramsey space (N[∞],⊆, r), one cannot expect that the field of
Ramsey sets contains every subset of the domain. The following result shows
that the same phenomenon appears in essentially every other topological
Ramsey space.

Theorem 5.14 Suppose (R,≤, p) is a closed triple that satisfies A.1, A.2,
A.3, and A.4 and suppose that no basic open set of (R,≤, p) is countable,
or equivalently, that the associated topological Ramsey space has no isolated
points. Then there is an X ⊆ R such that [0, B]∩X 6= ∅ and [0, B]∩X c 6= ∅
for all B ∈ R.

Proof. Fix a well-ordering � of R. Let

X = {X ∈ R : X � Y for all Y ∈ [0, X ]}.

Let us check that X is the required set. Consider an arbitrary B ∈ R. Let
X be the �-minimal element of the basic open set [0, B]. Then X is also the
�-minimal element of [0, X ], and so X ∈ X . It remains to show that [0, B]
contains an element that does not belong to X . Otherwise, we would have
that

(∀X,Y ∈ [0, B]) [X ≺ Y → X � Y ]. (5.1)

It follows in particular that ≤ restricted to the basic open set [0, B] is an-
tisymmetric and that ([0, B],≥) is a well-founded partially ordered set. We
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have already noted that from A.2 it follows that ≤ is a closed relation rel-
ative to the topology of R induced from the product space ARN. Thus,
([0, B],≥) is a well-founded partially ordered set whose order relation ≤
is closed relative to the Polish topology of [0, B]. So, applying Theorem
9.53(boundedness)), the well-founded poset ([0, B],≥) has countable rank.
So in particular, the basic open set [0, B] can be covered by countably many
≤-antichains. Note, however, that every ≤-antichain is discrete and therefore
nowhere dense relative to the Ellentuck topology on R. It follows that the
basic open set [0, B] can be covered by countably many nowhere dense sets.
Since every nowhere dense set is Ramsey null and since the ideal of Ramsey
null sets is a σ-ideal it follows that [0, B] itself is a Ramsey null set, which
is a contradiction. 2

Given a triple (R,≤, p) satisfying A.1, A.2, A.3, and A.4, given a family
F ⊆ AR of finite approximations, and given X ∈ R, set

F|X = F ∩ {rn(Y ) : n ∈ N and Y ≤ X}.

The following corollary of the Abstract Ellentuck Theorem is also worth
pointing out.

Theorem 5.15 (Abstract Galvin Lemma) Suppose (R,≤, p) is a closed
triple that satisfies A.1, A.2, A.3, and A.4. Then for every family F ⊆ AR of
finite approximations and for every X ∈ R, there is Y ≤ X such that either
F|Y = ∅, or else for every B ≤ Y there is n ∈ N such that rn(B) ∈ F .

Proof. This follows from the abstract Galvin-Prikry theorem applied to the
open set

O = {B ∈ R : (∃n ∈ N) rn(B) ∈ F}.

2

Definition 5.16 We shall say that a family F ⊆ AR of finite approxima-
tion is

(1) Nash-Williams if a 6⊑ b for all a 6= b ∈ F ,

(2) Sperner if a �fin b for all a 6= b ∈ F ,

(3) Ramsey if for every partition F = F0 ∪ F1 and every X ∈ R, there is
Y ≤ X and i = 0, 1 such that Fi|Y = ∅.

Theorem 5.17 (Abstract Nash-Williams Theorem) Suppose (R,≤, p) is a
closed triple that satisfies A.1, A.2, A.3, and A.4. Then every Nash-Williams
family of finite approximations is Ramsey.

Proof. Applying the Abstract Galvin Lemma successively for F0 and then
for F1, we get Y ∈ R such that for every i = 0, 1, either Fi|Y = ∅, or else for
every B ≤ Y there is n ∈ N such that rn(B) ∈ Fi. Note that we must have
Fi|Y = ∅ for at least one i = 0, 1, or else we would get a single set B ≤ Y
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and two integers m and n such that a = rm(B) ∈ F0 and b = rn(B) ∈ F1.
Since F0 and F1 are disjoint, we must have m 6= n, and therefore a ⊏ b or
b ⊏ a, depending on whether m < n or n < m, respectively. This contradicts
the assumption that F is a Nash-Williams family. 2

Definition 5.18 We shall say that a family F ⊆ AR of finite approxima-
tion is a

(1) front on X ∈ R if F is a Nash-Williams family with the property that
for every Y ≤ X there is n such that rn(Y ) ∈ F .

(2) barrier on X ∈ R if F is a front on X and F is a Sperner family.

Corollary 5.19 Suppose (R,≤, p) is a closed triple that satisfies A.1, A.2,
A.3, and A.4 and that ≤fin is an actual partial ordering on AR rather than
just a quasi-ordering. Suppose further that a family F of finite approxima-
tions is a front on some X ∈ R. Then there is Y ≤ X such that the restric-
tion F|Y is a barrier on Y.

Proof. By the Abstract Nash-Williams Theorem, we know that F is Ramsey,
so we can apply this to the partition F = F0 ∪ (F \ F0), where

F0 = {b ∈ F : (∀a <fin b) a 6∈ F},

and find Y ≤ X such that either (F \F0)|Y = ∅, or else F0|Y = ∅ Note that
F0 is a Sperner family and that the first alternative will give us the desired
conclusion that F|Y = F0|Y is a barrier on Y. So it suffices to show that
F0|Y 6= ∅. To see this, take an arbitrary b ∈ F|Y and pick an n and B ≤ Y
such that b = rn(B). Since

F ∩ {a ∈ AR : a ≤fin b}

is a finite set, it has a minimal element, call it a, relative to the partial
ordering ≤fin . Clearly, a ∈ F0, but we need to show that a ∈ F0|Y. From
a ≤fin b = rn(B), we conclude that depthB(a) <∞. By A.3(1) this gives us
that [a,B] 6= ∅, so in particular, there is A ≤ B ≤ Y such that a = rm(A)
for some m. So a belongs to the restriction F0|Y. 2

The following formulation of Theorem 5.15 is also worth pointing out.

Corollary 5.20 Suppose (R,≤, p) is a closed triple that satisfies A.1, A.2,
A.3, and A.4 and that the relation ≤fin is moreover antisymmetric. Then for
every family F ⊆ AR of finite approximations and for every X ∈ R, there is
Y ≤ X such that either the restriction F|Y is empty or it contains a barrier
on Y.

This shows that the theory of fronts and barrier seen above in Chapter One in
the case of the prototype space (N[∞],⊆, r) allows extension to the context of
general topological Ramsey spaces. Judging on the basis of the applicability
of the original theory, it is reasonable to expect that the abstract theory or
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one of its specializations to a particular new topological Ramsey space will
find interesting applications.

The rest of this chapter is devoted to particular examples of topological
Ramsey spaces, their relationships to the prototype space (N[∞],⊆, r), and
their applications. We shall also devote the whole Chapter Six to a partic-
ular example of a topological Ramsey space based on the Halpern-Läuchli
Theorem.

5.2 TOPOLOGICAL RAMSEY SPACES OF INFINITE BLOCK

SEQUENCES OF VECTORS

For a positive integer k, set

FINk = {p : N→ {0, 1, . . . , k} : {n : p(n) 6= 0} is finite and k ∈ range(p)}.

We consider FINk a partial semigroup under the partial semigroup operation
of taking the sum of two disjointly supported elements of FINk. For p ∈ FINk,
let supp(p) = {n : p(n) 6= 0}. A block sequence of members of FINk is a (finite
or infinite) sequence P = (pn) such that

supp(pm) < supp(pn) whenever m < n.

For 1 ≤ d ≤ ∞, let FIN
[d]
k be the collection of all block sequences of length

d. The notion of a partial subsemigroup generated by a given block sequence
depends on the operation

T : FINk → FINk−1 (5.2)

defined as follows:

T (p)(n) = max{p(n)− 1, 0}. (5.3)

Given a finite or infinite block sequence P = (pn) of elements of FINk and
integer j (1 ≤ j ≤ k), the partial subsemigroup [P ]j of FINj generated by
P is the collection of members of FINj of the form

T (i0)(pn0) + . . .+ T (iℓ)(pnl
)

for some finite sequence n0 < . . . < nℓ of nonnegative integers and some

choice i0, ..., iℓ ∈ {0, 1, ..., k}. For P = (pn), Q = (qm) ∈ FIN
[≤∞]
k , set P ≤ Q

if pn ∈ [Q]k for all n less than the length of the sequence P . When P ≤ Q
happens, we say that P is a block-subsequence of Q. Then ≤ is a partial

ordering on FIN
[∞]
k that allows the finitization ≤fin to satisfy A.2 and A.3 :

P ≤fin Q iff P ≤ Q and (∀l < length(Q)) P 6≤ Q ↾ l. (5.4)

The crucial axiom A.4 for (FIN
[∞]
k ,≤, r) reduces to the following variation

of Gowers’s theorem from Section 2.3.
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Theorem 5.21 For every finite coloring of FINk and every Q = (qn) in

FIN
[∞],
k there is an infinite block subsequence P of Q such that [P ]k is mono-

chromatic.

Proof. Referring to the proof of Gowers’s theorem, we now work with sub-
semigroups [Q]∗j of FIN∗

j (1 ≤ j ≤ k) consisting of those cofinite ultrafilters
that concentrate on the sets [Q]j(1 ≤ j ≤ k), respectively. Note that for
1 ≤ i ≤ j ≤ k the mapping

T j−i : [Q]j → [Q]i

is a partial homomorphism, its extension T j−i : [Q]∗j → [Q]∗i is an actual
homomorphism. So we have all the necessary inputs for the proof of Section
2.3 to give us us idempotents Uj(1 ≤ j ≤ k) such that

(1) [Q]j ∈ Uj for all 1 ≤ j ≤ k,

(2) Ui ≥ Uj whenever 1 ≤ i ≤ j ≤ k,

(3) T (j−i)(Uj) = Ui whenever 1 ≤ i ≤ j ≤ k.

Let C be the color of the given coloring such that C ∈ Uk. Starting from
Ak

0 = C ∩ [Q]k, we proceed as in the proof of Theorem 2.22 and build an
infinite block subsequence P = (pn) at Q and for each 1 ≤ ℓ ≤ k a decreasing
sequence (Aℓ

n) of elements of Uℓ such that

(a) pn ∈ Ak
n,

(b) T (k−ℓ)[Ak
n] = Aℓ

n,

(c) (∀1 ≤ i, j ≤ k)(Ukx)[T (k−i)(pn) + T (k−j)(x) ∈ A
max{i,j}
n ].

When this is done, one checks as before that [P ]k ⊂ C. 2

Note also that FIN
[∞]
k is a closed subset of the infinite power of FIN

[<∞]
k .

So we have verified all the hypotheses of the Abstract Ellentuck Theorem,
and so we obtain the following result.

Theorem 5.22 For every positive integer k, the triple (FIN
[∞]
k ,≤, r) is a

topological Ramsey space.

Corollary 5.23 (Milliken) (FIN
[∞]
1 ,≤, r) is a topological Ramsey space.

Corollary 5.24 For every positive integer k and every finite Souslin-measu-

rable coloring of FIN
[∞]
k there is an infinite block sequence P such that the

family [P ]
[∞]
k of all infinite block subsequences of P is monochromatic. 2



TOPOLOGICAL RAMSEY THEORY 101

Corollary 5.25 For every positive integer k and every family F ⊆ FIN
[<∞]
k

of finite block sequences, there is an infinite block sequence P such that either
P contains no finite block-subsequence belonging to F or else every infinite
block-subsequence of P has an initial segment in F .

Proof. Apply Corollary 5.24 to the open subset X of all elements Q of FIN
[∞]
k

that have an initial segment in F . 2

Corollary 5.26 For all positive integers k and d and every finite coloring

of the set FIN
[d]
k of block sequences of length d of vectors from FINk, there

is an infinite block sequence P such that [P ]
[d]
k is monochromatic. 2

Note that for i = 0, 1, . . . , k − 1, the operation T (i) : FINk → FINk−i

extends to a projection map,

T (i) : FIN
[∞]
k → FIN

[∞]
k−i (5.5)

defined naturally by the requirement T (i)(P ) = Q iff T (i)(pn) = qn for all
n. This allows us to deduce from Corollary 5.24 some simultaneous coloring
theorems such as the following.

Theorem 5.27 For every positive integer k and every finite Souslin-measur-

able coloring of FIN
[∞]
1 ∪ . . . ∪ FIN

[∞]
k , there exists P ∈ FIN

[∞]
k such that

[T (i)P ][∞] is monochromatic for all i = 0, 1, 2, . . . , k − 1.

This process can be continued indefinitely by building a single topological

Ramsey space FIN[∞]
∗ that projects onto all the spaces FIN

[∞]
k . We leave the

details of the construction of the space FIN[∞]
∗ to the interested reader.

We finish this section with an application of the high-dimensional Ramsey
theory of block sequences to the Ramsey classification problem for equiv-
alence relations on FINk. We consider here only the case k = 1 although
similar but considerably more complex arguments will achieve the corre-
sponding Ramsey classification for an arbitrary positive integer k.

Theorem 5.28 (Taylor) For every equivalence relation E on FIN, there is
an infinite block sequence X = (xi) such that E ↾ [X ] is equal to one of the
five canonical equivalence relations Ec, Emin, Emax, E(min,max), or Eid.

Here, the five canonical equivalence relations are written in notation that
indicates their representing mappings, respectively: the constant mapping
x 7→ c, the mapping x 7→ min(x), the mapping x 7→ max(x), the mapping
x 7→ (min(x),max(x)), and the identity mapping x 7→ x It is also useful to
write them in terms of their defining equations as follows:

xEcy ⇔ x = x,

xEidy ⇔ x = y,

xEminy ⇔ min(x) = min(y),

xEmaxy ⇔ max(x) = max(y),

xE(min,max)y ⇔ min(x) = min(y) and max(x) = max(y).
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From now on, we fix an equivalence relation E on FIN.

Definition 5.29 An E-equation in four variables v0, v1, v2, v3 (and two con-
stants) is a formula ϕ of the form

a ∪ vi0 ∪ vi1 ∪ vi2 ∪ vi3 E b ∪ vj0 ∪ vj1 ∪ vj2 ∪ vj3 ,

where i0, j0, i1, j1, i2, j2, i3, j3 ∈ {0, 1, 2, 3} and where a, b ∈ FIN ∪ {∅} are
two constants.

Note that for two fixed constants a, b ∈ FIN∪{∅}, there exist only finitely
many equations of the form ϕ(a, b, v0, v1, v2, v3).

Definition 5.30 For given a block sequence Z in FIN and an equation ϕ ≡
ϕ(a, b, v0, v1, v2, v3) with constants a and b in FIN ∪ {∅}, we say that

(1) ϕ is true in [Z] if ϕ(a, b, a0, a1, a2, a3) holds for every (a0, a1, a2, a3)
in [Z/(a ∪ b)][4],

(2) ϕ is false in [Z] if ϕ(a, b, a0, a1, a2, a3) fails for every (a0, a1, a2, a3) in
[Z/(a ∪ b)][4], and

(3) ϕ is decided in [Z] if either ϕ is true in [Z] or ϕ is false in [Z].

Lemma 5.31 There is an infinite block sequence Z in FIN such that all
equations ϕ(a, b, v0, v1, v2, v3) with a, b ∈ [Z] ∪ {∅} are decided in [Z].

Proof. This follows from Corollary 5.26 for k = 1 and d = 4 by using the
usual fusion procedure, since at the given stage of the fusion procedure we
have only finitely many pairs of constants and therefore only finitely many
equations to handle. 2

From now on, we fix an infinite block sequence Z = (zn)n satisfying the
conclusion of this lemma and we work inside the subsemigroup [Z] generated
by Z. Thus, we frequently suppress writing “true in [Z]” or “false in [Z]”
and all equalities or inclusions between E and our five canonical equivalence
relations are to be interpreted with all these relations restricted to [Z]. It
turns out that, when restricting to [Z], the truth or falsity of the following
four E-identities characterizes each of the five canonical equivalence relations
Ec, Emin, Emax, E(min,max) and Eid.

v0 E v1,

v0 ∪ v1 E v0,

v0 ∪ v1 E v1,

v0 ∪ v1 ∪ v2 E v0 ∪ v2.

This will leads us naturally toward the proof of Theorem 5.28. We first isolate
a lemma that is quite useful when proving such characterizations.

Lemma 5.32 v0 ∪ v1 6E v0 implies E⊆ Emax.
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Proof. Suppose that for some s, t ∈ [Z], we have s E t and max s 6= max t.
We may assume that max s < max t. Let n be such that t = t′ ∪ zn with
t′ < zn and t′ ∈ [Z]. Since s E t, the equations s E t′∪v0 and s E t′∪v0∪v1
are both true. Hence, the equation t′ ∪ v0 ∪ v1 E t′ ∪ v0 is true. This implies
that v0 ∪ v1 E v0 is true, a contradiction. 2

Lemma 5.33 v0 E v1 implies E = Ec.

Proof. To see this, let s, t ∈ [Z] and pick u ∈ [Z] such that u > s, t. Then
s E u and t E u, and hence, s E t. 2

Lemma 5.34 If v0 6E v1, v0 ∪ v1 E v0 and v0 ∪ v1 6E v1, then E = Emin.

Proof. Fix s, t ∈ [Z]. Suppose first that s Emin t, and write s = zn ∪ s′ and
t = zn ∪ t′, with s′, t′ ∈ [Z] and zn < s′, t′. Using that v0 ∪ v1 E v0 is true
in Z, we obtain that s, t E zn, and hence, s E t. Assume that s E t and
suppose now that s 6E t. Without loss of generality, we may assume that
min(s) < min(t). Let n be such that s = zn ∪ s′, s′ ∈ [Z] and zn < s′. Then
s E zn, zn < t, and hence, zn E t. Since zn < t, we obtain that v0 E v1 is
true in Z, a contradiction. 2

Lemma 5.35 If v0 6E v1, v0 ∪ v1 6E v0, and v0 ∪ v1 E v1, then E = Emax.

Proof. By Lemma 5.32, we already know that E⊆ Emax. To show the con-
verse inclusion, consider s and t such that max(s) = max(t). Then s = s′∪zn

and t = t′ ∪ zn for some integer n and s′, t′ ∈ FIN∪ {∅}. Applying the equa-
tion v0 ∪ v1 E v1, we get that s E zn and t E zn. It follows that s E t, and
this finishes the proof. 2

Lemma 5.36 If v0 6E v1, v0 ∪ v1 6E v0, and v0 ∪ v1 6E v1 but v0 ∪ v1 ∪ v2 E
v0 ∪ v2, then E = E(min,max).

Proof. To prove the inclusion E(min,max) ⊆ E, consider s and t such that
min(s) = min(t) and max(s) = max(t). Then s = zm ∪ s′ ∪ zn and t =
zm ∪ t

′ ∪ zn for some m ≤ n and s′, t′ ∈ FIN ∪ {∅} such that zm < s′ < zn

and zm < t′ < zn. Using the equation v0 ∪ v1 ∪ v2 E v0 ∪ v2, we get that
s E zm ∪ zn and t E zm ∪ zn. It follows that s E t, as required.

Suppose that the other inclusion, E⊆ E(min,max), fails. Then, by our hy-
pothesis v0 ∪ v1 6E v0 and Lemma 5.32, there exist s and t such that s E t
and max s = max t but min s 6= min t. We may assume min s < min t. Write
s = zn0 ∪ s

′ ∪ zn, t = zm0 ∪ t
′ ∪ zn with zn0 < s′ < zn, zm0 < t′ < zn and

n0 < m0 ≤ n. Since the equation v0∪v1∪v2 E v0∪v2 is true, we may assume
that s′ = t′ = ∅. Since n0 < m0 ≤ n, one of the equations v0∪v2 E v1∪v2 or
v0 ∪ v1 E v1 must be true. The second case is impossible by the hypothesis
of the lemma. In the first case, we obtain that v0 ∪ v3 E v1 ∪ v2 ∪ v3 and
v0 ∪ v3 E v2 ∪ v3 are true in Z and hence, so is v0 E v0 ∪ v1, a contradiction.
This finishes the proof 2

Lemma 5.37 If v0 6E v1, v0∪v1 6E v0, v0∪v1 6E v1, and v0∪v1∪v2 6E v0∪v2,
then E = Eid.
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Proof. Suppose that s E t and that s 6= t. Since v0∪v1 E v0 is false in Z, we
obtain that max s = max t (by Lemma 5.32). Write s =

⋃
i∈F zi, t =

⋃
i∈G zi

with maxF = maxG. By our assumption s 6= t, so F and G are two different
finite subsets of N. Let n be the maximum of the symmetric difference of the
two finite sets F and G. Without loss of generality we assume that n ∈ F \G.
This implies that s = s′∪zn∪s′′ and t = t′∪s′′ with s′, t′ < zn < s′′, s′′ 6= ∅
and all in [Z]. Therefore the equation s′∪v0∪v1 E t′∪v1 is true in Z, which
implies that s′ ∪ v0 ∪ v1 ∪ v2 E t′ ∪ v2 and s′ ∪ v0 ∪ v2 E t′ ∪ v2 are both true
in Z. So, the equation v0 ∪ v1 ∪ v2 E v0 ∪ v2 is true in Z, a contradiction. 2

Corollary 5.38 For every positive integer m there is a positive integer n
such that for every equivalence relation E on P({0, 1, . . . , n−1}),1 there is a
block sequence z0 < z1 <, . . . , < zm−1 of nonempty subsets of {0, 1, . . . , n−1}
such that E restricted to the sublattice{

⋃

i∈I

zi : ∅ 6= I ⊆ {0, 1, . . . ,m− 1}

}

of nonempty subsets gennerated by (zi)(i<m) is equal to one of the five canon-
ical equivalence relations Ec, Emin, Emax, E(min,max), or Eid.

If one does not require the sequence (zi)(i<m) to be a block sequence, we
obtain a different result, which is really a finite form of an infinitary Ramsey
classification result belonging to a different category (see Theorem 5.82).

Theorem 5.39 (Prömel-Voigt) For every positive integer m there is a pos-
itive integer n such that for every equivalence relation E on the power set
P({0, 1, . . . , n − 1}) there is sequence z0, z1, . . . , zm−1 of nonempty subsets
of {0, 1, . . . , n} such that the restriction of E to the sublattice

{
⋃

i∈I

zi : ∅ 6= I ⊆ {0, 1, . . . ,m− 1}

}

of nonempty sets generated by (zi)i<m is equal to one of the three canonical
equivalence relations Ec, Emin, or Eid.

Remark 5.40 Similar ideas can be used to extend Theorem 5.28 and obtain
the corresponding classification result for an arbitrary FINk. This is indeed
possible although the complexity of the corresponding classification problem
increases rapidly with k. For example, the number of canonical equivalence
relations on FIN2 is equal to 43, that on FIN3 is equal to 619, that on FIN4 is
equal to 13829, etc. The following formula involving the incomplete gamma
function is one of the formulas for the number of canonical equivalence rela-
tions on the general FINk,

e2[k[Γ(k, 1)− Γ(k + 1, 1)]2 + Γ(k + 1, 1)2].

1The collection of all subsets of {0, 1, . . . , n − 1}.
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5.3 TOPOLOGICAL RAMSEY SPACES OF INFINITE

SEQUENCES OF VARIABLE WORDS

As in the previous section, L =
⋃∞

n=0 Ln is a fixed alphabet written as an
increasing union of finite alphabets Ln and v 6∈ L is a symbol that we call
variable. By WLv we denote the semigroup of variable words over L, i.e.,

finite nonempty strings of elements of L∪{v} in which v occurs. W
[∞]
Lv is the

set of all infinite rapidly increasing sequences X = (xn) of variable-words,

i.e., sequences such that |x| >
∑

i<n |xn| for all n. For X = (xn) ∈W
[∞]
Lv , let

[X ]Lv = {xn0 [λ0]a . . .axnk
[λk] ∈WLv : k ∈ N, n0 < . . . < nk,

λi ∈ Lni
∪ {v}(i ≤ k)}

denote the combinatorial subspace of WLv generated by X . From the fact
that X is rapidly increasing, we conclude that for every x ∈ [X ]L the set
{n0 < . . . < nk} such that

x = xn0 [λ0]a . . .axnk
[λk] (5.6)

for some choice of λ ∈ Lni
∪ {v}(i ≤ k) is unique, and so we let suppX(x)

denote {n0, . . . , nk}. This helps us to define an ordering≤ on W
[∞]
Lv by letting

X = (xn) ≤ Y = (yn) iff xn ∈ [Y ]Lv for all n, and

suppY (xn) < suppY (xn) whenever n < m. (5.7)

Thus X ≤ Y iff X is a block subsequence of Y . The ordering ≤ has a nat-

ural finitization on the set W
[<∞]
Lv of finite rapidly increasing sequences:

(xm)k−1
0 ≤fin (yn)ℓ−1

0 iff (xn)ℓ−1
0 is a block subsequence of (yn)ℓ−1

0 but not a

block subsequence of any (yn)ℓ′−1
0 for ℓ′ < ℓ (of course, we let ∅ ≤fin ∅). In

proving the Abstract Infinite-Dimensional Ramsey Theorem in Sections 4.2

and 4.3, we verified that (W
[∞]
Lv ,≤, r) satisfies A.1 to A.4, and since W

[∞]
Lv is

a closed subset of (W
[<∞]
Lv )N, we have the following consequence.

Theorem 5.41 (Carlson) (W
[∞]
Lv ,≤, r) is a topological Ramsey space.

Corollary 5.42 For every Souslin-measurable coloring of the space W∞
Lv

of all infinite sequences of variable-words over the alphabet L =
⋃∞

n=0 Ln,
there is an infinite rapidly increasing sequence X = (xn) of variable-words

over L such that the set [X ]
[∞]
Lv of all infinite block subsequences of X is

monochromatic.

Corollary 5.43 For every positive integer d and every finite coloring of the
set W d

Lv of all d-tuples of variable-words over the alphabet L =
⋃∞

n=0 Ln,
there is an infinite rapidly increasing sequence X = (xn) of variable-words

over L such that the set [X ]
[d]
Lv of all block d-subsequences of X is monochro-

matic.
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To give a particular application of this corollary, we concentrate on the case
of a finite alphabet L and, as in the previous sections, we let WL denote the
semigroup of all words over L, i.e., the family of all finite strings of symbols
from L. For a positive integer d, a d-dimensional combinatorial subspace of
WL is a subset of WL of the form

S[x0, ..., xd−1] = {x0[a0]a . . .axd−1[ad−1] : ai ∈ L for i < d}, (5.8)

where (x0, ..., xd−1) is a sequence of a variable-words over L. An infinite-
dimensional combinatorial subspace of WL has in fact already been defined
above (although not named like this), it is the partial subsemigroup [X ]L of
WL generated by some infinite sequence of X = (xn) of variable-words in
the following way:

[X ]L = {xn0 [a0]a . . .axnk
[ak] : k ∈ N, n0 < . . . < nk, ai ∈ L(i ≤ k)}.

Theorem 5.44 For a finite alphabet |L| ≥ 2, for every positive integer d,
and every finite coloring of the family of all d-dimensional combinatorial
subspaces of WL, there exists an infinite-dimensional combinatorial subspace
S of WL such that the family of all d-dimensional combinatorial subspaces
of WL that are included in S is monochromatic.

Proof. Color the set W d
Lv of all d-tuples (x0, ..., xd−1) of variable-words by

the color of the corresponding combinatorial subspace S[x0, ..., xd−1]. By
Corollary 5.43, there is an infinite rapidly increasing sequence X = (xn)

of variable-words such that the family [X ]
[d]
L of all block d-subsequences

of X is monochromatic. We claim that S = [X ]L satisfies the conclusion
of the theorem. So suppose S[y0, ..., yd−1] is a d-dimensional combinatorial
subspace of WL such that S[y0, ..., yd−1] ⊂ [X ]L. Note that elements of
S[y0, . . . , yd−1] all have the same length ℓ. Since X is rapidly increasing any
element w of [X ]L has a support relative to X , suppX(w), the unique finite
set n0 < . . . < nk such that

w = xn0 [λ0]a . . .axnk
[λk]

for some choice λi ∈ L(i ≤ k). For the same reason, if for two w0, w1 ∈ [X ]L
we have that

suppX(w0) 6= suppX(w1),

then w0 and w1 have different lengths. From all this it follows that there is
a fixed finite set n0 < . . . < nk such that for all w ∈ S[y0, ..., yd−1],

suppX(w) = {n0, . . . , nk}.

It follows that, in particular

S[y0, ..., yd−1] ⊂ S[xn0 , . . . , xnk
] ⊂ [X ]L.

Choose a sequence (vi) of new variables and consider the following two
multivariable-words over L:

y = y0[v0]a . . .ayd−1[vd−1], x = xn0 [v0]a . . .axnk
[vk].
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Then every instance y[λ0, . . . , λd−1](λi ∈ L, i < d) of y is also an instance
x[µ0, . . . , µk](µi ∈ Lni

, i ≤ k). Moreover, x and y have the same length ℓ.
Note that if λ is a letter from L that occupies some position j < ℓ in x,
then at the jth place in y we must find a nonvariable (i.e., a letter from L),
and therefore the jth position in y must be occupied by the letter λ itself.
It follows that if at some position j < ℓ we find a variable in y, then the
jth place in x must also be occupied by some variable. Moreover, no two
positions can be occupied by the same variable in x and different variables
in y. So y is obtained from x by substituting its variables by either letters
from L or variables from {v0, . . . , vd−1}. For i < d set

Ji = {j ≤ k : vj is replaced by vi when forming y from x}.

It follows that if i < i′ < d then Ji < Ji′ . So we can choose a pairwise
disjoint sequence J̄i ⊇ Ji, (i < d), of intervals of integers such that

{0, ..., k} =
⋃

i<d

J̄i.

For i < k, let J̄i = {p, p+ 1, ..., p+ q} and let

xnp
[vp]a . . .axnp+q

[vp+q]

be the segment of x that gets transferred to a segment ti(vi) of y when
vp, ..., vp+q are replaced either by letters from L or by vi (with at least one
replacement by vi). Then 〈t0[v], ..., td−1[v]〉 is a block subsequence of X such
that

y0[v0]a . . .ayd−1[vd−1] = t0[v0]a . . .atd−1[vd−1],

and therefore S[y0, ..., yd−1] = S[t0, ..., td−1]. This shows that the subspace
S[y0, ..., yd−1] is of the color equal to the color of the block d-subsequence

〈t0, ..., td−1〉 of X . Since X = (xn) is chosen to have [X ]
[d]
L monochromatic,

this finishes the proof. 2

We finish this section with an application that in some sense corresponds to
the application given in Theorem 4.43 of the Hales-Jewett space developed
above in the Chapter Four. Recall that FIN is the collection of all finite
nonempty subsets of N and that FIN[∞] is the collection of all infinite block
sequences of members of FIN i.e., sequences X = (xn) such that xm < xn

whenever m < n. For X = (xn) ∈ FIN[∞], the set

[X ] = {xn0 ∪ . . . ∪ xnk
: k ∈ N, n0 < . . . < nk}

is the sublattice of FIN generated by X . For two sequences X = (xn) and

Y = (yn) from FIN[∞], we say that X is a block subsequence of Y and write
X ≤ Y if

xn ∈ [Y ] for all n.

Let [Y ][∞] denote the collection of all infinite block subsequence of Y .
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Theorem 5.45 (Parametrized Milliken Theorem) For every finite Souslin-

measurable coloring of the product FIN[∞] × R∞ there is a B ∈ FIN[∞]

and an infinite sequence (Pi) of nonempty perfect subsets of R such that
[B][∞] ×

∏∞
i=0 Pi is monochromatic.

Proof. Let L =
⋃∞

n=0 Ln, where

Ln = {σ ∈ 2∞ : ∀i > n σ(i) = 0}. (5.9)

Define ϕ : W
[∞]
Lv → FIN[∞] by letting ϕ((xk)) = (ak), where

ak = {|x0|+ . . .+ |xk−1|+ l : v occupies the lth place in xk}. (5.10)

Define ψ : W
[∞]
Lv → 2N×N, by

ψ((xk))(n, i) = σ(i), (5.11)

where σ occupies the nth place in the infinite word

x0
ax1

a . . .axk
a . . . ,

and where we put ψ((xk))(n, i) = 0 if at the nth place of this infinite word
we find the variable v.

Let c : FIN[∞] × (2N)N → F be a given Souslin-measurable coloring with

range a finite subset F of N. Define c∗ : W
[∞]
Lv → F by

c∗((xn)) = c(ϕ((xn)), ψ((xn))), (5.12)

where we identify (2N)N with 2N×N via the mapping

((εn,i)n)i → (εn,i)(n,i).

By Corollary 5.42, there is a Y = (yk) ∈W
[∞]
Lv such that c∗ is monochromatic

on the set [Y ]
[∞]
Lv = {X ∈ W

[∞]
Lv : X ≤ Y }.

Let B = (bk) ∈ FIN[∞] be defined as follows:

bk = {|y0|+ . . .+ |y2k|+ ℓ : the ℓth place in y2k+1 is occupied by v}.

Let P be subset of (2N)N consisting of all doubly indexed sequences (εni) for
which we can find (σ2k) ∈

∏∞
k=0 L2k that determines (εni) in the following

way: εni = σ(i) if and only if the nth place of the infinite word

y(σ2k) = y0[σ0]ay1
a . . .ay2k[σ2k]ay2k+1

a . . .

is occupied by the letter σ; εni = 0 if the nth place is occupied by the variable
v. Equivalently, a doubly indexed sequence (εni) belongs to P if we can find
(σ2k) ∈

∏∞
k=0 L2k such that

(εni) = ψ((y2k[σ2k]ay2k+1)).

Going back though the definition of ψ we see that the ψ-image of [Y ]
[∞]
Lv

contains P .

Claim 5.45.1 There is an infinite sequence (Pi) of perfect subsets of the
Cantor space 2N such that

∏∞
i=0 Pi ⊆ P .
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Proof. Let Pi be the collection of all δ ∈ 2N that satisfies the following
conditions, where y denotes the infinite variable-word y0

a . . .ayn
a . . ..

(1) If at some place n we find a letter σ ∈ L in y, then δ(n) = σ(i).

(2) If n < |y0|+ . . .+ |y2i−1| and at nth place in y we find a variable, then
δ(n) = 0.

(3) If n2k−1 = |y0|+ . . .+ |y2k−1| ≤ n < |x0|+ . . .+ |y2k−1|+ |y2k| = n2k for
some k ≥ i and we find a variable at nth place in x, then δ(n) = δ(n′),
where n′ ∈ [n2k−1, n2k) is the minimal place where y has variable.

Thus, Pi has no restrictions at the minimal place of some interval of the form
I2k−1 = [n2k−1, n2k) for k ≥ i where a variable occurs. From this one easily
concludes that Pi is indeed perfect. Consider a sequence (δi) ∈

∏∞
i=0 Pi.. Let

(εni)n,i be the doubly-indexed sequence such that εni = δi(n). For each k
choose σ2k ∈ L2k such that σ2k(i) = δi(n), where n is the minimal integer of
the interval I2k−1 where a variable occurs in y. Consider the corresponding
infinite word y(σ2k) = y0[σ0]ay1

a . . .ay2k[σ2k]ay2k+1
a . . .. Then εni = σ(i)

if and only if the nth place of the infinite word y(σ2k) is occupied by the
letter σ; εni = 0 if the nth place is occupied by the variable v. Referring to
the definition of P, we see that (δi) ∈ P. This shows that

∏∞
i=0 Pi ⊆ P . 2

Claim 5.45.2 [B][∞] × P ⊆ (ϕ× ψ)[[Y ]
[∞]
Lv ].

Proof. Consider (A, (εni)) ∈ [B]∞ × P and fix (σ2k) ∈
∏

k L2k such that

(εni) = ψ((y2k[σ2k]ay2k+1). (5.13)

Since A = (aℓ) is a block subsequence of B there is block sequence (Fℓ) of
finite subsets of N such that

aℓ =
⋃

k∈Fℓ

bk

for all l. Note that if for every k, we let xk = y2k[σk]ay2k+1, then we get
an infinite sequence X = (xk) of variable-words such that ϕ(X) = B. For a
given ℓ, let {p, p+ 1, ..., p+ q} enumerate the interval (max(Fℓ−1),max(Fℓ)],
where max(Fℓ−1) = −1 if ℓ = 0, and let

zℓ = xp[λp]a . . .axp+1[λp+q], (5.14)

where λp+i(0 ≤ i ≤ q) is either equal to v or to the constantly 0 member
of 2∞ depending whether p + i ∈ Fℓ or not. Clearly, Z = (zℓ) is a block
subsequence of X = (xk), and therefore, a block subsequence of Y = (yk).
The choice of Z = (zℓ) is of course made to ensure that ϕ(Z) = A, so it
remains only to check that the we did not lose (εni), i.e., that we still have
the equality ψ((zℓ)) = (εni). This equality depends on which letter we find
in some place n of the infinite word z = z0

a . . .azk
a . . .. Tracing back the

definitions, we get that

z = y0[σ0]ay[λ1]a . . .ay2k[σ2k]ay2k+1[λ2k+1]a . . . ,
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where (σ2k) ∈
∏

k L2k was the sequence that gave us (εni) from Y = (yk)
and where the λ2k+1 are either equal to v or to the constantly equal to 0
member of L. Thus the only difference between the infinite word y(σ2k) and
z is that at some places where y(σ2k) has a variable z, has the constantly
equal to 0 member of L. Referring to the reading of ψ((zℓ)), we realize that
it gives us the original double-indexed sequence (εni). This finishes the proof
of Claim 5.45.2. 2

It is clear that the two claims finish the proof of Theorem 5.45. 2

Recall now the definitions given at the beginning of Section 4.5. We start
with an alphabet L =

⋃∞
n=0 Ln written as an increasing union of finite

alphabets Ln and a variable v 6∈ L. A located variable-word is a finitely
supported map from N into L∪ {v} with the value v achieved at least once.
Let FINLv denote the partial semigroup of located variable-words with the
partial semigroup operation of taking the union of two disjointly supported
located variable-words. For x ∈ FINLv and λ ∈ L ∪ {v}, let x[λ] be the
located word or located variable-word obtained from x by replacing every
occurrence of v by λ. A block sequence is a finite or infinite sequenceX = (xn)
of members of FINLv such that

dom(xm) < dom(xn) whenever m < n.

Let FIN
[∞]
Lv denote the collection of all infinite block sequences of elements

of FINLv. For X = (xn) ∈ FIN
[∞]
Lv , we consider the following the partial

subsemigroup of FINLv generated by X :

[X ]Lv = {xn0 [λ0] ∪ . . . ∪ xnk
[λk] ∈ FINLv : k ∈ N, n0 < . . . < nk,

λ ∈ Lni
∪ {v}(i ≤ k)}.

For X = (xn) and Y = (yn) from FIN
[∞]
Lv , we say that X is a block sub-

sequence of Y and write X ≤ Y if xn ∈ [Y ]Lv for all n. We extend these

relations to the families FIN
[<∞]
Lv of finite block sequences of located words

and variable-words. This will give us the finitizations ≤fin of ≤ satisfying ax-

ioms A.2 and A.3. That (FIN
[∞]
Lv ,≤, r) also satisfies axiom A.4 follows from

Theorem 4.47 above, so we have the following result.

Theorem 5.46 (FIN
[∞]
Lv ,≤, r) is a topological Ramsey space.

Corollary 5.47 (Milliken) (FIN
[∞]
∅v ,≤, r) is a topological Ramsey space.

Proof. This is the case L = ∅ of the previous theorem, for which A.4 reduces
to Hindman’s theorem. 2

The projection mapping π of Theorem 4.50 also establishes the following
result, showing that Theorem 5.41 is a consequence of Theorem 5.46.

Theorem 5.48 There is a natural projection from the topological Ramsey

space (FIN
[∞]
Lv ,≤, r) onto the topological Ramsey space (W

[∞]
Lv ,≤, r) transfer-

ing the Ramsey theoretic properties of FIN
[∞]
Lv to W

[∞]
Lv .
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5.4 PARAMETRIZED VERSIONS OF

ROSENTHAL DICHOTOMIES

The purpose of this section is to point out the potential for applications of
the Ramsey spaces constructed so far. We do this by listing some of the
typical applications of Milliken’s space (FIN[∞],≤ r), the simplest space in
the category of Ramsey spaces on infinite sequences of words.

First of all, note that Milliken’s space naturally connects to the Ellentuck
space N[∞] via the following two mappings.

min : FIN[∞] → N[∞] and uni : FIN[∞] → N[∞],

defined as follows:

min((xn)) = (min(xn)) and uni((xn)) =

∞⋃

n=0

xn.

Note that min is an open 1-Lipschitz projection from Milliken’s space onto
the Ellentuck space and that uni is continuous with respect to the metric
as well as to the Ellentuck topologies on these two spaces. The proof of the
following result points out the strength of Milliken’s space over Ellentuck’s
and we note that its conclusion has already been obtained when the number
of colors is finite (see Theorem 5.45 above).

Theorem 5.49 (Parametrized Perfect Set Theorem) For every Souslin
measurable coloring of the product N[∞] × R with finitely many colors, or
countably many colors, provided they are invariant under finite changes on
the first coordinate, there exist M ∈ N[∞] and perfect P ⊆ R such that
M [∞] × P is monochromatic.

Proof. Since we are interested in getting a perfect set on the second co-
ordinate, we may replace R with the set N[∞] equipped with its natu-
ral metric topology, which is as we know homeomorphic to R \Q. So let
c : N[∞] × N[∞] → N be a given Souslin-measurable coloring. Assume first
that c has finite range in N. Define c∗ : FIN[∞] → N by

c∗(X) = c(min((Xodd)),uni((Xeven))). (5.15)

Clearly, c∗ is also Souslin-measurable. By Milliken’s theorem, there is a Y =
(yn) ∈ FIN[∞] such that c∗ is constant on the set [Y ][∞] of all infinite block
subsequences of Y . Let

M = {min(y3n+2) : n ∈ N}, (5.16)

P =

{
∞⋃

n=0

y3n+ε(n) : ε ∈ 2N

}
. (5.17)

Clearly, M ∈ N[∞] and P is a perfect subset of N[∞]. To show that c is
constant on M [∞] × P, it suffices to prove that

M [∞] × P ⊆ {(min((Xodd)),uni((Xeven)) : X ≤ Y }. (5.18)
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Consider an N ∈M [∞] and t =
⋃∞

n=0 Y3n+ε(n) ∈ P . Let (ni) be the strictly
increasing sequence such that N = {min(y3ni+2) : i ∈ N} and define an
element X = (xn) of FIN[∞] as follows:

x2i =

ni⋃

n=ni−1+1

Y3n+ε(n), (5.19)

x2i+1 = y3ni+2. (5.20)

(Here, n1 = −1.) Then X is a block sequence of Y and

〈N, t〉 = 〈min((Xodd)),uni((Xeven))〉 , (5.21)

as required. If c has infinite range, the construction would give us a perfect
set P ⊆ N[∞] and an Ellentuck basic open set [a,M ] such that c is constant
on the product [a,M ] × P . Since we are now assuming that c is invariant
under finite changes on the first coordinate, we conclude that c is actually
constant on M [∞] × P . This finishes the proof. 2

The following is a typical application of the Parameterized Perfect Set The-
orem to the geometry of Banach spaces.

Theorem 5.50 (Parametrized Rosenthal ℓ1-Theorem)2 Suppose that {xs :
s ∈ 2<∞} is a bounded sequence of elements of a separable Banach space X
indexed by the complete binary tree 2<∞. Then there is a perfect set P ⊆ 2N

and an infinite increasing sequence {nk} of positive integers such that either

(1) {xa↾nk
} is a weakly Cauchy3 sequence in X for all a ∈ P , or

(2) there is δ > 0 such that

∥∥∥∥∥

m∑

0

λkxa↾nk

∥∥∥∥∥ ≥ δ
m∑

0

|λk| (5.22)

for every a ∈ P and every finite sequence λ0, .., λm of scalars.

Proof. Define c : N[∞] × 2∞ → N ∪ {∞} as follows:

(a) c(M,a) =∞ if {xa↾k}k∈M is weakly Cauchy.

(b) c(M,a) = n > 0 if ‖
∑m

0 λkxa↾nk
‖ ≥ (1/n)

∑m
0 |λk| for every finite

sequence λ0, . . . , λm of scalars and n0 < . . . < nm in M .

(c) c(M,a) = 0 if neither (a) nor (b) is true.

2The “ℓ1” here refers to the fact that the second alternative of this theorem means that
for each a ∈ P, the mapping ek 7→ xa↾nk

extends to an isomorphic embedding Ta : ℓ1 → X
of norm ≤ δ−1. Here, of course, ℓ1 is the Banach space of absolutely converging series and
(ek) is its canonical basis.

3Here “weakly Cauchy” refers to the fact that (f(xa↾nk
))k is a Cauchy sequence of

scalars for every bounded linear functional f on X.
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Since the sets of all pairs (M,a) satisfying (a) or (b) are coanalytic subsets
of N[∞] × 2∞, this defines a Souslin-measurable coloring of N[∞] × 2∞. By
the Parameterized Perfect Set Theorem, there exist M ∈ N[∞] and a perfect
set P ⊆ 2∞ such that c is constant on the product M [∞] × P. Clearly, we
are done if the constant value is > 0, so let us show that the constant value
cannot be 0. For this, it suffices to show that for a fixed a ∈ P, there is an
N ∈ M [∞] such that the pair (a,N) falls into case (a) or case (b) above.
Fixing a, let S∗ be the unit sphere of the dual space X∗ of X and let {nk}
be the increasing enumeration of M. We define

{fk : S∗ → R} (5.23)

as follows: fk(x∗) = x∗(xa↾nk
). So, it suffices to show the following fact which

is clearly just a reformulation of Rosenthal’s original ℓ1-theorem. 2

Theorem 5.51 (Rosenthal’s ℓ1-theorem) Suppose (fn : S → R)∞n=0 is a
bounded sequence of functions defined on some set S. Then either there is a
subsequence (fnk

) such that

(1) (fnk
) is pointwise convergent on S, or

(2) there is a δ > 0 such that
∥∥∥∥∥

m∑

0

λk fnk

∥∥∥∥∥
∞

≥ δ
m∑

0

|λk| (5.24)

for every finite sequence λ0, .., λm of scalars.

The proof will be given in a sequence of lemmas, but first we need a
definition that introduces a combinatorial version of the second alternative
of Theorem 5.51.

Definition 5.52 We say that an infinite sequence (〈Xn, Yn〉) of pairs of
subsets of some set S is independent if

(i) Xn ∩ Yn = ∅ for all n, and

(ii) (
⋂

n∈K Xn)∩(
⋂

n∈L Yn) 6= ∅ for every choice of disjoint finite nonempty
sets K and L of integers.

The relevance of this notion to our situation here stems from the following
simple observation.

Lemma 5.53 Suppose (gn : S → R)∞n=0 is a bounded sequence of functions
defined on some set S such that for some rationals p < q, the sequence4

(S(gn < p), S(gn > q))∞n=0

4In what follows, for f : S → R and p ∈ R, we let S(f < p) = {x ∈ S : f(x) < p} (and
similarly, for any of the other relations >, ≤, and ≥ in place of <.
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of pairs of disjoint subsets of S is independent. Then for δ = (q − p)/2, we
have that

∥∥∥∥∥

m∑

1

λn gn

∥∥∥∥∥
∞

≥ δ
m∑

1

|λn| . (5.25)

for every choice λ0, .., λn of scalars.

Proof. Let K = {n ≤ m : λn ≥ 0} and L = {n ≤ m : λn < 0}. By
independence, we can choose

x ∈ (
⋂

n∈K S(gn < p)) ∩ (
⋂

n∈L S(gn > q)),

y ∈ (
⋂

n∈L S(gn < p)) ∩ (
⋂

n∈K S(gn > q)).

Then
m∑

1

λn gn(x) ≤ p
∑

n∈K

|λn| − q
∑

n∈L

|λn| (5.26)

m∑

1

λngn(y) ≥ −p
∑

n∈L

|λn|+ q
∑

n∈K

|λn| . (5.27)

Subtracting Equation (5.26) from Equation (5.27), we get

m∑

1

λngn(y)−
m∑

1

λngn(x) ≥ (q − p)
m∑

1

|λn| . (5.28)

Since the left-hand side of Equation (5.28) is bounded by 2 ‖
∑m

1 λngn‖, we
have verified the estimate in Equation (5.25) above. 2

The proof of Theorem 5.51 is complete once we show the following.

Lemma 5.54 A pointwise bounded sequence (fn) of real-valued functions
defined on some set S either contains an infinite pointwise convergent sub-
sequence, or an infinite subsequence (fnk

) such that for some rationals p < q
the sequence of pairs (S(fnk

< p), S(fnk
> q)) is independent.

A simple diagonal sequence procedure taking into account all possible pairs
p < q of rational numbers reduces Lemma 5.54 to the following purely com-
binatorial fact.

Lemma 5.55 Suppose (〈Xn, Yn〉) is a given infinite sequence of pairs of dis-
joint subsets of some set S. Then there is an infinite subsequence (〈Xnk

, Ynk
〉)

such that either

(i) (〈Xnk
, Ynk
〉) is an independent sequence of pairs of subsets of S, or

(ii) there is no point of S that belongs to infinitely many Xnk
as well as to

infinitely many Ynk
.
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Proof. Color an N = (nk) ∈ N[∞] by Red iff
(

ℓ⋂

k=0

Xn2k

)
∩

(
ℓ⋂

k=0

Yn2k+1

)
6= ∅ (5.29)

for all ℓ ∈ N; otherwise, color M by Green. Clearly, this is a Borel coloring.
By the Galvin-Prikry theorem, there is a M ∈ N[∞] such that M [∞] ⊆
Red or M [∞] ⊆ Green. Note that in the second case, M [∞] ⊆ Green, the
corresponding subsequence (〈Xmk

, Ymk
〉), where M = (mk) is the increasing

enumeration of M , satisfies the second alternative of the lemma. So suppose
M [∞] ⊆ Red. Let N = (m2k+1) be the subset of M formed by taking the odd
indexed members of M . We claim that (〈Xm, Ym〉)m∈N is an independent
sequence of pairs of disjoint subsets of S. To see this, consider two disjoint
finite sets K,L ⊆ N . Since K and L are subsets of the subset of M consisting
of its odd indexed elements, we can extend K and L by two disjoint finite
supersets K̄ ⊇ K and L̄ ⊇ L such that K̄ ∪ L̄ forms an initial segment
of some infinite subset C of M such that K ⊆ Ceven and L ⊆ Codd. Since
C ∈M [∞] ⊆ Red, we have that

(
⋂

m∈K

Xm

)
∩

(
⋂

m∈L

Ym

)
⊇



⋂

m∈K̄

Xm


 ∩



⋂

m∈L̄

Ym


 6= ∅. (5.30)

This finishes the proof. 2

A closely related result to Rosenthal’s ℓ1-theorem is his dichotomy about
pointwise convergence of sequences of continuous real-valued functions de-
fined on some Polish space P, which could be stated as follows.

Theorem 5.56 (Rosenthal Dichotomy Theorem) Suppose (fn) is a point-
wise bounded sequence of continuous functions on some Polish space P . Then
(fn) contains either a pointwise convergent subsequence or a subsequence
(fnk

) such that U 7→ lim
k→U

fnk
is a homeomorphical embedding of βN into the

topological closure of (fnk
) inside the product space RP .

Proof. By Lemmas 5.54 and 5.55, and using a subsequence of (fn), we may
assume that there is a pair ε < δ of reals such that for every infinite M ⊆ N
there exists x ∈ P such that the sets

M(x < ε) = {n ∈M : fn(x) < ε} and M(x > δ) = {n ∈M : fn(x) > δ}

are both infinite. For a given infinite subset M of N, let P (M) be the topo-
logical closure of the set of all x ∈ P for which both sets M(x < ε) and
M(x > δ) are infinite. Note that P (M) is a nonempty closed subset of P
with no isolated points and that P (M) ⊆ P (M ′) whenever M\M ′ is finite.
So, going to a subsequence, we may assume that P (M) = P (N) for all infi-
nite M ⊆ N. As noted above, the set P (N) has no relatively isolated points,
so we can pick two countable disjoint subsets D and E that are dense in
P (N) in such a way that the family of sets

N(x < ε) ∩ N(y > δ) (x ∈ D, y ∈ E) (5.31)
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has the finite intersection property. Pick a perfect set Q ⊆ P (N) such that
Q ∩D and Q ∩ E are dense in Q and pick infinite M ⊆ N, which is almost
included in every member of the family

N(x,< ε) ∩ N(y,> δ) (x ∈ E, y ∈ D). (5.32)

Then no subsequence of (fn)n∈M is convergent on Q, since any pointwise
cluster point g of (fn)n∈M is pointwise bounded by ε on Q∩D and pointwise
dominates δ on Q∩E. So in particular, it cannot be a Baire Class 1 function
by the Baire characterization theorem of such functions (see [54]). Applying
Lemma 5.54 to S = Q and (fn)n∈M , we get a subsequence (fnk

) of (fn)n∈M

and ε̄ < δ̄ such that the sequence of pairs

Q0
k = Q(fnk

≤ ε̄) and Q1
k = Q(fnk

≥ δ̄) (5.33)

is independent. Since Q is compact, for each σ ∈ 2N, we can pick a point

qσ ∈
∞⋂

k=0

Q
σ(k)
k . (5.34)

For an ultrafilter U on N, let gU = lim
k→U

fnk
. Then U 7→ gU is a continuous

map from βN into the pointwise closure of (fnk
) in RP . We claim that this

mapping is 1-1. To see this pick, U 6= V in βN and find σ ∈ 2N such that

{k : σ(k) = 0} ∈ U and {k : σ(k) = 1} ∈ V . (5.35)

Then gU (qσ) ≤ ε̄, while gV(qσ) ≥ δ, so in particular gU 6= gV . This completes
the proof. 2

Corollary 5.57 (Sequential Compactness Theorem) Every pointwise com-
pact set K of Baire Class 1 functions defined on some Polish space5 X is
sequentially compact.

Proof. Consider a sequence (fn) of elements of K. Increasing the topology
of X by adding to it countably many Borel sets and still keeping it Pol-
ish, we may assume that all fn are actually continuous functions. Applying
Rosenthal’s Dichotomy Theorem to this sequence, we must get the first al-
ternative since the second one is impossible for βN cannot be embedded into
K because K has cardinality not bigger than the continuum. 2

Corollary 5.58 (Parametrized Sequential Compactness Theorem) Let
fs (s ∈ 2<N) be a relatively compact subset of Borel functions defined on
some Polish space X. Then there are a perfect set P ⊆ 2N and a strictly
increasing sequence (nk) of integers such that for every a ∈ P, the corre-
sponding sequence (fa↾nk

) is pointwise convergent on X.

Proof. As before, we may assume that fs (s ∈ 2<N) is a sequence of contin-
uous functions on X. Let

C = {(a,M) ∈ 2N × N[∞] : (fa↾m)m∈M is pointwise convergent on X}.

5Recall that a Polish space is any nonempty separable completely metrizable topolog-
ical space.
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Clearly, C is a Souslin-measurable subset of the product 2N×N[∞]. Applying
the Parameterized Perfect Set Theorem, we get a perfect set P ⊆ 2N and
infinite M ⊆ N such that P ×M [∞] ⊆ C, or else P ×M [∞] ∩ C = ∅. Note
that by Corollary 5.57, the second alternative is not possible, so we are left
with the first. This gives us the conclusion of the corollary. 2

Remark 5.59 Note that if, for a ∈ P , we let fa = limkfnk
, and if we define

Φ : P ×X → R by Φ(a, x) = fa(x), then we get a Borel-measurable map.
This is a phenomenon that appears in similar constructions below and at
some point we will even be in a position to exploit it.

5.5 RAMSEY THEORY OF SUPERPERFECT SUBSETS OF

POLISH SPACES

Recall that the space of irrationals R\Q (or its homeomorphic version, the
Baire space NN) is an example of a Polish space X that is not σ-compact,
and in fact, that is nowhere σ-compact in the sense that the interior of every
σ-compact subset of X is empty. The following classical result (see Theorem
9.51) goes a bit deeper in explaining the property of σ-compactness in the
realm of Polish spaces.

Theorem 5.60 (Hurewicz) A Polish space X is σ-compact if and only if it
does not contain a closed subset homeomorphic to the irrationals, or equiv-
alently, the Baire space NN.

Since the purpose of this section is to give some applications of the Milliken
space FIN[∞] to the Ramsey theory in the context of Polish space, we need
to disclose the notions of largeness relevant to this theory.

Definition 5.61 We shall say that a subset P of some Polish space X is
perfect if it is nonempty and closed and it has no isolated points. A subset
P of X will be said to be superperfect if it is nonempty, closed, without
isolated points, and not σ-compact.

Remark 5.62 Clearly, every perfect subset P of some Polish space X con-
tains a homeomorphic copy of the Cantor space 2N, which itself is a perfect
Polish space. So if perfectness is the notions of largeness in our Ramsey the-
ory where we, in order to simplify a given coloring, need to go to large subsets
of large sets, we shall sometimes think of perfect as simply a topological copy
of the Cantor set. Similarly, by Hurewicz’s theorem a superperfect subset P
of a Polish space X always contains a closed copy of the irrationals, so we
think of superperfect as simply a closed copy of the irrationals.

We are now ready to state and prove our first result in this new Ramsey
theory on Polish spaces.
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Theorem 5.63 (Superperfect Set Theorem) Suppose that the infinite power
XN of a non- σ-compact Polish space X is colored by countably many Souslin-
measurable colors. Then there is a sequence (Pi) of perfect subsets of X
such that P0 and P1 are superperfect and such that the product

∏∞
i=0 Pi is

monochromatic.

Proof. By Hurewicz’s theorem (Theorem 5.60 above), every non-σ-compact
Polish space contains a closed copy of the Baire space NN. Therefore we may
assume that X = N[∞] with its usual metric topology and that we are given
a Souslin-measurable coloring

c : N[∞] × N[∞] × (2N)N → N (5.36)

and concentrate on producing two superperfect subsets S0 and S1 of N[∞]

and a sequence (Pi) of perfect subsets of 2N such that c is monochromatic
on S0 × S1 ×

∏∞
i=0 Pi. Let

c∗ : FIN[∞] × (2N)N → N (5.37)

be defined now as follows

c∗(A, x) = c

(
∞⋃

k=0

a2k,
∞⋃

k=0

a2k+1, x

)
. (5.38)

By the proof of Theorem 5.45, we can find a basic open set [2ℓ, B] of the
Milliken space and a sequence (Pi) of perfect sets such that the product
[2ℓ, B] ×

∏∞
i=0 Pi is monochromatic for c∗. Let B0 be obtained from B by

removing its (2ℓ + 1)st element b2ℓ+1, and let B1 be obtained from B by
removing its (2ℓ)th element b2ℓ. Let

S0 = {
⋃∞

k=0 a2k : A = (an) ∈ [2ℓ+ 1, B0]},

S1 = {
⋃∞

k=0 a2k+1 : A = (an) ∈ [2ℓ+ 1.B1]}
(5.39)

So suppose we are given a pair C = (cn) ∈ [2ℓ + 1, B0] and D = (dn) ∈
[2ℓ + 1, B1] representing a pair (s, t) from the product S0 × S1. Thus C
agrees with B up to 2ℓ and its (2ℓ)th element is equal to b2ℓ, and D agrees
with B up to 2ℓ and its (2ℓ)th element is equal to b2ℓ+1.
Consider now the following two disjoint subsets of N:

s̄ =
⋃

n≥2ℓ

cn and t̄ =
⋃

n≥2ℓ

dn. (5.40)

Define the equivalence relation ∼ on s̄ ∪ t̄ by letting n ∼ m iff the closed
interval of the set s̄∪ t̄ determined by n and m (i.e., the set [n,m]∩ (s̄∪ t̄) or
the set [m,n]∩ (s̄∪ t̄) depending on whether n ≤ m or m ≤ n, respectively)
is included either in s̄ or in t̄. Note that indeed this is an equivalence relation
on s̄ ∪ t̄ and that equivalence classes form a block subsequence of B. Note
also that the first class is included in s̄ as it contains b2ℓ which t̄ misses.
Define A = (an) ∈ [2ℓ, B] by the following rules:
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(1) A ↾ 2ℓ = B ↾ 2ℓ,

(2) {a2k}
∞
k=ℓ is an increasing enumeration of s̄/ ∼,

(3) {a2k+1}∞k=ℓ is an increasing enumeration of t̄/ ∼.

Note that
∞⋃

k=0

a2k =

∞⋃

k=0

c2k = s and

∞⋃

k=0

a2k+1 =

∞⋃

k=0

d2k+1 = t. (5.41)

It follows that c(s, t, x) = c∗(A, x) for every x ∈
∏∞

i=0 Pi. This shows that c
is monochromatic on S0 × S1 ×

∏∞
i=0 Pi. 2

Corollary 5.64 (Spinas) Suppose that X is a non- σ-compact Polish space
and that X2 is colored by countably many Souslin-measurable colors. There
exist two superperfect subsets S0 and S1 of X such that S0×S1 is monochro-
matic.

Remark 5.65 It should be noted that the number of superperfect sets in
the conclusion of Theorem 5.63 cannot exceed 2. This is a consequence of
the following result which appears below as Corollary 6.37.

Theorem 5.66 There is a continuous map c : (R\Q)[3] → N that takes all
the values from N on the cube of any superperfect subset of R\Q.

This result suggests the question about the validity of the symmetric case
of the two-dimensional superperfect set theorem. It turns out that Theorem
5.63 does allow the symmetric variation, and this is our next result, which
can be seen as yet another contribution to parametrized Ramsey theory, a
theory that receives full attention in later chapters of this book.

Theorem 5.67 (Symmetric Version of the Superperfect Set Theorem) Sup-
pose that X is a non- σ-compact Polish space and that X [2] ×XN is colored
by finitely many Souslin-measurable colors. Then there are a superperfect set
S ⊆ X and an infinite sequence (Pn) of perfect subsets at X such that the
product S[2] ×

∏∞
i=0 Pi is monochromatic.

Proof. Applying Hurewicz’s theorem (Theorem 5.60), we may assume that
that X = N[∞]. Similarly, we may replace the second coordinate of the
colored product X [2] × XN by the infinite power (2N)N of the Cantor cube
2N. Thus we may assume to have given a finite Souslin measurable coloring

c : (N[∞])[2] × (2N)N → F.

To this c, we associate a Souslin-measurable coloring

c∗ : FIN[∞] × (2N)N → F (5.42)

as follows:

c∗(A, x) = c

({
a0 ∪

∞⋃

k=0

a2k+1,
∞⋃

k=0

a2k

}
, x

)
. (5.43)
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By Theorem 5.45, there exist B = (bn)∞0 ∈ FIN[∞] and a sequence (Pi) of
perfect subsets of the Cantor space 2N such that c∗ is monochromatic on the
product [B]∞ ×

∏∞
i=0 Pi. Let

S =

{
b0 ∪

∞⋃

k=1

bp1...pk
: (pk)∞1 ∈ PR[∞]

}
,

where PR denotes the set of all primes. Thus S is equal to the set of all
unions of subsequences of the sequence B = (bn)∞0 of the form

b0, bp1 , bp1p2 , bp1p2p3 . . . , bp1...pk
, ...

for some strictly increasing sequence (pk)∞1 of positive prime numbers. This
particular choice of subsequences of B is made for two purposes: first, to
make S a superperfect subset of N[∞], and, second, to have that for every
two different subsequences (bnk

) and (bmk
) of B forming an unordered pair

of elements of S there is an ℓ ≥ 0 such that

(1) bnk
= bmk

for all k ≤ ℓ,

(2) bnk
∩ bnk′ = ∅ for all k 6= k′ > ℓ.

Consider two such subsequences (bnk
) and (bmk

) of B and ℓ ≥ 0 satisfying
(1) and (2). For concreteness assume that nℓ+1 < mℓ+1. Let

s =
∞⋃

k=0

bnk
and t =

∞⋃

k=0

bmk
. (5.44)

There is a natural equivalence relation ∼ on the symmetric difference (s\t)∪
(t\s) of s and t : i ∼ j iff the interval of integers determined by i and j
contains only points of one of the sets s\t or t\s. Note that (1) and (2)
imply that an equivalence class of ∼ is a finite union of the form

⋃

k∈I

bnk
or
⋃

k∈J

bmk
(5.45)

for some intervals I and J of integers > ℓ. Define an A = (an) ≤ B by the
following conditions:

(3) a0 =
⋃ℓ

k=0 bnk
,

(4) (a2k+1)∞k=0 is an increasing enumeration of s\t/ ∼,

(5) (a2k)∞k=0 is an increasing enumeration of t\s/ ∼.

It follows that for any x ∈
∏∞

i=0 Pi,

c({s, t}, x) = c∗(A, x).

Since {s, t} was an arbitrary unordered pair of elements of S, this shows that
c is monochromatic on S[2] ×

∏∞
i=0 Pi. 2
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Corollary 5.68 (Spinas) Suppose that the symmetric square X [2] of some
non- σ-compact Polish space X has been colored by finitely many Souslin-
measurable colors. Then there is a superperfect S ⊆ X such that S[2] is
monochromatic.

Note that the conclusion of this corollary is false for infinite colorings. This
is most easily seen in the case X = NN. For example, given an unordered
pair {x, y} of elements of NN such that x <lex y, set

c({x, y}) = min{n : x(n) > y(n)},

where we use the convention min∅ = 0. Then c realizes infinitely many values
on any square S[2] of a superperfect subset S of N.

5.6 DUAL RAMSEY THEORY

Let E∞ = E∞(N) be the collection of all equivalence relations E on N whose
quotients N/E are infinite. It is convenient to think of E as a partition of N
into infinitely many equivalence classes. Each class [x]E of E has a minimal
representative. Let p(E) be the set of all minimal representatives of classes
of E. Let {pn(E)}∞n=0 be the increasing enumeration of p(E). Note that
0 ∈ p(E) for all E ∈ E∞, so we have that p0(E) = 0 for all E ∈ E∞.

For E,F ∈ E∞ we say that E is coarser than F and write E ≤ F if every
class of E can be represented as the union of certain set of classes of F . The
nth approximation rn(E) to some E ∈ E∞ is defined as follows:

rn(E) = E ↾ pn(E). (5.46)

Thus, rn(E) is simply the restriction of the equivalence relation E to the
finite set {0, 1, . . . , pn(E) − 1} of integers. Each approximation a ∈ AE∞
has its length |a|, the integer n such that a = rn(E) for some E ∈ E∞ (or
equivalently, the number of equivalence classes of a) and its domain, the
integer p|a|(E) = {0, 1, . . . , p|a|(E) − 1}, where E is some member of E∞
such that a = r|a|(E). The relation ≤ of E∞ allows a natural finitization ≤fin

on AE∞ satisfying A.2 and A.3: a ≤fin b if dom(a) = dom(b) and a is coarser
than b.

To show that (E∞,≤, r) is a topological Ramsey space, it remains to show
that it satisfies A.4.

Lemma 5.69 Let [a,E] be a nonempty basic set, let n be the length of a
and let O be a family of members of AE∞ of length n+ 1. Then there is an
F ∈ [a,E] such that rn+1[a, F ] is either contained in or disjoint from O.

Proof. Using the amalgamation property, we may replace E and assume
that a = rn(E), or in other words, that a is an equivalence relation on
the set pn(E) = {0, 1, . . . , pn(E) − 1} and that it is equal to the restriction
of E on that set. An end-extension b ∈ rn+1[a,E] of a is an equivalence
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relation on a set of the form pm(E) = {0, 1, . . . , pm(E)−1} for some m > n,
which has one more class [pn(E)]b and that joins some classes of E (or more
precisely, the classes of E restricted to the set of integers below pm(E)), with
minimal representatives among pn(E), pn+1(E), . . . , pm−1(E) to either one
of the classes with representatives < pn(E) or to the new class [pn(E)]E .
Hence, any such end-extension b of a can be coded as a word wb in the
alphabet L = {0, 1, . . . , n} such that the length of wb is equal to m− n and
such that for i < m − n, we have wb

i = j iff the class of pn+i(E) has been
joined with the class of pj(E). Conversely, any word w of WL that has n
as its first letter is of the form wb for some b = b(w) in rn+1[a,E]. So the
coloring by O and Oc induces the coloring of WL. By Theorem 2.37 there is
a word w0 that starts with the letter n and an infinite sequence X = (xk)
of left variable words such that the translate w0

a[X ]L is monochromatic, or
in other words:

(1) b(w) ∈ O for every w ∈ w0
a[X ]L, or

(2) b(w) 6∈ O for every w ∈ w0
a[X ]L.

Form the infinite word x = w0
ax0

ax1
a . . .axk

a . . . out of w0 and X and
use it to define an equivalence relation F ∈ [a,E] as follows. To define F,
it suffices to say how it acts on the set p(E) of minimal representatives of
classes of E. If at place i of x we find a letter j ∈ L, we let pj(E) and pn+i(E)
be F -equivalent. If for some k ≥ 0 and

i, j ∈ [|w0|+ |x0|+ . . .+ |xk−1|, |w0|+ |x0|+ . . .+ |xk−1|+ |xk|),

we find v on both places i and j of x, then we put pn+i(E) and pn+j(E) to
be F -equivalent. (Here, x−1 = ∅.) We put no other connections in F . Then
this F satisfies the conclusion of the lemma. 2

Since we have established axioms A.1 to A.4 for the triple (E∞,≤, r) and
since E∞ is a closed subset of the cube AEN

∞, the Abstract Ellentuck Theorem
gives us the following result.

Theorem 5.70 (Carlson-Simpson) The space (E∞,≤, r) is a topological
Ramsey space.

Before we state the usual corollaries, note that E∞ has three topologies.
The first one is of course the one induced by the basic open sets of the
form [n,E], which makes E∞ a topological Ramsey space. The second one is
the metrizable topology induced from the Tychonov cube AEN

∞. The third
one is also a metrizable topology induced from the Cantor cube 2N×N when
members of E∞ are identified with subsets of N×N. In the following corollary,
“Souslin-measurable” can be based on any of the three topologies.

Corollary 5.71 (Dual Silver Theorem) Suppose that c is a finite Souslin-
measurable coloring of the family E∞ of all equivalence relations on N with
infinitely many classes. Then there is E ∈ E∞ such that the family E∞|E of
all F ∈ E∞ that are coarser than E is c-monochromatic.
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For a positive integer k, let Ek = Ek(N) be the collection of all equivalence
relations on N with exactly k classes. It is natural to identify Ek with the
subset of the Tychonoff cube {0, 1, . . . , k− 1}N consisting of surjective maps
f with the property that

minf−1(i) < minf−1(j) for i < j < k. (5.47)

Note that in this identification, Ek is an open subset of the Tychonov cube.

Corollary 5.72 (Dual Ramsey Theorem) Suppose that for some positive
integer k, we are given a finite coloring c of Ek that is Baire-measurable
relative to the topology induced from the Tychonoff cube {0, 1, . . . , k − 1}N.
Then there is an E ∈ E∞ such that the family Ek|E of all F ∈ Ek that are
coarser than E is c-monochromatic.

Proof. Assume first that c is actually Souslin-measurable. Define π : E∞ →
Ek by letting π(E) be the equivalence relation that makes every pn(E) for
any n ≥ k equivalent to 0. Then the lifted coloring c ◦ π of E∞ is Souslin-
measurable and so by Corollary 5.71, there is an E ∈ E∞ such that c ◦ π is
monochromatic on E∞|E. Let E∗ ∈ E∞ be a coarsening of E that has the
property that every class of E∗ contains infinitely many classes of E. Then
for every F ∈ Ek|E∗, there is a G ∈ E∞|E such that π(G) = F . If follows
that Ek|E∗ is c-monochromatic.

Assume now that c is merely Baire-measurable. Then there is a dense Gδ-
subset G of Ek on which the coloring c is actually continuous. Consider a finite
approximation b to a member of Ek considered as a subset of {0, 1, . . . , k−1}N.
Thus b is simply a surjection from {0, 1, . . . , |b| − 1} onto {0, 1, . . . , k − 1}
satisfying the condition in Equation (5.47). Note that the full basic open set

[b] = {f ∈ {0, 1, . . . , k − 1}N : f ↾ |b| = b}

of the Tychonov cube is included in Ek. By standard representation of dense
Gδ subsets of Tychonov cubes like {0, 1, . . . , k−1}N (see Lemma 9.34), there
is an infinite block sequence (Di) of finite subsets of N and for each i a surjec-
tive mapping fi : Di → {0, 1, . . . , k−1} such that every f ∈ {0, 1, . . . , k−1}N

that extends b and infinitely many of the fi belong to G. Let bℓ (ℓ ∈ N) be a
list of all such finite approximations to elements of Ek, each appearing with
infinite repetition, and let f ℓ

i (i ∈ N) be the corresponding block sequence
of partial maps guaranteeing the membership in G. We build an equivalence
relation E ∈ E∞ by recursively deciding its restrictions E ↾ nℓ (ℓ ∈ N) for
some strictly increasing sequence (nℓ) of positive integers as follows. At odd
stages we choose E ↾ n2ℓ+1 in a way that ultimately guarantee that E has
infinitely many infinite classes. At even stages, if bℓ happens to be coarser
than E ↾ |bℓ|, we choose a finite partial mapping f ℓ

iℓ
from the family of

functions f ℓ
i (i ∈ N) associated with bℓ such that Dℓ = dom(f ℓ

iℓ
) lies above

n2ℓ−1. Put n2ℓ = max(Dℓ) + 1 and define an extension E ↾ n2ℓ of E ↾ n2ℓ−1

that for each j < k makes each point of the preimage f−1
iℓ

(j) equivalent to

the minimal point of the preimage b−1
ℓ (j) and makes no other commitments

(subject of course to E ↾ n2ℓ being an equivalence relation).
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Consider an arbitrary equivalence relation F ∈ Ek|E, i.e., an equiva-
lence relation that is coarser than E and that has exactly k classes. Let
pF (0), pF (1), . . . , pF (k− 1) be the list of the minimal elements of the classes
of F. Let n = pF (k − 1) + 1 and let b be the surjective map from n onto
k that is constant on each class of F ↾ n and satisfies the requirement in
Equation (5.47). Recall that the full equivalence relation F is identified with
a surjective map hF : N → {0, 1, . . . , k − 1} satisfying 5.47. Then by our
construction of E, the map hF extends b as well as f ℓ

iℓ
for every ℓ such that

bℓ = b. It follows that hF extends b and infinitely many of the partial map-
pings f ℓ

i (i ∈ N) and that it therefore belongs to the set G. From this, we
conclude that the restriction of our coloring c to Ek|E is continuous, and so
we are done with first part of the proof. 2

We finish the discussion of the dual Ramsey theorem with the finite version
of this result.

Theorem 5.73 (Finite Dual Ramsey Theorem) For every triple k, ℓ and n
of positive integers, there is a positive integer m such that for every ℓ-coloring
of the family Ek(m) of all equivalence relations on m = {0, 1, . . . ,m − 1}
with exactly k classes there is an equivalence relation E on m with exactly
n classes such that {F ∈ Ek(m) : F is coarser than E} is monochromatic.

Proof. Suppose that for some triple k, ℓ, and n such an m cannot be found.
So, for each m ∈ N, we can fix

cm : Ek(m)→ {0, ..., ℓ− 1} (5.48)

such that no equivalence relation E on m with exactly n classes has the
property that the set {F ∈ Ek(m) : F is coarser than E} is monochromatic.
Define c : Ek+1 → {0, ..., ℓ− 1} by

c(F ) = cm(F ↾ m), (5.49)

where m is the largest integer that is equal to the minimum of some class
of F . Clearly, c is a continuous map. By the Dual Ramsey Theorem there
is an E ∈ E∞ such that Ek+1|E is monochromatic. Let m be the (n + 1)st
member of p(E), the set of all integers that are minimal members of various
classes of E. Then E ↾ m has exactly n classes and the set

{F ∈ Ek(m) : F is coarser than E ↾ m}

is monochromatic relative to the coloring c, which is a contradiction. This
finishes the proof. 2

Fix a finite (possibly) empty set L disjoint from N. Let EL
∞ = EL

∞(N) be the
collection of all equivalence relations E on L∪N whose quotients (L∪N)/E
are infinite and which have the property that E ↾ L is the equality relation
on L. We order EL

∞ as before, E ≤ F if E is coarser than F , meaning that
every class of E is the union of classes of F.

Given E ∈ EL
∞, each equivalence class [x]E of E that is disjoint from L has

a minimal representative. Let p(E) be the set of all minimal representatives
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of classes of E that are disjoint from L. Let {pn(E)}∞n=0 be the increasing
enumeration of p(E). Let r0(E) = ∅ and for n ∈ N, let

rn+1(E) = E ↾ (L ∪ {0, 1, . . . , pn+1(E) − 1}). (5.50)

Each approximation a ∈ AEL
∞ has its length |a| defined to be 0 if a = ∅ or

the integer n > 0 such that a = rn(E) for some E ∈ EL
∞ (or equivalently, the

number of equivalence classes of a that are disjoint from L) and its domain,
the set L ∪ {0, 1, . . . , p|a|(E) − 1}, where E is any member of EL

∞ such that
a = r|a|(E). The relation ≤ of EL

∞ still allows a natural finitization ≤fin on
AE∞ satisfying A.2 and A.3: a ≤fin b if dom(a) = dom(b) and a is coarser
than b. Working as in the proof of Lemma 5.69 (which amounts to using
Theorem 2.37 at the crucial point) one shows that (EL

∞,≤, r) satisfies A.4 as
well.

Lemma 5.74 Let [a,E] be a nonempty basic set of the space(EL
∞,≤, r) and

let n be the length of a. Let O be a family of members of AEL
∞ of length

n+ 1. Then there is F ∈ [a,E] such that rn+1[a, F ] is either contained in or
disjoint from O. 2

This establishes the following variation on Theorem 5.70.

Theorem 5.75 (Carlson-Simpson) For every finite alphabet L, the triple
(EL

∞,≤, r) forms a topological Ramsey space.

Note that Theorem 5.70 is the case L = ∅ of Theorem 5.75. For a positive
integer k, let EL

k = EL
k (N) be the collection of all equivalence relations E

on L ∪N whose restrictions to L is the equality relation of L and that have
exactly k classes disjoint from L.

Corollary 5.76 For every finite Borel coloring c of EL
k , there is E ∈ EL

∞

such that c is constant on the set EL
k |E of all members of EL

k that are coarser
than E.

Remark 5.77 It should be noted that Corollary 5.76 is true for the wider
class of Baire-measurable colorings, but the proof now is a bit more difficult
than the proof of Corollary 5.72.

We also have a finitary version of this result, which appears to be just a re-
formulation of the well-known Graham-Rothschild n-parameter set theorem.

Corollary 5.78 (Graham-Rothschild) For every finite alphabet L, for ev-
ery triple k, l,m of positive integers such that k < m, there is a positive
integer n such that for every coloring6 c : EL

k (n) → l there is E ∈ EL
m(n)

such that c is constant on the set of all equivalence relations of EL
k (n) that

are coarser than E.

6Recall the notation used here, n = {0, 1, . . . , n − 1} and l = {0, 1, . . . , l − 1}.
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One of the reasons for presenting the Ramsey space (EL
∞,≤, r) of Theorem

5.75 is that it admits a natural reformulation in terms of variable-words
similar to the Ramsey spaces of Section 5.3 above. To see this, let WL

∞(ω)
be the collection of all words x of length ω over L ∪ {vn : n ∈ N} in which
each variable occurs in such a way that if m < n, then the first occurrence
of vm is before the first occurrence of vn. Elements of WL

∞(ω) are are called
ω-variable-words. For x, y ∈ WL

∞(ω), set x ≤ y if x is obtained from y by
substituting variables with letters or variables, keeping of course the rule
about occurrences of variables. Let r0(x) = ∅, and let

rn+1(x) = x ↾ m, where m = min{l : x(l) = vn}. (5.51)

It should be clear that is just another way of representing the space of
Theorem 5.75, so we have the following result, worth noting.

Theorem 5.79 (Carlson-Simpson) For every finite alphabet L the space
(WL

∞(ω),≤, r) of all ω-variable-words is a topological Ramsey space.

Given a positive integer k, if by WL
k (ω),, we denote the collection of all

infinite k-variable-words over L∪{vi : i < k}, i.e., words of length ω in which
each variable occurs in such a way that if i < j then the first occurrence of
vi is before the first occurrence of vj , then we have the following corollary.

Corollary 5.80 For every finite alphabet L, every positive integer k, and
every finite Borel coloring c of WL

k (ω), there is an ω-variable-word x such
that c is monochromatic on the set WL

k (ω)|x of all k-variable reductions of
the word x.

Finally, for positive integers k, n, let WL
k (n) denote the collection of all words

of length n over L∪ {vi : i < k} in which each variable occurs in such a way
that if i < j, then the first occurrence of vi is before the first occurrence
of vj . Then we have the following formulation of the Graham-Rothschild
n-parameter set theorem.

Corollary 5.81 (Graham-Rothschild) Let L be a finite alphabet and let
k, l,m be positive integers such that k < m. Then there is an integer n
such that for every coloring c : WL

k (n) → l there is x ∈ WL
m(n), an m-

variable-word of length n, such that c is constant on the set WL
k (n)|x of all

k-variable reductions of the word x.

We finish this section by mentioning two Ramsey classification results for
Borel equivalence relations in the context of dual Ramsey theory. Recall
Theorem 1.58 which gives a Ramsey classification of smooth Borel equiva-
lence relations for the space N[∞] of all infinite subsets of N. This should
be compared with our next result which gives a Ramsey classification of the
same class of Borel equivalence relations relative to the dual Ramsey space
considered in this section.
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Theorem 5.82 (Prömel-Simpson-Voigt) For every smooth Borel equivalen-
ce relation E on the powerset P(N) there is an infinite sequence (Mk) of
pairwise disjoint nonempty subsets of N such that one of the following three
conditions holds for all nonempty X,Y ⊆ N,

(1) (
⋃

k∈X Mk) E (
⋃

k∈Y Mk) if and only if X = X,

(2) (
⋃

k∈X Mk) E (
⋃

k∈Y Mk) if and only if X = Y,

(3) (
⋃

k∈X Mk) E (
⋃

k∈Y Mk) if and only if min(X) = min(Y ).

Theorem 5.83 (Prömel-Simpson-Voigt) For every Borel map ϕ from the
power set P(N) into some metric space, there exist two sets M ⊆ N ⊆ N with
N \M infinite such that the restriction of ϕ to the corresponding complete
Boolean sublattice {X : M ⊆ X ⊆ N} isomorphic to P(N) is a continuous
map that is either constant or one-to-one.

5.7 A RAMSEY SPACE OF INFINITE-DIMENSIONAL

VECTOR SUBSPACES OF FN

Let F be a fixed finite field. All matrices considered in this section are
matrices over F , i.e., mappings of the form

A : n×m→ F,

where m,n ∈ N ∪ {N}. The ith column of A is the mapping Ai : m → F
defined by

Ai(j) = A(i, j).

The jth row of A is the mapping Aj : n→ F defined by

Aj(i) = A(i, j).

We say that an n×m-matrix is in reduced echelon form if

(1) every column of A has a nonzero entry,

(2) if pi is the first nonzero entry of Ai, then Ai(pi) = 1 and further
A(j, pi) = 0 for j 6= i,

(3) pi < pj whenever i < j.

LetM∞ be the collection of all reduced echelon N×N-matrices. ForA ∈M∞

and n ∈ N, set

pn(A) = min{j : An(j) 6= 0}. (5.52)

Let p(A) = {pn(A) : n ∈ N}. Thus the sequence (pn(A)) gives us an increas-
ing enumeration of the infinite set p(A). This leads us to the notion of a
sequence (rn(A)) of finite approximations to A:

r0(A) = ∅ and rn+1(A) = A ↾ (n× pn(A)). (5.53)



128 CHAPTER 5

Note that M∞ is a closed subset of AMN
∞.

For A,B ∈M∞, we put

A ≤ B iff (∀i ∈ N) Ai ∈ span{Bn : n ∈ N},

or in other words, every column of A belongs to the closure taken in FN of
the linear span of the set {Bn : n ∈ N} of columns of B. Thus, if we iden-
tify matrices from M with closed linear subspaces the ordering ≤ between
them corresponds to the inclusion ordering on the set of all closed linear
subspaces of FN. We extend this quasi-ordering on the set AM∞ of finite
approximations in the most natural way, a ≤fin b if and only if

(4) a and b have the same number of rows, say, n and

(5) every column of a belongs to the subspace of Fn generated by the
columns of b.

Note that ≤fin is indeed a finitization of ≤, i.e., that A.2 is satisfied.

Lemma 5.84 Suppose that A ≤ B for some A,B ∈ M∞. Then p(A) ⊆
p(B), and if I = {i : pi(B) 6∈ p(A)} then for every n̄ ∈ N there exist
a unique n ∈ N and a sequence λi(i ∈ I\n) of elements of F such that
An̄ = Bn +

∑
i∈I\n λiBi.

Proof. That the representation An̄ =
∑∞

i=0 λiBi exists and that it is unique
follows easily from the definitions. Note that if n = min{i : λi 6= 0}, then
pn̄(A) = pn(B) and λn = 1. Note that i > n and pi(B) ∈ p(A) imply that
λi = 0, or else we would contradict condition (3) for the matrix A. 2

Clearly, the conclusion of Lemma 5.84 also holds for the relation a ≤fin b
between members of AM∞. From this, one easily concludes that A.3(1)
holds for (M∞,≤, r), i.e., that depthB(a) ≥ 0 implies [a,B] 6= ∅ for every
a ∈ AM∞ and B ∈ M∞. The following lemma gives us the other part of
A.3.

Lemma 5.85 Suppose that ℓ = depthB(a) ≥ 0 and that A ∈ [a,B]. Then
there is an A′ ∈ [ℓ, B] such that ∅ 6= [a,A′] ⊆ [a,A].

Proof. Let ℓ = depthB(a) and let ℓ̄ = depthA(a). Then a = rℓ̄(A) and
0 ≤ ℓ̄ ≤ ℓ. Moreover, pℓ̄−1(A) = pℓ−1(B) = m and a is an (ℓ̄ − 1) × m-
matrix. If ℓ = 0 there is nothing to prove, so let us assume that ℓ > 0.
Let I = {i : pi(B) 6∈ p(A)}. We define A′ by letting its columns A′

n be
determined as follows. Let A′

(ℓ−1)+n = A(ℓ̄−1)+n for n ≥ 0. If n < ℓ − 1 and

n ∈ I, let A′
n = Bn. If n < ℓ− 1 and n /∈ I then by Lemma 5.84 there is an

n̄ < ℓ̄− 1 and a sequence (λi)i∈I\n such that An̄ = Bn +
∑

i∈I\n λiBi. Let

A′
n = Bn +

∑

i∈I\(ℓ−1)

λiBi. (5.54)
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Clearly, A′ ∈ [ℓ, B]. It remains to check that every C ∈ [a,A′] belongs to
[a,A]. This will follow if we can show that C ≤ A. Let

J = {i : pi(A
′) 6∈ p(C)}.

Note that

J ∩ [0, ℓ− 1) = I ∩ [0, ℓ− 1).

By Lemma 5.84, the relation C ≤ A′ gives us that for every n̄ ∈ N there
are a unique n ∈ J and a sequence γi(i ∈ J\n) of elements of F such that
Cn̄ = A′

n +
∑

i∈J\n γiA
′
i. If n ≥ ℓ− 1, by our definition of A′, this equation

is the same as the equation Cn̄ = An +
∑

i∈J\n γiAi, which we want. So let

us assume n < ℓ− 1. Going back to the definition of A′
n, we get that

Cn̄ = An̄ +
∑

i∈I∩(n,ℓ−1)

(−λi)Bi +
∑

i∈I∩(n,ℓ−1)

γiA
′
i +

∑

i∈J\(ℓ−1)

γiAi. (5.55)

Referring to the definition of the A′
i, we conclude that

Cn̄ = An̄ +
∑

i∈I∩(n,ℓ−1)

ξiBi +
∑

i∈J\(ℓ−1)

γiAi (5.56)

for some scalars ξi ∈ F (i ∈ I ∩ (n, ℓ − 1)). Taking the restriction of each
column appearing in this equation to m, we get that

Cn̄ ↾ m = An̄ ↾ m+
∑

i∈I∩(n,ℓ−1)

ξiBi ↾ m. (5.57)

Since Cn̄ ↾ m = An̄ ↾ m and since the columns Bi ↾ m (i < ℓ−1) are linearly
independent, we get that ξi = 0 for all i ∈ I ∩ (n, ℓ − 1). It follows that
Cn̄ = An̄ +

∑
i∈J\(ℓ−1) γiAi. This finishes the verification of C ≤ A and the

proof of the lemma. 2

It remains to check that (M∞,≤, r) satisfies A.4.

Lemma 5.86 Suppose [a,B] is a nonempty basic open set, ℓ is the length
of a and O is a set of approximations of length ℓ + 1. Then there is an
A ∈ [depthB(a), B] such that rℓ+1[a,A] is either contained in or is disjoint
from O.

Proof. By A.3, we may assume that a = rℓ(B), i.e., that [a,B] = [ℓ, B].
We shall apply Theorem 2.35 for the alphabet L = F ℓ. A word w ∈ WL of
length k is seen as an ℓ× k matrix (wij). To any such word, we associate an
ℓ×m-matrix b = b(w), where m = pℓ+k(B), by letting

bi = (Bi ↾ m) +
∑

j<k

wij(Bℓ+j ↾ m) (5.58)

for i < ℓ. Note that any such b(w) belongs to rℓ+1[ℓ, B], i.e., is equal to
rℓ+1(A) for some A ∈ [ℓ, B]. Conversely, every rℓ+1(A) for A ∈ [ℓ, B] has the
form b(w) for some w ∈ WL. The w is determined as follows using Lemma
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5.84. The length of w is the integer k such that pℓ(A) = pℓ+k(B) and the
wij is equal to the jth scalar appearing in the unique representation

Ai = Bi +
∑

j∈I\i

λijBj . (5.59)

Note that [ℓ, ℓ+k] ⊂ I, so we have that wij = λi(ℓ+j) for all i < ℓ and j < k.
Consider the coloring of WL by the set O∗ = {w ∈ WL : b(w) ∈ O} and
its complement. Applying Theorem 2.37, we obtain a word t and an infinite
sequence (xn) of left variable words over L such that finite concatenations
of the form tax0[λ0]a . . .axn[λn], where λi ∈ L (i ≤ n), are monochromatic
relative to this coloring. We use (xn) to define A ∈ [ℓ, B] as follows. We first
let x denote the infinite multi variable-word tax0[v0]a . . .axn[vn]a . . . and
use the notation xij to denote the ith coordinate of the letter λ that occupies
the jth place in x, provided of course λ ∈ L. Let J be the set of all positions
of x occupied by some letter, and for n ∈ N, let In be the set of positions of
x occupied by the variable vn. For i < ℓ, let

Ai = Bi +
∑

j∈J

xijBℓ+j , (5.60)

and for n ≥ 0,

Aℓ+n =
∑

j∈In

Bℓ+j . (5.61)

To show that this A satisfies the conclusion of the lemma it suffices to verify
that every b ∈ rℓ+1[ℓ, A] is of the form b(w) for some w ∈ WL that is equal
to some finite concatenation of the form tax0[λ0]a . . .axn[λk], where λi ∈ L
(i ≤ k). To see this, pick C ∈ [ℓ, A] and let b = rℓ+1(C). Let m = pℓ(C),
then m = pℓ+k̄(A) for some k̄ > 0. Note that pℓ+k̄(A) = pℓ+k(B), where k is
the length of the word tax0

a . . .axk̄−1. So reading C ≤ A ≤ B via Lemma
5.84, we infer that for all i < ℓ,

Ci = Bi +
∑

i∈J

xijBℓ+j +
∑

n<k

λin



∑

j∈In

Bℓ+j


 . (5.62)

For n < k, let λn denote the element (λin)i<ℓ of our alphabet Eℓ = L. Let
w = tax0[λ0]a . . .axk−1[λk−1]. Tracing back the definitions, one checks that
C ↾ (ℓ×m) = b(w) which was to be shown. 2

Applying the Abstract Ellentuck Theorem, we get the following result.

Theorem 5.87 (Carlson) (M∞,≤, r) is a topological Ramsey space.

For A ∈ M∞, let

V (A) = span{Ai : i ∈ N}, (5.63)

i.e., the closed linear span of the set of columns of A in the space FN equipped
with the usual product topology. A routine argument shows that

A 7→ V (A)
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is a bijection betweenM∞ and the collection of all closed infinite-dimensional
subspaces of FN. Moreover, by the definition of ≤, we have that A ≤ B
iff V (A) ⊆ V (B). The most natural topology on the collection V∞(F ) of
all closed infinite-dimensional subspaces of FN is the Vietoris hyperspace
topology. In fact, it can easily be seen that A 7→ V (A) is a homeomor-
phism between M∞(F ) and V∞(F ), provided we take the metric topology
onM∞(F ) induced from AM∞(F )N. Then Theorem 5.87 has the following
reformulation.

Corollary 5.88 For every finite Souslin-measurable partition of the space
V∞(F ) of all closed infinite-dimensional subspaces of FN, there is a V ∈
V∞(F ) such that the collection of all closed infinite-dimensional subspaces
of V is monochromatic.

It is also worth pointing out the finite-dimensional version of this result.

Theorem 5.89 (Voigt) For every positive integer k and every finite Baire-
measurable coloring of the space Vk(F ) of all k-dimensional subspaces of FN,
there is V ∈ V∞(F ) such that the collection of all k-dimensional subspaces
of V is monochromatic.

Proof. Clearly, it suffices to prove the theorem by working with the collection
Mk =Mk(F ) of all reduced echelon k × N matrices with no zero columns,
rather than the collection Vk(F ). The restriction mapping πk :M∞ −→Mk

defined by

πk(A) = A ↾ (k × N) (5.64)

is continuous and onto. So if the given coloring ofMk is Souslin-measurable
rather than just Baire-measurable, we get the desired conclusion using Carl-
son’s theorem. Since every finite Baire-measurable coloring ofMk is contin-
uous on a dense Gδ-subset G ofMk, it suffices to produce a matrix B ∈M∞

such that πk(A) ∈ G for all A ≤ B. Consider a finite reduced echelon k×mi-
matrix a : k ×mi → F with no zero rows. Then

{M ∈Mk : M ↾ k ×m = a} = {X ∈ 2k×N : X ↾ k ×m0 = a0}. (5.65)

By a standard fact about dense Gσ-subsets of the Cantor cube (see Lemma
9.34), for every such matrix a, we can fix an infinite sequence (xa

i ) of finite
mappings xa

i : k × Ja
i → F , where (Ja

i ) is a strictly increasing sequence
of finite intervals of N, such that any M ∈ Mk that extends a as well as
infinitely many of the xa

i belongs to G. As in the proof of Corollary 5.72,
we perform a simple recursive construction of an increasing infinite sequence
(bn) of finite row-reduced echelon matrices such that B =

⋃∞
n=0 bn is a

member of M∞ and has the following property: for every M ∈ Mk with
M ≤ B, if m is the minimal integer such that a = M ↾ k ×m is a reduced
echelon matrix with no zero columns then there are infinitely many i such
that M extends xa

i . It follows that

{M ∈ Mk : M ≤ B} ⊆ G, (5.66)
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as required. This finishes the proof. 2

We finish the section with a finite version of the Ramsey theorem for vector
spaces.

Theorem 5.90 (Graham-Leeb-Rothschild) For every triple k,ℓ, and n of
positive integers, there is a positive integer m such that for every ℓ-coloring
of the family of all k-dimensional subspaces of Fm, there is an n-dimensional
subspace V of Fm such that the family of all k-dimensional subspaces of V
is monochromatic.

Proof. Suppose that for some k, ℓ, and n, such an m cannot be found.
Then for each m we can fix an ℓ-coloring cm of the family Vk(Fm) of all
k-dimensional subspaces of Fm with no n-dimensional subspace V of Fm

such that Vk(V ) = {W ∈ Vk(Fm) : W ⊆ V } is cm-monochromatic. Define a
coloring

c :Mk+1 → {0, 1, . . . , ℓ− 1} (5.67)

by letting

c(M) = cm(V (M ↾ (k ×m))),

where m is the first nonzero entry of the last column of M and where V (M ↾

(k × m)) denotes the subspace of Fm generated by the restrictions of the
first k columns of M . By Voigt’s theorem, there is an A ∈ M∞ such that c
is monochromatic on

{M ∈Mk+1 : M ≤ A} . (5.68)

Let m be the first nonzero entry of the (n+ 1)st column of A and let V be
the subspace of Fm generated by the restrictions of the first n columns of A.
Tracing back the definitions, we see that Vk(V ) is cm-monochromatic, which
is a contradiction. This completes the proof. 2

NOTES TO CHAPTER FIVE

Ellentuck invented his topological Ramsey theorem in order to re-prove Sil-
ver’s result that the field of Ramsey subsets of N[∞] is closed under the
Souslin operation, since the original proof involved sophisticated metamath-
ematical ideas. In other words, by putting a natural topology on N[∞] and by
proving that Ramsey notions correspond to Baire-category notions, Ellen-
tuck was able to deduce Silver’s result from the classical fact that the Baire
property in any topological space is preserved under the Souslin operation.
It is therefore not surprising that the difficulties in the proof of the Ab-
stract Ramsey Theorem compared to those encountered in the proof of the
Abstract Ellentuck Theorem lie exactly in the preservation of the Ramsey
property under the Souslin operation. Milliken’s space FIN[∞], appearing
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in his paper [77] was the first space built after that of Ellentuck [27] and
also the first space that was built on the basis of a substantially different
pigeon hole principle. Its power over the Ellentuck space was not fully re-
alized until relatively recently, after Gowers’s successful applications of the
“block Ramsey theory” when treating some problems from Banach space
geometry (see [37] and [38]). It should be noted that Gowers’s block Ramsey
theory has two new features not present in the classical theory, a feature
with great potential for applications. The first of these new features is the
“approximate metric Ramsey theory”. We have already presented a result
from this theory in Section 2.4 above during the course of showing that the
sphere of the Banach space c0 is oscillation stable. In this theory one has
a metric on the space of all block sequences under consideration and one is
interested in getting ε-close to a given color rather than inside a given color.
The second feature is the “strategic Ramsey theory” where for a given finite
coloring one looks for a strategy for building an infinite block sequence of
a given color rather than an infinite block sequence all of whose block sub-
sequences are monochromatic. Regarding the original Milliken’s theorem, it
should be noted that FIN[∞] was anticipated earlier by A. D. Taylor [104],
who was in need of the higher-dimensional version of Hindman’s theorem for
his beautiful Theorem 5.28. The extension of Taylor’s classification theorem
to all FINk’s mentioned in Remark 5.40 is due to Lopez-Abad [65]. It should
also be mentioned that the extension of Taylor’s Ramsey classification re-
sult in another direction was done by Lefmann [63], who was able to identify

all canonical equivalence relations on any finite power FIN[d]. For example,
there are 26 canonical equivalence relations on FIN[2]. The corresponding
infinite-dimensional result for Borel equivalence relations on FIN[∞] is due
to Klein-Spinas [56]. There are no known analogous Ramsey classification re-
sults for FINk when k ≥ 2. Even the list of canonical equivalence relations on

FIN
[2]
2 is unknown. Rosenthal’s ℓ1-theorem and Rosenthal’s dichotomy ap-

pear in his papers [95] and [96]. A slightly weaker form of the parametrized
Rosenthal’s ℓ1-theorem appears in a paper of Stern [103] as a positive an-
swer to a question of Brunel and Sucheston. The two theorems of Spinas
appear in his paper [102]. The first version of the Abstract Ellentuck Theo-
rem appeared in a paper of Carlson-Simpson [16], using a slightly different
axiomatization and different proofs. The infinite dual Ramsey theory was
developed by Carlson-Simpson [15], extending the famous finite dual Ram-
sey theorem due to Graham-Rothschild [40]. The corresponding extension of
the n-parameter-set theorem of Graham-Rothschild [40] is also due to Carl-
son and Simpson although its proof appeared first in the paper of Carlson
[13]. This extension could perhaps be better seen in terms of a topological
Ramsey space of infinite words with infinitely many variables (vk) enumer-
ated according to their first occurrences. The extension of Corollary 5.76 to
Baire-measurable colorings is due to Prömel-Voigt [90]. The description of
canonical Borel equivalence relations in the context of the Carlson-Simpson
space (the space of Theorem 5.70) was given in the paper [88] of Prömel,



134 CHAPTER 5

Simpson, and Voigt. More Ramsey classification results of this type and in
the finite case can be found in the papers [113], [112], [89], and [114]. A

version of the space (W
[∞]
Lv ,≤, r) was first developed by Carlson [14] in a

paper that represents a major contribution to this area of Ramsey theory
after those of Ellentuck and Milliken. A version of Theorem 5.44 appears
in the paper of Furstenberg-Katznelson [32] although its present form is
from the paper of Blass-Bergelson-Hindman [8]. The Ramsey space of all
closed infinite-dimensional vector subspaces of FN was also developed by
Carlson [13] extending another famous result of finite Ramsey theory due to
Graham-Leeb-Rothschild [39]. The finite-dimensional infinitary extension of
the Graham-Leeb-Rothschild theorem is due to Voigt [114].



Chapter Six

Spaces of Trees

6.1 A RAMSEY SPACE OF STRONG SUBTREES

In this section, unless otherwise specified, by a tree we always mean a rooted
finitely branching tree of some height≤ ω. Given a tree T and n ∈ ω, let T (n)
denote the nth level of T. Thus, the height of T is simply the minimal n ≤ ω
such that T (n) = ∅. For a set A ⊆ ω, let T (A) =

⋃
n∈A T (n). Throughout

most of this chapter, we let U be a fixed rooted finitely branching tree of
height ω with no terminal nodes and we study its subtrees. Recall that a
subtree of U is simply a subset T of U that, with the induced ordering, is a
rooted tree that in general can be of finite height. A regular subtree of U is
a subtree T with the property that every level T (n) of T is a subset of some
level U(m) of U . We say that T is a strong subtree of U if T is a special kind
of regular subtree of U, or more precisely, for which we can find a set A ⊆ ω
such that

(str1) T ⊆ U(A) and T ∩ U(n) 6= ∅ for all n ∈ A,

(str2) if m < n are two successive elements of the set A, then for every
s ∈ T ∩ U(m), every immediate successor of s in U has exactly one
extension in T ∩ U(n).

Figure 6.1 The tree U and one of its strong subtrees T of height 3.

Note that a regular subtree of a regular subtree is a regular subtree and
that a strong subtree of a strong subtree is a strong subtree. Let S∞(U)
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denote the collection of all strong subtrees of U of infinite height, and for a
positive integer k, let Sk(U) denote the collection of all strong subtrees of U
of height k. For T ∈ S∞(U) the sequence (rn(T )) of finite approximations
(restrictions) is defined as follows:

rn(T ) = T ↾ n

(
=
⋃

m<n

T (m)

)
. (6.1)

Thus, the set of finite approximations to elements of S∞(U) is the set

S<∞(U) =

∞⋃

n=0

Sn(U) (6.2)

of strong subtrees of U of finite heights. Note that S∞(U) becomes a closed
subset of the Tychonov product

∏∞
n=0 Sn(U) when T ∈ S∞(U) is identified

with its sequence (rn(T )) of finite approximations. The inclusion order on
S∞(U) is finitized as follows:

a ⊆fin b iff a = b = ∅ or a ⊆ b and a(max) ⊆ b(max), (6.3)

where a(max) and b(max) denote the maximal levels of the tree a and b,
respectively. Finitized this way, the space (S∞(U),⊆, r) is easily seen to
satisfy the requirements A.1, A.2, and A.3 from Section 4.2. So, it remains
to check the crucial requirement A.4 for this space.

Lemma 6.1 Let [n, T ] be a basic open set of (S∞(U),⊆, r) and let O be a
subset of Sn+1(U). Then there is an S ∈ [n, T ] such that rn+1[n, S] is either
included in or disjoint from O.

Proof. Let u0, . . . , ud−1 be a 1-1 enumeration of the set of nodes of U that
happen to be immediate successors of some node of the level T (n− 1) of T .
(If n = 0, we put d = 1 and u0 = root(U)). For i < d, let

Ti = {t ∈ T : ui ≤ t}. (6.4)

Note that every ~t = (t0, . . . , td−1) from

∞⋃

k=0

∏

i<d

Ti(k) (6.5)

determines the strong subtree

b(~t) = (T ↾ n) ∪ {t0, . . . , td−1} (6.6)

of U of height n+ 1. Define

O∗ =

{
~t ∈

∞⋃

k=0

∏

i<d

Ti(k) : b(~t) ∈ O

}
. (6.7)

By the strong subtree version of the Halpern-Läuchli theorem (see Theorem
3.2 in Section 3.1), there is a sequence Si (i < d) of trees and a strictly
increasing infinite sequence (ln)n of nonnegative integers such that
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(1) Si is a strong subtree of Ti for all i < d,

(2) Si(n) ⊆ Ti(ln) for all i < d and n < ω,

(3)
⋃∞

n=0

∏
i<d Si(n) is a subset of O∗ or its complement.

Let

S = (T ↾ n) ∪
⋃

i<d

Si. (6.8)

Then S is a strong subtree of U that belongs to the basic set [n, T ] and
such that rn+1[n, S] is included either in O or its complement, depending on
which of the two alternatives of (3) hold. 2

Applying the Abstract Ellentuck Theorem to (S∞,⊆, r), we obtain the fol-
lowing result.

Theorem 6.2 (Milliken) For every rooted finitely branching tree U of
height ω with no terminal nodes, the triple (S∞(U),⊆, r) forms a topological
Ramsey space.

Corollary 6.3 (Ellentuck) (N[∞],⊆, r) is a Ramsey space.

Proof. Take U to be ω with the usual ordering. 2

Corollary 6.4 For every rooted finitely branching tree U of height ω with
no terminal nodes and for every finite Souslin-measurable coloring of the set
S∞(U) there exists a strong subtree T of U such that S∞(T ) is monochro-
matic.

Corollary 6.5 Let U be a rooted finitely branching tree of height ω with no
terminal nodes, and let k be a positive integer. Then for every finite coloring
of the set Sk(U) of all strong subtrees of U of height k there is a strong
subtree T of U of infinite height such that Sk(T ) is monochromatic.

Corollary 6.6 Let U be a rooted finitely branching tree of height ω with
no terminal nodes, and let k, l, and n be a given triple of positive integers.
Then there is a positive integer m such that for every l-coloring of the set
Sk(U ↾ m) of strong subtrees included in the first m levels of U, there is a
strong subtree T of U ↾ m of height n such that Sk(T ) is monochromatic.

Proof. Otherwise, for each positive integer m we can fix a coloring

cm : Sk(U ↾ m)→ l, (6.9)

which would violate the conclusion of the corollary. Define

c : Sk+1(U)→ l (6.10)

by

c(T ) = cm(T ↾ k), (6.11)

where m is such that T (k) ⊆ U(m). By Corollary 6.5, there is T ∈ S∞(U)
such that c is constant on Sk+1(T ). Let S = T ↾ n and let m be such that
T (n) ⊆ U(m). Then Sk(S) is cm-monochromatic, a contradiction. 2
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Corollary 6.7 Let U be a rooted finitely branching tree of height ω with no
terminal nodes. Then, for every F ⊆ S<∞(U) there is an infinite strong
subtree T of U such that either

(a) S<∞(T ) ∩ F = ∅, or

(b) for every S ∈ S∞(T ) there is n such that S ↾ n ∈ F .

Proof. Color elements of S∞(U) according to whether they have a restriction
in F or not. This is clearly a Borel coloring. Now apply Corollary 6.4. 2

Corollary 6.8 Let U be a rooted finitely branching tree of height ω with
no terminal node and let F ⊆ S<∞(U) be a family that contains no two
subtrees one of which is a strict initial part of the other. Then, for every
finite coloring of F , there is an infinite strong subtree T of U such that
S<∞(T ) ∩ F is monochromatic.

Proof. Apply the previous corollary successively to each of the colors. 2

Corollary 6.9 (Galvin) For every family F of finite subsets of N there exist
infinite B ⊆ F such that

(a) either B contains no member of F , or

(b) for every infinite A ⊆ B there is an n such that A ∩ n ∈ F .

Proof. Apply Corollary 6.7 to the tree U = (ω,<). 2

Corollary 6.10 (Nash-Williams) Suppose F is a family of nonempty finite
subsets of N such that no member of F is a strict initial segment of some
other member of F . Then for every finite coloring of F there is infinite
B ⊆ N such that F|B is monochromatic.

Proof: Apply Corollary 6.8 to the tree U = (ω,<). 2

6.2 APPLICATIONS OF THE RAMSEY SPACE OF STRONG

SUBTREES

Fix a finitely branching rooted tree U of height ω. In this section we show how
to use Milliken’s space of strong subtrees to get the corresponding Ramsey
theoretic results about arbitrary subsets of the tree U . The key to all these
application is the notion of the strong subtree envelope of a given subset
of U . This notion is most easily seen if we consider our base tree U as a
downward closed finitely branching subtree of N<∞ with no terminal nodes.
Thus, root(U) = ∅, the ordering is the end-extension ⊑, and the height of a
node t ∈ U is simply equal to the integer |t| ∈ N such that t : |t| → N. For
s, t ∈ U , set

s ∧ t = max{u ∈ U : u ⊆ s and u ⊆ t}. (6.12)
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Figure 6.2 A set A = {©,©,©} its ∧-closure A∧ = {©,©,©,△,△} and its
embedding type, the structure (A∧,⊑,∧, ••, ••, •, •, •, •).

The ∧-closure of a subset A of U is the set

A∧ = {s ∧ t : s, t ∈ A}. (6.13)

Note that A ⊆ A∧, and that A∧ is a rooted subtree of U .

Definition 6.11 For A,B ⊆ U we say that A and B have the same embed-
ding type in U and write A EmB if there is a bijection f : A∧ → B∧ such
that for all s, t ∈ A∧,

(a) s ⊑ t⇔ f(s) ⊑ f(t),

(b) |s| < |t| ⇔ |f(s)| < |f(t)|,

(c) s ∈ A⇔ f(s) ∈ B,

(d) t(|s|) = f(t)(|f(s)|) whenever |s| < |t|.

Clearly, Em is an equivalence relation on the power set of U, and its classes are
called the embedding types , which can also be identified with the isomorphism
types of the structure appearing in Figure 6.2. The black dots appearing in
this structure represent the integers that code immediate successors of a
triangle point and a square point that have extensions in A∧. The square
points, while not part of the structure, are important when one tries to
construct the strong tree envelope that we introduce below.

For A ⊆ U , set

‖A‖ = |{|s ∧ t| : s, t ∈ A}|, (6.14)

the number of levels U which A∧ intersects. Clearly, A EmB implies that
‖A‖ = ‖B‖. For A ⊆ U , let the strong subtree envelope of A be the following
subset of S‖A‖(U):

CA(U) = {T ∈ S‖A‖(U) : T ⊇ A∧}. (6.15)

The following property of the cover functor will be the key in transferring
colorings of arbitrary subsets of U into colorings of strong subtrees of U .
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Figure 6.3 A set A = {©,©}, its ∧-closure A∧ = {©,©,△}, its embedding type
(A∧,⊑,∧, ••, •), and one of the members of its strong subtree envelope.

Lemma 6.12 If A EmB and CA(U) ∩ CB(U) 6= ∅, then A = B.

Proof. Choose T ∈ CA(U) ∩ CB(U) and choose a bijection f : A∧ → B∧

witnessing that A EmB. We shall show by induction on |t| that f(t) = t for
all t ∈ A∧. First of all, note that

min(A∧) = root(T ) = min(B∧),

so f(t) = t for t = root(A∧). Suppose that for some t ∈ A∧, the mapping
f is equal to the identity on A∧ ∩ (U ↾ |t|) . Since B∧ must have a node at
every level of T , condition (b) of Definition 6.11 requires that |f(t)| = |t|, or
in other words, that t and f(t) lie on the same level of T (and U). Let s be
the maximal strict predecessor of t in A∧. Then, by hypothesis, f(s) = s is
the maximal strict predecessor of f(t) in B∧. By Condition (d) of Definition
6.11, t(|s|) = f(t)(|s|) = i, or equivalently, sai ⊑ t and sai ⊑ f(t). Thus,
t and f(t) are two nodes of the strong subtree T of U lying on the same
level and extending the same immediate successor sai of s. Applying the
condition (str2) from the definition of strong subtree, we conclude that we
must have t = f(t). This completes the proof. 2

Now we are ready to state and prove the first basic result of this section.

Theorem 6.13 Suppose U is a nonempty downward closed finitely branch-
ing subtree of N<∞ with no terminal nodes and let A be an arbitrary subset
of U . Then, for every finite Souslin-measurable coloring of the class [A]Em of
all subsets of U realizing the same embedding type as A, there is a strong
subtree T of U such that the restriction of [A]Em to T is monochromatic.

Proof. Color each S ∈ S‖A‖(U) with the color of the unique subset that
belongs to [A]Em, if there is one; otherwise, S gets a color different from those
appearing on [A]Em. From Lemma 6.12 we infer that this is a well-defined
Souslin-measurable coloring. By Corollary 6.4, there is a strong subtree T
of U such that S‖A‖(T ) is monochromatic relative to the coloring we have
just defined. It follows that [A]Em|T is monochromatic relative to the given
coloring of [A]Em. 2

Corollary 6.14 (Milliken) Suppose U and A satisfy the hypothesis of the
previous theorem. Assume, moreover, that A is finite. Then for every finite
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coloring of the equivalence class [A]Em of all subsets of U of the same embed-
ding type in U as A, there is a strong subtree T of U such that the restriction
[A]Em|T is monochromatic.

The rest of the section is devoted to similar partition theorems where the
equivalence relation Em is relaxed at the necessary expense of shrinking the
output subtree T of U . The general procedure of reducing a given coloring
to a coloring of a family of strong subtrees of U and then applying Corollary
6.4 will however remain unchanged.

We now assume that our base tree U is particulary placed as a downward
closed subtree of N<∞, i.e., that it satisfies the following condition:

(1) (∀t ∈ U)(∃d = degU (t) ≥ 1)(∀i) ta(i) ∈ U ⇔ i < d.

Fix also a downward closed subtree A of U satisfying a similar condition:

(2) (∀t ∈ A)(∃d = degA(t) ≥ 0)(∀i) ta(i) ∈ A⇔ i < d.

In other words, we are assuming that the immediate successors of a node
of U or A is formed out of ta(i) for i running through an initial segment
of non-negative integers. While we impose that degU (t) ≥ 1, or in other
words, that U has no terminal nodes, the tree A can have terminal nodes,
i.e., nodes of degree 0. We wish U to be rich with “copies” of A, so it is
natural to impose the following restriction on U :

(3) (∀t ∈ U)(∀s ∈ A)(|t| ≥ |s| ⇒ degU (t) ≥ degA(s)).

Let [A]Eb be the collection of all B ⊆ U for which there is a bijection f :
A→ B such that

(4) s ⊑ t⇔ f(s) ⊑ f(t),

(5) sa(i) ⊑ t⇔ f(s)a(i) ⊆ f(t),

(6) (∀m < n)(∀s ∈ A(m))(∀t ∈ A(n))|f(s)| < |f(t)|,

(7) (∀m)(∀s, t ∈ A(m))(s <lex t→ |f(s)| ≤ |f(t)|).

Thus, [A]Eb is the equivalence class of a relation Eb on P(U) that is a bit less
restrictive that the relation Em considered above in Definition 6.11. While
mappings witnessing A EmB must map levels into levels, this is no longer
true about Eb.

A degree preserving subtree of U is a nonempty (and therefore infinite)
rooted subtree T of U such that:1

(8) (∀t ∈ T )(∀i < degU (t))(∃!s ∈ ImsuccT (t)) ta(i) ⊆ s.

Condition (3) above ensures that every degree preserving subtree T of U is
also rich with Eb-copies of the tree A. We are now ready to state and prove
the second basic result of this section.

1Here ImsuccT (t) denotes the set of all immediate successors of t in T .
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Theorem 6.15 For U and A as above and every finite Souslin-measurable
coloring of [A]Eb there is a degree preserving subtree T of U such that [A]Eb|T
is monochromatic.

Proof. We start with a particularly placed Eb-copy of the tree A inside N<∞,
i.e., a subtree A0 of N<∞ for which there is a bijection f0 : A → A0 satis-
fying conditions (4)− (7) above, together with the following two additional
conditions:

(9) (∀n)|A0 ∩ Nn| ≤ 1,

(10) (∀t ∈ A0)(∀s 6∈ A0)(s ⊑ t⇒ sa(0) ⊑ t).

Clearly [A0]Em ⊆ [A]Eb, so the Souslin-measurable coloring also acts on [A0]Em.
By Theorem 6.13, there is a strong subtree S of U such that the restriction
[A0]Em|S is monochromatic. Let (mk)k be the increasing enumeration of the
infinite subset of N where levels of S appear, i.e., such that S(k) ⊆ U(mk)
for all k. Choose a degree preserving subtree T of S (and therefore a degree
preserving subtree of U) such that

(11) (∀k) |T ∩ S(k)| = 1,

(12) (∀k < l)(∀t ∈ T ∩ S(l))[t ↾ mk 6∈ T ⇒ t(mk) = 0],

(13) (∀k < l)(∀s ∈ T (k))(∀t ∈ T (l))|s| < |t|.

Choose B ∈ [A]Eb such that B ⊆ T . Then there is a bijection f : A → B
satisfying (4) − (7) above. Let g = f ◦ f−1

0 : A0 → B. We claim that g
witnesses that A0 EmB, i.e., that g satisfies conditions (a)− (d) of Definition
6.11. Since Eb-copies of A are all ∧-closed, the conditions (a) and (c) follow
from (4) for f and f0. To check (b) pick s, t ∈ A0 such that |s| < |t|.
We may restrict ourselves to the case that s, t ∈ A0(m) for some m. Then
g(s), g(t) ∈ B(m) and f−1(s), f−1(t) ∈ A(m). By (7) for f0, we must have
that f−1

0 (s) <lex f
−1
0 (t), and therefore by (7) for f , we have that |g(s)| ≤

|g(t)|. However, since B is a subset of T, it has no two different nodes of
the same length, so we must have |g(s)| < |g(t)|. The converse implication
|g(s)| < |g(t)| ⇒ |s| < |t| is also immediate and is due to the fact that A0

has no two different nodes of the same length. When s ⊑ t condition (d)
follows from (5) for f and f0, so let us suppose that s and t are two nodes
of A0 such that |s| < |t| but s 6⊑ t. By the property (b) of g, which we have
just established, we know that |g(s)| < |g(t)| and g(s) 6⊑ g(t). Thus for some
k < l, g(t) ∈ T ∩ S(l) and g(s) ∈ T ∩ S(k) and g(t) ↾ mk 6= g(s), which by
(11) implies g(t) ↾ mk 6∈ T, and so (12) gives us that g(t)(|g(s)|) = 0. By
property (10) of f0, A0 and A, we have that t(|s|) = 0 as well. This checks (d)
for g and finishes the proof that A0 EmB. Since B was an arbitrary member
of [A]Eb included in T, we have shown that

[A]Eb|T ⊆ [A0]Em|T ⊆ [A0]Em|S. (6.16)

This finishes the proof. 2
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Corollary 6.16 Let U be a finitely branching rooted tree with no terminal
nodes. Then for every Souslin-measurable partition of the set U [∞] of all
infinite chains of U, there is a degree preserving infinite subtree T of U such
that T [∞] is monochromatic.

Proof. Take A = {0(n) : n ∈ N}. 2

Corollary 6.17 (Stern) For every finite Souslin-measurable partition of the
set Ch∞(2<∞) of all infinite chains of the complete binary tree 2<∞, there
is a perfect subtree T of 2<∞ such that Ch∞(T ) is monochromatic.

Corollary 6.18 (Silver) For every finite Souslin-measurable partition of the
set N[∞] of all infinite subsets of N, there is an infinite M ⊆ N such that
M [∞] is monochromatic.

Proof. Take A = U = {0(n) : n ∈ N}. 2

6.3 PARTITION CALCULUS ON FINITE POWERS OF THE

COUNTABLE DENSE LINEAR ORDERING

In this section we give another application of the Ramsey space of strong
subtrees, this time to the partition calculus of the countable dense linear
ordering. It turns out that there are numerical invariants tk(k ≥ 1) that
characterize the Ramsey theoretic properties of the countable dense linear
ordering (Q, <Q) in a very precise sense. The numbers tk are some sort of
Ramsey degrees that measure the complexity of an arbitrary finite coloring
of the set Q[k] of all k-element subsets of Q modulo, of course, restricting
to X [k] for some appropriately chosen dense linear subordering X of Q. It
turns out that these Ramsey degrees of Q are most easily described if2 one
works with Q = 2<∞ and <Q=<lex. A k-tuple A of elements of the complete
binary tree 2<∞ determines a subtree

A∧ = {s ∧ t : s, t ∈ A} (6.17)

which has as its embedding type the equivalence class [A]Em. It turns out that
order-isomorphic copies of Q in 2<∞ can omit certain embedding types so
one has to isolate the types that are really essential.

Definition 6.19 A finite set A ⊆ 2<∞ of some size k ≥ 1 realizes a Devlin
embedding type iff:

(i) A is the set of terminal nodes of A∧ that therefore has size exactly
2k − 1.

2Here, the <lex is the usual (see Appendix) lexicographical ordering of finite binary
sequences defined by letting s <lex t if either s ⊏ t or else s and t are incomparable in
the ordering ⊏ of end-extension and s(k) < t(k) for k the minimal integer i such that s(i)
and t(i) are both defined and different.
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(ii) |s| 6= |t| for every pair s 6= t from A∧.

(iii) t(|s|) = 0 for all s, t ∈ A∧ such that |s| < |t| and s 6⊑ t.

Figure 6.4 Devlin embedding types for k = 2.

The interest in Devlin embedding types is based on the following lemma.

Lemma 6.20 Every strongly embedded subtree T of 2<∞ contains an an-
tichain X such that

(a) (X,<lex) contains a dense linear ordering,

(b) Every finite subset of X realizes a Devlin embedding type,

(c) For every Devlin embedding type [A∧]Em and every Y ⊆ X order-
isomorphic to X, there exists B ⊆ Y such that [B∧]Em = [A∧]Em.

Proof. Clearly, we may assume T = 2<∞. Let S be the ∧-closed subtree of
2<∞ uniquely determined by the following properties:

(1) root(S) = ∅,

(2) |S ∩ 23n| = 1 and S ∩ 23n+1 = S ∩ 23n+2 = ∅ for all n,

(3) S is isomorphic to 2<∞,

(4) (∀m)(∀s, t ∈ S(m))(s <lex t⇒ |s| < |t|),

(5) (∀m < n)(∀s ∈ S(m))(∀t ∈ S(n)) |s| < |t|,

(6) (∀s ∈ S)(∀t 6∈ S)(t ⊑ s⇒ ta(0) ⊑ s).

Let X = {sa(0, 1) : s ∈ S}. We claim that this X has the properties (a)−(c).
Clearly (X,<lex) contains a dense linear ordering and this is true for every
Y ⊆ X with the property that Y ∧ includes a perfect (∧-closed) subtree
of S. The properties (1) − (4) ensure that every finite A ⊆ X realizes a
Devlin embedding type. So it remains to show that for every non-scattered
Y ⊆ X and every Devlin embedding type [A∧]Em, there is a B ⊆ Y such
that [B∧]Em = [A∧]Em. Pick a ∧-closed perfect subtree U of Y ∧ and a map
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Figure 6.5 S = {sf : f ∈ 2<∞} and X = {tf : f ∈ 2<∞}

f : U → Y such that |f(s)| < |t| for every pair s, t ∈ U such that |s| < |t|.
Note that it suffices to find a finite antichain C ⊆ U such that C∧

EmA∧,
since then

B = {f(s) : s ∈ C} (6.18)

is as required, i.e., B∧
EmA∧. By induction on the size k = |A|, we show that

there exists an infinitely branching ⊆-tree

Wk ⊆
2k−1⋃

l=0

U [l] (6.19)

such that

(7) ∅ ∈Wk,

(8) F ∈ Wk implies that either |F | = 2k − 1 or else there exist infinitely
many s ∈ U such that F ∪ {s} ∈Wk.

(9) Every F ∈ Wk of size 2k − 1 is ∧-closed and has the property that
F EmA∧.

For k = 1 this is clear. For the inductive step, let s0 = root(A∧) and for
i = 0, 1, let

Ai = {t ∈ A : s0
a(i) ⊆ t}. (6.20)

Let ki = |Ai| for i = 0, 1. Let u0 = root(U) and let

Ui = {u ∈ U : u0
a(i) ⊆ u}. (6.21)

By the induction hypothesis, there exist

Wki
⊆

2ki−1⋃

l=0

U
[l]
i (i = 0, 1) (6.22)
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satisfying (7)−(9). Note that the length function t→ |t| gives us an ordering
<A∧ of A∧ that shows us how A∧

0 and A∧
1 are intertwined to form A∧. We use

this information together with Wk0 and Wk1 to form an infinitely branching
subtree

Wk ⊆
2k−1⋃

l=0

U [l] (6.23)

satisfying (7)− (9). 2

For a positive integer k, let tk denote the number of different equivalence
classes [A∧]Em, where A ⊆ 2<∞ is an antichain of size k realizing a Devlin
embedding type.

Lemma 6.21 tk =
∑k−1

l=1

(
2k−2
2l−1

)
tl · tk−l with the initial value t1 = 1.

Proof. Let k > l ≥ 1. For i = 0, 1, set

Si = {s ∈ S : i is the first digit of s}. (6.24)

Let Xi = {sa01 : s ∈ Si} for i = 0, 1. By the proof of the previous lemma,
we have trees

Wl ⊆
2l−1⋃

j=0

S
[j]
0 and Wk−l ⊆

2k−2l−1⋃

j=0

S
[j]
1 (6.25)

satisfying (7)− (9) relative to some fixed antichains A0, A1 ⊆ 2<∞ realizing
Devlin embedding types, respectively. Using the trees Wl and Wk−l, we can
build a B ⊆ X such that for every i = 0, 1, if Bi = Xi ∩ B, then B∧

i EmAi,
and such that B∧

0 and B∧
1 are placed with respect to the | · |-ordering in any

way we wish. Clearly, there exist
(
2k−2
2l−1

)
possible ways to place B∧

0 inside
B∧, and so this finishes the proof. 2
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Figure 6.6 Devlin embedding types for k = 3.

Combining the two lemmas, we get the following

Theorem 6.22 (First Devlin Theorem) For every positive integer k there
is a coloring of Q[k] with tk colors, none of which can be avoided by going to
an order-isomorphic copy of Q.

The sequence t1 = 1, t2 = 2, t3 = 16, t4 = 272,. . . is a well-studied se-
quence of numbers known as odd tangent numbers (because tk = T2k−1,
where tan(z) =

∑∞
n=0(Tn/n!)zn). Their crucial role in the partition calculus

of the countable dense linear ordering is seen from Theorem 6.22 and the
following companion result.

Theorem 6.23 (Second Devlin Theorem) For every positive integer k and
every finite coloring at Q[k], there exists a subset Y ⊆ Q order-isomorphic
to Q such that Y [k] uses at most tk colors.

Proof. We way assume that we have a finite coloring

c : X [k] → {0, . . . , l − 1}, (6.26)

where X = {sa01 : s ∈ S} and S ⊆ 2<∞ are as in the conclusion of Lemma
6.20. For every finite antichain A ⊆ 2<∞ of size k realizing a Devlin type,
we define

cA : [A∧]Em|S → {0, . . . , l − 1} (6.27)

by

cA(B∧) = c({sa01 : s ∈ B}). (6.28)

By successive applications of Theorem 6.13, we get a strongly embedded
subtree U of S such that for every A ⊆ 2<∞ of size k realizing one of the
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Devlin embedding types, we have that cA is constant on [A∧]Em ↾ U. Pick an
antichain Z ⊆ U such that (Z,<lex) is a dense linear ordering. Let

Y = {sa01 : s ∈ Z}(⊆ X). (6.29)

Then (Y,<lex) is also a dense linear ordering. For y ∈ Y , let y∗ be the
element of Z obtained by removing the last two digits of y. Then for every
B ∈ Y [k],

B∗ = {y∗ : y ∈ B} (6.30)

realizes the same Devlin embedding type as B. It follows that the restriction
of c to Y [k] depends only on the embedding type of the ∧-closure of a given
k-tuple, and this in view of Lemmas 6.20 and 6.21 gives us that the range
of c ↾ Y [k] in {0, .., l− 1} has size at most tk. This finishes the proof. 2

Corollary 6.24 (Galvin) For every finite coloring of the set Q[2] of all un-
ordered pairs of rationals there is an X ⊆ Q order-isomorphic to Q such that
X [2] uses at most two colors.

These results about the countable dense ordering hint toward a general
Ramsey theory of ultrahomogeneous structures yet to be developed. Let us
exemplify this with the case of, say, the random graph, the unique universal
countable ultrahomogeneous graph R characterized by the property that for
every pair A and B of disjoint finite sets of vertices of R there is a vertex of
R connected to every vertex from A and to none from B. Not surprisingly,
the binary tree 2<∞ (and its subsets) allows a natural realization of R. To
see this, define the edge relation ER on 2<∞ as follows:

{s, t} ∈ ER iff |s| 6= |t|, and t(|s|) = 0 or s(|t|) = 0,

depending whether |s| < |t| or |t| < |s|, respectively. Then, clearly, for any
V ⊆ 2<∞ that is dense in 2<∞, i.e., has the property

(∀s ∈ 2<∞)(∃t ∈ V ) s ⊑ t

and which has at most one node of a given length realizes the random graph,
or in other words, (V,ER) is isomorphic to the random graph. In fact, one
needs much less from V ⊆ 2<∞ to realize the random graph. It suffices to
assume that V is a dense subset of some strong subtree S of 2<∞ besides of
course the assumption of not having two different nodes of the same length.
Hence, Milliken’s theorem (Corollary 6.14) has the following immediate con-
sequence.

Theorem 6.25 For every finite graph G there is a positive integer tR(G)
with the following two properties:

(a) There is a coloring of the set
(
R
G

)
of all isomorphic copies of G inside

the random graph R into tR(G) colors such that for every subgraph R′

of R isomorphic to R, the set
(
R′

G

)
uses all the colors.
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(b) For every finite coloring of
(
R
G

)
there is a subgraph R′ of R isomorphic

to R such that
(
R′

G

)
uses at most tR(G) many colors.

Proof. Since R is universal, we may assume that it actually contains the
graph (2<∞, ER) defined above as an induced subgraph. So, to prove the
existence of the number tR(G), we may consider the colorings of the family
of all induced subgraphs of (2<∞, ER) isomorphic to our given graph G
rather than

(
R
G

)
. By Corollary 6.14, for any such finite coloring there will

be a strong subtree S of 2<∞ such that the color of the induced subgraph
G′ of (S,ER) isomorphic to G will depend only on the embedding type of
its vertex set. Thus, S reduces the number of colors to not more than the
number of different embedding types of k-element subsets of 2<∞, where k
is the cardinality of the vertex set of G. 2

Remark 6.26 The number tEm
(|G|) of all different embedding types of

|G|-element subsets of 2<∞ is, as in the case of the countable dense linear
ordering, too rough an upper bound to tR(G). So, we need an analog of the
Devlin embedding type in this context that would give us the exact values
of tR(G) for every finite graph G. Some results in this direction are already
known. For example, it is known that tR(K2) = tR(K2) = 2. However,
obtaining general results in this area seems to require a substantial extension
of Milliken’s idea.

6.4 A RAMSEY SPACE OF INCREASING SEQUENCES OF

RATIONALS

In this section we prove an infinite-dimensional analog of the result from the
previous section. To state this result let, Q = (2<∞, <lex), where the <lex

is again the usual lexicographical ordering of binary sequences defined by
letting s <lex t if either s ⊏ t or else s and t are incomparable nodes of
the tree (2<∞,⊑) and s(k) < t(k) for k the minimal integer i such that s(i)
and t(i) are both defined and different. Let Q[∞] denote the collection of all
infinite increasing rapidly converging sequences of elements of Q, i.e., infinite
sequences (sn)n of elements of 2<∞ such that

(a) sn <lex sn+1,

(b) |sn+1 ∧ sn| < |sn| < |sn+2 ∧ sn+1|.

We view Q[∞] as a topological space with the topology induced from Q∞.

Theorem 6.27 For every finite Souslin-measurable coloring of Q[∞] there
is an H ⊆ Q order-isomorphic to Q such that H [∞] is monochromatic.

This theorem can be easily deduced from Theorem 6.13 in a manner similar
to the way that Corollary 6.14 was deduced from that theorem. However, it
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is also possible to build a Ramsey space that uses considerably less than the
full Halpern-Läuchli theorem as its basic principle A.4. For convenience, we
work with the complete binary tree 2<∞ with the usual tree ordering ⊑ of
end-extension as well as the lexicographical ordering <lex.

Let C∞ be the collection of all infinite combs inside the complete binary
tree 2<∞, i.e., infinite antichains A ⊆ 2<∞ such that

(1) |s| 6= |t| for all s, t ∈ A∧ with s 6= t,

(2) |s| < |t ∧ u| for every s, t, u ∈ A such that |s| < |t| < |u|,

(3) s <lex t whenever s, t ∈ A and |s| < |t|,

(4) t (|s|) = 0 for all s, t ∈ A such that |s| < |t|.

Figure 6.7 An example of a comb {s0, s1, s2, . . . }.

We approximate elements of C∞ as follows. Given a comb

A = {s0, s1, s2, . . .}

enumerated increasingly according to the length function t 7→ |t| , let

Ā = A∧ ∪ {sk+1 ↾ |sk| : k ∈ N},

and let

rn (A) = Ā ↾ n =
⋃

k<n

Ā(k). (6.31)

Thus r0 (A) = ∅ for all A, r1 (A) is the root of A∧,

r2 (A) = {root(A∧), s0, s1 ↾ |s0|} ,

r3 (A) = {root (A∧) , s0, s1 ↾ |s0| , s1 ∧ s2} , etc.

Let S∞ = S∞ (2<∞) be the collection at all infinite rooted strong subtrees
T of 2<∞ approximated as in Section 6.1 above,

rn (T ) = T ↾ n =
⋃

k<n

T (k) . (6.32)
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We let the inclusion be the ordering on S∞ as well as the relation between
members of C∞ and S∞. The inclusion order on S∞ is finitized as in the case
of Milliken’s space, while the inclusion as the relation between members of
C∞ and S∞ is finitized by the following relation ⊆fin between the finite
approximations C<∞ to C∞ and finite approximations S<∞ to S∞:

a ⊆fin u iff a = u = ∅ or a ⊆ u and a (max) ⊆ u (max) , (6.33)

where a (max) is the maximal level of a and u (max) is the maximal level of
the finite strong subtree u. Checking that the finitizations satisfy A.2 and
A.3 of Section 4.2 is straightforward. It remains to check A.4.

Lemma 6.28 Suppose [a, T ] is a nonempty basic set and that a has length l
in C<∞. Let O be a given subset of Cl+1. Then there is an S ∈ [depthT (a), T ]
such that rl+1 [a, S] is included either in O or its complement.

Proof. If l is even, then the possible end-extensions of a of length l + 1 are
simply equal to a together with some singletons from the tree that dominate
the lexicographically maximal node t0 at the maximal level a (max) of the
finite tree a. Hence, in this case the set O is simply a coloring of the strong
subtree T [⊒ t0] of 2<∞. So by the 1-dimensional version of the strong sub-
tree reformulation of the Halpern-Läuchli theorem, we get a strong subtree
S [⊒ t0] of T [⊒ t0] such that S[⊒ t0] is either included or is disjoint from the
set

{
t ∈ T : t0

a(0) ⊑ t and a ∪ {t} ∈ Q
}
. (6.34)

Let S be the element of [depthT (a), T ] whose cone above t0 is equal to the
just selected subtree S [⊇ t0].

If l is odd, then the top level a (max) is a singleton {t0} and the possible
end-extensions of a of length l+ 1 are equal to the union of a and two nodes
of the same height, one inside the strong subtree

T0 =
{
t ∈ T : t0

a(0) ⊑ t
}

(6.35)

and the other inside the strong subtree

T1 =
{
t ∈ T : t0

a(1) ⊑ t
}
. (6.36)

Hence, the set O ⊆ Cl+1 can be identified with a coloring of the level prod-
uct T0 ⊗ T1 of the trees T0 and T1. By the 2-dimensional version of the
strong subtree reformulation of the Halpern-Läuchli theorem, we get two
infinite strong subtrees Si ⊆ Ti (i = 0, 1) with the same level set L such
that S0 ⊗ S1 is monochromatic with respect to the coloring given by O. Let
S ∈ [depthT (a) , T ] be formed by letting its cone above t0 be equal to the
union of S0 and S1, while

S [⊒ t] = T [⊒ t] ↾ L (6.37)

for every t ∈ T (depthT (a)) such that t 6= t0. Then S satisfies the conclusion
of the lemma. 2

The abstract infinite-dimensional Ramsey theorem now gives us the fol-
lowing.
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Theorem 6.29 (C∞,S∞,⊆,⊆, r, r) is a Ramsey space.

To see that Theorem 6.27 is an immediate consequence of this result, we
argue as follows. The hypothesis gives us a finite Souslin-measurable coloring

c : Q[∞] → {0, 1, . . . , l− 1} . (6.38)

Recall that we take Q = (2<∞, <lex), so that we have the inclusion C∞ ⊆
Q[∞]. The topology of C∞ induced from Q[∞]

(
⊆ QN

)
is clearly weaker than

the topology of C∞ induced from CN
<∞. It follows that every color of the

induced coloring

c : C∞ → {0, 1, . . . , l − 1} (6.39)

is S∞-Ramsey. By Theorem 6.29 there is a strong subtree T of 2<∞ such
that c is constant of [∅, T ] = the set of all elements of C∞ included in T .
Take some ∧-closed subtree S ⊆ T order-isomorphic to the complete binary
tree 2<∞, which takes at most one node from a given level of T and such
that t (|s|) = 0 for all s, t ∈ S with |s| < |t| and s 6⊑ t. Then every rapidly
increasing sequence of elements of S is an infinite comb of 2<∞, i.e.,

S[∞] ⊆ C∞(T ).

If follows that c is monochromatic on S[∞]. Since (S,<lex) contains an order-
isomorphic copy of Q, this finishes the proof of Theorem 6.27.

Corollary 6.30 (Galvin) For every finite partition of the set of all un-
ordered pairs of rationals, there is a set of rationals X order-isomorphic
to the rationals, so that the set of all ordered pairs of elements of X avoids
all but two pieces of the partition.

Proof. The given coloring of unordered pairs of elements of Q = (2<∞, <lex)
induces continuous colorings on the sets C↑∞ and C↓∞ of all infinite lexico-
graphically increasing and decreasing combs of 2<∞, respectively, by simply
letting the color of a comb be equal to the color of its first two elements.
Now the rest of the proof follows the steps of our deduction of Theorem 6.27
from Theorem 6.29. The point again is that any strong subtree T of 2<∞

contains a perfect subtree S with the property that any unordered pair of
elements of S form a beginning of either an increasing or a decreasing comb
of S. 2

6.5 CONTINUOUS COLORINGS ON Q[k]

The way we have been obtaining order-isomorphic copies of Q that would
simplify given colorings of Q[k] in the previous two sections gives no informa-
tion about whether similar reductions are possible with topological copies at
Q. The Sierpinski coloring of Q[2] obtained by comparing the usual ordering
of Q with a well ordering shows that the number of colors cannot be reduced
to less than 2 not only in order-isomorphic but also topological copies of Q.



SPACES OF TREES 153

The following result shows that there is actually a more fundamental differ-
ence between the order theoretic and topological partition calculus on finite
powers of Q.

Theorem 6.31 (Baumgartner) There is a coloring c : Q[2] → N that takes
all the values from N on any set of the form H [2] for H ⊆ Q homeomorphic
to Q.

A close examination shows that neither Sierpinski’s nor Baumgartner’s col-
orings are continuous, so it remains to examine the possibility of a partition
calculus for continuous colorings of the symmetric powers Q[k].

Theorem 6.32 For every finite continuous coloring

c : Q[2] → {0, 1, . . . , l − 1} , (6.40)

there is an H ⊆ Q homeomorphic to Q such that c is monochromatic on
H [2].

Proof. It is convenient to take Q to be equal to the family FIN of all finite
nonempty subsets of N with the topology of pointwise convergence, i.e.,
identify sets with their characteristic functions and take the topology on FIN
as a subspace of the Cantor cube. Recall that for FIN we have Hindman’s
theorem as a basic pigeon hole principle which can be stepped up to all higher
dimensions. More precisely, by Corollary 5.26, for every positive integer d,
every finite coloring of FIN[d] is monochromatic on [P ][d] for some infinite

block sequence P of elements of FIN. Recall that here FIN[d] denotes the
collection of all block sequences of length d, i.e., sequences (xi)

d−1
0 of elements

of FIN such that

max (xi) < min (xj) whenever i < j. (6.41)

The given continuous coloring

c : {{u, v} : u, v ∈ FIN, u 6= v} → {0, 1, . . . , l − 1}

of the set of all unordered pairs of elements of FIN induces the coloring

c∗ : FIN[3] → {0, 1, . . . , l} (6.42)

of block sequences of elements of FIN of length 3, as follows:

c∗ (x, y, z) = c (x ∪ y, x ∪ z) . (6.43)

By Corollary 5.26, there is an infinite block sequence A = (an)n such that

c∗ is constant on [A]
[3]

. Recall that [A] denotes the combinatorial subspace
of FIN generated by A:

[A] =
{
an0 ∪ . . . ∪ anp

: p ∈ N and n0 < · · · < np

}
. (6.44)

We use the continuity of c to select an infinite subsequence B = (bk)k of
A = (an)n as follows. Let b0 = a0 and b1 = a1. Suppose bi = ani

(i ≤ k)
have been selected. By continuity of c, for every x 6= y in [(bi)i≤k], there is
an n = n (x, y) ∈ N such that

c (x, y) = c (s, t) (6.45)

for every pair s, t of elements of FIN such that
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(a) s end-extends x and t end-extends y.

(b) min (s \ x) ,min (t \ y) ≥ n.

Let bk+1 = ank+1
, where nk+1 is an integer such that nk+1 > ni for all i ≤ k

and

min
(
ank+1

)
> n (x, y) for all x, y ∈ [(bi)i≤k]. (6.46)

Let P denote the set of positive prime numbers. For a finite increasing se-
quence σ of elements of P, we choose an element bσ of [B] recursively as
follows:

(c) b∅ = b0,

(d) b〈p0,...,pi〉 = b〈p0〉 ∪ b〈p0p1〉 ∪ · · · ∪ b〈p0...pi〉.

Let H =
{
bσ : σ ∈ P [<∞]

}
. Then H is a subset of [B] homeomorphic to Q

that has the property that

(bσ \ bσ↾△(σ,τ)) ∩
(
bτ \ bτ↾△(σ,t)

)
= ∅ (6.47)

for every σ, τ ∈ P [<∞], where

△ (σ, τ) = min {i : σ (i) 6= τ (i)} . (6.48)

We claim that our original coloring c is constant on the set unordered pairs
of elements of H and that in fact the constant value is equal to the constant

value of c∗ on [A]
[3]

. So, consider two distinct elements bσ and bτ of H . If σ
is an initial part of τ , then by the choice of the subsequence B = (bk = ank

)k

we conclude that

c (bσ, bτ ) = c
(
bσap, bτ

)
, (6.49)

where p is any prime above the primes appearing in τ . So, it suffices to
consider only the case in which σ and τ do not extend each other. Let σ be
the maximal initial part of σ such that the interval [min bσ̄,max bσ̄] contains
no points from bτ \ bσ. Similarly, let τ̄ be the maximal initial part of τ such
that [min bτ̄ ,max bτ̄ ] contains no points from bσ \bτ . By our assumption both
σ̄ and τ̄ strictly end-extend ̺ = σ ↾ ∆ (σ, τ) = τ ↾ ∆ (σ, τ), the maximal
common initial part of σ and τ . Thus

y = bσ̄ \ b̺ and z = bτ \ b̺ (6.50)

are both nonempty and either max (y) < min (z) or max (z) < min (y).

Assuming the first alternative, we have that {b̺, bσ̄ \ b̺, bτ̄ \ b̺} ∈ [A][3], and
therefore,

c (bσ̄, bτ̄ ) = c∗ (b̺, bσ̄ \ b̺, bτ̄ \ b̺) = l0, (6.51)

where l0 is the constant value of c∗ on [A]
[3]

. Finally, note that by the choice
of B = (ank

)k , we have that c (bσ, bτ ) = c (bσ̄, bτ̄ ) = l0. This finishes the
proof. 2

The following result gives a definite restriction to extending Theorem 6.32
to higher dimensions.
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Theorem 6.33 There is a continuous map c : Q[3] → N that takes all the
values from N on any set of the form H [3] for H ⊆ Q homeomorphic to Q.

Since the coloring that witnesses this is of independent interest, we give some
details. Instead of working with the family FIN of finite nonempty subsets of
N as above, it will be more convenient now to take Q to be equal to the family
N[<∞] of all finite subsets of N with the topology of pointwise convergence.3

For s, t ∈ Q one defines an equivalence relation ∼st on s△t = (s \ t)∪ (t \ s)
as follows:

i ∼st j iff [i, j] ∩ (s \ t) = ∅ or [i, j] ∩ (t \ s) = ∅, (6.52)

where [i, j] denotes the closed interval of integers determined by min {i, j}
and max {i, j}. Let

osc(s, t) = |s△t/ ∼st| . (6.53)

Figure 6.8 osc(s, t) = |s△t/ ∼st | = 4.

Clearly, osc (t, t) = 0 and osc (s, t) = osc (t, s), so we shall also use the “sym-
metric” notation osc({s, t}) for the same number. The three-dimensional
version

osc : Q[3] → N (6.54)

is defined on the basis of osc : Q[<3] → N as follows:

osc (s, t, u) = osc ({s ∩ n, t ∩ n, u ∩ n}) , (6.55)

where n = △ (s, t, u) and where (see Figure 6.5)

△ (s, t, u) = max {min (s△t) ,min (s△u) ,min (t△u)} . (6.56)

Note that the set {s ∩ n, t ∩ n, u ∩ n} has indeed at most two elements, so
osc ({s ∩ n, t ∩ n, u ∩ n}) has an unambiguous meaning. Note also that

osc : Q[3] → N

3Thus, N[<∞] = {∅} ∪ FIN.
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Figure 6.9 osc(s, t, u) = 5

is a continuous map, while the two-dimensional version osc : Q[2] → N is
not.

In order to express some properties of the oscillation mapping, we need
the notion of the Cantor-Bendixson derivative ∂ : P (Q) → P (Q) , defined
as follows:

∂ (X) =
{
q ∈ X : q ∈ X \ {q}

}
. (6.57)

We shall also need the finite iterates of ∂ defined as follows:

∂1 (X) = ∂(X) and ∂k+1 (X) = ∂
(
∂k (X)

)
. (6.58)

The following lemma shows that osc : Q[3] → N is a continuous coloring
witnessing the conclusion of Theorem 6.33.

Lemma 6.34 Suppose that ∂k (X) 6= ∅ for some positive integer k and some
X ⊆ Q. Then, on X [3], the oscillation mapping takes all the values from the
interval {1, 2, . . . , 2k − 1} .

Proof. The proof is by induction on k. Let us first check the case k = 1,
i.e, when there is an x ∈ ∂X . Since x is a finite set, by the definition of the
topology on Q, we can find two elements s and t of X such that x is an
initial part of both s and t and

s \ x < t \ x. (6.59)

(Recall that for subsets a, b ⊆ N, the inequality a < b is a shorthand for the
inequality max (a) < min (b) .) It follows that max△ (x, s, t) = min (t \ x)
and therefore

osc (x, s, t) = osc (x, s) = 1. (6.60)

This establishes the initial case of the conclusion of the lemma. Assume
now that k > 0 and that the conclusion of the lemma is true for smaller
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integers. So, it suffices to show that the values 2k − 1 and 2k − 2 are taken
by osc on X [3]. Fix x ∈ ∂k(X). Then, recursively on 1 ≤ i ≤ k − 1 we can
choose si, ti ∈ ∂k−i (X) end-extending x such that the following holds for
1 ≤ i ≤ k − 2:

(1) si+1 properly end-extends si,

(2) ti+1 properly end-extends ti,

(3) si \ si−1 < ti \ ti−1 < si+1 \ si, where s0 = t0 = x.

Then, in particular sk−1, tk−1 ∈ ∂X . So, we can find s, t and u in X such
that

(4) s properly end-extends sk−1,

(5) t and u properly end-extend tk−1,

(6) tk−1 < s \ sk−1 < t \ tk−1 < u \ tk−1.

It follows that

△ (s, t, u) = △ (sk−1, t, u) = min (t \ tk−1) , (6.61)

and therefore,

osc (s, t, u) = osc (s, tk−1) = 2k − 1, (6.62)

osc (sk−1, t, u) = osc (sk−1, tk−1) = 2k − 2. (6.63)

This finishes the proof. 2

Note that the proof of Lemma 6.34 gives us the following information
about the two-dimensional oscillation mapping, which is sufficient to give us
the conclusion of Theorem 6.31.

Lemma 6.35 Suppose ∂k (X) 6= ∅ for some positive integer k and X ⊆ Q.
Then on X [2] the oscillation mapping takes all the values from the interval
{1, 2, . . . , 2k − 1}.

It is clear that our definition of the two-dimensional oscillation mapping
makes sense for pairs of arbitrary subsets of N rather than just the finite
sets. So we can define

osc : P (N)
[3] → N (6.64)

on the basis of osc : P (N)
[2] → N∪ {∞} in exactly the same manner is in

the case of finite sets,

osc (x, y, z) = osc ({x ∩ n, y ∩ n, z ∩ n}) , (6.65)

where

n = max {min (x△y) ,min (y△z) ,min (x△z)} . (6.66)

Then the proof of Lemma 6.34 gives us the following fact, where of course
we take P (N) with the topology of pointwise convergence.
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Lemma 6.36 Suppose that ∂k
(
X ∩Q

)
6= ∅ for some X ⊆ P (N) and some

positive integer k. Then the oscillation mapping on X [3] takes all the values
from the interval {1, 2, . . . , 2k − 1}.

Corollary 6.37 There is a continuous map c : (R \Q)
[3] → N that takes

all the values from N on any set of the form X [3] for X a closed but not
σ-compact subset of R \Q.

With almost no extra work one can replace the range N of the mapping c
in this corollary by the Baire space NN. This is done by simply iterating the

oscillation mapping on P (N)[3] as follows:

osc0 (x, y, z) = osc (x, y, z)

osck+1 (x, y, z) = osc (x \ n, y \ n, z \ n) ,

where n = △k (x, y, z) and where △k : P (N)
[3] → N is defined recursively

on k as follows:

△1 (x, y, z) = max {min (x△y) ,min (y△z) ,min (x△z)} , (6.67)

△k+1 (x, y, z) = △
(
x \ △k (x, y, z) , y \ △k (x, y, z) , z \ △k (x, y, z)

)
.

(6.68)
The corresponding continuous map

osc∞ : P (N)
[3] → NN (6.69)

defined by

osc∞ (x, y, t) =
(
osck (x, y, z)

)∞
k=0

(6.70)

takes all the values from NN on any set of the form X [3] for any closed
subset X of P (N) \Q such that ∂k(X ∩Q) 6= ∅ for all k. Since P (N) \Q is
homeomorphic to the irrationals, we have the following version of Corollary
6.37.

Theorem 6.38 There is a continuous map c : (R \Q)[3] → R\Q that takes
all the values from R \Q on any set of the form X [3] for X a closed but not
σ-compact subset of R \Q.

6.6 SOME PERFECT SET THEOREMS

In this section we continue the list of applications of Milliken’s space of strong
subtrees, or more precisely of the following result which appears above as
Theorem 6.13.

Theorem 6.39 Suppose U is a nonempty downward closed finitely branch-
ing subtree of N<∞ with no terminal nodes and let A be an arbitrary subset
of U . Then for every finite Souslin-measurable coloring of the class [A]Em of
all subsets of U realizing the same embedding type as A, there is a strong
subtree T of U such that the restriction [A]Em|T is monochromatic.
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The common feature of the list of corollaries in this section is that they are
all about the partition calculus of perfect sets of reals. We start with the
following basic reduction principle.

Theorem 6.40 (Mycielski) Suppose Mn ⊆ Rkn(n = 0, 1, . . .) is a sequence
of sets such that4 λkn

(Mn) = 0 for all n, or suppose that Mn is a meager
subset of Rkn for all n. Then there is a perfect set P ⊆ R such that P [kn] ∩
Mn = ∅ for all n.

Here, for an integer k ≥ 1 and P ⊆ R, the set P [k] of all k-element subsets
of P is identified with the following subset of Rk :
{

(x0, . . . , xk+1) ∈ Rk : x0 < . . . < xk−1 and {x0, . . . , xk−1} ⊆ P
}
. (6.71)

We give a sketch of the proof of the case of a single Gδ subset M ⊆ Rk of k-
dimensional Lebesgue measure-zero. The general case is an obvious variation
of this argument. (The category case, in fact, is considerably easier to prove.)
Recall the notion of Lebesgue density in dimension k:5

dk (x,H) = lim
δ→0+

λk (Bδ (x) ∩H)

λk (Bδ (x))
. (6.72)

The Lebesgue density theorem says that for every measurable set6 H ⊆ Rk,

λk({x ∈ Rk : dk (x,H) 6= χH(x)}) = 0.

A subset H of Rk is regular if it is Borel and if dk (x,H) = 1 for all x ∈ H .
Clearly, H = Rk \M is a regular subset of Rk. The following is an immediate
consequence of the Lebesgue density theorem and the inner regularity of the
k-dimensional Lebesgue measure λk.

Lemma 6.41 Suppose Q ⊆ H ⊆ R[k] are such that Q is finite and H is
regular. Then there is a regular set F such that Q ⊆ F ⊆ F ⊆ H.

Lemma 6.42 Suppose F is a regular subset of R[k], that K = {z1, . . . , zn},
is a finite subset of R enumerated increasingly such that K [k] ⊆ F . Let

X = {(x0, x1, . . . , xn) ∈ Rn+1 : x0 6= x1 and {x0, x1, . . . , xn}
[k] ⊆ F}.

(6.73)
Then λn+1 (Bδ (z1, z1, . . . , zn) ∩X) > 0 for all δ > 0.

Proof. First of all note that if we let z0 = z1, and z = (z0, z1, . . . , zn) then
for every i0, . . . , ik−1 ≤ n,

(
zi0 , . . . , zik−1

)
∈ F implies dn+1 (z, Fn+1 (i0, . . . , ik−1)) = 1, (6.74)

where

Fn+1 (i0, . . . , ik−1) =
{

(x0, . . . , xn) ∈ Rn+1 :
(
xi0 , . . . , xik−1

)
∈ F

}
. (6.75)

4Here, λkn
denotes the kn-dimensional Lebesgue measure on Rkn .

5Here, Bδ(x) is the ball of radius δ and center x with respect to the usual Euclidean
metric of Rk.

6In other words, the set of all x ∈ R, where the Lebesgue density disagrees with the
characteristic function of H has measure 0.
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If follows that for every i0, . . . , ik−1 ≤ n such that
(
zi0 , . . . , zik−1

)
∈ F we

have that

lim
δ→0+

λn+1 (Bδ (z) \ Fn+1 (i0, . . . , ik−1))

λn+1 (Bδ(z))
= 0. (6.76)

Since there are only finitely many choices of i0, . . . , ik−1 ≤ n, for all suffi-
ciently small δ > 0,

λn+1


Bδ(z) ∩




⋂

i0,...,ik−1≤n

Fn+1(i0, . . . , ik−1)




 > 0, (6.77)

which was to be proved. 2

We are now ready to start the proof of Theorem 6.40 by constructing a
perfect set P ⊆ R such that P [k] ∩ M = ∅. Recall that H = Rk \ M is
regular, so by Lemma 6.41 we can choose regular set F such that F ⊆ H .
Recursively on σ ∈ 2<∞ we construct a Cantor scheme

qσ ∈ int (Iσ) ⊆ Iσ
(
σ ∈ 2<∞, |σ| ≥ k

)
(6.78)

of closed intervals and points of R such that

(1) Iσ ∩ Iτ = ∅ whenever σ, τ ∈ 2k, σ 6= τ,

(2) Iσa0, Iσa1 ⊆ Iσ, Iσa0 ∩ Iσa1 = ∅,

(3) diam (Iσ) ≤ 2−|σ|,

(4) {qσ : σ ∈ 2n}[k] ⊆ F for all n ≥ k.

To see the recursive step from n to n+1, one starts with Kn = {qσ : σ ∈ 2n}

such that K
[k]
n ⊆ F and successively applies Lemma 6.42 finitely many times

and obtains qσa0, qσa1 ∈ Iσ (σ ∈ 2n) such that if we let

Kn+1 = {qσai : σ ∈ 2n, i < 2}

then K
[k]
n+1 ⊆ F . For each σ ∈ 2n we pick closed intervals Iσa0 Iσ−1 included

in Iσ of diameter ≤ 2n+1 such that qσai ∈ int (Iσa1) for i = 0, 1. This
completes the inductive step. Let

P =
⋃

x∈2N

∞⋂

n=k

Ix↾n.

Then P is a perfect subset of R such that P [k] ⊆ F ⊆ H , as required. This
finishes the proof of Theorem 6.40.

Corollary 6.43 Every perfect set of real numbers contains a perfect subset
that is algebraically independent.

Proof. This follows from Theorem 6.40 and the following simple fact. 2
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Lemma 6.44 If P is a perfect set of real numbers and f (v0, . . . , vk−1) a
nonzero polynomial then

Mf =
{

(x0, . . . xk−1) ∈ P k : f (x0, . . . , xk−1) = 0
}

(6.79)

is nowhere dense in P k.

Similar arguments deduce the following corollary from the measure-zero
case of Mycielski’s theorem.

Corollary 6.45 Let S be a given measure-zero set of irrational numbers.
Then there is a perfect set P such that the field generated by P is disjoint
from S.

Let us now give an application of Mycielski’s theorem to a different area.

Corollary 6.46 Suppose X is a Polish space and that Φ : 2N×X → R is a
Borel function such that the corresponding sequence of functions fa = Φ(a, .)
(a ∈ 2N) is uniformly bounded and such that the set

{a ∈ 2N : fa(x) 6= 0}

is at most countable for every x ∈ X. Then there is a perfect set P ⊆ 2N such
that the sequence (fa)a∈P is 1-unconditional7 in the Banach space ℓ∞(X).

Proof. By Mycielski’s theorem it suffices to show that for each positive in-
teger n, the set

Un = {(a0, ...., an−1) ∈ (2N)n : (fai
)i<n is 1-unconditional in ℓ∞(X)}

is comeager in (2N)n. Otherwise, since by our assumption about Φ this set
has the property of Baire, we can find an F ⊆ {0, 1, . . . , n− 1}, an ε > 0, a
sequence λi (i < n) of rationals, and a sequence of pairwise disjoint perfect
subsets P0, . . . , Pn−1 of 2N such that for every choice ai ∈ Pi (i < n), we
have

‖
∑

i∈F

λifai
‖∞ ≥ (1 + ε) · ‖

∑

i<n

λifai
‖∞.

Fix ai ∈ Pi for i ∈ F. Pick an x ∈ X such that

‖
∑

i∈F

λifai
‖∞ < (1 + ε) · |

∑

i∈F

λifai
(x)|.

By our assumption, the set D = {a ∈ 2N : fa(x) 6= 0} is countable, so we
can find ai ∈ Pi \D for each i < n such that i /∈ F. It follows that

‖
∑

i∈F

λifai
‖∞ < (1 + ε) · |

∑

i∈F

λifai
(x)| =

7Meaning that for every pair E and F of nonempty finite subsets of the index set P
with E ⊆ F and every choice (λi)i∈F of scalars, we have ‖

∑
i∈E λixi‖ ≤ ‖

∑
i∈F λixi‖

(see Appendix 9.4).
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= (1 + ε) · |
∑

i<n

λifai
(x)| ≤ (1 + ε) · ‖

∑

i<n

λifai
‖∞,

a contradiction.
2

We are now ready to start our list of the perfect-set corollaries of Theorem
6.2. We start with the following finite-dimensional result, which reveals the
interesting phenomenon that in some situations, when it is not possible to
have a purely Ramsey theoretic result, one still would like to know if there
is a maximally complex coloring witnessing this.

Corollary 6.47 (Blass) For every positive integer k and every finite Baire-
or Lebesgue-measurable coloring of the set R[k] of all k-element sets of reals,
there is a perfect set P ⊆ R such that P [k] meets at most (k − 1)! colors.

Proof. By Mycielski’s theorem, we find a perfect set P ⊆ R such that the
restriction of each color to P [k] is a relatively open subset of P [k]. In other
words, we may restrict ourselves to proving Blass’s theorem for a continuous

coloring of
(
2N
)[k]

. Going still to a thinner perfect set we may assume that
the color of any given k-element subset X of 2N is determined at the level

∆ (X) = max {∆ (x, y) : x 6= y ∈ X}+ 1, (6.80)

where ∆ (x, y) = min {n : x (n) 6= y (n)}. In other words, for every X,Y ∈(
2N
)[k]

if ∆ (X) = ∆ (Y ) = n and if X ↾ n = Y ↾ n, then X and Y have the
same color.

Let c :
(
2N
)[k]
→ {0, . . . , l − 1} be the given coloring. Define

c∗ :
(
2<∞

)[k]
→ {0, . . . , l} (6.81)

by letting c∗ ({s0, . . . , sk−1}) = l if either {s0, . . . , sk−1} is not an antichain
or else c is not monochromatic on [s0] × . . . × [sk−1]; in all other cases put
c∗ ({s0, . . . , sk−1}) = c (X) for some (all) X ∈ [s0]×. . .×[sk−1]. By Corollary
6.14 there is a strong subtree T of 2<∞ such that c∗ is monochromatic on
any class of the form [A]

Em
↾ T where A is some k-element subset of 2<∞.

Choose some ∧−closed perfect subtree S of T such that

(i) (∀n) |S ∩ T (n)| ≤ 1,

(ii) (∀s, t ∈ S) (|s| < |t|& s * t⇒ t (|s|) = 0).

Note that the embedding type of a k-element antichain A = {s0, . . . , sk−1} of
S enumerated according to the lexicographical ordering of 2<∞ is uniquely
determined by the way the distances

∆ (si, si+1) (i < k − 1) (6.82)

are ordered according to the natural ordering of N. It follows that a k-ele-
ment antichain of S realizes one of exactly (k − 1)! different embedding types
in 2<∞. Since for every such antichain A = {s0, . . . , sk−1} ⊆ S, the color
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c∗ (A) is equal to the constant value of c on [s0] × . . . × [sk−1] , this shows
that c is monochromatic in P [k] where P is the perfect subset of 2N formed
by taking the unions of all infinite chains of S. 2

The (k − 1)! in Blass’s theorem is only a possible upper bound on how much a
given measurable coloring can be reduced. To see that this is in fact optimal,
with every permutation π ∈ Sk−1 we associate the following open subset of
R[k]:

Cπ = {{x0, . . . , xk−1}< : (∀i, j < k − 1)

(xi+1 − xi < xj+1 − xj ↔ π (i) < π (j))}.

Then P [k] ∩ Cπ 6= φ for all perfect P ⊆ R and π ∈ Sk−1. Note that this
example also shows that in any infinite-dimensional perfect set theorem of
this sort we must restrict ourselves to colorings of increasing (or decreasing)
infinite sequences of R. In fact, this example shows that we must also restrict
ourselves to sequences (xn) ⊆ R that are, moreover, rapidly converging in
the following sense.

Definition 6.48 An increasing sequence (xn) ⊆ R is rapidly converging if
the sequence of consecutive distances is monotone and it conveges to 0, i.e.,

xn+2 − xn+1 < xn+1 − xn for all n and xn+1 − xn −→n 0. (6.83)

Let R[∞] denote the collection of all increasing rapidly converging sequences
of the reals. Of course, this definition makes perfect sense for many other
spaces, such us for example the Baire space NN or the Cantor space 2N, which
beside the natural metrics have the natural (lexicographical) orderings.

It turns out that the partition theorem for embedding types (Theorem 6.13)
has perfect set properties of this sort as immediate corollaries. The following
is an example of this kind of corollaries of Theorem 6.13.

Corollary 6.49 (Louveau-Shelah-Velickovic) For every finite Souslin-mea-
surable coloring of the set R[∞] of all increasing rapidly converging infi-
nite sequences of the reals, there is a perfect set P ⊆ R such that P [∞] is
monochromatic.

Proof. Without loss of generality, we prove this result for the space
(
2N
)[∞]

of increasing rapidly converging sequences of the Cantor space 2N. Let A ={
1(n)0(m) : n,m ∈ N

}
. An elementB of the embedding class [A]

Em
determines

a lexicographically strictly increasing sequence, which is actually rapidly

convergent, i.e., an element of
(
2N
)[∞]

. This gives us a coloring of [A]
Em

. By
Theorem 6.39, there is a strong subtree T of 2<∞ such that [A]

Em
↾ T is

monochromatic. Let S be a ∧-closed subtree of T satisfying (i) and (ii) from
the proof of Blass’ theorem and let P be the perfect subset of 2Nobtained
by taking the unions of all infinite chains of S. Then every member of P [∞]

is determined by some B ∈ [A]
Em

↾ S, and so P [∞] is monochromatic. 2
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For a permutation π of N, let R[π] be the collection of all strictly increasing
converging sequences (xn) ⊆ R such that

(a) xn+1 − xn 6= xm+1 − xm whenever m 6= n,

(b) xn+1 − xn < xm+1 − xm iff π (m) < π (n).

Thus, R[π] = R[∞] for π = id. Then the partition theorem for embedding
types has the following consequence, which incorporates both Corollary 6.47
and Corollary 6.49.

Corollary 6.50 For every permutation π of N and every finite Souslin-
measurable coloring of R[π], there is a perfect set P ⊆ R such that P [π] is
monochromatic.

The following variation on Blass’s theorem can now be easily deduced from
these results.

Corollary 6.51 (Parametrized Blass Theorem) For every positive integer k
and every finite Souslin-measurable coloring of the product R[k] × N[∞] that
is invariant under finite changes on the second coordinate, there is a perfect
P ⊆ R and an infinite M ⊆ N such that the product P [k] ×M [∞] meets at
most (k − 1)! colors.

Proof. Clearly, we may replace R by the Cantor space 2N of all infinite binary
sequences and assume that we have a Souslin-measurable l-coloring of the
form

c :
(
2N
)[k]
× N[∞] → {0, . . . , l − 1} . (6.84)

For π ∈ Sk−1, let π∗ ∈ S∞ be determined as follows: π∗ ↾ k − 1 = π and
π∗ (n) = n for n ≥ k − 1. For π ∈ Sk−1 define

c∗π : (2N)[π
∗] → {0, . . . , n− 1} (6.85)

by

c∗π ((xn)) = c
(
(xn)n<k , {∆ (xn, xn+1) : n ≥ k}

)
. (6.86)

By Corollary 6.50 we get a perfect set P ⊆ 2N such that c∗π is monochromatic
on P [π∗] for all π ∈ Sk−1. Let s0 be the stem of P , let

P0 =
{
t ∈ P : t ⊆ s0

a(0) or s0
a(0) ⊆ t

}
, (6.87)

and let (zn) be an arbitrary rapidly increasing sequence of elements of P
that extend s0

a(1). Let

M = {∆ (zn, zn+1) : n ∈ N} . (6.88)

Then c takes at most (k − 1)! values on P
[k]
0 ×M

[∞]. 2

The following example shows that the restriction that the coloring is in-
variant under finite changes on the second coordinate in Corollary 6.51 is
essential.
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Example 6.6.1 There is a continuous coloring c : (2N)[2]×N[∞] → N that
takes all the values from N on any set of the form P [2] ×M [∞], where P is
a perfect subset of 2N and M is an infinite subset of N. One such coloring c
is defined by

c({x, y}, Z) = max{k : 2k divides |Z ∩ {0, 1, . . . ,∆(x, y)}|}. (6.89)

We have seen our next corollary in a different context above, but we shall
now easily deduce it also from the parametrized version of Blass’s theorem.

Corollary 6.52 (Harrington) For every positive integer k and every boun-
ded sequence (fn) of Baire- or Lebsgue-measurable maps from Rk into R,
there is a subsequence (fni

) and a perfect set P ⊆ R such that (fni
) is

uniformly convergent on P k.

Proof. First of all, applying Mycielski’s theorem and going to a perfect subset
of R, we may assume that the functions fn are in fact continuous. As before,
working by induction on k and using the fact that Rk is naturally decomposed
into a finite union of subsets isomorphic to R[l] (l ≤ k) , it suffices to prove
only the symmetric version of the theorem, or in other words, assume that the
mappings are defined on the set R[k] of all increasing k-tuples. The sequence
(fn) of Borel functions leads to coloring

c : R[k] × N[∞] → {0, 1, 2}

defined as follows:

c (x,M) =





0 if (fn (x))n∈M is eventually nondecreasing
1 if (fn (x))n∈M is eventually nonincreasing
2 if (fn (x))n∈M is none of the above.

(6.90)

By Corollary 6.51 there is a perfect set P ⊆ R and an infinite M ⊆ N
such that c on P [k] ×M [∞] depends only on the relationship between the
consecutive distances of k-tuples x0 < x1 < · · · < xk−1 of elements of P . If
follows that P [k] can be split into (k − 1)! relatively clopen subset on which
the convergence is monotone. By Mycielski’s theorem, we may assume that
the pointwise limit of (fn)n∈M is a continuous function on P [k]. So by Dini’s

theorem we can conclude that the convergence of (fn)n∈M on P [k] is in fact
uniform. This finishes the proof. 2

6.7 ANALYTIC IDEALS AND POINTS IN COMPACT SETS

OF THE FIRST BAIRE CLASS

In this section we apply the Ramsey theory of perfect trees to the analysis
of characters of points in separable compact sets of Baire Class 1 functions
on some Polish space X . This eventually reduces to studying a special kind
of ideals on N. Recall that an ideal on N is simply a family of subsets of
N closed under taking finite unions and subsets. The descriptive properties
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of ideals like for example Fσ, Borel, or analytic refer to the topology they
inherit from the power set of N when this set is naturally identified with the
Cantor space 2N. When working with ideals on N, one implicitly assumes
that they are all proper, i.e., not equal to the power set of N and nonprincipal
in the sense that they contain all singletons. Ideals on N are typically related
to various notions of smallness for subsets of N. Consider, for example, the
ideal FIN of all finite subsets of N or the ideal Z0 of all subsets M of N
having asymptotic density 0. Ideals on N can also be viewed as points in
topological spaces via the identification

IK(x, (xn)) = {M ⊆ N : x /∈ {xn : n ∈M}} (6.91)

for some Hausdorff space K, some point x ∈ K and a sequence (xn) ⊆
K\{x} accumulating to x. It is in this context that one realizes that many
of the natural examples of ideals on N are in fact analytic, i.e., equal to
continuous images of the irrationals when considered as topological spaces
in the topology of pointwise convergence. Thus in particular, every Borel
ideal on N is analytic although of course not vice versa. The following lemma
explains the place of analytic ideals in this representation.

Lemma 6.53 An ideal I on N is analytic if and only if it is represented by
a sequence (fn) of continuous functions on a Polish space X accumulating
pointwise to a continuous function f on X.

Proof. To see the direct implication, note that I allows the representation
I = IK(0̄, (πn)) with K being the Tychonov cube 2I . Pick a continuous map
g : NN → 2N whose range is equal to I, and for n ∈ N define fn = πn ◦ g and
let f = 0̄ ◦ g. Then all these functions are continuous functions from NN into

{0, 1}. Note also that I = IK0(f, (fn)), where K0 is the Tychonov cube 2NN

.
To see the reverse implication, we may assume that the accumulation point

f is actually equal to the constantly zero function 0̄ on X. For ǫ > 0 and a
finite set S ⊆ X, let

M(S, ǫ) = {n ∈ N : (∃s ∈ S) |fn(s)| ≥ ǫ}.

Note that (S, ǫ) 7→M(S, ǫ) is a Borel map from the product X [<∞]×R+ into
2N when the set X [<∞] of finite subsets of X is equipped with the Vietoris
topology. It follows that {M(S, ǫ) : S ∈ X [<∞], ǫ > 0} is an analytic subset
of 2N that generates the given ideal IRX (0̄, (fn)). 2

Many structural results about analytic ideals on N are obtained by ana-
lyzing a notion of cofinal similarity among analytic ideals on N. Thus, we
consider ideals on N as directed sets under the inclusion ordering and study
their cofinal structure. When ideals are viewed as points in separable topolog-
ical spaces, the theory of cofinal similarity between ideals on N is transferred
to a particularly fine theory about characters of points in such spaces. So let
us recall the basic notions of this so-called Tukey theory of cofinal types in
this context. Given a pair of ideals I and J on N, we say that I is cofinally
finer than J if there is a mapping f : I → J such that
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(cf1) a ⊆ b→ f (a) ⊆ f (b) ,

(cf2) (∀a ∈ J )(∃b ∈ I) f (b) ⊇ a.

This is equivalent to saying that J is Tukey-reducible to I in the sense that
there is a Tukey map g : J → I, i.e., a map with the following property:

(tk) (∀X ⊆ J )[
⋃
X /∈ J =⇒

⋃
g′′X /∈ I].

For, given f : I → J satisfying (cf1) and (cf2), we can define g : J → I
satisfying (tk) by letting g(a) be any b ∈ I such that f(b) ⊇ a. Conversely,
given g : J → I satisfying (tk), we can define f : I → J satisfying (cf1)
and (cf2) by letting f(b) =

⋃
{a ∈ J : g(a) ⊆ b}. We use the notation

J ≤T I whenever there is a Tukey map from J into I, and we write I ≡T J
whenever J ≤T I and I ≤T J .

It turns out that the class of analytic ideals on N has a maximal element
Imax relative to ≤T . The best way to visualize Imax is to look at its copy on
the index set 2<N rather than N. Thus we let Imax be the ideal of subsets of
2<N generated by the family of all infinite branches of the complete binary
tree (2<N,⊑). It turns out that Imax is represented by a separable compact
set of Baire Class 1 functions defined on the Cantor set 2N. To see this, let

Â(2N) = 0̄ ∪ {δx : x ∈ 2N} ∪ {δs : s ∈ 2<N},

where for x ∈ 2N, the δx denotes the characteristic function of the singleton
{x}, and where for s ∈ 2<N, the δs denotes the characteristic function of the
basic clopen set of all x ∈ 2N that end-extend s. Referring to the notation
introduced at the beginning of this section, with index set N replaced by
2<N, we have the following equality

Imax = IK(0̄, (δs)s∈2<N ) with K = Â(2N).

As indicated by its name, this ideal has the following property.

Lemma 6.54 FIN ≤T I ≤T Imax for every proper (analytic) ideal I on N.

Proof. To verify the second inequality, choose a homeomorphic embedding
f : I → 2N, for example the one obtained by identifying a member of I with
its characteristic function. Now note that f is a Tukey map. 2

The problem of characterizing analytic ideals I on N such that I ≡T Imax

naturally arises. The purpose of this section is to prove the following result,
which is given below in a more precise form as Theorem 6.64 after we develop
some theory of analytic gaps, a theory which is very closely related to the
Ramsey theory of perfect trees developed so far in this chapter.

Theorem 6.55 Let I be a proper analytic ideal on N represented by a com-
pact set of Baire Class 1 functions defined on some Polish space X. Then
either I ≡T FIN or I ≡T Imax.
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Note that the representation I = IK(x, (xn)) indicates that part of the
structure of an analytic ideal I will likely be hidden inside its orthogonal

I⊥ = {N ⊆ N : N ∩M is finite for all M ∈ I}.

To see this, note that, modulo indexing, I⊥ is simply the set of all subse-
quences of (xn) that converge to x. In nontrivial cases the pair (I, I⊥) forms
a gap with one of its sides an analytic family of subsets of N. So in order to
take advantage of this representation, we recall some of the theory of ana-
lytic gaps . Two subsets M and N of N are orthogonal if their intersection
is finite. Let M ⊥ N denote this fact. Two families M and N of subsets of
N are orthogonal if M ⊥ N for all M ∈ M and N ∈ N . We use M ⊥ N
to denote this fact and we use M⊥ to denote the orthogonal of M, the set
{N ⊆ N : N ⊥ M for all M ∈ M}. Given a pair M and N of families of
subsets of N, we say that M is countably generated in N if there is a count-
able sequence (Nk) of elements of N such that every element ofM is almost
included in one of the Nk. The following example gives a typical situation
when this happens.

Example 6.7.1 Let M be a countable family of infinite pairwise disjoint
subsets of N that covers N and let N =M⊥. Then (M,N ) forms an analytic
gap in which M is countably generated in N⊥.

This example motivates the following definition.

Definition 6.56 Let N be a given family of subsets of N. A subtree T of
the tree (N[<∞],⊑) of all finite subsets of N ordered by the relation ⊑ of
end-extension is an N -tree if it satisfies the following conditions:

(a) ∅ ∈ T,

(b) t ∈ T implies that {n ∈ N : n > max(t) and t∪ {n} ∈ T } is an infinite
set included in a member of N .

The following result characterizes one kind of analytic gap.

Theorem 6.57 (Analytic Gap Theorem) Suppose M and N are two or-
thogonal families of subsets of N and that M is analytic and closed under
taking subsets. Then either

(1) M is countably generated in N⊥, or else

(2) there is an N -tree all of whose branches are members of M.

In order to get alternative (2) in a symmetric form, we need to weaken
condition (1) of separation. Thus, we shall say that two orthogonal families
M and N of subsets of N are countably separated if there is a countable
sequence (Ck) of subsets of N such that for every pair (M,N) ∈ M × N
there is a k such that M ⊆∗ Ck and Ck ⊥ N. Note that the two families of
Example 6.7.1 are countably separated, so we need a different example that
would lead us to the second alternative of the analytic gap dichotomy.
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Definition 6.58 Two orthogonal familiesM = {Mi : i ∈ I} and N = {Ni :
i ∈ I} of subsets of N indexed by the same set I form a biorthogonal gap if
for all i, j ∈ I,

(Mi ∩Nj) ∪ (Mj ∩Ni) = ∅ iff i = j.

When the index set I is a perfect set of reals and the map i 7→ (Mi, Ni)
is continuous and one-to-one, then we say that M = {Mi : i ∈ I} and
N = {Ni : i ∈ I} form a perfect biorthogonal gap.

Lemma 6.59 Two orthogonal families M = {Mi : i ∈ I} and N = {Ni :
i ∈ I} of subsets of N indexed by an uncountable set I and forming a biorthog-
onal gap cannot be countably separated.

Proof. To see this, note that for every C ⊆ N, the set

{i ∈ I : Mi ⊆
∗ C and C ⊥ Ni}

is at most countable. 2

Example 6.7.2 (Perfect Biorthogonal Gap) This is a gap of subsets of the
set 2<N of all finite binary sequences rather than of subsets of N. We view
2<N as a tree ordered by the relation ⊑ of end-extension, and we view 2N as
the set of all branches of the complete binary tree 2<N. For x ∈ 2N, let

Mx = {σ ∈ 2<N : σa0 ⊏ x} and Nx = {σ ∈ 2<N : σa1 ⊏ x}.

Then M = {Mx : x ∈ 2N} and N = {Nx : x ∈ 2N} form a perfect biorthogo-
nal gap of subsets of the complete binary tree 2<N.

The following result shows that this is a typical example of a noncountably
separated analytic gap.

Theorem 6.60 (Perfect Biorthogonal Gap Theorem) Suppose M and N
are two orthogonal analytic families of infinite subsets of N closed under
subsets and finite changes of their elements. Then either

(1) M and N can be separated by countably many sets, or else

(2) there is a biorthogonal gap {Mx : x ∈ 2N} ⊆ M and {Nx : x ∈ 2N} ⊆ N
indexed continuously by the Cantor space. 2

Here is a typical application of these two gap theorems, which shows that
the conclusion of the Perfect Biorthogonal Gap Theorem can sometimes be
extended to families of larger descriptive complexities, provided one adds
some structural conditions.

Lemma 6.61 Suppose that an analytic ideal I on N is represented as

I = IK(f, (fn)),

where K is some compact set of Baire Class 1 functions.8 Then either I is
countably generated or there is a perfect biorthogonal gap {Mx : x ∈ 2N} ⊆ I
and {Nx : x ∈ 2N} ⊆ I⊥ such that (fn)n∈Mx

is a convergent sequence in K
for all x ∈ 2N.

8Thus, K is simply a collections of Baire Class 1 functions on R that is compact when
equipped with the topology of pointwise convergence on R.
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Proof. Beside the assumption that the ideal I is analytic, we use only the
following two additional properties, to be established in the next chapter
when we develop some local Ramsey theory (see Corollary 7.52 and Theorem
7.53):

(I⊥)⊥ = I. (6.92)

(∀{an : n ∈ N} ⊆ I⊥ ∩ N[∞])(∃b ∈ I⊥)(∃∞n) b ∩ an 6= ∅. (6.93)

Applying the Analytic Gap Theorem to the pair (I, I⊥) and property (6.92)
of I, if the ideal I is not countably generated, we can find an I⊥-tree T all
of whose branches are members of I. Refining T , we may assume that

{n ∈ N : s ∪ {n} ∈ T } ∩ {n ∈ N : t ∪ {n} ∈ T } = ∅ for s 6= t ∈ T. (6.94)

It follows that a node t 6= ∅ in T is uniquely determined by its maximal
element max(t). This means that we can transfer the restriction I ↾ (

⋃
T )

to the tree T itself, and since T \{∅} is naturally isomorphic to the collection
FIN of all nonempty finite subsets of N (considered a tree under the ordering
⊑ of end-extension), we may actually assume that I lives on the index set
FIN. More precisely, we may assume that I = IK(f, (ft)t∈FIN), for some
compact set K of Baire Class 1 functions such that

(i) Every branch of the tree (FIN,⊑) belongs to I.

(ii) The set {t ∪ {n} : n ∈ N, n > max(t)} of all immediate successors of a
given node t ∈ {∅} ∪ FIN belongs to I⊥.

Color the space FIN[∞] of all infinite sequences B = (bn) of finite subsets
of N according to whether the sequence (fb↾n∪{min(bn+1)}) is convergent in
K or not, where for an infinite block sequence Z = (zn) of elements of FIN
and n ∈ N, we let z↾n =

⋃n
k=0 zk. Clearly, this is a Souslin-measurable col-

oring, so by Corollary 5.24, there is an X ∈ FIN[∞] such that the set [X ][∞]

of all infinite block-subsequences of X is monochromatic. By Rosenthal Di-
chotomy Theorem 5.56, it must be that (fb↾n∪{min(bn+1)}) is convergent in K

for all B ∈ [X ][∞]. Note that, given an infinite block subsequence Y of X,
applying property (6.93) to the sequence ({yn ∪ {min(yk)} : k ∈ N, k > n})
of elements of I⊥, we can find an infinite block-subsequence B of Y such that
(fb↾2n∪{min(b2n+2)}) converges to f, as well as an infinite block subsequence C
of Y that has this property relative to the odd indexes. Applying Corollary
5.24 to the two respective Souslin-measurable colorings and observing that
we can take union of two elements of I⊥ and remain in I⊥, we can find an
infinite block subsequence Y of X such that the sequence (fb↾n∪{min(bn+2)})

converges to f for all B ∈ [Y ][∞]. By taking the limit of an appropriate
Cantor scheme of finite increasing subsequences of Y = (yn), we arrive at a
continuous one-to-one mapping σ 7→ Bσ = (bσn) from the Cantor set 2N into
the set of all increasing subsequences of Y such that for every σ <lex τ in
2N, if n = min{k : σ(k) 6= τ(k)}, then

〈bσl : l < n〉 = 〈bτl : l < n〉 (6.95)
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and for some k ∈ N larger than all j for which yj appears in the finite
subsequence 〈bσl : l < n〉 = 〈bτl : l < n〉 of Y, we have

bσn = yk+1 and bτn = yk and bτn+1 = yk+1. (6.96)

For σ ∈ 2N, set

Mσ = {bσ↾n ∪ {min(bn+1)} : n ∈ N} and Nσ = {bσ↾n ∪ {min(bn+2)} : n ∈ N}.
Clearly, σ 7→ (Mσ, Nσ) is a continuous map from the Cantor set into the
power set of FIN and Mσ ∩Nσ = ∅ for all σ ∈ 2N. To check that (Mσ, Nσ)
(σ ∈ 2N) forms a perfect biorthogonal gap, consider σ <lex τ in 2N such
that n = min{k : σ(k) 6= τ(k)} > 0. From Equation (6.95), we learn that
bσ↾n−1 = bτ↾n−1 = s, while from Equation (6.96), we learn that

s ∪ {min(bσn)} = s ∪ {min(bτn+1)} ∈Mσ ∩Nτ , (6.97)

as required. Note also that by our initial choice of the block sequence X,
we know that (ft)t∈Mσ

is a converging sequence in K, for all σ ∈ 2N. This
finishes the proof. 2

Before proceeding further, let us give applications of Lemma 6.61 to the
unconditional basic sequence problem and the separable quotient problem
in Banach spaces.

Theorem 6.62 Suppose X is a separable Banach space that contains no
ℓ1 but whose dual is not separable. Then its double dual X∗∗ contains a
normalized 1-unconditional sequence (fa)a∈2N indexed by the Cantor space
2N.

Proof. By Rosenthal’s ℓ1-theorem and by Rosenthal’s dichotomy the double
dual ballK = BX∗∗ can be viewed as a compact set of Baire Class 1 functions
defined on the dual ball BX∗ equipped with its weak*-topology. By our
assumption that X∗ is not separable, the point 0∗∗ is not Gδ in K. By
Lemma 6.61 we get a perfect family

fa = limn∈Ma
fn (a ∈ 2N)

of functionals satisfying the hypothesis of Corollary 6.46, so an application
of this result gives us an 1-unconditional perfect subsequence fa (a ∈ 2N). 2

Recall that a Banach space E is said to be analytically representable if it
is isomorphic to a subspace F of ℓ∞ such that F as a topological subspace of
RN is analytic, i.e., a continuous image of some Polish space. Equivalently,
the dual ball BE∗ of E has a countable subset D that norms E such that E
equipped with the topology τD that makes all the functionals from D con-
tinuous is an analytic space. While this class includes all separable Banach
spaces, its nonseparable part seems to avoid all the standard pathologies
seen in the class of nonseparable Banach spaces.

Theorem 6.63 Every analytically representable Banach space E has a quo-
tient9 with a Schauder basis that can be taken unconditional if E is not
separable.

9All Banach spaces in question are assumed to be infinite-dimensional.
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Proof. The separable case of this result is of course the well-known theorem
of Johnson and Rosenthal (see Theorem 9.60). We shall reduce the rest of
this result to Lemma 6.61 via Collorary 6.46, but this time we also use some
well-known results from Banach-space theory which all could be found in
textbooks of this area such as, for example, [64] and [42] or in Appendix 9.4
to this book. Applying Rosenthal’s dichotomy to the dual ball BE∗ , viewed
as a set of functions on the analytic space (E, τD), we conclude that either
BE∗ is a pointwise compact set of Baire Class 1 functions on (E, τD), or else
BE∗ equipped with the weak* topology contains a copy of βN. In the latter
case by Talagrand’s theorem (see Theorem 9.63), E has quotient isomorphic
to ℓ∞, which is more than we need here. So we are left with the case that
K = BE∗ is a compact set of Baire Class 1 functions. If E is not separable,
then 0∗ is not a Gδ point of K, so, as above, we get 1-unconditional sequence
in E∗ of length continuum, so in particular 1-unconditional infinite sequence
(fn) ⊆ E∗. Now the conclusion follows from Theorem 9.60.

2

Let us now go back to the main goal of this section and discuss the problem
of characterizing analytic ideals I on N that are Tukey-equivalent to the
ideal Imax realizing the maximal Tukey type. We have the following partial
information about this problem, in which for an infinite subset M of N, we
let IM

max be the isomorphic copy of Imax induced by a bijection between 2<N

and M.

Theorem 6.64 Suppose that a proper analytic ideal I on N is represented
by a compact set of Baire Class 1 functions defined on some Polish space X.
Then either I is countably generated, or there is an infinite subset M of N
such that I ↾ M = IM

max.

Proof. Let I = IK(0̄, (fn)) for some sequence (fn) of continuous real func-
tions defined on some Polish space X whose closure K relative to the topol-
ogy of pointwise convergence10 on X consists only of Baire Class 1 functions
defined on X. Let

M = {M ∈ N[∞] : (fn)n∈M converges to fM 6= 0̄},

N = {N ∈ N[∞] : (fn)n∈N converges to 0̄}.

Then M⊆ I and N ⊆ I⊥, where we recall that I⊥ denotes the orthogonal
of I, the family of all subsets X of N such that X∩M is finite for all M ∈ I.
Thus in particular,M and N are two orthogonal families of infinite subsets
of N. Suppose that I is not countably generated. By Lemma 6.61, there
is a sequence (Mx, Nx) (x ∈ 2N) of elements of M×N forming a perfect
biorthogonal gap, or in other words, a sequence with the following three
properties:

(1) x 7→ (Mx, Nx) is continuous,

10In other words, we consider {fn : n ∈ N} a subset of RX and let K be its closure in
the Tychonov topology of this power of the real line R.
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(2) Mx ∩Nx = ∅ for all x,

(3) (Mx ∩Ny) ∪ (Nx ∩My) 6= ∅ whenever x 6= y.

For x ∈ 2N, we let fx denote the pointwise limit fMx
of the sequence

(fn)n∈Mx
. Recall that (2N)[∞] denotes the collection of all infinite increasing

rapidly converging sequences of elements of the Cantor space 2N. Similarly,
we let (2N)[−∞] denote the collection of all infinite decreasing rapidly con-
verging sequences of elements of 2N. Consider the following two subsets of
(2N)[∞] and (2N)[−∞], respectively:

X+ = {(xn) ∈ (2N)[∞] : (fxn
) accumulates to 0̄},

X− = {(xn) ∈ (2N)[−∞] : (fxn
) accumulates to 0̄}.

We claim that there is a perfect subset P of 2N such that P [∞] ⊆ X+ and
P [−∞] ⊆ X−. Since X+ and X− are Souslin-measurable, by Corollary 6.49 it
suffices to show that there is no perfect set Q ⊆ 2N such that Q[∞] ∩X+ = ∅
or Q[−∞] ∩ X− = ∅. By symmetry, it suffices to show that

Q[∞] ∩ X+ 6= ∅ for all perfect Q ⊆ 2N. (6.98)

Before showing this let us first establish the following fact:

{fx : x ∈ R} accumulates to 0̄ for all uncountable R ⊆ Q. (6.99)

Otherwise, we can find a basic open neighborhood

B(Z; ǫ) = {g ∈ K : (∀z ∈ Z) |g(z)| < ǫ}

of 0̄ given by some ǫ > 0 and some finite set Z ⊆ X whose closure misses
{fx : x ∈ R}. Then

A = {n ∈ N : fn /∈ B(Z; ǫ)}

is a member of I with the property that

Mx ⊆
∗ A and Nx ∩A =∗ ∅ for all x ∈ R. (6.100)

Choose n ∈ N and uncountable R0 ⊆ R such that

Mx ⊆ A∪{0, 1, . . . , n} and Nx∩A ⊆ {0, 1, . . . , n} for all x ∈ R0. (6.101)

Moreover, shrinking R0, we may assume that for some s, t ⊆ {0, 1, . . . , n},

Mx ∩ {0, 1, . . . , n} = s and Nx ∩ {0, 1, . . . , n} = t for all x ∈ R0. (6.102)

It follows that s ∩ t = ∅ (as Mx ∩Nx = ∅) and thus that

(Mx ∩Ny) ∪ (Nx ∩My) = ∅ for all x, y ∈ R0,

contradicting the condition (3). Having established Equation (6.99), we are
ready to start with the proof of Equation (6.98). Let q = max(Q) and for
n ∈ N, let

Xn = {fx : x ∈ Q and △(x, q) ≥ n}.
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Then by 6.99, 0̄ ∈ Xn for all n, so we can choose an ultrafilter U on K ex-
tending the neighborhood filter of 0̄ such that Xn ∈ U for all n. By Corollary
7.55, there is a decreasing sequence (Zn) of elements of U which converges to
0̄.We may assume that Zn ⊆ Xn for all n. Then for each n ∈ N we can choose
a point xn ∈ Q such that △(xn, q) ≥ n and fxn

∈ Zn. Then (xn) converges
to q, while (fxn

) converges to 0̄. Going to a subsequence, we may assume
that (xn) is rapidly converging and increasing. Then (xn) ∈ Q[∞] ∩ X+ and
this finishes the proof that Equation (6.98) holds.

Fix a perfect subset P of 2N such that P [∞] ⊆ X+ and P [−∞] ⊆ X−. It
follows that

{fx : x ∈ R} accumulates to 0̄ for every infinite R ⊆ P. (6.103)

Fix a natural homeomorphism ϕ : 2N → P and choose a Cantor scheme (nσ)
(σ ∈ 2<N) of nonegaitive integers such that

(4) nσ 6= nτ whenever σ 6= τ,

(5) nσ < nτ whenever σ ⊏ τ,

(6) {n(x↾k) : k ∈ N} ⊆Mϕ(x) for all x ∈ 2N.

Recall now Theorem 6.27, which discusses about colorings of the space Q[∞]

of rapidly increasing sequences of the rationals Q = (2<N, <lex). Of course we
also have at our disposal the space Q[−∞] of rapidly decreasing sequences of
the rationals. Consider the following two subsets of (2<N)[∞] and (2<N)[−∞],
respectively,

A+ = {(σk) ∈ (2<N)[∞] : (fnσk
) accumulates to 0̄},

A− = {(σk) ∈ (2<N)[−∞] : (fnσk
) accumulates to 0̄}.

We claim that there is a strong subtree T of 2N of height ω such that
T [∞] ⊆ A+ and T [−∞] ⊆ A−. By Theorem 6.27 or by Theorem 6.29 and
by symmetry, it suffices to show that

T [∞]∩A+ 6= ∅ for every strong subtree T ⊆ 2<N of infinite height. (6.104)

To see this, choose an infinite increasing rapidly converging sequence (xn) ∈
2N such that for all n,

Cn = {xn ↾ k : k > △(xn, xn+1)} ∩ T

is an infinite chain of T. For n ∈ N, let Bn = {nσ : σ ∈ Cn}. Then Bn is an
infinite subset of Mϕ(xn) for all n. By Equation (6.103),

{fnσ
: (∃n ≥ m) σ ∈ Bn} accumulates to 0̄ for all m ∈ N. (6.105)

By Corollaries 7.52 and 7.56, there is an infinite B ⊆
⋃∞

n=0 Bn such that
B ∩ Bn is finite for all n and such that the sequence (fσ)σ∈B converges
pointwise to 0̄. Refining further, we may assume that there is an enumeration
(σn) of B that forms an increasing rapidly converging sequence of elements
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of T. Since clearly (σn) belongs also to A+, this establishes the validity of
Equation (6.104). By Theorem 6.27 or Theorem 6.29, we can fix a strong
subtree T of 2<[∞] of infinite height such that T [∞] ⊆ A+ and T [−∞] ⊆ A−.
Let Q be the set of unions of all infinite chains of T, i.e., the set of all
x ∈ 2N for which the set Cx = {σ ∈ T : σ ⊏ x} is infinite. For x ∈ Q, let
M̄x = {nσ : σ ∈ Cx}. Then M̄x is an infinite subset of Mϕ(x) for all x ∈ Q.
Let

M̄ =
⋃

x∈Q

M̄x.

Let Īmax be the ideal on the index set generated by the perfect almost
disjoint family (M̄x) (x ∈ Q). Note that the bijection σ 7→ nσ between T
and M̄ moves Īmax as defined on the tree T rather than the complete binary
tree 2<N to a realization IM̄

max of the ideal Imax on the set M̄. Note also that
Equation (6.104) and the fact that for all x ∈ Q the sequence (fnσ

)σ∈M̄x

converges to fϕ(x) 6= 0̄ show that

I ∩ P(M̄) = ĪM̄
max.

This finishes the proof. 2

The following reformulation of Theorem 6.64 is also worth mentioning.

Theorem 6.65 Suppose K is a separable compact set of Baire class-1 func-
tions defined on some Polish space X. Let D be a countable dense subset of
K, and let f be a point of K that is not Gδ in K. Then there is a homeo-
morphic embedding

ϕ : Â(2N)→ K

such that ϕ(0̄) = f and ϕ[{δs : s ∈ 2<N}] ⊆ D. 2

Remark 6.66 Note that this shows that the 1-unconditional sequence of
Theorem 6.62 can be taken to be weak*-null. This would make the proof of
Theorem 6.63 even more direct, thus avoiding some of the cases (see [42];
Statement 5.10 on p. 205).

We finish this section with a discussion of the following problem about the
Tukey-maximal analytic ideal Imax, where for two ideals I and J , we define
their ideal sum by,

I ⊕ J = {a ∪ b : a ∈ Ieven, b ∈ Jodd} , (6.106)

where we let Ieven be the isomorphic copy of I on the set 2N of even integers,
while Jodd is the isomorphic copy of J on the set 2N + 1 of odd integers.

Question 6.67 Suppose that I and J are analytic ideals on N and that
Imax ≤T I ⊕ J . Is it true that then either Imax ≤T I, or else Imax ≤T J ?
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One route toward this question might be through the variation J ≤ST I
of the relation J ≤T I of Tukey-reducibility defined to hold whenever there
is a Souslin-measurable map g : J → I satisfying (tk), or equivalently,
a Souslin-measurable map f : I → J satisfying (cf1) and (cf2). This is
shown above in the case of unrestricted Tukey-reducibility, but to see that
the equivalence remains true in the Souslin-measurable realm, consider a
Souslin-Tukey map g : J → I witnessing J ≤ST I, or in other words, a
Souslin-measurable map satisfying (tk), and define f : I → J by

f (a) =
⋃
{b ∈ J : g(b) ⊆ a} . (6.107)

Then f is a Souslin-measurable map satisfying (cf1) and (cf2). Conversely,
suppose f : I → J is a Souslin-measurable map satisfying (cf1) and (cf2)
and define g : J → I by letting

g(b) =
⋂
{a ∈ I : b ⊆ f(a)}. (6.108)

Then g is a Souslin-measurable map satisfying (tk). The variation ≤ST is
called the Souslin-Tukey reducibility and the corresponding equivalence rela-
tion ≡ST , the Souslin-Tukey equivalence. The exact relationship between the
two quasi-orderings ≤T and ≤ST is not yet clear although all known results
establishing a Tukey reducibility also establish the stronger Souslin-Tukey
reducibility. So in particular, the following problem remains open.

Question 6.68 Suppose I and J are analytic ideals on N such that the
relation I ≤T J holds. Can one conclude then that I ≤ST J also holds? In
particular, is this true when I = Imax?

It is known, however, that in many important situations the answer to
this question is affirmative:

Theorem 6.69 If I and J are analytic P -ideals11 on N, then I ≤T J is
equivalent to I ≤ST J .

The following result shows that if this particular case of Question 6.68 has
an affirmative answer, so does also our initial Question 6.67.

Theorem 6.70 Suppose that I and J are analytic ideals on N and that
Imax ≡ST I ⊕ J . Then either Imax ≡ST I or Imax ≡ST J .

Proof. Let P ⊆ Imax be a fixed perfect almost disjoint family that generates
Imax. Let g : Imax → I⊕J be a fixed Souslin-Tukey map witnessing Imax ≤
I ⊕ J . Define a coloring P [∞] = C0 ∪ C1 as follows

(xn) ∈ C0 iff

(
∞⋃

n=0

g(xn)

)
∩ 2N /∈ Ieven. (6.109)

11Recall that an ideal I is a P -ideal if for every sequence (An)∞n=0 ⊆ I, there is B ∈ I
such that An \ B is finite for all n.
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Clearly, this is a Souslin-measurable coloring, so Corollary 6.49 applies to it,
and we have the following two cases to consider.
Case 1. There is perfect Q ⊆ P such that Q[∞] ⊆ C0. Pick two disjoint
perfect subsets Q0 and Q1 of Q and a homeomorphism ϕ : Q0 → Q1 such
that x <lex y implies ϕ (y) <lex ϕ (x). Let R = {x ∪ ϕ (x) : x ∈ Q0}. Then R
is also a perfect almost disjoint family of infinite subsets of N, so the ideal
IR is Souslin-Tukey equivalent to Imax. Then for every b ∈ Ieven, the set

Q0 (b) = {x ∈ Q0 : g (x) ∪ g (ϕ (x)) ⊆ b} (6.110)

is finite. This follows from the fact that every infinite sequence (xn) ⊆ Q0

contains an infinite subsequence (xnk
) such that either (xnk

) ∈ Q[∞] or
(ϕ (xnk

)) ∈ Q[∞]. So

h (b) = {0, 1, ... |Q0 (b)|} ∪
⋃
{x ∪ ϕ (x) : x ∈ Q0 (b)} (6.111)

defines a Souslin-measurable map h : Ieven → IR that is monotone and that
has a cofinal range in IR; i.e., it satisfies conditions (cf 1) and (cf 2) above.
This shows that IR ≤ST Ieven.
Case 2. There is a perfect Q ⊆ P such that Q[∞] ∩ C0 = ∅. The argument
from the previous case gives us a perfect almost disjoint family S such that
IS ≤ST Iodd. This finishes the proof. 2

NOTES TO CHAPTER SIX

Milliken’s space of strong subtrees was developed in his paper [78]. We have
seen above that on the basis of this space, most of the known perfect-set
theorems could naturally be proved. The result of Stern appears in his pa-
per [103]. Devlin’s two theorems appear in his thesis [19]. Devlin’s work was
motivated by a correction to an earlier version of the finite-dimensional Ram-
sey theorem for the rationals due to Laver, who was the first to show the
existence of Ramsey degrees in this case. The corresponding results about
the random graph can be found in the papers of Pouzet and Sauer [87] and
Laflamme-Sauer-Vuksanovic [60]. Galvin’s lemma appears originally in his
announcement [33]. It is a substantial extension of an earlier generalization
of Ramsey’s theorem due to Nash-Williams [82] although in some literature
the two results are identified. Baumgartner proved his Theorem 6.31 in his
paper [7] using a coloring that gives a less precise result than the one we
presented, provided it is stated in terms of the Cantor-Bendixson derivative.
Similarly, Theorem 6.38 appears in a paper of Velickovic and Woodin [111],
with a coloring that is not continuous. Corollary 6.17 appears in a paper of
Stern [103], who uses a metamathematical argument in its proof. The two
theorems of Mycielski appear in his papers [80] and [81]. Corollary 6.46 to
Mycielski’s theorem appears in the paper of Argyros-Dodos-Kanellopoulos
[1]. The result of Blass appears in his paper [9], and the result of Louveau-
Shelah-Velickovic appears in their paper [70]. It should also be mentioned
that Blass’s theorem was conjectured by Galvin [34] long before who proved
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it for dimensions k = 2 and 3. The measure case of Blass’ theorem in di-
mension k = 2 was more recently reproved by Laczkovich [59] and more
results in this direction can be found in papers [105], [62], and [53]. A first
attempt toward a parametrized version of Blass’s theorem appears in the
paper of Pawlikowski [85]. Krawczyk’s theorem appears in his paper [57].
Tukey-reducibility between directed sets has been introduced by Tukey in
[110] and was motivated by the theory of Moore-Smith convergence. That
this notion can express rough classification results in various areas of math-
ematics was realized much latter. That Tukey-reducibility is equivalent to
Tukey-Souslin-reducibility in a rather natural class of “basic” directed orders
is a result of Solecki-Todorcevic [101], where the reader in particular can find
a proof of Theorem 6.69. The Analytic Gap Theorem and the Biorthogonal
Gap Theorem appear in the paper [106] of the author, where the reader
can find their proofs and a more complete treatment of the subject of gaps
in the quotient algebra P(N)/FIN. Lemma 6.61 and Theorem 6.64 appear
in the paper [107] of the author, where we the reader can find a more ex-
tensive analysis of analytic ideals realizable by compact sets of Baire Class
1 functions. The applications of this result given above as Theorems 6.62
and 6.63 were recently found by Argyros-Dodos-Kanellopoulos [1]. Regard-
ing the part of the proof of Theorem 6.63, we note that the fact that if the
dual E∗ of a given Banach space has an infinite unconditional sequence, then
E has a quotient with an unconditional basis was first pointed out to us by
Rosenthal [94]. Indeed, this follows rather directly from the results due to
Johnson-Rosenthal [51]. We also note that Lemma 6.61 is one of the inter-
esting instances in which we have the conclusion of the Biorthogonal Gap
Theorem for the case in which the two orthogonal families are of a bigger
complexity. We shall encounter this again in the next chapter when treat-
ing some problems about sequential convergence in the context of countable
spaces with analytic topologies.



Chapter Seven

Local Ramsey Theory

7.1 LOCAL ELLENTUCK THEORY

The local Ellentuck theory in its most fundamental form deals with Ramsey
spaces of the form

(N[∞],H,⊆, r), (7.1)

where N[∞] is the collection of all infinite subsets of N, ∅ 6= H ⊆ N[∞] and
where r = (rn) is the standard sequence of restriction maps:

rn(A) = the first n members of A. (7.2)

Thus, the extremal case H = N[∞] is the original Ellentuck space, but as we
shall soon see there are many other interesting choices for H. The need to
develop such a theory comes from the fact that sometimes when considering
colorings of N[∞] one needs a monochromatic cube M [∞] of a special form,
not just an arbitrary cube given to us by the Ellentuck theory. Here is a
typical situation in which such a need arises. Suppose K is a given topological
space, x ∈ K, and (xn) ⊆ K\{x} is a sequence of points accumulating to x,
and suppose that we wish to find a subsequence (xnk

) converging to x. This
is equivalent to analyzing the following coloring of N[∞]:

C0 = {M ∈ N[∞] : x ∈ {xn : n ∈M}},

C1 = {M ∈ N[∞] : x 6∈ {xn : n ∈M}},

Note that (xn)n∈M converges to x if and only if M [∞] ⊆ C0. The local
Ellentuck theory gives us M ∈ H such that M [∞] is monochromatic if the
coloring is of a reasonable complexity. The point is that the new theory gives
us a chance to get the alternative M [∞] ⊆ C0 by appropriately choosing the
coideal H.

The first necessary assumption on H ⊆ N[∞] is that it must be a coideal,
i.e., it must have the following two properties:

(a) A ⊇ B and B ∈ H → A ∈ H,

(b) A ∪B ∈ H → A ∈ H ∨B ∈ H.
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Thus H is a coideal on N iff its complement I = P (N)\H is an ideal on N
containing all finite subsets of N. The prototype example of a coideal on N
is of course the collection N[∞] of all infinite subsets of N, but we shall see
that there exist many other interesting examples.

We fix from now on a coideal H on N, and we consider the corresponding
H-basic subsets of N[∞] defined as follows:

[a,M ] = {A ∈ N[∞] : a is an initial segment of A and A ⊆ a ∪M}, (7.3)

where a ∈ N[<∞] 1 and where M ∈ H. Note that all basic sets are nonempty
and closed in the metrizable topology of N[∞]. Having defined H-basic sets,
one immediately has the corresponding Baire-category notions defined as
follows.

Definition 7.1 A subset X ⊆ N[∞] is H-Baire if for every a ∈ N[<∞] and
M ∈ H, there exist b ∈ N[<∞] and N ∈ H such that [b,N ] ⊆ [a,M ] and
[b,N ] ⊆ X or [b,N ] ⊆ X c. If every H-basic set can be refined to an H-basic
subset avoiding X , then X is called H-meager.

Of course, we also have the corresponding stronger Ramsey notions.

Definition 7.2 A subset X ⊆ N[∞] is H-Ramsey if for every a ∈ N[<∞] and
M ∈ H, there is an N ∈ [a,M ] ∩H such that [a,N ] ⊆ X or [a,N ] ⊆ X c. If
for every [a,M ] with a ∈ N[<∞] and M ∈ H we can find an N ∈ [a,M ] ∩H
such that [a,N ] ⊆ X c, then the set X is called H-Ramsey null.

The purpose of this section is to describe properties of coideals H on N
that guarantee rich fields of H-Ramsey sets. In particular, we wish to find
minimal restrictions on such H that guarantee the analog of the Ellentuck
theorem for the triple (N[∞],H,⊆).

Notation. For M ∈ N[∞], a ∈ N[<∞] and n ∈ N, we set

H|M = {N ∈ H : N ⊆M},
M/n = M\{0, 1, ..., n},
M/a = M\{0, 1, ...,max(a)}.

(7.4)

Definition 7.3 A coideal H on N is selective if for every decreasing se-
quence (An) of elements of H, there is a B ∈ H such that B/n ⊆ An for all
n ∈ B. Such a set B will be called a diagonalization of (An).

The following prototype example for this notion should of course be men-
tioned first.

Example 7.1.1 The coideal H = N[∞] of all infinite subsets of N is
selective.

The following example is, however, much more subtle.

1Recall that N[<∞] denotes the collection of finite subsets of N including ∅.
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Example 7.1.2 (Mathias). Let A be an infinite family of infinite subsets
of N such that A ∩B is finite for every pair A,B of distinct elements of A.
Let H be the collection of all subsets of N that cannot be covered up to a
finite set by finitely many members of A. Then H is a selective coideal on
N.

Proof. To see this, let (An) be a given decreasing sequence of elements of H.
We need to show that one of its diagonalizations belongs to H. We split the
discussion into the following two cases.
Case 1. There is an infinite sequence (Ck) of distinct members of A such that
Ck ∩ An is infinite for all k and n. Construct a strictly increasing sequence
(nj) ⊆ N as follows:

n0 = minA0 and ni+1 = min(Ani
∩ (Ck/ni)), (7.5)

where k = max{ℓ : 2ℓ divides i}. Let B = {ni : i ∈ N}. Then B belongs to
H, since it has infinite intersection with infinitely many members of A. On
the other hand, B/ni ⊆ Ani

for all i, as required.
Case 2. There is no (Ck) ⊆ A as in Case 1. Choose an arbitrary diagonaliza-
tion B0 of (An). If B0 ∈ H, we are done. Otherwise, there is a finite A0 ⊆ A
such that B0 ⊆∗

⋃
A0. Note that (An\∪A0) ∈ H for all n. Choose an infinite

diagonalization B1 of (An\ ∪ A0). If B1 ∈ H, we are done. Otherwise, there
is a finite A1 ⊆ A such that B1 ⊆∗

⋃
A1, and so on. This process must stop

at some finite stage or else we enter into Case 1. 2

The following reformulation of the notion of selectivity is quite useful.

Lemma 7.4 A coideal H on N is selective iff it has the following two prop-
erties:

(p) For every decreasing sequence (An) ⊆ H, there is B ∈ H such that
B ⊆∗ An for all n.

(q) For every A ∈ H and every disjoint partition A =
⋃∞

k=0 Fk with Fk

finite for all k, there is B ∈ H|A such that |B ∩ Fk| ≤ 1 for all k.

Proof. It is clear that every selective coideal H satisfies (p) so let us check
that it satisfies (q). For n ∈ N, let

An =
⋃
{Fk : k ∈ N, Fk ∩ {0, ..., n} = ∅}. (7.6)

Choose B ∈ H|A such that B/n ⊆ An for all n ∈ B. Then |B ∩ Fk| ≤ 1 for
all k.

Suppose now that H is a coideal on N satisfying (p) and (q). Let (An)
be a given infinite decreasing sequence of members of H. By (p) we choose
A ∈ H such that A ⊆∗ An for all n. Choose a strictly increasing sequence
(nk) ⊆ N such that n0 = 0 and
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A\Ani
⊆ {0, ..., ni+1}. (7.7)

By (q), there is B ∈ H|A such that |B∩ [nk, nk+1)| ≤ 1 for all k. Splitting B
into its intersection with the union of even- and the union of odd-numbered
intervals [nk, nk+1), letting the coideal H decide for one of these subsets
of B, and then changing B with the chosen set, we may assume that, say,
B ∩ [n2k, n2k+1) = ∅ for all k. It follows that B/n ⊆ An for all n ∈ B, as
required. This finishes the proof. 2

The following fact relates the second of the two restrictions on a given
coidealH on N to the Ramsey theoretic notions associated withH introduced
above in Definition 7.2.

Lemma 7.5 If a coideal H on N fails to satisfy the property (q), then there
is an H-Baire set that is not H-Ramsey.

Proof. Choose a partition N =
⋃∞

k=0 Fk of an N ∈ N with all Fk finite for
which there is no M ∈ H|N such that |M ∩ Fk| ≤ 1 for all k. Let2

X = {X ∈ N[∞] : (∃k) X(2) ⊆ Fk}.

Clearly, X is a clopen subset of N[∞] and so in particular is H-Baire. On
the other hand, note that there is no M ∈ H|N such that M [∞] ⊆ X , or
M [∞] ∩ X = ∅. So X is not H-Ramsey. 2

This shows that requirement (q) is in some sense necessary if we are to
have that the triple (N[∞],H,⊆) forms a Ramsey space. However, as we shall
see now, property (p) can be further weakened without affecting the Ramsey
theoretic properties of a given coideal H on N. To introduce this weakening,
we need the following notion.

Definition 7.6 A set D ⊆ H is dense-open in H if

(1) (∀M ∈ H)(∃N ∈ D) N ⊆M,

(2) (∀M ∈ H)(∀N ∈ D)(M ⊆ N →M ∈ D).

Definition 7.7 A coideal H on N has the weak (p) property or simply,
property (pw), if for every sequence (Dn) of dense-open subsets of H and
every N ∈ H, there is an M ∈ H|N such that for all n there is an X ∈ Dn

such that M ⊆∗ X.

Note that if H is a maximal coideal on N, or equivalently, a nonprincipal
ultrafilter on N, then the weak (p) property is in fact equivalent to the prop-
erty (p). In this case H becomes what is usually called a P-point ultrafilter,
and this classical notion is the reason behind our use of the letter “p” for this
variety of properties. The following fact gives one of the reasons we would
consider this property at all.

2Recall that X(2) was our notation for the set formed by the first two elements of X
according to the natural increasing enumeration of X.
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Lemma 7.8 If a coideal H on N fails to satisfy the weak property (p), then
the ideal of H-Ramsey null sets is not a σ-ideal.

Proof. Choose a sequence (Dn) of dense-open subsets of H and M ∈ H such
that there is no N ∈ H|N such that for all n we can find X ∈ Dn with the
property that N ⊆∗ X. For a given integer n, set

Xn = {Y ∈ N[∞] : (∀X ∈ Dn) Y *∗ X}.

Then Xn is an H-Ramsey null set for each n, but there is no N ∈ H|M
such that N [∞] ∩

⋃∞
n=0 Xn = ∅. So, in particular, the union

⋃∞
n=0 Xn is not

H-Ramsey null. 2

We now come to the notion needed for the development of something that
we call the local Ellentuck theory and a notion that is in some sense optimal
for this purpose.

Definition 7.9 A coideal H on N is semiselective if it has the following two
properties:

(pw) For every sequence (Dn) of dense-open subsets of H and every N ∈ H
there is an M ∈ H|N such that for all n, there is an X ∈ Dn such that
M ⊆∗ X.

(q) For every N ∈ H and every disjoint partition N =
⋃∞

k=0 Fk with Fk

finite for all k, there is an M ∈ H|N such that |M ∩Fk| ≤ 1 for all k.

Lemma 7.10 A coideal H on N is semiselective if and only if for every
sequence (Dn) of dense-open subsets of H and every N ∈ H, there is M ∈
H|N such that M/n ∈ Dn for all n ∈M .3

Proof. To prove the direct implication, consider a sequence (Dn) of dense-
open subsets of H and N ∈ H. Using the property pw of H, find M0 ∈ H|N
such that for all n we can fix an Xn ∈ H such that M ⊆∗ Xn. For a given
n, let in be the minimal integer i ≥ n such that M ⊆ (Xn)/i. Choose a
strictly increasing sequence (mk) of nonnegative integers such that m0 = 0,
and such that mk+1 is the minimal integer m > mk such that m > in for all
n ≤ mk. By property (q) of H, there is an M1 ∈ H|M0 such that

|M1 ∩ [nk, nk+1)| ≤ 1 for all k. (7.8)

Splitting M1 into its intersection with the union of even and odd numbered
intervals [mk,mk+1) and letting H decide for one of these two sets, we may
further assume that for, example,

M1 ∩ [n2k, n2k+1) = ∅ for all k. (7.9)

It follows that (M1)/m ∈ Dm for all m ∈M1, as required.
For the converse implication, it remains to prove only that any coideal

H that can diagonalize any given sequence of its dense-open subsets has

3When this happens we say that M diagonalizes the given sequence (Dn).
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property (q) since property (pw) is immediate. So let N =
⋃∞

k=0 Fk be a
given partition of an N ∈ H into pairwise disjoint finite sets Fk. Note that
we can actually assume that there is a strictly increasing sequence (mk)
of integers such that m0 = 0 and such that Fk = [mk,mk+1) ∩ N for all
k. For a given n ∈ N, let Dn be the collection of all X ∈ H such that
either X ∩N = ∅, or else |X ∩ [mk,mk+1)| ≤ 1 for the unique k such that
mk ≤ n < nk+1. Clearly, Dn is dense-open in H for all n. By our hypothesis,
there is an M ∈ H|N such that M/n ∈ Dn for all n ∈ M . It follows that
|M ∩ [mk,mk+1)| ≤ 1 for all k, as required. 2

Note also the following immediate variation on the previous lemma, which,
however, is the way use the semiselectivity of a given coideal in the arguments
below.

Lemma 7.11 A coideal H on N is semiselective if for every sequence (Db)
(b ∈ N[<∞]) of dense-open subsets of H and every N ∈ H, there is an
M ∈ H|N such that M/b ∈ Db for all b ∈M<∞.4

It turns out that the semiselectivity requirement on a given coidealH is all
that is needed in order to guarantee the existence of monochromatic cubes of
the form M [k] with M ∈ H for arbitrary finite colorings of finite symmetric
powers N[k] of N. In fact, there always seem to be simple and natural ways to
transfer even proofs into the new context. The following is an illustration of
how one transfers a standard fact about the coideal H = N[∞] to the context
of an arbitrary semiselective ideal H on N.

Lemma 7.12 (Semiselective Galvin Lemma) Suppose H is a semiselective
coideal on N and F is a family of nonempty finite subsets of N. Then for
every N ∈ H, there is an M ∈ H|N such that either

(1) M contains no member of F , or

(2) every infinite subset of M has an initial segment in F .

Proof. To save on notation, we assume that the initial set N is equal to N
and in what follows we use the letters M,N, ... for members of H and a, b, ...
for finite subsets of N.

Definition 7.13 Let us say that M accepts a if every X ∈ [a,M ] has an
initial segment in F . If there is no N ∈ H|M accepting a we say that M
rejects a. Let us say that M decides a if M either accepts a or it rejects a.

Note the following properties which follow immediately from the defini-
tions and the assumption that we are working with a coideal H.

(i) If M accepts (rejects) a, then every N ∈ H|M accepts (rejects) a.

4When this happens we say that M diagonalizes the sequence (Db) (b ∈ N[<∞]).
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(ii) For every a and M, there is an N ∈ H|M such that N decides a.

(iii) If M accepts a, then M accepts a ∪ {n} for every n ∈M/a.

(iv) If M rejects a, then {n ∈M/a : M accepts a ∪ {n}} 6∈ H.

Claim 7.13.1 There is an M ∈ H that decides all of its finite subsets.

Proof. For a finite set a, put

Da = {N ∈ H : N decides a}. (7.10)

By (i) and (ii), we have that Da(a ∈ N[<∞]) is a sequence of dense-open
subsets of H, so by semiselectivity of H, there is an M ∈ H such that
M/a ∈ Da for all finite a ⊆M . This M decides all of its finite subsets. 2

Fix M ∈ H satisfying the conclusion of the claim. If M accepts ∅, conclusion
(2) of Lemma 7.12 holds. So let us consider the case that M rejects ∅. For a
finite a ⊆M , let Ca = H if M accepts H; otherwise, let

Ca = {N ∈ H|M : (∀n ∈ N/a) N rejects a ∪ {n}}. (7.11)

By (i) and (iv), we conclude that Ca (a ∈M [<∞]) is a sequence of dense-open
subsets of H|M , so by applying the semiselectivity of H, we find N ∈ H|M
such that

N/a ∈ Ca for all finite a ⊆ N. (7.12)

Using this property of N, one shows by induction on the size of a that N
rejects all finite subsets a ⊆ N . Thus in particular, N cannot contain a
set from the family F . This establishes alternative (1) of Lemma 7.12 and
finishes the proof. 2

Corollary 7.14 If H is a semiselective coideal in N, then every H-Baire
subset of N[∞] is H-Ramsey.

Proof. Consider an H-Baire set X ⊆ N[∞] and a basic set [a,M ], where
a ∈ N[<∞] and M ∈ H. We again save on notation by assuming that a = ∅.
For a finite set b ⊆ N, let Db be the collection of all N ∈ H|M such that
either [b,N ] ⊆ X , or [b,N ] ⊆ X c, or

(∀P ∈ H|N)([b, P ] 6⊆ X & [b, P ] 6⊆ X c). (7.13)

Clearly, each Db is dense-open in H, so we can find N ∈ H|M such that

N/b ∈ Db for all finite b ⊆ N. (7.14)

Let F0 be the collection of all b ∈ N [<∞] such that [b,N ] ⊆ X , let F1 be the
collection of all b ∈ N [<∞] such that [b,N ] ⊆ X c, and let

F2 = N [<∞]\(F0 ∪ F1). (7.15)
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By the semiselective Galvin lemma, there are P ∈ H|N and i ≤ 2 such that
every infinite subset of P has an initial segment in Fi. If i = 0, this gives
that [∅, P ] ⊆ X and if i = 1 this gives that [∅, P ] ⊆ X c. The case i = 2 can
easily be eliminated using the assumption that X is H-Baire. This finishes
the proof. 2

Corollary 7.15 If H is a semiselective coideal on N, then every H-meager
subset of N[∞] is H-Ramsey null.

We now come to a particularly important property of a given semiselective
coideal H which, as we have seen above in Lemma 7.8, is equivalent to the
weak (p) property of H.

Lemma 7.16 If H is a semiselective coideal, then the ideal of H-Ramsey
null subsets of N[∞] is σ-additive.

Proof. Let (Xn) be a given sequence of H-Ramsey null subsets of N[∞] and
let [a,M ] be a given H-basic set. Since the case a = ∅ is general enough, we
make the assumption that a is empty. For a finite set b ⊆ N, let

Db = {N ∈ H|M : (∀n ≤ max(b))[b,N ] ∩ Xn = ∅]. (7.16)

Then Db (b ∈ N[<∞]) is a sequence of dense-open subsets of H, so we can
find N ∈ H|M such that N/b ∈ Db for all finite b ⊆ N . It follows that
[∅, N ] ∩ Xn = ∅ for all n, as required. 2

Corollary 7.17 For every semiselective coideal H on N, the fields of H-
Baire and H-Ramsey sets are σ-fields on N[∞] that coincide. Moreover, the
ideals of H-meager and H-Ramsey null sets are σ-ideals on N[∞] that also
coincide.

The following lemma gives us a considerably deeper closure property of these
fields of sets, one that will allow us to claim that the triple (N[∞],H,⊆) forms
a local Ramsey space.

Lemma 7.18 If H is a semiselective coideal, then the field of H-Ramsey
subsets of N[∞] is closed under the Souslin operation.

Proof. Suppose we are given a Souslin scheme Xs(s ∈ N[<∞]) of H-Ramsey
subsets of N[∞] indexed by finite subsets of N rather than finite sequences
of elements of N. We have to show that

X =
⋃

A∈N[∞]

⋂

n∈N

Xrn(A) (7.17)

isH-Ramsey. So let [a,M ] be a givenH-basic set. We assume a = ∅, since this
case shows all the difficulties. We may also assume that Xt ⊆ Xs whenever
t end-extends s. For a given s ∈ N[<∞], set
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X ∗
s =

⋃

A∈[s,N]

⋂

n∈N

Xrn(A). (7.18)

Then X ∗
s ⊆ Xs, and

X ∗
s =

⋃

n∈N,n>max(s)

X ∗
s∪{n}. (7.19)

Note also that X ∗
∅ = X .

For a finite subset b ⊆ N, let Db be the collection of all N ∈ H|M such
that for all s ⊆ {0, 1, . . . ,max(b)} either

(1) [b,N ] ⊆ X ∗
s , or

(2) [b,N ] ∩ X ∗
s = ∅, or

(3) (∀P ∈ H|N)([b,N ] 6⊆ X ∗
s & [b,N ] ∩ X ∗

s 6= ∅).

Then Db (b ∈ N[<∞]) is a sequence of dense-open subsets of H so we can
find N ∈ H|M such that N/b ∈ Db for all finite b ⊆ N.

For s ∈ N[<∞], set

Φ(X ∗
s ) = [∅, N ]\

⋃
{[b,N ] : max(b) ≥ max(s)&[b,N ] ∩ X ∗

s = ∅}.

Then Φ(X ∗
s ) is H-Ramsey and X ∗

s ∩ [∅, N ] ⊆ Φ(X ∗
s ).

Claim 7.18.1 For every s ∈ N[<∞], every (H|N)-Baire set Z included in
the difference Φ(X ∗

s )\(X ∗
s ∩ [∅, N ]) is (H|N)-meager.

Proof. If Z is not H-meager, being H-Baire, it would contain a basic subset
of the form [b, P ] for some finite b ⊆ N and P ∈ H|N . Shrinking the basic
set, we may assume that max(b) ≥ max(s). It follows, in particular, that
[b, P ] ∩ X ∗

s = ∅. Since N/b ∈ Db, we have the alternatives (1), (2), and (3)
about b,N, and X ∗

s . The existence of [b, P ], which is disjoint from X ∗
s , rules

out (1) and (3), so we are left with (2). But this means that [b,N ] has been
subtracted from Φ(X ∗

s ), contradicting the fact that it includes the set [b, P ]
included in Φ(X ∗

s ). The completes the proof of the claim. 2

Back to the proof of Lemma 7.18. For s ∈ N[<∞], set Ψ(X ∗
s ) = Xs∩Φ(X ∗

s ).
Then Ψ(X ∗

s ) is still an H-Ramsey superset of X ∗
s ∩ [∅, N ] satisfying the

conclusion of Claim 7.18.1, and therefore the H|N -Baire subset

Ms = Ψ(X ∗
s )\

⋃

n∈N,n>max(s)

Ψ(X ∗
s∪{n}) (7.20)

of the difference Ψ(X ∗
s )\(X ∗

s ∩ [∅, N ]) must be H|N -meager and therefore
H|N -Ramsey null. By (the local version of) Lemma 7.16, we can find a
P ∈ H|N such that
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[∅, P ] ∩Ms = ∅ for all s ∈ N[<∞]. (7.21)

As in the proof of Lemma 4.39, one has that

[∅, P ] ∩Ψ(X ∗
∅ ) = [∅, P ] ∩ X ∗

∅ . (7.22)

If follows that [∅, P ] ∩X is H|P -Ramsey, so we can find R ∈ H|P such that
[∅, R] ⊆ X or [∅, R] ∩ X = ∅, as required. This finishes the proof. 2

Combining the lemmas proved so far we have the following result which
gives us the local version of the original topological Ramsey theorem of
Ellentuck.

Theorem 7.19 (Local Ellentuck Theorem) The following two properties are
equivalent for every coideal H on N :

(1) H is semiselective.

(2) The ideals of H-meager and H-Ramsey null subsets of N[∞] coincide
and are σ-additive, and the fields of H-Baire and H-Ramsey subsets of
N[∞] coincide and are closed under the Souslin operation.

Corollary 7.20 For every semiselective coideal H on N and every finite
metrically Souslin-measurable coloring of the space N[∞] of all infinite subsets
of N, there is an M ∈ H such that M [∞] is monochromatic.

Proof. This follows from the immediate fact that for every semiselective
coideal H on N, every basic open subset of the metrizable product topology
of N[∞] is H-Baire. 2

Clearly, every selective coideal is semiselective, so we also have the following
form of the Local Ellentuck Theorem which suffices in most of the known
applications of the local theory.

Theorem 7.21 (Selective Ellentuck Theorem) Let H be a selective coideal
on N. The ideals of H-meager and H-Ramsey null subsets of N[∞] coincide
and are σ-additive. The fields of H-Baire and H-Ramsey subsets of N[∞]

coincide and are closed under the Souslin operation.

Corollary 7.22 (Ellentuck) (N[∞],⊆, r) is a topological Ramsey space.

Proof. The coideal N[∞] of all infinite subsets of N is selective, and the
corresponding family of basic sets form a topology whose Baire-category
notions coincide with the Ramsey theoretic notions relative to this coideal.
So the conclusion follows from Theorem 7.21. 2

Corollary 7.23 (Mathias) For every selective coideal H on N, and every
finite metrically Souslin-measurable coloring of N[∞], there is an M ∈ H
such that M [∞] is monochromatic.
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Corollary 7.24 (Louveau) If U is a selective ultrafilter on N, then the triple
(N[∞],U ,⊆) is a topological Ramsey space.

Proof. Being a nonprincipal ultrafilter on N is the same as being a minimal
coideal on N, so the U-basic sets form a topology that extends the usual
product topology of N[∞]. Again, the Baire-category notions relative to this
topology coincide with the Ramsey theoretic notions relative to U . 2

Corollary 7.25 (Mathias) For every selective ultrafilter U on N and every
finite metrically Souslin-measurable coloring of N[∞], there is an M ∈ U such
that M [∞] is monochromatic.

We finish this section with an application of this corollary and Example
7.1.2 above.

Theorem 7.26 (Mathias) Every analytic maximal family of infinite pair-
wise almost disjoint subsets of N must be finite.

Proof. Let A be an infinite family of infinite pairwise almost disjoint subsets
of N that cannot be extended to a larger family with this property. Let H
be the coideal of subsets of N that cannot be covered modulo a finite set by
finitely many members of A. Then H is selective. If A were analytic, then
H would be coanalytic, so Corollary 7.23 would give us an M ∈ H such that
M [∞] ⊆ H or M [∞] ∩ H = ∅. The second case is impossible, and the first
case in particular means that M ∩A is finite for all A ∈ A. This contradicts
the fact that A is maximal and finishes the proof. 2

Remark 7.27 Recall the Abstract Ramsey Theorem from Chapter Four
which discusses about a structure of the form

(R,S,≤,≤o, r, s)

and conditions that guarantee the equivalence between Baire and Ramsey
properties. The results of this section about the prototype Ramsey space

(N[∞],N[∞],⊆,⊆fin, r, r)

show that the the second factor N[∞] can be reduced to a sufficiently rich fam-
ily H ⊆ N[∞] still guaranteeing the equivalence between Baire and Ramsey
properties. We would like to point out that it is more or less straightfor-
ward to extend this into the abstract context in the sense that there is a
natural notion of a semiselective coideal H ⊆ S that guarantees the equiv-
alence between Baire and Ramsey properties in the corresponding reduced
structure

(R,H,≤,≤o, r, s).

We leave the details to the interested reader and instead develop in later
sections of this chapter a parallel theory of so-called Ultra-Ramsey Spaces
that is general enough to capture basically all known application of the
abstract theory of semiselective coideals.
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7.2 TOPOLOGICAL ULTRA-RAMSEY SPACES

In this section we choose the set N of all nonnegative integers as a convenient
countable index set and build on it what one can call an “Ultra-Ramsey
Theory”. As before, we let N[<∞] denote the collection of all finite subsets
of N and consider it a tree ordered by end-extension. A subtree T of N[<∞] is
always assumed to be downward closed, and we work most of the time with
subtrees that have a stem, st(T ), the maximal node that is comparable with
every other node of T . From now on in this section, a tree is always assumed
to be a subtree of N[<∞].

Let ~U = (Us : s ∈ N[<∞]) be a family of nonprincipal ultrafilters on N. If
~U is a constant sequence Us = U , we suppress the arrow.

Definition 7.28 Given a sequence ~U = (Us : s ∈ N[<∞]) of nonprincipal

ultrafilters on N, a ~U-tree is a tree T with the property that

{n ∈ N : t ∪ {n} ∈ T } ∈ Ut (7.23)

for all t ∈ T .

Definition 7.29 For two ~U-trees T and T ′, we write T ′ ≤0 T and say that
T ′ is a pure refinement of T if T ′ ⊆ T and st(T ′) = st(T ). For an integer
n ≥ 0 , let T ′ ≤n T mean that T ′ ≤0 T and the first n levels of T ′ above the
common stem are equal to the first n levels of T above the common stem.

Definition 7.30 A fusion sequence is an infinite sequence (Tn) of trees with
the property that Tn+1 ≤n Tn for all n. Note that if (Tn) is a fusion sequence

of ~U-trees, then the intersection

T∞ =

∞⋂

n=0

Tn (7.24)

is also a ~U-tree.

Lemma 7.31 Suppose that T and T ′ are two ~U-trees. Then T ∩ T ′ is a
U-tree iff st(T ) and st(T ′) are comparable.

For a tree T and s ∈ T , set

T/s = {t ∈ T : s ⊆ t}. (7.25)

Fix for a while a sequence ~U = (Us : s ∈ N[<∞]) of nonprincipal ultrafilters
on N.

Definition 7.32 A subset G ⊆ N[<∞] is ~U-open if for every t ∈ G there is
a ~U -tree T such that t = st(T ) and T/t ⊆ G.

Note that by Lemma 7.31, the collection of all ~U-open subsets of N[<∞] forms
a zero-dimensional Hausdorff topology on N[<∞]. The following characteri-
zation of ~U-open subsets of N[<∞] is quite useful.
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Lemma 7.33 A subset G ⊆ N[<∞] is ~U-open iff

Gs = {n : s ∪ {n} ∈ G} ∈ Us (7.26)

for all s ∈ G.

Proof. The direct implication is an immediate consequence of the definition,
so let us prove the converse. Let G be a subset of N[<∞] with the property
that Gs ∈ Us for all s ∈ G. Let s0 be a given element of G. We need to
produce a ~U-tree T with stem s0 such that T/s0 ⊆ G. We build the levels
T (1), T (2), . . . , T (n), ... of T above the stem as follows. Let T (1) = Gs, and
provided we have T (n), let

T (n+ 1) =
⋃

s∈T (n)

Gs. (7.27)

Clearly, the tree T constructed this way is a ~U-tree with stem s0 such that
T/s0 ⊆ G. This finishes the proof. 2

The following fact shows that the ~U -topology on N[<∞] is a quite unusual
example of a topology on a countable index set.

Lemma 7.34 The ~U-closure of every ~U-open set is ~U-open.

Proof. Let G be a ~U-open set, and let F be its closure relative the ~U-topology
on N[<∞]. By Lemma 7.33, it suffices to show that

Fs = {n ∈ N : s ∪ {n} ∈ F} ∈ Us (7.28)

for all s ∈ F . Suppose Fs 6∈ Us for some s ∈ F . For every n > max(s) such
that n 6∈ Fs, the node s∪{n} does not belong to the closure of G, so we can

choose a ~U -tree Tn with stem s ∪ {n} such that Tn/s∪ {n} is disjoint from

G. Let T be the ~U-tree with stem s such that

T/s =
⋃
{Tn : n > max(s), n 6∈ Fs}. (7.29)

Since G is ~U -open and since the complement of Fs and therefore the com-
plement of Gs belongs to Us, we must have that s 6∈ G. It follows that
(T/s) ∩G = ∅, so s is not in the closure of G, a contradiction. 2

We are however more interested in an analogously defined topology on
the set N[∞] of all infinite subsets of N rather than on N[<∞]. To define this
topology, let for a given tree T ,

[T ] = {A ∈ N[∞] : A ∩ {0, . . . , n− 1} ∈ T for all n ∈ N}. (7.30)

Definition 7.35 A subset G of N[∞] is ~U-open if for every A ∈ G, there is
a ~U-tree T such that A ∈ [T ] and [T ] ⊆ G.
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Note that by Lemma 7.31, the family of all ~U-open subsets of N[∞] form a
topology on N[∞] with basis [T ] (T a ~U-tree). Recall that N[∞] also has the
natural metrizable topology generated by basic open sets of the form

[s] = {A ∈ N[∞] : A ∩ {0, . . . ,max(s)} = s} (7.31)

for s ∈ N[<∞]. Since [s] can also be written as [T ] for the ~U-tree T of all

nodes of N[<∞] comparable to s, this shows that the ~U -topology includes
the metric topology of N[∞]. Since every set of the form [T ] is metrically

closed, the ~U-topology is zero-dimensional. Combining these observations,
we get the following.

Lemma 7.36 The ~U-topology on N[∞] is a zero-dimensional topology satis-
fying the countable chain condition and extending the metric topology of the
set N[∞] of all infinite subsets of N.

Definition 7.37 A subset X of N[∞] is ~U -Ramsey if for every ~U -tree T
there is a pure extension T ′ ≤0 T such that [T ′] ⊆ X or [T ′] ⊆ X c.

This leads us to the following crucial lemma of this section.

Lemma 7.38 ~U-open sets are ~U-Ramsey.

Proof. Let X be a given ~U-open set. Let

G = {s ∈ N[<∞] : ∃ ~U-tree T (st(T ) = s and [T ] ⊆ X )}. (7.32)

Clearly, G is a ~U -open subset of N[<∞]. Note that

s 6∈ G implies {n : s ∪ {n} ∈ G} 6∈ Us.

It follows that F = N[<∞]\G satisfies the criterion of Lemma 7.33 for being
open. It follows that F is, in fact, clopen. The lemma will follow if we can
show that for every t ∈ F there is a ~U-tree T with stem t such [T ] ∩ X = ∅.

In fact, we claim that if T is any ~U-tree with stem t such that T/t ⊆ F
then [T ] ∩ X = ∅. Suppose the contrary and fix an A ∈ [T ] ∩ X . Since X is
~U-open, there is an n ∈ A above max(t) and a ~U-tree T ′ with stem equal to
u = A ∩ {0, . . . , n} such that A ∈ [T ′] ⊆ X . If follows that T ′/u ⊆ G and
therefore u ∈ F ∩G, a contradiction. 2

Definition 7.39 A subset X of N[∞] is ~U-Ramsey null if for every U-tree
T there is a T ′ ≤0 T such that [T ′] ∩ X = ∅.

Lemma 7.40 ~U-nowhere dense-sets are ~U-Ramsey null.

Proof. Let X ⊆ N[∞] be a given ~U-nowhere dense set. Let X be its closure
in the ~U topology. Apply the previous Lemma to the given ~U-tree T and the
complement of X and get T ′ ≤0 T such that [T ′] ⊆ X or [T ′]∩ X = ∅. Note
that, since X is nowhere dense, the first alternative is impossible. 2
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Lemma 7.41 The ~U-Ramsey null sets form a σ-ideal.

Proof. Let (Xn) be a given sequence of ~U-Ramsey null sets and let T be a

given ~U-tree. Define a fusion sequence (Tn) of ~U-trees as follows. Let T0 = T
and having defined Tn let Ln be the nth level of Tn above

st(Tn) = . . . = st(T0) = st(T ).

For each t ∈ Ln we apply the fact that
⋃n

k=0 Xk is ~U-Ramsey null and get

a ~U-tree St ⊆ Tn with stem t such that [St] is disjoint from
⋃n

k=0 Xk. Let

Tn+1 be the ~U -tree such that Lk ⊆ Tn+1 for all k ≤ n (or in other words
Tn+1 ≤n Tn), and such that Tn+1/t = St for all t ∈ Ln. Finally, let

T∞ =

∞⋂

n=0

Tn. (7.33)

Then T∞ is a ~U -tree such that T∞ ≤0 T and such that

[T∞] ∩

(
∞⋃

n=0

Xn

)
= ∅.

This finishes the proof. 2

Combining these results we arrive at the following version of the local Ellen-
tuck theorem.

Theorem 7.42 (Ultra-Ellentuck Theorem) Every subset of N[∞] that has

the property of Baire relative to the ~U-topology is ~U-Ramsey and vice versa.
Moreover, the ideals of ~U-meager and ~U-Ramsey null subsets of N[∞] are
σ-ideals that coincide.

Proof. Let X ⊆ N[∞] be a given ~U-Baire set. Pick a ~U-open set O and a
~U -meager setM such that X =M∆O. Let T be a given ~U-tree. By Lemma
7.41, there is a ~U-tree T ′ ≤0 T such that [T ′] ∩M = ∅. By Lemma 7.38,
there is a U-tree T ′′ ≤0 T ′ such that [T ′′] ⊆ O or [T ′′] ⊆ Oc. It follows that
[T ′′] ⊆ X or [T ′′] ⊆ X c. 2

Lemma 7.43 Suppose Us = U for all s ∈ N[<∞]. Let T be a U-tree with
stem s. Then there is A ∈ N[∞] such that [s,A] ⊆ [T ].

Proof. We show this only for s = ∅. For t ∈ T , let

At = {n > max(t) : t ∪ {n} ∈ T }. (7.34)

Define a strictly increasing sequence (ni) ⊆ N as follows:

nk = min
⋂
{At : t ⊆ {n0, . . . , nk−1}}. (7.35)

Let A = {ni : i ∈ N}. Then every infinite subset of A is a branch of T . 2

Corollary 7.44 (Silver) The field of Ramsey subsets of N[∞] is closed under
the Souslin operation.
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Proof. First of all, note that this conclusion is equivalent to the fact that
metrically analytic subsets of N[∞] are Ramsey. To see this, given a Souslin
scheme Xs (s ∈ N[<∞]) of Ramsey sets and given a basic set [n,A], we first
find a set B ∈ [n,A] such that for all s, t ∈ N[<∞], if m = max{n,max(s∪t)}
then [t, B/m] ⊆ Xs or [t, B/m] ⊆ X c

s . It follows that Xs∩[n,B] is a relatively
clopen subset of [n,B] for all s ∈ N[<∞], so [n,B]∩ (

⋃
M∈N[∞]

⋂∞
n=0 Xrn(M))

is an analytic subset of [n,B].
Back to the proof of Silver’s theorem. So let [n,A] be a given basic set

and let X ⊆ N[∞] be a given metrically analytic set. Pick a nonprincipal
ultrafilter U on N such that A ∈ U . Then if s is the set formed by taking
the first n elements of A, then there is a U-tree T with stem s such that
[T ] = [n,A]. Since the U-topology extends the metric topology, the set X is
U-Baire and therefore U-Ramsey by the Ultra-Ellentuck Theorem. So, pick
a U-tree T ′ ≤0 T such that [T ′] ⊆ X or [T ′] ∩ X = ∅. Apply the previous
lemma and get B ∈ [n,A] such that [n,B] ⊆ [T ′]. Then [n,B] ⊆ X or
[n,B] ∩ X = ∅, as required. 2

Corollary 7.45 (Galvin-Prikry) Every metrically Borel subset of N[∞] is
Ramsey.

In the next three sections of this chapter, we shall give several applications
of the Ultra-Ellentuck Theorem. This will be typically done by replacing N
with some other convenient countable index set S, carefully choosing an
ultrafilter U on S, and then applying the Ultra-Ramsey theory developed
above.

7.3 SOME EXAMPLES OF SELECTIVE COIDEALS ON N

Note that every coideal H on N has the form

HK(x, (xn)) = {M ⊆ N : x ∈ {xn : n ∈M}} (7.36)

for some regular space K, a point x ∈ K, and a sequence (xn) ⊆ K\{x}
accumulating to x. To see this, let K = N ∪ {∞} be topologized by letting
the points of N be isolated and by letting the neighborhoods of ∞ be sets
{∞} ∪G, where G ranges over the filter of all subsets of N that meet every
set in H. When H = HK(x, (xn)), we say that K represents H. There is
another rather canonical way to get such a representation of an arbitrary
coideal H on N. To see this, let I = P(N)\H, and for n ∈ N, let πn : 2I → 2
be the projection map

πn(a) = 1 iff n ∈ a. (7.37)

Let K be the closure of (πn) in the Tychonov cube 2J and let 1̄ denote
the constantly equal to 1 map. Then H = HK(1̄, (πn)). Note that 1̄ and πn
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are all continuous maps on I when we view I as a topological space with
the topology induced from the Cantor cube 2N. So every coideal H on N
is represented by a set of continuous maps on some separable metric space.
The following reformulation of Lemma 6.53 answers a natural question.

Lemma 7.46 A coideal H on N is coanalytic iff it is represented by a se-
quence of continuous functions on a Polish space.

We shall say that a coideal H on N is hereditarily Baire if H|A has the
property of Baire as a subset of 2A for all A ∈ H. Clearly, every coideal H
on N that is either analytic or coanalytic is hereditarily Baire. Recall that a
topological space K is countably tight if any subset A ⊆ K accumulating to
a point b ∈ K contains a countable subset A0 ⊆ A still accumulating to the
point b ∈ K.

The following result gives us a rich source of examples of selective coideals
on N and therefore a rich source of potential applications of the Ultra-Ramsey
Theory developed above.

Theorem 7.47 Every hereditarily Baire coideal H on N represented by a
countably tight compactum is selective.

Proof. We may assume that H = HK(x, (xn)) for some compact countably
tight space K in which the sequence (xn) is dense. We need to check that H
satisfies properties (p) and (q) of Lemma 7.4.

To check the property (p) let (An) be a given decreasing sequence of ele-
ments of H. For an infinite set M ⊆ N, let KM be the set of all accumulation
points of (xn)n∈M in K. Clearly, KM is nonempty, and the set

Y =
⋃
{KM : M infinite & (∀n)M ⊆∗ An} (7.38)

accumulates to x. So we can find a sequence (Mk) of infinite subsets such
that Mk ⊆∗ An for all k and n and such that

Y0 =

∞⋃

k=0

KMK
(7.39)

still accumulates to x0. Choose a set B ⊆ N such that Mk ⊆
∗ B ⊆∗ An for

all k and n. Then KB contains x, so B is as required for property (p).
To check the property (q), let A =

⋃∞
k=0 Fk be a given partition of an

A ∈ H into finite sets. By our assumption H|A is a Baire-measurable subset
of 2A. Since it is closed under finite changes, it must be meager or comeager.
If H|A were meager, the set {A\H : H ∈ H|A} would also be meager, so
we could find a set B ⊆ A such that neither B nor A\B belongs to H,
contradicting the fact that H is coideal. Hence H|A is comeager in 2A, so
by a well-known facts about comeager subsets of the Cantor set5 and the

5A subset C of the Cantor set 2N is comeager if and only if it contains a set of the
form {x ∈ 2N : (∃∞k) x ⊇ sk} for some sequence (sk) of finite disjointly supported partial
maps from N into 2 (see Lemma 9.34).
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fact that H|A is closed upwards under inclusion, gluing together some of the
finite sets Fk, we may assume that

FM =
⋃

k∈M

Fk ∈ H (7.40)

for all infinite M ⊆ N. Pick a familyM of size continuum of infinite subsets
of N such that M ∩ N is finite for M 6= N ∈ M. Use M to index a local
base OM (M ∈M) of x in K. Then for each M ∈ M, we can choose infinite
BM ⊆ FM such that |BM ∩ Fk| ≤ 1 for all k ∈ M and such that the set
KBM

of all accumulation points of (xn)n∈BM
is a subset of OM . Such a BM

can be found since x is an accumulation point of (xn)n∈FM
. It follows that

x is an accumulation point of
⋃
{KBM

: M ∈M}. (7.41)

Since the compactum K is countably tight, there is a sequence (Mi) of
elements of M such that x is an accumulation point of

∞⋃

i=0

KBMi
. (7.42)

Since (Mi) is a sequence of almost disjoint sets, for each i we can choose a
tail M̄i of Mi such that M̄i ∩ M̄j = ∅ whenever i 6= j. Let B̄i = BMi

∩ FM̄i
.

Then BMi
\B̄i is finite, so KBMi

= KM̄i
. Let B =

⋃∞
i=0 B̄i. Then |B∩Fk| ≤ 1

for all k and
⋃∞

i=0KBMi
⊆ KB. It follows that (xn)n∈B accumulates to x,

or in other words, that B belongs to H. This finishes the proof. 2

Recall that a topological space K is said to be sequentially compact if
every sequence (xn) of elements of K contains a convergent subsequence. It
is also worth pointing out the following variation on a previous theorem.

Theorem 7.48 Every coideal on N represented by a countably tight sequen-
tially compact space is selective.

Proof. Pick a representationH = HK(x, (xn)), where K is a countably tight
sequentially compact space and let (An) be a given decreasing sequence of
elements of H. Recall that a diagonalization of the sequence (An) is any
infinite set B ⊆ N such that

B\{0, . . . , n} ⊆ An for all n ∈ B. (7.43)

Let D(An) be the collection of all diagonalizations of the sequence (An)
and let CD(An) denote the family of all B ∈ D(An) for which the sequence
(xn)n∈B is convergent in K. For B ∈ CD(An), let xB be the limit of (xn)n∈B.
Our assumption that K is sequentially compact (and regular) implies that
the set

{xB : B ∈ CD(An)} (7.44)
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accumulates to x. Since K is also assumed to be countably tight, we can find
a sequence (Bk) of elements of CD(An) such that {xBk

: k ∈ N} accumulates
to x as well. We may assume that xBk

6= xBℓ
whenever k 6= ℓ, which gives

us that the Bk are pairwise almost disjoint. Note that, during the course
of analyzing Example 7.1.2, we have given a procedure that produces a
diagonalization C of (An) such that C ∩ Bk is infinite for all k . It follows
that the set of accumulation points of (xn)n∈C includes all the points xBk

and therefore our point x. If follows that the diagonalization C belongs to
the coideal H, and this finishes the proof. 2

Let us now examine the assumptions in the previous two results. The
following consequence of Rosenthal Dichotomy Theorem 5.56 gives us a rich
source of coideals satisfying one of these assumptions.

Theorem 7.49 (Rosenthal) Every compact set K of Baire Class 1 func-
tions defined on some Polish space X is sequentially compact.

The second assumption is given by the following general topological fact
which is of independent interest.

Theorem 7.50 (Rosenthal) Every compact set K of Baire Class 1 func-
tions defined on some Polish space X is countably tight.

Proof. Consider F ⊆ K and g ∈ K such that g ∈ F . We need to find
countable F0 ⊆ F such that g ∈ F0. We first consider the case when g is
equal to the constant function 0̄ and when all members of F are nonnegative
functions, and we show only that there is a countable F0 ⊆ F such that for
every ε > 0 and x ∈ X there is an f ∈ F0 such that f(x) < ε. For H ⊆ F,
set

XH = {x ∈ X : (∀f ∈ H) f(x) > ε)}.

We need to find a countable H ⊆ F such that XH = ∅. Otherwise, since
X is a separable metric space, we can find a countable G ⊆ F such that
XH = XG for all H ⊇ G. Let P = XG. Pick a countable dense subset S of
XG and choose a sequence (fn) of elements of F that pointwise converges to 0̄
on S. Going to a subsequence, we may actually assume that (fn) converges
pointwise everywhere on X to some Baire Class 1 function h. Let H =
G ∪ {fn : n ∈ N}. Then XH = P, and therefore, h(x) ≥ ε for all x ∈ XH .
On the other hand, h(x) = 0 for all x ∈ S. Since S and XH are two dense
subsets of the closed set P, we see that h has no point of continuity in P, a
contradiction.

It remains to see that the general case can be reduced to the case just
considered. To see this, assuming further, as we may, that g is in fact a
continuous function, for every positive integer n, we define the mapping

Ψ : RX → R(Xn)

as follows:

Ψ(f)(x1, . . . , xn) = |f(x1)− g(x1)|+ ...+ |f(xn)− g(xn)|.
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It is easily seen that Ψ is a continuous map from the first Baire class on X
into the first Baire class on Xn. Thus, by the special case of the proof, we
can find a countable subset Fn of F such that for every ε > 0 and x1, . . . , xn

in X there is an f ∈ Fn such that

|f(x1)− g(x)| < ε, . . . , |f(xn)− g(xn)| < ε.

Let F∞ =
⋃∞

n=1 Fn. Then F∞ is a countable subset of F and g ∈ F∞, as
required. 2

Corollary 7.51 Every separable compact set K of Borel functions defined
on some Polish space X is countably tight and sequentially compact.

Proof. Changing the topology of X, we may assume that there is a countable
dense subset D of K consisting of continuous functions on X. Note that
under this additional assumption, the compact set K contains only Baire
Class 1 functions on X , and so the result follows from Theorems 7.49 and
7.50. For if there is g ∈ K not of first Baire class, then we can find two
countable sets P,Q ⊆ X dense inside the same perfect subset of X such
that sup(g ↾ P ) < inf(g ↾ Q). Finding a sequence (fn) of elements of D that
pointwise converges on P ∪ Q, we get a sequence of continuous functions
with no converging subsequence,6 contradicting Corollary 5.57. 2

Corollary 7.52 Every coideal on N represented by a compact set of Borel
functions defined on some Polish space P is coanalytic and selective.

Proof. This follows from Theorem 7.48 and Corollary 7.51. 2

7.4 SOME APPLICATIONS OF ULTRA-RAMSEY THEORY

A coideal H on N is bisequential if for every ultrafilter U ⊆ H, there is a
sequence (An) of elements of U such that

(∀A /∈ H) (∃ n) A ∩An = ∅. (7.45)

Having in mind the representation H = HK (x, (xn)) , this is a strong way
of saying that every subsequence of (xn) that accumulates to x has a further
subsequence that converges to x. It follows that H is comeager in 2A for
every set A ∈ H. The following result is a basis for all our applications of
local Ramsey theory in this section.

Theorem 7.53 Every coanalytic (or analytic) selective coideal H on N is
bisequential.

6Since its pointwise limit would be at the same time a Baire Class 1 function and a
function without a point of continuity on P = Q.
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Proof. Choose an ultrafilter U on N consisting only of sets from H. Applying
Theorem 7.42, we get a U-tree T with root ∅ such that [T ] ⊆ H or [T ]∩H = ∅.
For s ∈ T , let

As = {n ∈ N : s ∪ {n} ∈ T } . (7.46)

Then As ∈ U for all s ∈ T . So, in particular,
⋂

s∈F As ∈ H for every finite
F ⊆ T . Since H is selective, there is a B ∈ H such that

B/s ⊆ As for all s ∈ T, s ⊆ B. (7.47)

If follows that B ∈ [T ] ∩ H. This shows that we must have the alternative
[T ] ⊆ H. Note that any set C ⊆ N that has a nonempty intersection with
all As (s ∈ T ) contains an infinite branch of T. It follows that any such set
C ⊆ N contains an element of H. This finishes the proof. 2

Corollary 7.54 Every coanalytic (or analytic) coideal on N represented by
a countably tight compact space is bisequential.

Proof. This follows from Theorems 7.48 and 7.53. 2

Corollary 7.55 Every coideal on N represented by a compact set of Borel
functions defined on some Polish P is bisequential.

Proof. This follows from Corollary 7.52 and Theorem 7.53. 2

Corollary 7.56 (Bourgain-Fremlin-Talagrand) Every compact set K of
Baire Class 1 functions defined on some Polish space is Fréchet.7

Proof. Consider a subset F of K that accumulates to some x ∈ K. By
Theorem 7.50, there is a sequence (xn) of elements of F that accumulates to
x. By Corollary 7.55, the coideal H (x, (xn)) is bisequential, so in particular
there is a subsequence (xnk

) of (xn) converging to x. 2

Corollary 7.57 (Odell-Rosenthal) A separable Banach space X contains
a subspace isomorphic to ℓ1 iff there is an x∗∗ ∈ X∗∗ so that there is no
sequence (xn) ⊆ X with the properly that y∗ (xn)→ x∗∗ (y∗) for all y ∈ X∗.

Proof. A simple interpretation of Rosenthal’s ℓ1-theorem states that if a
separable Banach space X contains no isomorphic copy of ℓ1, then the double
dual ball BX∗∗ consists of Baire Class 1 functions defined on the dual ball
BX∗ in its weak*-topology. Since BX is pointwise dense in BX∗∗ , we get the
conclusion of the theorem from the Bourgain-Fremlin-Talagrand theorem. 2

Our next example shows that Theorem 7.26 can naturally be deduced
from Corollary 7.56. This may not be so surprising, since both of these two
results are based on a single basic fact (Corollary 7.25) from the local Ramsey
theory.

7A topological space X is said to have the Fréchet property if the closure Y of a subset
Y of X is obtained by taking the limits of all converging sequences (yn) of elements of Y .
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Example 7.4.1 Let A be an infinite family of infinite almost disjoint sub-
sets of N and let

A∗ = A∪ FIN. (7.48)

Identifying sets with the corresponding characteristic functions, we consider
A∗ as a subset of the Cantor cube 2N from which it inherits its separable
metric topology. For n ∈ N, let πn : A∗ → {0, 1} be the restriction of the
projection map of 2N, i.e., πn (X) = 1 iff n ∈ X . For A ∈ A, let δA : A∗ →
{0, 1} be the characteristic function of the singleton {A} :

δA (x) = 1 iff x = A.

Let 0̄ : A∗ → {0, 1} be the constant 0 function. Note that 0̄ and πn are
continuous functions on A∗ and that δA (A ∈ A) are Baire Class 1 functions
on A∗. Note also that

KA = {0̄} ∪ {πn : n ∈ N} ∪ {δA : A ∈ A} (7.49)

is a compact subset of the Tychonov cube {0, 1}A
∗

. Note that the sequence
(πn) accumulates to 0̄ and that its subsequence (πn)n∈B converges to 0̄ iff
B ∩A is finite for all A ∈ A. Thus if A is taken to be a maximal almost dis-
joint family of infinite subsets of N, the conclusion of the Bourgain-Fremlin-
Talagrand theorem fails for KA ⊆ B1 (A∗). Note that if A is analytic, so is
A∗. In this case A∗ would be a continuous image of the irrationals R \Q
and, therefore, B1 (A∗) equipped with the topology of pointwise convergence
would be homeomorphic to a subset of B1 (R \Q) . Hence, the compactum
KA would be a subject of the Bourgain-Fremlin-Talagrand theorem, and so,
in particular there would be a subsequence (πnk

) of (πn) converging to 0̄. So
as pointed out above, in this case A cannot be a maximal almost disjoint
family of infinite subsets of N. This shows that Bourgain-Fremlin-Talagrand
theorem can be considered an extension of the theorem of Mathias presented
above (see Theorem 7.26) and saying that there are no maximal almost dis-
joint analytic families of infinite subsets of N.

Recall that a coideal H on N as a subset of 2N is comeager whenever it
has the Baire property in 2N. We have also seen that the comeagerness of H
is equivalent to the existence of a strictly increasing sequence (nk) ⊆ N such
that

⋃
k∈M [nk, nk+1) ∈ H for all infinite M ⊆ N. In the proof of Theorem

7.47 we used such a property to prove that H is selective. To move from
selectiveness of H to bisequentiality we needed H to be H-Ramsey. The
following result connects these two requirements although the “Ramsey” is
to be interpreted in the classical sense, i.e. relative to the coideal of infinite
subsets of N.

Theorem 7.58 Suppose Γ is a collection of subsets of N[∞] closed under
taking continuous preimages. If every set from Γ is Ramsey then every coideal
belonging to Γ is comeager.
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Proof. Given a coideal H ∈ Γ, set

X =

{
M = (mk) ∈ N[∞] :

∞⋃

k=0

[m2k,m2k+1) ∈ H

}
. (7.50)

Clearly, X is a continuous preimage of H, so by our assumption X ∈ Γ. It
follows that X is Ramsey, so we can find an infinite M ⊆ N such that

M [∞] ⊆ X or M [∞] ∩ X = ∅. (7.51)

Since H is a coideal, it is easily seen that the second alternative is impossible,
so we are left with the first. Choose a strictly increasing sequence (ni) ⊆M
that takes every second member of M . Then from M [∞] ⊆ X we conclude
that

⋃
i∈B [ni, ni+1) ∈ H for all infinite B ⊆ N. So H is comeager in 2N. 2

Corollary 7.59 For every coanalytic (or analytic) coideal H in N, there is
an infinite increasing sequence (mk) ⊆ N such that

⋃
k∈B [mk,mk+1) ∈ H

for all infinite B ⊆ N.

Proof. Let Γ be the minimal field of subsets of 2N that contains all open sets
and that is closed under the Souslin operation. So in particular Γ is closed
under continuous images, contains all analytic and coanalytic subsets of 2N,
and every set from Γ is Ramsey. By Theorem 7.58 every coideal H belonging
to Γ is comeager, and by its proof it satisfies the conclusion of the Corollary.
2

We finish this section with an application to abstract Ramsey theory itself.
It depends also on the following well-known result.

Theorem 7.60 (Balcar-Pelant-Simon) There is a family T ⊆ N[∞] with the
following properties

(1)
(
∀A ∈ N[∞]

)
(∃B ∈ T ) B ⊆∗ A,

(2) (∀A,B ∈ T ) [A ⊆∗ B ∨B ⊆∗ A ∨ |A ∩B| < ℵ0].

A family T with these properties is usually in the literature called base-
matrix . It is really a family of infinite subsets of N forming a tree in the
ordering of reverse almost-inclusion and being dense in N[∞] relative to the
same ordering.

Theorem 7.61 Let H be a coanalytic selective coideal on N. Then the cor-
responding Ramsey space (N[∞],H,⊆,⊆, r) is topological.

Proof. By Theorem 7.60, we can fix a base-matrix T ⊆ N[∞] and assume it
is closed under finite changes of its elements. Let T0 = T ∩ H and consider
the refinement of the metrizable topology of N[∞] with the basic open sets
of the form

[s,M ] (s ∈ N[<∞],M ∈ T0). (7.52)
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That this collection forms a basis for a topology on N[∞] follows easily from
properties (1) and (2) of T . Thus we have the usual notions of nowhere
dense, meager, and property of Baire relative to this new T0-topology.

We need to check that the family of T0-meager sets coincides with the
family of H-meager sets and similarly, that the families of T0-Baire and H-
Baire subsets of N[∞] coincide. In both cases, it follows from the fact that

[s,M ] ∩ T0 6= ∅ (7.53)

for all s ∈ N[<∞] and M ∈ H, so let us show that this is indeed true. Since
T0 is closed under finite changes, it suffices to show that for every M ∈ H
there is an N ∈ T0 such that N ⊆∗ M . To see this, choose an ultrafilter
U ⊆ H such that M ∈ U . By Theorem 7.53, there is a sequence (An) ⊆ U
such that

(∀A /∈ H) (∃ n)A ∩An = ∅. (7.54)

Choose an infinite set B ⊆ N such that B \An is finite for all n. Then B has
finite intersection with every infinite subset of N that does not belong to H,
or in other words, B[∞] ⊆ H. By (1) we can find a C ∈ T such that C ⊆∗ B.
Then C ∈ H and therefore C ∈ T0, as required. This finishes the proof. 2

7.5 LOCAL RAMSEY THEORY AND ANALYTIC

TOPOLOGIES ON N

Sequential convergence is a subject matter that shows up in several areas of
mathematics, and one usually studies it for utilitarian reasons. In this sec-
tion we give one such study as it is really very closely tied with the concepts
and results of the local Ramsey theory developed so far. More precisely, the
purpose of this section is to stress the usefulness of the Ramsey-theorecic
view on sequential convergence in countable topological spaces (X, τ), es-
pecially when the topology τ viewed as a subset of the Cantor space 2X is
assumed to be analytic. In the previous section, we have already encountered
an effective use of local Ramsey theory in proving a result of this sort (see,
for example, Corollary 7.56).

We start by recalling the notions that we are already familiar with. We
shall say that a point x ∈ X is a Fréchet point (or, X is Fréchet at x) if
for every F ⊆ X with x ∈ F there is a sequence xn ∈ F converging to x.
Analogously, we define the notion of a bisequential point by requiring that if
an ultrafilter converges to x, then it contains a sequence of sets converging
to x. We say that a space X is Fréchet (bisequential) if every point of X is a
Fréchet (bisequential) point in X. Taking analogies with some notions from
local Ramsey theory, we arrive at the following two definitions.

Definition 7.62 A point x in a topological space X is a q+-point if for
every F with x ∈ F and every partition F =

⋃
n Fn of A into finite sets,

there is a subset H of F such that x ∈ H and |H ∩ Fn| ≤ 1 for all n.
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Definition 7.63 A point x in a topological space X is a p+-point if for any
decreasing sequence Pn of subsets of X \ x such that x ∈ Pn for all n, there
is P ⊆ X \ x such that x ∈ P and P ⊆∗ Pn (i.e., P \ Pn is finite) for all n.

We note that a point that is at the same time a Fréchet point and a p+-
point is what is called a strongly Fréchet point in the literature. This hints
that the following analog of an important notion of local Ramsey Theory
might be of some topological interest as well.

Definition 7.64 We say that a point x in a topological space X is a selective
point if it is both a p+- and q+-point.

As we have seen, points in countable topological spaces correspond to
ideals and coideals on the countable index set, and the notion of a selective
point is meant to correspond to the selectivity of the corresponding coideal.
So, we have the following reformulation of Theorem 7.53.

Theorem 7.65 A point in a countable analytic space is selective if and only
if it is bisequential.

It is also worth pointing out the following reformulation of Corollary 7.54.

Theorem 7.66 Every countable analytic space with a countably tight com-
pactification is bisequential.

It thus appears that in the realm of countable analytic spaces selectivity
is a rather strong requirement in comparison with the Fréchet property.
For example, from Theorem 7.65, we learn that selectivity is a productive
property, while the Fréchet property is not. A typical countable analytic
Fréchet space whose square is not Fréchet is the sequential fan, S(ω), the
space defined over N× N ∪ {∞}, where all points in N× N are isolated and
the neighborhood filter of ∞ is generated by the sets of the form

Uf = {(n,m) ∈ N× N : m ≥ f(n)} ∪ {∞}

for f ∈ NN. To see that S(ω)2 is not Fréchet, note that the set

{((m,n), (0,m)) : m,n ∈ N}
accumulates to (∞,∞), but it contains no sequence converging to (∞,∞).
We prove below a general fact from which it follows that the point ∞ must
fail to be a p+-point or a q+-point in S(ω). Clearly, every point of a Fréchet
space is a q+-point,8 so ∞ in S(ω) must fail to be a p+-point. There is of
course a more direct way to see that ∞ is not a p+-point of S(ω), by simply
noticing that

Pn = {(x, y) : x > n)}, (n ∈ N)

is a sequence of sets that accumulate to ∞ although no set that is almost
included in all the Pn accumulates to∞. This example suggests that a deeper
reason for this phenomenon lies in the fact that S(ω) fails to have either of
the following two standard diagonal-sequence properties.

8In fact, more is true: every point in a countable sequential space is a q+-point. Recall
that a space X is sequential if sequentially closed subsets of X are in fact closed.
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Definition 7.67 A point x in X has the diagonal-sequence property if for
any double-indexed sequence {xnk} in X such that

xnk →k x for all n

then for each n, we can choose k(n) such that

xnk(n) →n x.

If we require that some infinite subsequence of {xnk(n)} converges to x rather
than the sequence itself, we say that x has the weak diagonal sequence prop-
erty in X.

Lemma 7.68 The following are equivalent for every Fréchet point x of any
countable topological space X,

(1) x is not a p+-point in X,

(2) x fails to have the weak diagonal sequence property in X,

(3) X contains a closed copy of S(ω) with x as its point at infinity.

Proof. The only nontrivial implication is from (1) to (3). Suppose (Pn) is a
decreasing sequence of subsets of X \ {x} that accumulate to x, but no set
that is almost included in every Pn accumulates to x. Since x is a Fréchet
point, for each n we can find a sequence {xnk : k ∈ N} ⊆ Pn converging to x.
We may further assume that every y ∈ X \{x} has a neighborhood that has
an empty intersection with all but finitely many of these sequences. Then
{xnk : (n, k) ∈ N× N} ∪ {x} is a closed copy of S(ω) in X. 2

Corollary 7.69 A countable analytic Fréchet space is bisequential if and
only if it has the weak diagonal sequence property.

Proof. This follows from Theorem 7.65 and Lemma 7.68. 2

Corollary 7.70 A countable analytic Fréchet space is bisequential if and
only if it contains no closed copy of S(ω).

Proof. This also follows from Theorem 7.65 and Lemma 7.68. 2

Corollary 7.71 A countable analytic space is bisequential if and only if its
square is Fréchet.

Proof. This follows from the fact that the square of S(ω) is not Fréchet. 2

We now give another result about preservation of topological properties
when taking products in the class of countable analytic spaces.

Theorem 7.72 Suppose X and Y are two countable analytic spaces with
the weak diagonal sequence property. Then their product X × Y also has the
weak diagonal sequence property.
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Proof. Consider a double-indexed sequence (xmn) in X × Y such that

xmn →n x for all m.

We need to find an increasing sequence (mk) and a sequence (nk) such that
xmknk

→k x. Identifying (m,n) with xm,n and∞ with x, we may assume we
have two analytic topologies σ and τ on N×N∪{∞} with the weak diagonal
sequence property, with ∞ as the only nonisolated point and that for each
m the set Cm = {m} × N converges to ∞ in both topologies. We need to
find an infinite set M ⊆ N × N such that M →σ ∞ and M →τ ∞ (or in
other words, M converges to ∞ in both topologies) and such that M ∩ Cm

is finite for all m.
Let H be the collection of all subsets A of N2 such that A ∩ Cm is finite

for all m and such that A contains an infinite sequence that converges to
∞ relative to the topology σ as well as an infinite sequence that converges
to ∞ relative to τ. We claim that H is a selective coideal on N2. The fact
that H has property (q) is clear, so let us check that H has property (p).
So let (Pn) be a given decreasing sequence of elements of H. For each n,
pick an infinite subset Mn ⊆ Pn such that Mn →σ ∞. Since σ has the weak
diagonal sequence property, we can find an infinite set M ⊆

⋃∞
n=0Mn such

that M ∩Mn is finite for all n and still converging to ∞. This gives us an
infinite subset M of P0 such that M →σ ∞ and such that M ⊆∗ Pn for all
n. Similarly, we find an infinite subset N of P0 such that N →τ ∞ and such
that N ⊆∗ Pn for all n. Let P = M ∪N. Then P ∈ H and N ⊆∗ Pn for all
n, as required.

Applying Corollary 7.23 to the selective coideal H and the analytic family

A = {M ⊆ N× N :∞ /∈M
σ
},

we get a set B ∈ H such that B[∞] ⊆ A, or else B[∞]∩A = ∅. Note that the
first alternative is eliminated by the fact that the set B itself does not belong
to A, as it contains a sequence that converges to ∞ relative to the topology
σ. So we must have the second alternative, B[∞]∩A = ∅, which in particular
means that B →σ ∞, as all of its infinite subsets accumulate to ∞ relative
to σ. By the definition of H, the set B must contain an infinite subset A
such that A →τ ∞. So we have arrived at an infinite set that converges to
∞ relative to both topologies and that has the finite intersection with Cm

for all m. This finishes the proof. 2

We now give an application of local Ramsey theory to get an interesting
metrizability criterion for a class of topological groups.

Theorem 7.73 A countable analytic group is metrizable if and only if it is
Fréchet.

Proof. To prove the nontivial implication from right to left, let G be a given
countable Fréchet analytic topological group. By a well-known topological
group metrization theorem of Birkhof-Kakutani (see Theorem 9.33), it suf-
fices to show that the identity e of G has a countable neighborhood base.
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Let us first show that the identity e of the group G is a selective point in G,
or in other words, that the coideal

H =
{
A ⊆ G : e ∈ A \ {e}

}
(7.55)

is selective. This reduces to showing that H satisfies conditions (p) and (q)
of Lemma 7.4. The property (q) follows easily, since if A ∈ H is decomposed
into a sequence (Fn) of finite subsets by the Fréchet property of G, we can
find a B ⊆ A forming a sequence converging to e, so by going to a sufficiently
thin subset of B, we can get a member of H that takes at most one point
from each of the finite sets Fn. So, let us check that H satisfies (p). Let
(An) be a given decreasing sequence of elements of H. If there is a sequence
(xk) converging to e such that for all n there are infinitely many k such
that xk ∈ An, we can find the desired set B ∈ H such that B \ An is finite
for all n. So assume such a converging sequence cannot be found. Then,
going perhaps to a subsequence of (An) for each n we can find a converging
sequence xn

k −→k e consisting entirely of elements of An \ (An+1 ∪ {e}).
Consider the set

X =
{
x0

n · x
n
k : k, n ∈ N

}
. (7.56)

Clearly, X accumulates to e, since its closure contains the sequence (x0
n)∞n=0,

which converges to e. By our assumption about the group, the set X contains
a converging sequence

x0
ni
· xni

ki
−→i e. (7.57)

Note that the infinite sequence (ni)
∞
i=0 of integers cannot take a constant

value infinitely many times, so by going to a subsequence, we may assume
that ni < nj whenever i < j. It follows that

(
x0

ni

)−1
−→i e. (7.58)

Taking the products of terms of the two converging sequences, we conclude
that

xni

ki
−→i e. (7.59)

Let B =
{
xni

ki
: i ∈ N

}
. Then B ∈ H and B \ An is finite for all n. This

finishes the proof that H is a selective coideal.
By homogeneity of topological groups, we conclude that every point of G

is a selective point in G, so applying Theorem 7.65, we conclude that G is
a bisequential space. So in particular, the coideal H itself is bisequential.
Choose an ultrafilter U on G containing the neighborhood filter of e such
that no nowhere dense subset of G belongs to U . So, in particular U is
nonprincipal and is included in the coideal H. Since H is bisequential, there
is a decreasing sequence (An) ⊆ U such that

(∀A /∈ H) (∃n )A ∩An = ∅. (7.60)

For each n, we let Vn be the interior of the closure of An. Note that since
U contains no nowhere dense set each Vn is open and nonempty. Since G is
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regular, the sequence (Vn) still converges to e, i.e., every neighborhood of e
contains all but finitely many Vn. If follows that.

{
Vn · V

−1
n : n ∈ N

}
(7.61)

is a countable neighborhood base of e in G. This finishes the proof. 2

Corollary 7.74 A separable topological group H is metrizable if and only
if it satisfies the following two conditions:

(a) H has the Fréchet property.

(b) H induces an analytic topology on one of its countable dense subgroups.

7.6 ULTRA-HALES-JEWETT SPACES

Let L =
⋃∞

n=0 Ln be a given alphabet written as an increasing union of finite
alphabets Ln and let v /∈ L be a given variable. Let WL be the semigroup
of words over L and let WLv be the semigroup of variable-words over L,
i.e., words over L ∪ {v} in which v occurs at least once. As in the proof of
the infinite Hales-Jewett theorem (see Section 2.5), we choose nonprincipal
ultrafilters W and V on WL and WLv, respectively, such that

(1) WaW =W ,

(2) VaV = V ,

(3) VaW =WaV = V ,

(4) V [λ] =W for all λ ∈ L,

(5) {w ∈ WL : |w| ≥ n} ∈ W for all n ∈ N.

(Recall that V [λ] is the image of V under the substitution map x → x [λ] ,
where x [λ] is obtained from x by replacing every occurrence of v by the letter
λ.) The set W<∞

L of finite sequences of words is considered a tree under
end-extension. To avoid the confusion between words and finite sequences
of words, we avoid using the concatenation symbol a when dealing with
members of W<∞

L . Thus an immediate successor of a node t of W<∞
L is

uniquely determined by a word w ∈WL and is denoted by

(t, w) = t ∪ {〈|t| , w〉} . (7.62)

A W-tree is now defined as in Section 7.2 above, i.e., as a downward closed
subset T that has a stem, st(T ), the maximal node comparable to all other
nodes of T , and such that for all t ∈ T equal or end-extending st(T ),

{w ∈WL : (t, w) ∈ T } ∈ W. (7.63)

For a W-tree T , by [T ] we denote the set of all (wn) ∈W∞
L such that

(w0, . . . , wn−1) ∈ T for all n. (7.64)
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The collection of sets of the form [T ] for T a W-tree forms a basis for a
zero-dimensional topology on the set W∞

L of all infinite sequences of words
which refines the metrizable product topology. We refer to this topology on
W∞

L as the W-topology. As in Section 7.2 we define the ordering

T ′ ≤0 T iff T
′

⊆ T and st (T ′) = st (T ) (7.65)

and its variations ≤n for all n ≥ 0. We use ≤0 to define when a subset X
of W∞

L is W-Ramsey, i.e., whenever for every W-tree T there is a T ′ ≤0 T
such that

[T ′] ⊆ X or [T ′] ∩ X = ∅. (7.66)

If for everyW-tree T we can find aW tree T ′ ≤0 T such that [T ′]∩X = ∅, we
call X a W-Ramsey null set. Then referring to Theorem 7.42 (or its proof),
we get the following result.

Theorem 7.75 Every subset of W∞
L that has the property of Baire relative

to the W-topology is W-Ramsey and vice versa. Every subset of W∞
L that is

meager relative to the W-topology is W-Ramsey null and vice versa.

Corollary 7.76 For every finiteW-Baire-measurable coloring of W∞
L , there

is a W-tree T with stem ∅ such that [T ] is monochromatic.

Corollary 7.77 For every finite metrically Souslin-measurable coloring of
W∞

L , there is a W-tree T with stem ∅ such that [T ] is monochromatic.

We now need a lemma to relate these results to the standard applications of
the Ramsey space

(W
[∞]
L ,W

[∞]
Lv ,≤,≤0, r) (7.67)

of rapidly increasing sequences of words and variable-words developed above
in Section 4.4. So let us recall some definitions from Section 4.4. A sequence
(xn) from W≤∞

L or W≤∞
Lv is said to be rapidly increasing if

|xn| >
n−1∑

i=0

|xi| (7.68)

for all n in the domain of the sequence. By W
[<∞]
L ,W

[<∞]
Lv ,W

[∞]
L , andW

[∞]
Lv

we denote the corresponding families of rapidly increasing finite or infinite

sequences. For an X = (xn) ∈W
[∞]
Lv , set

[X ]L = {xn0 [λ0]a . . .axnk
[λk] ∈WL : n0 < . . . < nk, λi ∈ Lni

(i ≤ k)}

[X ]Lv = {xn0 [λ0]a . . .axnk
[λk] ∈WLv : n0 < . . . < nk,

λi ∈ Lni
∪ {v}(i ≤ k)}.
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From the assumption that the sequence X = (xn) is rapidly increasing, for
every w ∈ [X ]L and x ∈ [X ]L, the choices of sets of integers {n0 < . . . < nk}
and {m0 < . . . < mℓ} such that the equalities

w=xn0 [λ0] a . . .axnk
[λk] ,

x=xm0 [µ0] a . . .axmℓ
[µℓ]

hold for some λi ∈ Lni
(i ≤ k) and µi ∈ Lni

∪ {v} (i ≤ ℓ) are unique. So we
denote these sets by suppX (w) and suppX (x), respectively. Recall that for
two finite sets F and G of integers, we let F < G denote the fact that m < n

whenever m ∈ F and n ∈ G. For X = (xn) ∈W
[≤∞]
L and Y = (yn) ∈W

[≤∞]
Lv ,

we say that X is a block subsequence of Y and write X ≤ Y if X ⊆ [Y ]L
and suppY (xm) < suppY (xn) whenever m < n.

The reader will notice that in Section 4.4, for some technical reasons, we
have defined some other variations on the block-subsequence order. Since in
this section we do not need these variations, we use only one symbol ≤ for
this relation. For example, we consider X ≤ Y for X and Y sequences of
variable-words, as well as when X is a sequence of nonvariable words and Y
is a sequence of variable-words.

Lemma 7.78 For every W-tree T with stem ∅ there is a Y ∈ W
[∞]
Lv such

that

[Y ]
[∞]
L =

{
X ∈ W

[∞]
L : X ≤ Y

}
⊆ [T ] . (7.69)

Proof. For t ∈ T , let

Wt = {w ∈ WL : (t, w) ∈ T } . (7.70)

Then Wt ∈ W for all t ∈ T . Starting with the choice P 0
W = W∅, we proceed

as in the proof of the infinite Hales-Jewett theorem given above in Section
2.5. We build decreasing sequences (Pn

W ) and (Pn
V ) of elements of W and V ,

respectively, and a rapidly increasing sequence Y = (yn) of variable-words
such that for all n,

(a)n yn ∈ Pn
V ,

(b)n (∀λ ∈ Ln)(∀x ∈ Pn
V ) x [λ] ∈ Pn

W ,
(c)n (Vx) (∀λ ∈ Ln ∪ {v}) yn [λ] ax ∈ Pn

V ,
(d)n (Wt) yn

at ∈ Pn
V .

As P 0
W = W∅ has been chosen, let

P 0
V =

{
x ∈WLv; ∀λ ∈ L0 x [λ] ∈ P 0

W

}
. (7.71)

By properties (1) and (2) of W and V , we conclude that P 0
V ∈ V and that

V̇-almost all choices of y0 ∈ P 0
V satisfy (a)0 − (d)0. The inductive step from

n to n+ 1 is done as follows. Let Pn+1
W be the intersection of Pn

W , the set

Qn
W =

{
w ∈ WL : yn

aw ∈ Pn
V

}
, (7.72)
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and all sets of the form

Wt (t ∈ T, t ≤ (yi)i≤n) . (7.73)

Note that the space [(yi)i≤n]L that the finite sequence (yi)i≤n generates
inside WL is finite, as we allow only substitutions with letters that belong
to one of the finite alphabets Li (i ≤ n). Since Wt ∈ W for all t ∈ T , we
conclude that Pn+1

W ∈ W . By (c)n the set

Qn
V =

{
x ∈ Pn

V (∀λ ∈ Ln ∪ {v}) yn [λ] ax ∈ Pn
V

}
(7.74)

belongs to V . So using (1) and (2) again, we conclude that

Pn+1
V =

{
x ∈ Qn

V : (∀λ ∈ Ln+1) x [λ] ∈ Pn+1
W

}
(7.75)

belongs to V . By properties (1) , (2) , and (3) of our ultrafilters, V-almost all
choices of yn+1 ∈ P

n+1
V satisfy (c)n+1 , (d)n+1 , as well as

|yn+1| >
n∑

i=0

|yi| . (7.76)

This describes the recursive construction. Then as in the proof of the infinite
Hales-Jewett theorem, we verify the following claim.

Claim 7.78.1 For nonnegative integers k and n0 < . . . < nk and a choice
of letters λi ∈ Lni

(i ≤ k), we have that yn0 [λ0] a . . .aynk
[λk] ∈ Pn0

W .

Using Claim 7.78.1 and the way the recursive construction has been done, we
conclude that every finite rapidly increasing sequence s = (wi)i<j ≤ [Y ]L is
a member of T . This is clear for s = ∅, so let us consider the case s = (t, wj−1)
and t = (wi)i<j−1 ∈ T . Let

wj−1 = yn0 [λ0] a . . .aynk
[λk] (7.77)

for some (actually unique) n0 < . . . < nk and λℓ ∈ Lnℓ
(ℓ ≤ k). By Claim

7.78.1, wi−1 ∈ P
n0

W . If n0 = 0, then t = ∅, j = 1, and P 0
W = W∅ so s = 〈w0〉

is a member of tree T . If n0 > 0, then from the fact that

suppY (wj−2) < suppY (wj−1) = {n0, . . . , nk} , (7.78)

we conclude that t ≤ (yℓ)ℓ≤n0−1. By the way that we have done the recursive
step from n0 − 1 to n0, we know that Pn0

W ⊆ Wt. It follows that wi−1 ∈ Wt

and therefore s = (t, wi−1) ∈ T . This finishes the proof. 2

Combining Corollary 7.76 and Lemma 7.78, we obtain the following result.

Corollary 7.79 For every finite W-Baire-measurable coloring of the space

W
[∞]
L of all infinite rapidly increasing sequences of words over the alphabet

L, there is an infinite rapidly increasing sequence Y = (yn) of variable-words

such that {X ∈W
[∞]
L : X ≤ Y } is monochromatic.

Recall that in Section 4.4 we built the Hales-Jewett space(
W

[∞]
L ,W

[∞]
Lv ,≤,≤0, r

)

and used it to show among other things the following fact, which we also are
deduce from Corollary 7.79.
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Corollary 7.80 Every subset of W
[∞]
L that is Souslin-measurable relative to

the usual metrizable topology of W
[∞]
L is W

[∞]
Lv -Ramsey.

Proof. Let [s, Y ] be a given basic set of the space (W
[∞]
L ,W

[∞]
Lv ,≤,≤0, r)

and let X be a given metrically Souslin-measurable subset of W
[∞]
L . Thus

Y = (yk) ∈W
[∞]
Lv , s = (wk)k<n ∈ W

[∞]
L and

[s, Y ] = {X ∈ W
[∞]
L : X ↾ n = s and X ≤ Y }. (7.79)

We need to find Z ≤ Y in W
[∞]
Lv such that Z ↾ m = Y ↾ m for m =

min
{
ℓ : s ≤ (yk)k<ℓ

}
and such that [s, Z] is either included in or disjoint

from X . Choose ultrafilters W and V concentrating on [Y ]L and [Y ]Lv, re-
spectively, satisfying conditions (1),(2),(3), and (4) above and the following
variation of (5):

{w ∈ [Y ]L : suppY (w) ∩ {0, . . . , n} = ∅} ∈ W for all n. (7.80)

Then

T = {t ∈ [Y ]
[<∞]
L : t either is extended by or it end-extends s} (7.81)

is a W-tree with stem s. By Corollary 7.79 there is a W-tree T ′ ⊆ T with
stem s such that [T ′] ⊆ X or [T ′] ∩ X = ∅. By (the proof of) Lemma 7.78,

we can find a Z = (zk) ∈ W
[∞]
Lv such that Z ≤ Y and Z ↾ m = Y ↾ m and

such that

{X ∈W
[∞]
L : X ≤ Z & X ↾ n = s} ⊆ [T ′] . (7.82)

It follows that [s, Z] ⊆ X or [s, Z] ∩ X = ∅, as required. 2

Corollary 7.81 For every finite Souslin-measurable coloring of the set W
[∞]
L

of all infinite rapidly increasing sequences of words over the alphabet L, there
is an infinite rapidly increasing sequence Z = (zn) of variable-words such

that {X ∈W
[∞]
L : X ≤ Y } is monochromatic.

Let us now turn to the semigroup WLv and the idempotent V and consider
the collection of all V-subtrees of W<∞

Lv and the corresponding V-topology
on W∞

Lv generated by sets [T ] of infinite branches through V-trees T . We
also consider the corresponding notions of V-Ramsey and V-Ramsey null for
subsets of W∞

Lv and as before prove the following facts.

Theorem 7.82 Every subset of the set W∞
Lv of infinite sequences of variable-

words that has the property of Baire relative to the V-topology is V-Ramsey
and vice versa. Every subset of W∞

Lv that is meager relative to the topology
is V-Ramsey null and vice versa.

The proof of the following lemma is analogous to that of Lemma 7.78.

Lemma 7.83 For every V-tree T with stem ∅, there is an infinite rapidly in-
creasing sequence Z = (zn) of variable-words such that every infinite rapidly
increasing block-subsequence of Z is a branch through T .



212 CHAPTER 7

Corollary 7.84 For every finite V-Baire-measurable coloring of the space

W
[∞]
Lv of all infinite rapidly increasing sequences of variable-words over the

alphabet L, there is a Z ∈W
[∞]
Lv such that {Y ∈ W

[∞]
Lv : Y ≤ Z} is monochro-

matic.

Corollary 7.85 For every finite metrically Souslin-measurable coloring of

the space W
[∞]
Lv of all infinite rapidly increasing sequences of variable-words

over L, there is a Z ∈W
[∞]
Lv such that the set of all rapidly increasing block-

subsequences of Z is monochromatic.

Remark 7.86 In connection with Corollaries 7.84 and 7.85, we remind the
reader that the relation ≤ here allows substitutions for some (although not
all) occurrences of v, so these corollaries are not just earlier results (like
Corollaries 7.80 and 7.81) with v added to the alphabet.

We finish this section by remarking that while the notions of W-Ramsey
and V-Ramsey refer to subsets of W∞

L and W∞
Lv, the corresponding notions

for the Hales-Jewett space refer to seemingly smaller sets W
[∞]
L and W

[∞]
Lv .

The difference however is not essential since, as it is easily seen, the set

W∞
L \W

[∞]
L is W-Ramsey null and the set W∞

Lv \W
[∞]
LV is V-Ramsey null.

7.7 ULTRA-RAMSEY SPACES OF BLOCK SEQUENCES OF

LOCATED WORDS

We start again with an alphabet L =
⋃∞

n=0 Ln written as an increasing
union of finite alphabets Ln and a variable v /∈ L. Recall that a located word
is a function from a finite nonempty subset of N into L and that a located
variable-word is such a function with range L∪{v} with the value v achieved
at least once. Let

FINL= the collection of located words over L,
FINLv= the collection of located variable-words over L.

Let FIN∗
L and FIN∗

Lv be the collections of all cofinite ultrafilters on FINL

and FINLv respectively, i.e., ultrafilters that contain all sets of the form
{x : dom (x) > n} (n ∈ N). Then the partial operation of taking the union
of two functions, provided their domains are disjoint, extends to the full
semigroup operation on FIN∗

L and FIN∗
LV which we denote ∪. In Section 2.5

we show how to produce idempotents W ∈ FIN∗
L and V ∈ FIN∗

Lv such that

(1) V ∪W =W ∪ V = V ,

(2) V [λ] =W for all λ ∈ L,
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where U 7→ U [λ] refers to the extension of the substitution map x 7→ x [λ]
from FINLv into FINL. A block sequence is a finite or infinite sequence X =
(xn) of members of FINL or FINLv such that

dom (xm) < dom (xn) whenever m < n. (7.83)

Let FIN
[<∞]
L and FIN

[∞]
L be the collection of all finite and infinite block

sequence of members of FINL, respectively. Similarly, FIN
[<∞]
Lv and FIN

[∞]
Lv

are the collections of finite and infinite block sequences of located variable-

words. Recall that FIN
[<∞]
L and FIN

[<∞]
Lv can be considered as trees under

the ordering ⊑ of end-extension. For t in FIN
[<∞]
L and w in FINL we use the

notation (t, w) to denote the sequence of length |t| + 1 that extends t and
has w as its last term. Thus,

t ⊑ (t, x)

is an immediate successor of t in the tree FIN
[<∞]
L determined by w. We use

similar notation for the immediate successors of nodes of the tree FIN
[<∞]
Lv .

A W-tree (V-tree) is a downward closed subtree T of the tree FIN
[<∞]
L

(of the tree FIN
[<∞]
Lv ) that has a ⊑-maximal node, call it, st(T ), that is

comparable to all other nodes and such that every t ∈ T with property
t ⊒ st(T ) satisfies the following condition:

{w ∈ FINL : (t, w) ∈ T } ∈ W (respectively, {x ∈ FINLv : (t, x) ∈ T } ∈ V).

Taking the sets [T ] of infinite branches through W-trees (V-trees) T, we

obtain a W-topology on FIN
[∞]
L and a V-topology on FIN

[∞]
Lv . Similarly, one

defines the notion of W-Ramsey and V-Ramsey for subsets of FIN
[∞]
L and

FIN
[∞]
Lv , respectively, and the corresponding respective σ-ideal ofW-Ramsey

null and V-Ramsey null sets. Then, as in the previous sections, we have the
following facts.

Theorem 7.87 Every W-Baire subset of FIN
[∞]
L is W-Ramsey and vice

versa. Every W-meager subset of FIN
[∞]
L is W-Ramsey null and vice versa.

Theorem 7.88 Every V-Baire subset of FIN
[∞]
Lv is V-Ramsey and vice versa.

Every V-meager subset of FIN
[∞]
Lv is V-Ramsey null and vice versa.

As indicated above, these results can be used to reprove some of the corol-
laries of the basic fact that(

FIN
[∞]
L ,FIN

[∞]
Lv ,≤,≤

0 r
)

is a Ramsey space (see Section 4.5). For this we need first to recall the
definitions of the relations ≤ and ≤0 for a block-subsequence. Recall that

a sequence X = (xn) ∈ FIN
[∞]
Lv generates two partial subsemigroups, one

inside FINL and the other inside FINLv

[X ]L = {xn0 [λ0] ∪ . . . ∪ xnk
[λk] ∈ FINL : n0 < . . . < nk, λi ∈ Lni

(i ≤ k)}
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[X ]Lv = {xn0 [λ0] ∪ . . . ∪ xnk
[λk] ∈ FINLv : n0 < . . . < nk,

λi ∈ Lni
∪ {v} (i ≤ k)}.

We say thatX = (xn) ∈ FIN
[∞]
Lv is a block subsequence of Y = (yn) ∈ FIN

[∞]
Lv

and write X ≤ Y if xn ∈ [Y ]Lv for all n. Similarly for Q = (qn) ∈ FIN
[∞]
L and

Y ∈ FIN
[∞]
Lv , we say that Q is a block-subsequence of Y and write Q ≤0 Y

if qn ∈ [Y ]L for all n.
Arguing as in the previous section one shows by using properties (1) and

(2) of the idempotent ultrafilters W and V that for every W-tree T with

stem ∅, there exists a Z ∈ FIN
[∞]
Lv such that

{Q ∈ FIN
[∞]
L : Q ≤0 Z} ⊆ [T ] (7.84)

and that similarly for any V-tree T with stem ∅ there exists a Z ∈ FIN
[∞]
Lv

such that

{X ∈ FIN
[∞]
Lv : X ≤ Z} ⊆ [T ].

In fact the proof of this given above shows that we can have a simultaneous
version of these two reduction theorems.

Lemma 7.89 Suppose S is a W-tree with stem ∅ and T is V-tree with stem

∅. Then there is a Z ∈ FIN
[∞]
Lv such that {Q ∈ FIN

[∞]
L : Q ≤0 Z} ⊆ [S] and

{X ∈ FIN
[∞]
Lv : X ≤ Z} ⊆ [T ].

Corollary 7.90 Suppose we are given a finite coloring of FIN
[∞]
L ∪ FIN

[∞]
Lv

whose restrictions on each of these two sets are Baire-measurable relative

to the W-topology and V-topology, respectively. Then there is a Z ∈ FIN
[∞]
Lv

such that the sets

{Q ∈ FIN
[∞]
L : Q ≤0 Z} and {X ∈ FIN

[∞]
Lv : X ≤ Z}

are monochromatic.

Corollary 7.91 (Bergelson-Blass-Hindman) For every metrically Souslin-

measurable coloring of FIN
[∞]
L there is a Z ∈ FIN

[∞]
LV

such that the sets

{Q ∈ FIN
[∞]
L : Q ≤0 Z} and {X ∈ FIN

[∞]
Lv : X ≤ Z}

are monochromatic.

The case L = ∅ of these results is of independent interest. In fact it was this
case that initiated the use of idempotent ultrafilters in this part of Ramsey
theory. Note that in this case we have only one partial semigroup FIN∅v that
could be better viewed as the collection FIN of all nonempty finite subsets of
N. The ultrafilter V is simply Glazer’s union-idempotent ultrafilter, i.e., an
ultrafilter V on FIN such that V∪V = V , where ∪ is the semigroup operation
on the space of all cofinite ultrafilters on FIN that extends the partial union
operation on FIN. Using the V-subtrees of FIN[<∞], we can define two V-
topologies, one on the set FIN[<∞]of finite block sequences, and the other
on the set FIN[∞] of infinite block sequences. We call these two topologies
Glazer topologies. We have the following consequence of Corollary 7.91.
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Corollary 7.92 For every finite coloring of FIN[∞] that is Baire-measur-
able relative to the Glazer topology of FIN[∞], there is a Y ∈ FIN[∞] such
that {X ∈ FIN[∞] : X ≤ Y } is monochromatic.

Corollary 7.93 (Milliken) For every finite metrically Souslin-measurable

coloring of FIN[∞], there is a Y ∈ FIN[∞] such that {X ∈ FIN[∞] : X ≤ Y }
is monochromatic.

7.8 ULTRA-RAMSEY SPACE OF INFINITE

BLOCK SEQUENCES OF VECTORS

Recall that FIN = FIN1 is also the initial term of yet another sequence

FINk (k = 1, 2, 3, ...)

of partial semigroups, the sequence of partial semigroups considered in Sec-
tion 2.3. Since the key ingredients of the combinatorial analysis of FINk

are certain idempotent ultrafilters on FINk it is natural to consider the
corresponding ultra-Ramsey spaces as well. But let us first recall the ba-
sic definitions. Keeping in mind the development that led to the discovery
of the space FINk, it is more natural to think of FINk as the set of all
maps p : N → {0, 1, . . . , k} with finite support that are achieving the max-
imal value k rather than the set of all maps from finite subsets of N into
{1, 2, . . . , k} that take the value k. This leaves us with a dilemma on how
to denote the partial semigroup operation of FINk. We choose to denote the
partial operation by + rather than ∪ since, as originally intended, FINk is
meant to model a net of the positive part of the unit sphere of the Banach
space c0. Recall also the operation on the partial semigroup FINk,

T : FINk → FINk−1,

that distinguishes it even more from the partial subsemigroups considered
above. This operation

T (p)(n) = max{0, p(n)− 1}

is the discrete analog of the scalar multiplication on c0. Recall that in the
course of proving Lemma 2.24, we have constructed a sequence (Uk)k≥1 of
cofinite ultrafilters such that

(1) FINk ∈ Uk,

(2) Uk + Uℓ = Uℓ + Uk = Uℓ whenever k ≤ ℓ,

(3) T (ℓ−k)(Uℓ) = Uk whenever k ≤ ℓ.

It is of course possible to fix a positive integer k and work with Uk-subtrees

of the set FIN
[<∞]
k of all finite block sequences (pn) of elements of FINk, i.e.,

sequences with the property that

supp(pm) < supp(pn) whenever m < n. (7.85)
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We prefer, however, to work with the set

FIN∗ =

∞⋃

k=1

FINk (7.86)

and a family of ~U -subtrees of the set FIN[<∞]
∗ of all finite block sequences of

members of FIN∗, where

~U = (Uk)k≥1. (7.87)

More precisely, for the purpose of this section, for ~U = (Uk)k≥1, a ~U-tree

is a downward closed subset U of FIN[<∞]
∗ such that for every t ∈ U end-

extending the stem,

{p ∈ FIN∗ : (t, p) ∈ U} ∈ U|t|+1. (7.88)

The sets [U ] of infinite branches through various ~U-trees determine a zero-

dimensional topology on FIN[∞]
∗ that extends the usual metrizable product

topology on this set. As before, we have the notions of ~U-Ramsey and ~U-
Ramsey null subsets of FIN[∞]

∗ and the following result, which identifies them

with the standard topological notions relative to the ~U-topology on FIN[∞]
∗ .

Theorem 7.94 Every subset of FIN[∞]
∗ that has the property of Baire rela-

tive to the ~U-topology is ~U -Ramsey, and vice versa. Every meager subset of
FIN[∞]

∗ relative to the ~U-topology is ~U-Ramsey null, and vice versa.

As before, one needs to relate the sets [U ] of infinite branches through ~U-

trees to the basic-sets of the ordinary Ramsey space on FIN[∞]
∗ . To state this

relationship, we need to recall some definitions. For P = (pn) ∈ FIN[∞]
∗ and

k ≥ 1, let

[P ]k = FINk ∩ {T
(j0)(pn0) + . . .+ T (jℓ)(pnℓ

) : n0 < . . . < nℓ, j0, . . . , jℓ ≥ 0}.

For P = (pn) and Q = (qn) members of FIN[∞]
∗ we say that P is a block-

subsequence of Q and write P ≤ Q if pn ∈ [Q]n+1 for all n. The argument
given in the proof of Lemma 7.78 with a slight adjustment will give us the
following.

Lemma 7.95 Suppose U is a ~U-tree with stem ∅. Then there is a Q ∈
FIN[∞]

∗ such that every P ∈ FIN[∞]
∗ , where P ≤ Q is an infinite branch

through U .

Combining Theorem 7.94 and Lemma 7.95, we obtain the following conclu-

sions about finite colorings of the spaces FIN
[∞]
k and FIN[∞]

∗ .

Theorem 7.96 For every finite coloring of FIN[∞]
∗ that is Baire-measura-

ble relative to the ~U -topology, there is a Q ∈ FIN[∞]
∗ such that {P ∈ FIN[∞]

∗ :
P ≤ Q} is monochromatic.
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Corollary 7.97 For every finite metrically Souslin-measurable coloring of
FIN[∞]

∗ , there is a Q ∈ FIN[∞]
∗ such that {P ∈ FIN[∞]

∗ : P ≤ Q} is monochro-
matic.

Corollary 7.98 For every positive integer k and every finite metrically

Souslin-measurable coloring of FIN
[∞]
k , there is Q ∈ FIN

[∞]
k such that {P ∈

FIN
[∞]
k : P ≤ Q} is monochromatic.

Proof. Let c be a given Souslin-measurable coloring of FIN
[∞]
k . Define a

coloring c∗ on FIN[∞]
∗ by c∗(Q) = c(π(Q)), where P = π(Q) is determined

as follows:

pn = T (n)(qk+n). (7.89)

Clearly c∗ is Souslin-measurable, so Corollary 7.97 applies, giving us a Q ∈
FIN[∞]

∗ such that c∗ is monochromatic on

{P ∈ FIN[∞]
∗ : P ≤ Q}. (7.90)

Let Q′ = π(Q) ∈ FIN
[∞]
k . Then every P ′ ≤ Q′ in FIN

[∞]
k is of the form π(P )

for some P ≤ Q. From the way c∗ is defined from c, one concludes that c is
monochromatic on

{P ′ ∈ FIN
[∞]
k : P ′ ≤ Q′}. (7.91)

This finishes the proof. 2

Corollary 7.99 (Milliken) For every finite metrically Souslin-measurable

coloring of FIN[∞], there is a Y ∈ FIN[∞] such that {X ∈ FIN[∞] : X ≤ Y }
is monochromatic.

NOTES TO CHAPTER SEVEN

Selective coideals were introduced by Mathias ([72],[74]) starting thus the
whole area of local Ramsey theory. The semiselective coideals were intro-
duced more recently by Farah [31], while proving a version of the Local
Ellentuck Theorem via a different line of reasoning from the one that we
chose to reproduce here. Farah’s work was motivated by a question of the
author asking for a description of the Ramsey theoretic properties of the
coideal on N living in the perfect-set forcing extension but generated by
the ground model infinite subsets of N. Interestingly, this metamathematical
question was actually motivated by the parametrized Galvin-Prikry theo-
rem (Theorem 5.49). A step toward the abstract version of the local Ramsey
theory was made recently by Mijares [75]. The U-topology on the set N[<∞]

of all finite subsets of N was first considered by S. Sirota [100] although its
current form is due to Louveau [67], who used it to derive in a topological
manner the results of Mathias and Silver. In particular Louveau [68] and [69]
was the first to consider the U-topology on the set N[∞], although he did not
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formulate the notion of a U-tree to describe this topology but instead worked
with the set of all diagonalizations of sequences (An)∞n=0 ⊆ U . This formula-

tion did not allow him to anticipate the notion of ~U -topology on N[∞] for an
arbitrary sequence Us (s ∈ N[<∞]) of nonprincipal ultrafilters on N. The full

notion of a ~U-tree appears in the paper of Blass [10], which, however, does

not consider the corresponding ~U-topology on N[∞] and therefore does not
anticipate the ultra-Ellentuck theorem, or in other words, the fact that the
triple (N[∞], ~U ,≤) forms a topological Ramsey space. As already mentioned
in Chapter 1, Galvin’s lemma appears originally in his announcement [33].
It is a nontrivial extension of an earlier generalization of Ramsey’s theorem
due to Nash-Williams [82]. The result of Bourgain, Fremlin, and Talagrand
appears in their paper [11] and the result of Odell and Rosenthal appears
in their paper [83]. Regarding the Bourgain-Fremlin-Talagrand theorem, it
should be mentioned that the fact that points in separable compact sets of
Baire Class 1 functions lead to bisequential coideals was first pointed out by
R. Pol [86] (see also [57]), and this fact can also be deduced using reasoning
from the paper of Debs [18]. Theorem 7.60 is due to Balcar-Pelant-Simon [5].
Corollaries 7.69, 7.70, 7.71 and Theorem 7.73 appear in the paper of Todor-
cevic and Uzcategui [109]. Theorem 7.72 also appears in [109], but under the
extra assumption that the product X × Y is Fréchet. That this assumption
is in fact not needed was also observed in the paper of Dodos and Kanel-
lopoulos [24]. Corollary 7.91 of Bergelson, Blass, and Hindman was proved in
their paper [8] using the result from [10] in place of the topological argument
given above.



Chapter Eight

Infinite Products of Finite Sets

8.1 SEMICONTINUOUS COLORINGS OF INFINITE

PRODUCTS OF FINITE SETS

The Ramsey theory of infinite products of finite sets has several aspects. The
first aspect is in describing a field M of subsets1 of N∞ with the following
property: For every sequence (mi) of positive integers, there is a sequence
(ni) of positive integers such that for every M-measurable coloring

c :

∞∏

i=0

Hi → {0, 1} (8.1)

such that Hi ⊆ N and |Hi| = ni for all i, there exist Ji ⊆ Hi with |Ji| = mi

for all i such that c is constant on the subproduct
∏∞

i=0 Ji. We use the symbol




n0

n1

n2

...


→M




m0

m1

m2

...


 (8.2)

as a shorthand for this statement. Another aspect of the theory is in finding
out how fast the sequence (ni) has to grow in terms of the sequence (mi).
It turns out that the problem already shows its full weight for the constant
sequence mi = 2 for all i.

We shall start with a fact which shows that the fieldM, if it exists, will not
have much to do with the familiar fields of Baire and Lebesgue measurable
subsets of N∞. The measure we take on N∞ is the product measure relative
to the standard atomic counting probability measure of N. There is perhaps
some abuse of terminology in using the word “Lebesgue” for this measure,
but this is justified by using a standard fact (see Theorem 9.41) from real
analysis which says that there is a Borel isomorphism between N∞ and
the unit interval transferring the product measure of N∞ to the Lebesgue
measure of [0, 1].

1The collection of all infinite sequences (ni) ⊆ N. Thus we may identify N∞ with the
power NN whenever we are interested in considering the natural product topology or the
product measure on this set.
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Lemma 8.1 There is a coloring c : N∞ → {0, 1} that is measurable in the
sense of Baire as well as Lebesgue that is not constant on any set of the form∏∞

i=0 Ji such that |Ji| ≥ 2 for all but finitely many i.

Proof. Let E0 be the equivalence relation on N∞ defined as follows:

(xi)E0(yi) iff xi = yi for all but finitely many i.

For each e ∈ N∞/E0 we fix a representative (xe
i ) ∈ e. The coloring c is

defined according to the following two cases.
Case 1. xi = xi+1 for infinitely many i. Let c((xi)) = 0.
Case 2. xi 6= xi+1 for all but finitely many i. In this case put

c((xi)) = |{i : xi 6= xe
i }|(mod 2), (8.3)

where e = [(xi)]E0 .
Note that the set of (xi) ∈ N∞ which fall into Case 1, is at the same time
of full Lebesgue measure and of full Baire category. So, the coloring c is
Lebesgue- as well as Baire-measurable.

Consider a product
∏∞

i=0 Ji ⊆ N∞ such that |Ji| ≥ 2 for all but finitely
many i. Then we can find (xi) ∈

∏∞
i=0 Ji such that xi 6= xi+1 for all but

finitely many i. Let e be the E0-equivalence class of (xi). Since xi = xe
i and

|Ji| ≥ 2 for almost all i, we can find (yi) ∈
∏∞

i=0 Ji and i0 such that yi = xi

for all i 6= i0 and yi0 6= xi0 = xe
i0 . It follows that the cardinalities of the sets

{i : xi 6= xe
i } and {i : yi 6= xe

i } (8.4)

are of different parity and therefore c((xi)) 6= c((yi)). This finishes the proof.
2

The second lemma gives us some idea about the rate of growth of any
sequence (ni) such that (ni)→ (2) in the realm of continuous colorings.

Lemma 8.2 Suppose ni ≤ 22i−1

for all but finitely many i. Then there
is a continuous coloring c :

∏∞
i=0 ni → {0, 1} that is not constant on any

subproduct
∏∞

i=0 Ji such that |Ji| = 2 for all i.

Proof. Pick ℓ such that ni ≤ 22i−1

for all i > ℓ. For k > ℓ, the probability2

that a given coloring

c :

k∏

i=0

ni → {0, 1} (8.5)

is constant on a given subproduct
∏k

i=0 Ji such that |Ji| = 2 for all i ≤ k is

equal to 2/22k+1

. Hence, the probability that there is such a subproduct on
which c is constant is equal to

2With respect to the uniform distribution on the set of all such colorings.



INFINITE PRODUCTS OF FINITE SETS 221

2

22k+1

k∏

i=0

(
ni

2

)
. (8.6)

This quantity is dominated by

M
2

22k+1

k∏

i=0

(
22i−1

2

)
≤M

2

22k+1 ·
1

2k
2
∑k

i=0 2i

=
M

2k+1
, (8.7)

where M =
∏ℓ

i=0

(
ni

2

)
. So for any k for which M/2k+1 < 1, we can find

a coloring ck :
∏k

i=0 ni → {0, 1} that is not constant on any subproduct∏k
i=0 Ji such that |Ji| = 2 for all i ≤ k. Defining c :

∏∞
i=0 ni → 2 by letting

c(x) = ck(x ↾ k), we get a continuous coloring which is not monochromatic
on any subproducts of 2-element sets. 2

This lemma shows that the assumption about the rate of growth in the
following result is in some sense optimal.

Theorem 8.3 If ni = 222i+1

for all i, then




n0

n1

n2

...


→




2
2
2
...


 (8.8)

holds in the realm of continuous colorings.

This result follows from a more general fact that treats the sequences (mi)
simultaneously and which gives us a solid basis for solving the general prob-
lem.

Definition 8.4 Let S : N<∞ → N be defined as follows:

S(m0) = 2m0 − 1,

S(m0, . . . ,mi+1) = 2(mi+1 − 1)

[
i∏

i=0

(
S(m0,...,mk)

mk

)]
+ 1.

(8.9)

This particular choice of S is made in order to have the following immediate
property.

Lemma 8.5 Let (mi) ∈ N∞ and let ni = S(m0, . . . ,mi) for all i. Then for
every k and every coloring

c :

k∏

i=0

ni → {0, 1} (8.10)

there exist Ji ⊆ ni, |Ji| = mi(i ≤ k) such that c is constant on
∏k

i=0 Ji.
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Notation. S(2k) = S(m0, . . . ,mk), where mi = 2 for all i ≤ k.

Lemma 8.6 S(2n) ≤ 222n+1

for all n.

Proof. Note that the first two values S(20) = 3 and S(21) = 7 satisfy the
inequality. For n ≥ 2, we have

S(2n) = 2(2− 1)
∏n−1

i=0

(
S(2i)

2

)
+ 1

≤ 22 1
2n 2

∑
i<n

22i+2

≤ 222n+1

.

(8.11)

2

Note that Theorem 8.3 follows from Lemmas 8.5 and 8.6 via König’s infinity
lemma, which ensures that every continuous coloring is really a coloring of
a finite product. It turns out that the same sequence works in the realm of
semicontinuous colorings, as the following application of Lemma 8.5 shows.

Lemma 8.7 Let (mi) ∈ N∞ and let ni = S(m0, . . . ,mi) for all i. Then for
every closed set F ⊆

∏∞
i=0 ni there is a subproduct

∏∞
i=0 Ji ⊆

∏∞
i=0 ni such

that |Ji| = mi for all i that is either included in or is disjoint from F .

Proof. For k ≥ 0 define ck :
∏k

i=0 ni → {0, 1} by letting ck(t) = 0 iff t has
no extensions in F . By Lemma 8.5 for each k, there exist Jk

i ⊆ ni(i ≤ k)

such that |Jk
i | = mi(i ≤ k) and such that ck is constant on

∏k
i=0 J

k
i . If for

some k the constant value of ck is equal to 0, we have that the conclusion of
Lemma 8.7 holds. So we are left with the case that for every k the constant
value of ck is equal to 1. Pick a nonprincipal ultrafilter U on N. Then for
every i, there is a Ji ⊆ ni such that

Ai = {k ≥ i : Jk
i = Ji} ∈ U . (8.12)

Then |Ji| = mi for all i and
∏∞

i=0 Ji ⊆ F, as required. 2

Definition 8.8 The pth iterate S(p) : N<∞ → N of S is defined recursively
as follows:

S(0)(m0, . . . ,mi) = S(m0, . . . ,mi)
S(p+1)(m0, . . . ,mi) = S(S(p)(m0), S(p)(m0,m1), . . . , S(p)(m0, . . . ,mi)).

(8.13)

The following fact is an immediate consequence of the definition.

Lemma 8.9 If p′ ≥ p and m′
j ≥ mj for all j ≤ i then S(p′)(m′

0, . . . ,m
′
i) ≥

S(p)(m0, . . . ,mi).

Definition 8.10 For M ⊆ N, define SM : N<∞ → N recursively as follows:
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SM (m0) = S(m0),

SM (m0, . . . ,mi) = S(p)(m0, . . . ,mi),
(8.14)

where

p = |
⋃

k∈M∩i

∏k
j=0 SM (m0, . . . ,mj)|. (8.15)

It is worth observing that the following monotonicity property follows im-
mediately from the definitions.

Lemma 8.11 If M ⊆M ′ ⊆ N and m′
i ≥ ←−mi for all i, then

SM ′(m′
0, . . . ,m

′
i) ≥ SM (m0, . . . ,mi).

Note that S∅ = S and that for a given infinite sequence (mi) of positive
integers the sequence

(SM (m0, . . . ,mi))
∞
i=0 (8.16)

is composed of steps of the form

(S(p)(m0, . . . ,mi))
ℓ̄
i=k̄+1, (8.17)

where k̄ < ℓ̄ are two consecutive members of M and where

p = |
⋃

k∈M∩(k̄+1)

∏k
j=0 SM (m0, . . . ,mj)|. (8.18)

Notation. For R = S(p) for some p ∈ N or R = SM for some M ⊆ N and for
an infinite sequence (mi) ∈ N∞, we denote by R((mi)) the infinite sequence
of positive integers whose ith term is equal to R(m0, . . . ,mi).

Definition 8.12 For an infinite sequence (ni) of positive integers, an (ni)-
product or a product of type (ni) is any product of the form

∏∞
i=0Hi, where

|Hi| = ni for all i.

The following consequence of Lemma 8.7 that uses this terminology is worth
noting.

Lemma 8.13 Let (mi) ∈ N∞,M ⊆ N, k ∈ M, and N = M\{k}. Then
for every SM ((mi))-product

∏∞
i=0Hi and every closed subset X ⊆

∏∞
i=0Hi,

there is an SN ((mi))-subproduct
∏∞

i=0 Ji of
∏∞

i=0Hi such that

(∀x, y ∈
∏∞

i=0 Ji) [x ↾ k = y ↾ k ⇒ (x ∈ X ⇔ y ∈ X )]. (8.19)
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Proof. Note that SN ((mi)) ↾ k = SM ((mi)) ↾ k and that for two consecutive
members k̄ < ℓ̄ of M above k, if

SN ((mi)) ↾ (k̄, ℓ̄] = (S(p)(m0, . . . ,mj))ℓ̄
j=k̄+1 (8.20)

for some p, then

SM ((mi)) ↾ (k̄, ℓ̄] = (S(p+q)(m0, . . . ,mj))ℓ̄
j=k̄+1, (8.21)

where

q =
∣∣∣
∏k

i=0 SM (m0, . . . ,mi)
∣∣∣ =

∣∣∣
∏k

i=0 SN (m0, . . . ,mi)
∣∣∣ . (8.22)

It follows that for i > k,

SM (m0,m1, . . . ,mi) ≥ S
(q)(SN (m0), SN (m0,m1), . . . , SN(m0,m1, ...,mi))

≥ S(q)(SN (m0, . . . ,mk+1), . . . , SN(m0, . . . ,mi)).

So applying Lemma 8.7 successively q times and thereby treating one s ∈∏k
i=0 SN (m0, . . . ,mi) at a time, we can choose a decreasing sequence

Hi = H0
i ⊇ H

1
i ⊇ . . . ⊇ H

q
i (i > k) (8.23)

such that for each s ∈
∏k

i=0 SN (m0, . . . ,mi) there is a p ≤ q such that the
product

∏∞
i=k+1H

p
i is either included or is disjoint from Xs, where

Xs =

{
x ∈

∞∏

i=k+1

Hi : sax ∈ X

}
. (8.24)

It is clear that then the corresponding product
∏k

i=0Hi×
∏∞

i=k+1H
q
i satisfies

the conclusion of Lemma 8.13. 2

8.2 POLARIZED RAMSEY PROPERTY

Throughout this section (mi) is a fixed infinite nondecreasing sequence of
positive integers. An SM -sequence (or product) refers to the SM ((mi))-
sequence (or product) defined in the previous section, i.e., a sequence (Hi)
of finite sets such that

|Hi| = SM (m0, . . . ,mi) for all i. (8.25)

We reserve the notation (Ji), (Hi), (Ki), etc., for infinite sequences of non-
empty finite subsets of N. We let (Ji) ≤n (Hi) mean
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Ji = Hi for i < n, and Ji ⊆ Hi for i ≥ n. (8.26)

The corresponding infinite products are denoted by
∏

i Ji,
∏

iHi,
∏

i Ki, etc.,
and we shall sometimes write

∏
i Ji ≤n

∏
i Hi instead of (Ji) ≤n (Hi). The

letters A,B,C,D, ... are reserved for infinite subsets of N.

We let A ⊂∞ B denote the fact that A ⊆ B and that B\A is infinite.
A pair (A,B) of infinite subsets of N is called regular if A ⊂∞ B. For two
regular pairs (A,B) and (C,D), we write (C,D) ≤ (A,B) whenever

A ⊂∞ C ⊂∞ D ⊂∞ B. (8.27)

For an integer n ≥ 0 and regular pairs (A,B) and (C,D), let (A,B) ≤n

(C,D) denote the fact that (A,B) ≤ (C,D) and that

A ∩ n = C ∩ n and B ∩ n = D ∩ n. (8.28)

A subset X ⊆
∏∞

i=0Hi depends only on coordinates < n if

(∀x, y ∈
∏∞

i=0Hi) [x ↾ n = y ↾ n⇒ (x ∈ X ⇔ y ∈ X )]. (8.29)

Definition 8.14 A set X ⊆ N∞ is (mi)-Ramsey if for every regular pair
(A,B), every n ∈ B\A, and every SB-product

∏
i Hi, there are a regular pair

(C,D) ≤n (A,B) and an SD-product
∏

i Ji ≤n

∏
i Hi such that X ∩

∏
i Ji

depends only on coordinates < n.

Note the following reformulation of Lemma 8.13, which relates to this
notion.

Lemma 8.15 Every closed subset of N∞ is (mi)-Ramsey.

Definition 8.16 A set X ⊆ N∞ is (mi)-Ramsey null if for every regu-
lar pair (A,B), every n ∈ B \ A, and every SB-product

∏
iHi, there are

(C,D) ≤n (A,B) and an SD-product
∏

i Ji ≤n

∏
i Hi such that X ∩

∏
i Ji =

∅.

To show that this notion defines a σ-additive ideal on N∞ we need the
following concept.

Definition 8.17 A fusion sequence is an infinite sequence (Ak, Bk, nk, H
k)

of quadruples such that for all k,

(1) nk < nk+1 and nk ∈ Bk\Ak,

(2) (Ak, Bk) is a regular pair and Hk = (Hk
i ) is a SBk

-sequence of finite
sets,



226 CHAPTER 8

(3) (Ak+1, Bk+1) ≤nk
(Ak, Bk),

(4) Hk+1 ≤nk
Hk,

(5) (Bk+1\Ak+1) ∩ (nk, nk+1) 6= ∅.

We define the limit of a fusion sequence (Ak, Bk, nk, H
k) to be the triple

(A∞, B∞, H
∞ = (H∞

i )), where

A∞ =
⋃∞

k=0 Ak, B∞ =
⋂∞

k=0Bk,

H∞
i = lim

k→∞
Hk

i .
(8.30)

Note that (A∞, B∞) is a regular pair of infinite subsets of N and that H∞ =
(H∞

i ) is an SB∞ -sequence. Note moreover that for all k,

(A∞, B∞) ≤nk
(Ak, Bk), and H∞ ≤nk

Hk. (8.31)

Lemma 8.18 The ideal of (mi)-Ramsey null sets is σ-additive.

Proof. Let (Xk) be a given increasing sequence of (mi)-Ramsey null subsets
of N∞ and let (A,B), n ∈ B \A and

∏
i Hi be given inputs as in Definition

8.16. Using the hypothesis that the Xk are (mi)-Ramsey null and starting
from the initial values A0 = A,B0 = B, n0 = n, and H0 = (Hi), we build a
fusion sequence (Ak, Bk, nk, H

k) such that for all k,

Xk ∩

(
∞∏

i=0

Hk+1
i

)
= ∅. (8.32)

Moreover, we ensure that nk+1 is chosen in Bk+1 \Ak+1 above nk such that
(Bk+1\Ak+1) ∩ [nk, nk+1) 6= ∅.

Let (A∞, B∞) and H∞ = (H∞
i ) be the limits of the fusion sequence. Then

(H∞
i ) ≤n (Hi), (A∞, B∞) ≤n (A,B) and

(
∞⋃

k=0

Xk

)
∩

(
∞∏

i=0

H∞
i

)
= ∅ (8.33)

as required. 2

Lemma 8.19 The (mi)-Ramsey subsets of N∞ form a σ-field.

Proof. Let (Xk) be a given sequence of (mi)-Ramsey sets, and let (A,B), n ∈
N and

∏
iHi be the inputs of Definition 8.14 for testing whether the union

X =
∞⋃

k=0

Xk (8.34)
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is (mi)-Ramsey. Let n0 be the minimal integer of B\A above n. Starting
from A0 = A, B0 = B, n0, and (H0

i ) = (Hi), we build a fusion sequence
(Ak, Bk, nk, H

k) as follows. Starting from the regular pair (Ak, Bk) of infinite
subsets of N, the integer nk ∈ Bk \ Ak, and the SBk

-product
∏

iH
k
i , we

apply the hypothesis that the set Xk is (mi)-Ramsey to get a regular pair
(Ak+1, Bk+1) ≤nk

(Ak, Bk) and the SBk
-product

∏
i H

k+1
i ≤nk

∏
iH

k
i such

that

Xk ∩

(
∏

i

Hk+1
i

)
depends only on coordinates < nk. (8.35)

Choose now an nk+1 ∈ Bk+1\Ak+1 above nk such that

(Bk+1\Ak+1) ∩ [nk, nk+1) 6= ∅. (8.36)

This describes the recursive construction. Let (A∞, B∞) and H∞ = (H∞
i )

be the limits of the fusion sequence. Then, we have that

(A∞, B∞) ≤n (A,B), (H∞
i ) ≤n (Hi), and (8.37)

X ∩

(
∞∏

i=0

H∞
i

)
is an open subset of the SB∞ -product

∏

i

H∞
i . (8.38)

Applying Lemma 8.15, we get (C,D) ≤n (A,B) and an SD-product
∏

i Ji ≤n∏
iH

∞
i such that the intersection

X ∩

(
∞∏

i=0

Ji

)
depends only on coordinates < n, (8.39)

as required. 2

Corollary 8.20 All Borel subsets of N∞ are (mi)-Ramsey.

Notation. For a given product
∏

iHi of finite sets and a given finite sequence
s ∈ N[<∞], set

(
∏∞

i=0Hi)[s] = {x ∈ N∞ : x ↾ |s| = s and (∀i > |s|) x(i) ∈ Hi}. (8.40)

We are now ready to state and prove the main result of this section.

Theorem 8.21 The field of (mi)-Ramsey sets is closed under the Souslin
operation.

Proof. Let Xa (a ∈ N[<∞]) be a given Souslin scheme indexed by finite sub-
sets of N. We assume that Xb is a subset of Xa whenever b end-extends a.
Recall that for M ∈ N[∞], the restriction rn(M) is the finite subset of M
obtained by taking the first n elements of M according to its increasing
enumeration. So we can write the result of the Souslin operation as
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X =
⋃

M∈N[∞]

⋂

n∈N

Xrn(M). (8.41)

Similarly, we consider the relativized versions

X ∗
a =

⋃

M∈[a,N]

⋂

n≥|a|

Xrn(M), (8.42)

where [a,N] denotes the family of all infinite subsets of N that end-extend
a. Let (A,B) be a given regular pair of infinite subsets of N, let n ∈ N and
let
∏

iHi be a given SB-product. We need to find (C,D) ≤n (A,B) and an
SD-product

∏∞
i=0 Ji ≤n

∏∞
i=0Hi such that the intersection

X ∩ (
∏∞

i=0 Ji) (8.43)

depends only on coordinates < n. Starting from the initial values

A0 = A, B0 = B, n0 = n, and H0 = H = (Hi),

we build a fusion sequence (Ak, Bk, nk, H
k = (Hk

i )) as follows. Suppose we
have determined Ak, Bk, nk and the product

∏
iH

k
i . Let

p = |
⋃

j∈Bk∩nk

∏
i<j H

k
i |. (8.44)

Then SAk
eventually dominates S(p), so we can choose an integer n̄k such

that n̄k ≥ nk and such that

SAk
(m0, . . . ,mi) ≥ S

(p)(m0, . . . ,mi) for all i ≥ n̄k. (8.45)

Let (sℓ, aℓ) (ℓ ≤ m) be an enumeration of

(∏n̄k

i=0H
k
i

)
× P({0, 1, . . . , nk}). (8.46)

Suppose there exist (C,D) ≤ (Ak, Bk) and an SD-product
∏

i Ji ⊆
∏

iH
k
i

such that

(
∏∞

i=0 Ji)[s0] ∩ X ∗
a0

= ∅. (8.47)

Since Ak ⊆ C ⊆ D we have that

|Ji| = SD(m0, . . . ,mi) ≥ S
(p)(m0, . . . ,mi) for all i ≥ n̄k. (8.48)

So we can find a sequence J0 = (J0
i ) such that J0

i ⊆ Ji for i ≥ n̄k, such that
J0

i ⊆ Hk
i for nk ≤ i < n̄k, such that J0

i = Hk
i for i < nk, and such that
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the corresponding product
∏

i J
0
i is an SD0 -product for some (C0, D0) ≤nk

(Ak, Bk). If such (C,D) ≤ (Ak, Bk) and
∏

i Ji ⊆
∏

iH
k
i do not exist we let

(J0
i ) = (Hk

i ) and (C0, D0) = (Ak, Bk). Now starting from (C0, D0) and
∏

i J
0
i

we treat the next pair (s1, a1). So, suppose there exist (C,D) ≤ (C0, D0) and
an SD-product

∏
i Ji ⊆

∏
i J

0
i such that

(
∏∞

i=0 Ji)[s1] ∩ X ∗
a1

= ∅. (8.49)

Then again Ak ⊆ C0 ⊆ C ⊆ D, so

|Ji| = SD(m0, . . . ,mi) ≥ S
(p)(m0, . . . ,mi) for i ≥ n̄k. (8.50)

Then we can find J1 = (J1
i ) such that J1

i ⊆ Ji for i ≥ n̄k, such that
J1

i ⊆ J0
i for i ≤ n̄k, such that J1

i = J0
i for i < nk, and such that the

corresponding product is an SD1 -product for some regular pair (C1, D1) ≤nk

(C0, D0). If such (C,D) ≤ (C0, D0) and
∏

i Ji ⊆
∏

i J
0
i cannot be found, we

let (C1, D1) = (C0, D0) and (J1
i ) = (J0

i ), and so on. Proceeding this way and
treating each pair (sℓ, aℓ) for ℓ ≤ m, we arrive at (Cm, Dm) ≤nk

(Ak, Bk)
and

∏
i J

m
i ≤nk

∏
i H

k
i , and we define

(Ak+1, Bk+1) = (Cm, Dm), (Hk+1
i ) = (Jm

i ). (8.51)

Then we achieve the following property of the regular pair (Ak+1, Bk+1) and
the product

∏
i H

k+1
i :

(1)k For every s ∈
∏

i≤n̄k
Hk+1

i and a ⊆ {0, 1, ..., nk}, either

(
∏∞

i=0H
k+1
i )[s] ∩ X ∗

a = ∅, (8.52)

or it is impossible to find (C,D) ≤ (Ak+1, Bk+1) and SD-product∏∞
i=0 Ji ⊆

∏∞
i=0H

k+1
i such that

(
∏∞

i=0 Ji)[s] ∩ X ∗
a = ∅. (8.53)

Choose nk+1 > n̄k such that Bk+1\Ak+1 has some point in the inter-
val [nk, nk+1]. This describes our fusion sequence (Ak, Bk, nk, (H

k
i )). Let

(A∞, B∞) and (H∞
i ) be its limits. For a ∈ N[<∞], let

Ta = {s ∈
⋃∞

k=0

∏n̄k

i=0H
∞
i : (

∏∞
i=0H

∞
i )[s] ∩ X ∗

a = ∅}, (8.54)

Ψ(X ∗
a ) =

⋃
{(
∏∞

i=0H
∞
i )[s] : s ∈ Ta}, (8.55)

and let

Φ(X ∗
a ) = (Xa ∩

∏
i H

∞
i )\Ψ(X ∗

a ). (8.56)

Then Φ(X ∗
a ) is an (mi)-Ramsey set, and so is the difference
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Ma = Φ(X ∗
a )\

⋃

ℓ>max(a)

Φ(X ∗
a∪{ℓ}). (8.57)

Note that Ma ⊆ Φ(X ∗
a )\X ∗

a . Starting with the values C0 = A∞, D0 =
B∞, p0 = n and (J0

i ) = (H∞
i ), we now build the second fusion sequence

(Ck, Dk, pk, (J
k
i )) such that (pk) is a subsequence of (nk) and such that

(2)k For all a ⊆ {0, 1, . . . , pk}, the intersection Ma ∩
∏

i J
k+1
i depends

only on coordinates < pk.

Clearly there is no problem in finding the fusion sequence since all sets
Ma are (mi)-Ramsey, and we treat only finitely many of them at a given
stage. We claim that for all k, in statement (2)k, we actually have that
Ma ∩

∏
i J

k+1
i = ∅. To see this, suppose that for some k we can find a ⊆

{0, . . . , pk} such that Ma ∩
∏

i J
k+1
i depends only on coordinates < pk but

it is nonempty. Let j be such that pk = nj and pick s ∈
∏

i≤nj
Jk+1

i such
that

(
∏∞

i=0 J
k+1
i )[s] ⊆Ma. (8.58)

SinceMa∩X ∗
a = ∅ this means that in (1)j the second alternative fails as we

can put (C,D) = (Ck+1, Dk+1) and
∏∞

i=0 Ji =
∏∞

i=0 J
k+1
i . So we have the

first alternative of (1)j , i.e., that

(
∏∞

i=0H
k+1
i )[s] ∩ X ∗

a = ∅. (8.59)

It follows that (
∏∞

i=0H
∞
i )[s] ⊆ Ψ(X ∗

a ) and therefore

Ma ∩Ψ(X ∗
a ) 6= ∅, (8.60)

a contradiction.
Let (C∞, D∞) and (J∞

i ) be the limits of the fusion sequence

(Ck, Dk, pk, (J
k
i )).

Then
∏∞

i=0 J
∞
i is an SD∞ -product such that

(C∞, D∞) ≤n (A,B), (8.61)

∏∞
i=0 J

∞
i ≤n

∏∞
i=0Hi, (8.62)

(
∏∞

i=0 J
∞
i ) ∩Ma = ∅ for all a ∈ N[<∞]. (8.63)
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Then, as in the Marczewski proof of the preservation of the Souslin property
(see Section 4.1 above), one checks that

X ∗
∅ ∩ (

∏∞
i=0 J

∞
i ) = Φ(X ∗

∅ ) ∩ (
∏∞

i=0 J
∞
i ) . (8.64)

Since Φ(X ∗
∅ ) is a (mi)-Ramsey set, we can find (C,D) ≤n (C∞, D∞) and an

SD-product
∏∞

i=0 Ji ≤n

∏∞
i=0 J

∞
i such that the intersection

Φ(X ∗
∅ ) ∩ (

∏∞
i=0 Ji) (8.65)

depends only on coordinates < n. It follows that X = X ∗
∅ depends only on

coordinates < n. This finishes the proof. 2

Corollary 8.22 For every infinite set M ⊆ N and every Souslin-measurable
coloring

c :
∏∞

i=0 SM (m0, ...,mi)→ {0, 1} (8.66)

there exist Hi ⊆ SM (m0, . . . ,mi) such that |Hi| = mi for all i and such that
c is constant on

∏∞
i=0Hi.

Proof: Using Theorem 8.21 we can find an infinite set N ⊆ M and an
SN -product

∏
iHi ⊆

∏
i SM (m0, ...,mi) such that c is continuous on

∏
iHi.

Since

SN (m0, . . . ,mi) ≥ S(m0, . . . ,mi) (8.67)

for all i, we finish using Lemma 8.7 from the previous section. 2

8.3 POLARIZED PARTITION CALCULUS

Recall the Ackermann hierarchy of fast-growing functions from N into N
defined as follows:

A0(0) = 1, A0(1) = 2, A0(x) = 2 + x(x > 1)

An+1(x) = A
(x)
n (1),

(8.68)

where A
(x)
n denotes the xth iterate of An. (The 0th iterate of any function

is the identity function). Thus,

A1(x) = 2x (x > 0)
A2(x) = 2x

A3(x) = 22
..

.2

x times.

(8.69)
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A useful formula that relates An and An+1 is the following:

An+1(x+ 1) = An(An+1(x)). (8.70)

Functions that are eventually dominated by an iterate of A2 are called ele-
mentary. Thus the tower function A3 is the first member of the Ackermann
hierarchy that is not elementary. We shall use the first few members of the
Ackermann hierarchy to give some upper bounds on sequences of the form

(S(m0, . . . ,mi)), (S
(p)(m0, . . . ,mi)), SM (m0, . . . ,mi)) (8.71)

for various choices of infinite nondecreasing sequences (mi) of positive inte-
gers. Recall, for example, the following upper bound that has been estab-
lished above in Lemma 8.6.

Lemma 8.23 If mi = 2 for all i then S(m0, . . . ,mi) ≤ A
(2)
2 (2i+ 1).

Let us continue this and give some upper bounds on the other two sequences
associated with particular choice of the sequence (mi).

Lemma 8.24 If mi = 2 for all i, then for all i,

S(p)(m0, . . . ,mi) ≤ A
(p+2)
2 (2i+ 1). (8.72)

Proof. As in section 8.1, we use the notation

S(p)(2i) = S(p)(m0, . . . ,mi) (8.73)

where m0 = m1 = . . . = mi = 2. The case p = 0 of the above inequality is
given in the previous Lemma. To see the inductive step note that for p > 0,

S(p)(2i) = 2(S(p−1)(2i)− 1)
i−1∏
j=0

( S(p)(2j)

S(p−1)(2j)

)
+ 1

≤ 2A
(p+1)
2 (2i+ 1)

i−1∏
j=0

3S(p−1)(2j )

[S(p−1)(2j)]
S(p−1)(2j )

i−1∏
j=0

[S(p)(2j)]S
(p−1)(2j)

≤ 2A
(p+1)
2 (2i+ 1)[S(p)(2i−1)]

∑ i−1
j=0 S(p−1)(2j)

≤ 2A
(p+1)
2 (2i+ 1)[A

(p+2)
2 (2i− 1)]A

(p+1)
2 (2i)

≤ A
(p+2)
2 (2i+ 1).

(8.74)

2

Recall the definition of the sequence (SM (m0, . . . ,mi)) for a given subset
M ⊆ N given above in Section 8.1. It is a sequence composed of steps of the
form (S(p)(m0, ...,mi)) in intervals determined by consecutive members of
M, which also determine the number p . The fastest of them is the sequence
(SM (m0, . . . ,mi)) for M = N.
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Lemma 8.25 Suppose mi = 2 for all i. Then for all i

SN(m0, . . . ,mi) ≤ A4(i+ 3). (8.75)

Proof. Using the notation

SN(m0, . . . ,mi) = SN(2i), (8.76)

we shall actually show that

(i + 1)[SN(2i)]
i+1 + 2i+ 6 ≤ A4(i+ 3) (8.77)

holds for all i. Since SN(20) = 3 and since A4(3) = 216, the inequality holds
for i = 0. The inductive step at i > 0 follows from the following sequence
of inequalities in which we use the definition of SN and the estimates of the
previous Lemma:

(i+ 1)[SN(2i)]
i+1 + 2i+ 6 ≤ (i+ 1)[A

(i[SN(2i−1)]i+2)
2 (2i+ 1)]i+1 + 2i+ 6

≤ A
(n[SN(2i−1)]i+3)
2 (2i+ 1)

≤ A3(i[SN(2i−1)]i + 2i+ 4)

≤ A3(A4(i+ 2)) = A4(i + 3).
(8.78)

2

Similar arguments give us estimates for other choices of the infinite sequence
(mi). For example, we have proved the following facts along the same lines:

Theorem 8.26 The following holds for all integers p, i ≥ 0:

(1) S(p)(A2(0), ..., A2(i)) ≤ A
(p+3)
2 (i),

(2) SN(A2(0), . . . , A2(i)) ≤ A4(i+ 3),

(3) S(p)(A3(0), ..., A3(i)) ≤ A3(p+ i + 2),

(4) SN(A3(0), . . . , A3(i)) ≤ A4(i+ 3).

It follows that we have the same upper bound,

SN(m0, ...,mi) ≤ A4(i + 3), (8.79)

for any choice of nondecreasing infinite sequence (mi) of positive integers
starting from the constant sequence mi = 2 all the way up to the rapidly
increasing sequence mi = A3(i). For levels n ≥ 3, we have the following
behavior proved again along the same lines.
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Theorem 8.27 The following holds for all integers n ≥ 3 and p, i ≥ 0:

(1) S(p)(An(0), . . . , An(i)) ≤ An(p+ i+ 2),

(2) SN(An(0), . . . , An(i)) ≤ An+1(i + 3).

Combining this with the main result of Section 8.2, we obtain the following
fact.

Theorem 8.28 For every integer n ≥ 3 the partition relation




An+1(3)
An+1(4)
An+1(5)

...


→




An(0)
An(1)
An(2)

...


 (8.80)

holds in the realm of Souslin-measurable colorings.

Corollary 8.29 The partition relation



A4(3)
A4(4)
A4(5)

...


→




2
2
2
...


 (8.81)

holds in the realm of Souslin-measurable colorings. 2

In the partition calculus just exposed, we have ignored the colorings in
more than two colors. It is clear that the same set of results with very
similar upper bounds can be obtained for any other number of colors by
simply making the appropriate change in the basic function

S = S2 : N<∞ → N. (8.82)

It turns out, however, that there is also a direct way to deduce results about
(ℓ + 1)-colorings from results about ℓ-colorings in this kind of partition cal-
culus.

Theorem 8.30 Suppose that for some integer ℓ ≥ 1 and two nondecreasing
infinite sequences (mi) and (ni), the partition relation




n0

n1

n2

...


→




m0

m1

m2

...




ℓ

(8.83)

holds in the realm of Souslin-measurable colorings. Then also the partition
relation
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n1

n3

n5

...


→




m0

m1

m2

...




ℓ+1

(8.84)

holds in the realm of Souslin-measurable partitions.

Proof. Let

c :
∞∏

i=0

n2i+1 → {0, 1, ..., ℓ} (8.85)

be a given Souslin-measurable coloring. Define d :
∏∞

i=0 ni → Z by

d((xi)) = c((x2i+1))− c((x2i)). (8.86)

Define now c̄ :
∏∞

i=0 ni → {0, ..., ℓ− 1} by letting

c̄((xi)) = 0 if d((xi)) ∈ {0,−2}
= 1 if d((xi)) ∈ {−1, 1, 2}
= 2 if d((xi)) ∈ {−3, 3}
...
= ℓ− 1 if d((xi)) ∈ {−ℓ, ℓ}.

(8.87)

By the hypothesis of the theorem, there exists an infinite subproduct
∏∞

i=0Hi

of
∏∞

i=0 ni such that |Hi| = mi for all i and such that c̄ is constant on∏∞
i=0Hi.

Claim 8.30.1 The original coloring c is constant either on
∏∞

i=0H2i+1 or
on
∏∞

i=0H2i.

Proof. Suppose c takes two different values p and q on
∏∞

i=0H2i and two
different values r and s on

∏∞
i=0H2i+1. Since c̄ is constant on

∏∞
i=0Hi, two

of the four differences

r − p, r − q, s− p, s− q (8.88)

must be equal. Since r−p 6= r−q, r−p 6= s−p, r−q 6= s−q, and s−p 6= s−q,
we have the following two possibilities.
Case 1: r − p = s − q. Then r − q 6= s − p, since otherwise we get that
r = s. It follows that d takes at least three different values on

∏∞
i=0Hi.

Since c̄ is constant on this product, it follows that the constant value of
c̄ on this product is 1 and that d takes only the values {−1, 1, 2} on this
product. If r − p = s − q = 1, then (r − q) + (s − p) = 2, but there are no
distinct x, y ∈ {−1, 1, 2} satisfying x + y = 2. If r − p = s − q = −1 then
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(r − q) + (s− p) = −2, but there are no distinct x, y ∈ {−1, 1, 2} satisfying
x + y = −2. Finally, if r − p = s − q = 2, then (r − q) + (s − p) = 4, but
again there are no distinct x, y ∈ {−1, 1, 2} satisfying x+ y = 4.
Case 2: r−q = s−p. Note that this is just Case 1 with p and q interchanged,
so by symmetry, we are done with this case. 2

This finishes the proof of the theorem. 2

NOTES TO CHAPTER EIGHT

The Ramsey theory of products exposed in this chapter was developed in
the papers of DiPrisco-Llopis-Todorcevic [21] and DiPrisco-Todorcevic [23]
although its final form appears in the paper of Todorcevic [108]. In particular,
the paper [108] gives a primitive recursive upper bound on the polarized
Ramsey theorem for the constant sequence mi = 2. The upper bound given
in [21] and [23] is of the order of the Ackermann function. The proof of
Theorem 8.30 was adopted from the paper of DiPrisco-Henle [20], where the
same implication was proved in the unrestricted case.



Chapter Nine

Parametrized Ramsey Theory

9.1 HIGHER DIMENSIONAL RAMSEY THEOREMS

PARAMETRIZED BY INFINITE PRODUCTS OF FINITE SETS

The purpose of this and the next few sections is to show that the Ellentuck
space (N[∞],⊆, r) can be parametrized by the products of finite sets. The
parametrized theory is built in steps starting from the following basic pigeon
hole principle proved above in Section 3.3.

Lemma 9.1 There is an R : N<∞
+ → N+ such that for every infinite se-

quence (mi) of positive integers and for every coloring

c :
⋃

k∈N

∏
i<k R(m0, . . . ,mi)→ {0, 1} (9.1)

there exist Hi ⊆ R(m0, . . . ,mi), with |Hi| = mi for all i and an infinite set
A ⊆ N such that c is monochromatic on

⋃
k∈A

∏
i<k Hi. (9.2)

From now on, we fix R : N<∞
+ → N+ satisfying Lemma 9.1 and, modifying R

if necessary, we can assume that the quantity R(m0, . . . ,mi) dominates all of
its arguments and that it is monotonically increasing with respect to each of
them. Moreover, we assume that R dominates the mapping S of Definition
8.4.

Definition 9.2 For an integer p ≥ 0, the pth iterate R(p) : N<∞
+ → N+ of

R is defined as follows:

R(0)(m0, . . . ,mi) = R(m0, . . . ,mi),

R(p+1)(m0, . . . ,mi) = R(R(p)(m0), R(p)(m0,m1), . . . , R(p)(m0, . . . ,mi)).
(9.3)

Then we have the following monotonicity property which will be frequently
and implicitly used in what follows.

Lemma 9.3 R(p′)(m′
0, . . . ,m

′
i′) ≥ R

(p)(m0, . . . ,mi) whenever i′ ≥ i, p′ ≥ p
and m′

j ≥ mj for all j ≤ i.
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Definition 9.4 For M ⊆ N define RM : N<∞ → N recursively as follows:

RM (m0) = R(m0)

RM (m0, ...,mi) = R(p)(m0, . . . ,mi),
(9.4)

where

p = |
⋃

k∈M∩i

∏k
j=0 RM (m0, . . . ,mj)|. (9.5)

Then we have the following monotonicity property which follows immediately
from the definition and Lemma 9.3.

Lemma 9.5 RM ′(m′
j , ...,m

′
i′) ≥ RM (m0, ...,mi) whenever M ′ ⊇M , i′ ≥ i,

and m′
j ≥ mj for all j ≤ i.

As in the case of the function S in Section 8.1, we adopt the notation
R(p)((mi)) and RM ((mi)) for the infinite sequences of positive integers whose
ith terms are R(p)(m0, . . . ,mi) and RM (m0, . . . ,mi), respectively. Similarly,
for an infinite sequence (ni) of positive integers, a product

∏∞
i=0Hi is called

an (ni)-product or product of type (ni) if |Hi| = ni for all i. Recall also the
notation

T ( ~H) =
⋃

k∈N

∏
i<k Hi (9.6)

for a given infinite sequence ~H = (Hi) of finite subsets of N. We consider

T ( ~H) a tree ordered by end-extension. For s ∈ T ( ~H), we let

T ( ~H)[s] = {t ∈ T ( ~H) : t is compatible with s}. (9.7)

Lemma 9.6 Let M ⊆ N, k ∈ M, and N = M\{k}. Then for every infinite

B ⊆ N, every RM ((mi))-sequence ~H = (Hi) of finite subsets of N, and every
coloring

c : T ( ~H)→ {0, 1} (9.8)

there exist an RN ((mi))-sequence ~J = (Ji) ≤k
~H and an infinite set A ⊆ B

such that c is constant on

T ( ~J)[s](A) = {t ∈ T ( ~J)[s] : |t| ∈ A} (9.9)

for all s ∈
∏

i<k Hi.

Proof. Let p = |
∏

i<k Hi| and let {sℓ : ℓ < p} be an enumeration of
∏

i<k Hi.
Let

q = |
⋃

j∈M∩k

∏
i<j Hi|. (9.10)

Then on the interval [k,min(M\(k+1))), the sequence RN ((mi)) is equal to
R(q)((mi)), while the sequence RM ((mi) is equal to R(p+q)((mi)). For any
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other interval [k̄, ℓ̄) determined by two successive members of M (equiva-
lently, members of N), if the sequence RN ((mi)) agrees on [k̄, ℓ̄) with some
sequence of the form R(p+q̄)((mi)), then RM ((mi)) agrees on [k̄, ℓ̄) with the
same sequence R(p+q̄)((mi)). It follows that

|Hi| = RM ((m0, . . . ,mi)) ≥ R
(p)(RN (m0), . . . , RN(m0, . . . ,mi)) (9.11)

for all i ≥ k. We shall apply the basic property of R and successively shrink
(Hi)i≥k to

J0
i ⊇ J

1
i ⊇ . . . ⊇ J

p−1
i (i ≥ k) (9.12)

such that |Jℓ
i | = R(p−ℓ−1)(RN (m0), . . . , RN (m0, . . . ,mi)) for i ≥ k and such

that for some sequence B ⊇ A0 ⊇ . . . ⊇ Ap−1 of infinite sets, c is constant
on the set

T (( ~Jℓ))[si](Aℓ) (9.13)

for all i ≤ ℓ < p, where ~Jℓ = (Hi)i<k
a(Jℓ

i )i≥k. Setting B = A−1, it suffices
to see how one obtains (Jℓ+1

i )i≥k and Aℓ+1 starting from (Jℓ
i )i≥k and Aℓ.

Consider the following coloring:

cℓ : T ( ~Jℓ)[sℓ+1]→ {0, 1}, (9.14)

defined by letting cℓ(t) = c(t ↾ n) where n is the maximal element of Aℓ

that is ≤ |t|. By Lemma 9.1 there exist Jℓ+1
i ⊆ Jℓ

i (i ≥ k) and an infinite set
C ⊆ N such that

|Jℓ+1
i | = R(p−ℓ−2)(RN (m0), . . . , RN (m0, . . . ,mi)) (9.15)

for all i ≥ k and such that cℓ is constant on

T ( ~Jℓ+1)[sℓ+1](C), (9.16)

where ~Jℓ+1 = (Hi)i<k
a(Jℓ+1

i )i≥k. For n ∈ C let m(n) = max{m ∈ Aℓ :
m ≤ n}. Shrinking C, we may assume that m(n) < m(n′) whenever n < n′

belong to C. Let

Aℓ+1 = {m(n) : n ∈ C}. (9.17)

Tracing back through the definitions, we see that the original map c is con-
stant on

T ( ~Jℓ+1)[sℓ+1](Aℓ+1). (9.18)

This completes the inductive step. After p steps we arrive at (Jp−1)i≥k and
an infinite set Ap−1 ⊆ B such that if we let

A = Ap−1 and ~J = (Hi)i<k
a(Jp−1

i )i≥k, (9.19)

then ~J is an RN ((mi))-sequence and c is constant on T ( ~J)[s](A) for all
s ∈

∏
i<k Hi. This finishes the proof. 2

The following is an application of the previous lemma that is relevant to
the parametrized theory of infinite products of finite sets.
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Lemma 9.7 Suppose B and M are infinite subsets of N and that Oℓ(ℓ ∈
B) is a given family of open subsets of N∞. Then for every integer n and

every RM ((mi))-sequence ~H = (Hi) of finite subsets of N there exist infinite

N ⊆n M and an RN ((mi))-sequence ~J ≤n
~H such that the mapping

ℓ 7→ Oℓ ∩
∞∏

i=0

Ji (9.20)

is constant on an infinite subset A of B.

Proof. Recall that the mapping R of Lemma 9.1 is chosen to dominate the
mapping S of Definition 8.4 on which the polarized theory of the previous
chapter is based. So using the basic property of the mapping S given in
Lemma 8.7 and taking a preliminary fusion sequence in the sense of Defini-
tion 8.17 to shrink ~H, we may assume that

Oℓ ∩
∞∏

i=0

Hi (9.21)

is a relatively clopen subset of
∏∞

i=0Hi for all ℓ ∈ B. So for each ℓ ∈ B we
can choose an integer nℓ such that the set Oℓ ∩

∏∞
i=0Hi depends only on

coordinates < nℓ. We may further assume that n < nk < nℓ holds for all
k, ℓ ∈ B with k < ℓ. Define

c : T ( ~H)→ {0, 1} (9.22)

as follows. If for t ∈ T ( ~H) there are no k ∈ B such that nk ≤ |t|, we put

c(t) = 0. If for a given t ∈ T ( ~H) we can find a k ∈ B such that nk ≤ |t|, we
let k(t) be the maximal such k and put

c(t) = 1 iff (
∏∞

i=0Hi)[t ↾ nk(t)] ⊆ Ok(t). (9.23)

Find n̄ ∈ M above n and let N = M\{n̄}. Applying Lemma 9.6, we find

an infinite subset C of N and an RN ((mi))-sequence ~J = (Ji) ≤n̄
~H such

that c is constant on

T ( ~J)[s](C) (9.24)

for all s ∈
∏

i<n̄Hi. For each m ∈ C, let ℓ(m) be the maximal element ℓ of
B such that nℓ ≤ m. We may assume that ℓ(m) < ℓ(m′) whenever m < m′

belong to C. Let

A = {ℓ(m) : m ∈ C}. (9.25)

Then for each ℓ ∈ A, the restriction

Oℓ ∩

(
∞∏

i=0

Ji

)
(9.26)

depends only on coordinates < nℓ. Moreover, the mapping

ℓ 7→ Oℓ ∩

(
∞∏

i=0

Ji

)
(9.27)
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is constant on A. This finishes the proof. 2

In order to extend the previous lemma, we need to recall the following notion
introduced above in Section 1.3.

Definition 9.8 A family F of nonempty finite subsets of some infinite set
A ⊆ N is a barrier on A if

(1) a 6⊆ b for all a 6= b from F ,

(2) every infinite X ⊆ A has an initial segment in F .

We shall also use the following important property of barriers also estab-
lished above in Section 1.3.

Lemma 9.9 (Nash-Williams) Suppose F is a barrier on some infinite set
A ⊆ N. Then for every finite coloring

F =
k⋃

ℓ=0

Fℓ, (9.28)

there exist infinite B ⊆ A and ℓ ≤ k such that F|B ⊆ Fℓ.

We also need to recall from Section 1.3 the notion of rank of a given barrier
F and its following useful property (see Lemma 1.25)

rk(F) = sup{rk(F{n}) + 1 : n ∈ A}, (9.29)

where for n ∈ A,

F{n} = {a ⊆ A/n : {n} ∪ a ∈ F} (9.30)

denotes the barrier onA/n = {k ∈ A : k > n} induced by F . A combinatorial
explanation of the definition of rk(F) follows from the fact that

T (F) = {b ⊆ A : (∃a ∈ F)b ⊑ a} (9.31)

considered a tree under the end-extension relation ⊑ is a tree with no infinite
branches. So, one way to define the rank of barrier F is to put rk(F) = ρ(∅),
where ρ = ρF is the function ρ : T (F)→ Ord determined recursively by the
following rule:

ρ(s) = sup{ρ(t) + 1 : t ∈ T (F) and s ⊏ t)}, (9.32)

where we use the convention that the supremum of an empty set of ordinals
is equal to 0. So the inductive Equation (9.29) now follows rather easily from
the fact that

ρ(∅) = sup{ρ({n}) + 1 : n ∈ A} (9.33)

and the fact that

ρ({n}) = rk(F{n}) for all n ∈ A. (9.34)

We shall also need the following fact from Section 3.1, which relates an
arbitrary family of finite subsets of N to the Nash-Williams notion of barrier.
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Lemma 9.10 (Galvin) For every family F of nonempty finite subsets of N
and every infinite set A ⊆ N, there is an infinite B ⊆ B such that either

(1) B includes no element of F ,

(2) F|B = {a ∈ F : a ⊆ B} contains a barrier on B.

We are now ready to state and prove the parametrized versions of these
results.

Lemma 9.11 Suppose Ob(b ∈ F) is a family of open subsets of N∞ indexed
by a barrier F on some infinite set B ⊆ N. Let M be an infinite subset on N
and let n be a given integer. Then for every RM ((mi))-sequence ~H = (Hi)
of finite subsets of N, there exist an infinite set N ⊆n M , an RN ((mi))-

sequence ~J = (Ji) ≤n
~Hi, and an infinite A ⊆ B such that the mapping

a 7→ Oa ∩
∞∏

i=0

Ji (9.35)

is constant on F|A and the constant value is a clopen subset of
∏∞

i=0 Ji.

Proof. This is proved by induction on the rank of F . The case of rk(F) = 1
has been taken care of by Lemma 9.7, so let us assume that rk(F) > 1 and
that the conclusion of the lemma is true for barriers of smaller ranks. Assume
that n0 = minB > n. Applying the inductive hypothesis to the mapping

a 7→ O{n0}∪a (9.36)

defined on the barrier F{n0} on B/n0, the integer n0, and the infinite set

M , we obtain an infinite set M0 ⊆n0 M and an RM0((mi))-sequence ~J0 =

(J0
i ) ≤n0

~H such that the mapping

a 7→ O{n0}∪a ∩
∞∏

i=0

J0
i (9.37)

is constant on F{n0}|A0 for some infinite A0 ⊆ B/n0. Starting from this,
we build a decreasing sequence (Ak) of infinite subsets of B, a decreasing

sequence (Mk) of infinite subsets of M , and an infinite sequence ( ~Jk) of
infinite sequences of finite subsets of N such that

(1) Ak ⊇ Ak+1 and nk = minAk,

(2) Mk+1 ≤nk
Mk and Mk+1 ∩ [nk, nk+1) 6= ∅,

(3) ~Jk = (Jk
i ) is an RMk

((mi))-sequence,

(4) ~Jk+1 ≤nk
~Jk,

(5) b 7→ O{nk}∪{b} ∩
∏∞

i=0 J
k
i is constant on F{nk}|Ak.
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Having chosen these sequences, let ~J∞ = (J∞
i ) be the fusion of ( ~Jk), let

M∞ be the intersection of (Mk) and let A = {nk}
∞
k=0. It follows that the

restriction of the mapping

b 7→ Ob ∩
∞∏

i=0

J∞
i (9.38)

to the barrier F |A∞ depends only on the minimum of the element b of
F |A∞. In other words, we have arrived at an infinite set M∞ ⊆n M , an

RM∞((mi))-sequence H∞ = (H∞
i ) ≤n

~H , an infinite set A∞ ⊆ Bi and a
mapping

n 7→ O∗
n ∩

∞∏

i=0

J∞
i (9.39)

defined on A∞, where for n ∈ A∞, we denote by O∗
n∩
∏∞

i=0 J
∞
i the constant

value of the mapping

b 7→ On∪{b} ∩
∏

i=∞

J∞
i (9.40)

when restricted to F|A∞. Applying Lemma 9.7 again, we obtain an infinite
M ′ ⊆n M∞, an infinite A ⊆ A∞ , and an RM ′((mi))-sequence J = (Ji) ≤n

J∞ such that

n 7→ O∗
n ∩

∞∏

i=0

Ji (9.41)

is constant on A. It follows that

a 7→ Oa ∩
∞∏

i=0

Ji (9.42)

is constant on F|A, as desired. 2

9.2 COMBINATORIAL FORCING PARAMETRIZED BY

INFINITE PRODUCTS OF FINITE SETS

In this section O is a fixed open subset of the product N∞ × N[∞] relative
to the standard complete separable metrizable topology of this product.
Moreover, (mi) will be a fixed infinite nondecreasing sequence of positive
integers. It will be convenient to refine the tree notation used in Sections 3.3
and 9.1 as follows. For an infinite sequence ~H = (Hi) of finite subsets of N
and a finite sequence s ∈ N<∞ and k ∈ N, set, ,

[s, ~H] = {x ∈ N∞ : x ↾ |s| = s and x(i) ∈ Hi for i ≥ |s|},

[s, ~H]k = {x ∈ Nk : x ↾ |s| = s and x(i) ∈ Hi for i ∈ [|s|, k)},

[s, ~H]<∞ =
⋃

k≥|s|[s,
~H ]k.

(9.43)
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Let R∞ = R∞((mi)) be the collection of all infinite sequences ~H = (Hi) of
nonempty finite subsets of N for which we can find infinite M ⊆ N such that

RM (m0, . . . ,mi) = |Hi| for all i. (9.44)

For ~H ∈ R∞((mi)), we let M( ~H) denote the infinite subset M ≤ N witness-
ing this membership.

Notation. We use ~H, ~J, ~K, ... to denote members of R∞,
x, y, z, ... to denote members of N∞

s, t, u, ... to denote members of N<∞,
A,B,C, ... to denote members of N[∞], and
a, b, c, ... to denote members of N[<∞].
We also adopt the usual notation

[a,A] = {B ∈ N[∞] : a ⊑ B ⊆ A} and [n,A] = [rn(A), A]

for basic open sets of the Ellentuck topology1 on N[∞].

Definition 9.12 We say that ( ~H,A) accepts (s, a) if [s, ~H ]× [a,A] ⊆ O. If

there are no ~J ≤|s|
~H and B ⊆ A such that ( ~J,B) accepts (s, a), we say that

( ~H,A) rejects (s, a). We say that ( ~H,A) decides (s, a) if it either accepts or
rejects (s, a).

The following facts follow immediately from the definition.

Lemma 9.13 (a) If ( ~H,A) accepts (s, a), then for every ~J ≤ ~H and B ⊆ A

the pair ( ~J,B) accepts (s, a).

(b) If ( ~H,A) rejects (s, a), then for every ~J ≤|s|
~H and B ⊆ A, the pair

( ~J,B) rejects (s, a).

(c) If for some k ≥ |s|, the pair ( ~H,A) accepts (t, a) for every t ∈ [s, ~H ]k,

then ( ~H,A) accepts (s, a).

(d) For every pair ( ~H,A) and every pair (s, a), there exist ~J ≤|s|
~H and

B ⊆ A such that ( ~J,B) decides (s, a).

Lemma 9.14 For every ~H ∈ R∞, A ∈ N[∞] and n ∈ N, there exist ~J ≤n
~H

and infinite B ⊆ A such that for every a ∈ N[<∞], every k ∈ B with k ≥
max(a), and every s ∈

∏
i<k Ji, the pair ( ~J,B) decides (s, a).

Proof. Starting from ~H , we build an infinite sequence ( ~Hk) of members of
R∞ and a decreasing infinite sequence A ⊇ A0 ⊇ A1 ⊇ . . . ⊇ Ak ⊇ . . . of
infinite subsets of N such that if we put nk = min(Ak) then for all k,

(1) n < nk < nk+1,

1Recall that, for A ∈ N[∞] and n ∈ N, we denote by rn(A) the finite set of cardinality
n formed by taking the first n elements of A according to its increasing enumeration.
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(2) ~Hk+1 ≤nk
~Hk and therefore M( ~Hk+1) ⊆nk

M( ~Hk),

(3) M( ~Hk+1) ∩ [nk, nk+1) 6= ∅,

(4) ( ~Hk+1, Ak+1) decides (s, a) for s ∈
∏

i<nk
Hk

i and a ⊆ {0, 1, . . . , nk}.

Let B = {nk : k ∈ N} and let Ji = lim
k→∞

Hk
i . Then ~J = (Ji) ∈ R∞, ~J ≤n

~H

and for every a and every k ∈ B with k ≥ max(a), the pair ( ~J,B) decides
(s, a) for every s ∈

∏
i<k Ji. 2

Lemma 9.15 Suppose that ~J and B satisfy the conclusion of Lemma 9.14.
Then for every n ∈ N, there exist ~K ≤n

~J and an infinite set C ⊆ N such
that for all ℓ ∈ C, all s ∈

∏
i<ℓKi, and all a ⊆ {0, 1, . . . , ℓ}, there exist

infinitely many k ∈ B/ℓ such that either

(1) ( ~J,B) accepts (t, a) for all t ∈ [s, ~K]k, or

(2) ( ~J,B) rejects (t, a) for all t ∈ [s, ~K]k.

Proof. Starting from ~J, we build a fusion sequence ( ~Jk) of elements of R∞

and a strictly increasing sequence of integers (nk) above n as follows. Let

n0 be the minimal member of M( ~J) above n. Applying Lemma 9.6 to the
sequence of mappings

ca :
⋃

k

∏

i<k

Ji → {0, 1} (a ⊆ {0, . . . , n0}) (9.45)

defined by

ca(t) = 0 iff ( ~J,B) accepts (t, a), (9.46)

we get an infinite sequence ~J0 ≤n0
~J such that for all a ⊆ {0, . . . , n0} and

all s ∈
∏

i<n0
Ji there exist infinitely many k ∈ B/n0 such that the mapping

ca is constant on [s, ~J0]k. By the choice of ~J and B, it follows that for all
a ⊆ {0, . . . , n0} and s ∈

∏
i<n0

Ji, there exist infinitely many k ∈ B/n0 such
that either

( ~J,B) accepts (t, a) for all t ∈ [s, ~J0]k, (9.47)

or else

( ~J,B) rejects (t, a) for all t ∈ [s, ~J0]k. (9.48)

Let n1 be the second member of M( ~J0) above n0. Repeating the same proce-

dure, we find ~J1 ≤n1
~J0 such that for all a ⊆ {0, . . . , n1} and s ∈

∏
i<n1

J1
i ,

there exist infinitely many k ∈ B/n1 such that either

( ~J,B) accepts (t, a) for all t ∈ [s, ~J1]k, (9.49)

or else

( ~J,B) rejects (t, a) for all t ∈ [s, ~J1]k. (9.50)
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It is clear that we can continue this process indefinitely. After ( ~Jk) and (nk)

have been constructed, we let ~K be the limit of ( ~Jk) and let

C = {nk : k ∈ N}.

Then ~K and C satisfy the conclusion of the lemma. 2

The following is the crucial lemma of this section.

Lemma 9.16 For every ~H ∈ R, n ∈ N, A ∈ N[∞] and a ∈ N[<∞], there exist
~J ≤n

~H,B ⊆ A and k ≥ n such that for all s ∈
∏

i<k Ji,

[s, ~J ]× [a,B] ⊆ O or [s, ~J ]× [a,B] ⊆ Oc. (9.51)

Proof. Clearly, we may concentrate on the case a = ∅. Shrinking ~H and A,
we may assume that they satisfy the conclusion of Lemma 9.14. Applying
Lemma 9.15 and shrinking ~H and A, we may also assume that for every
ℓ ∈ A every s ∈

∏
i<ℓHi and every a ⊆ {0, . . . , ℓ}, there exist infinitely

many k such that either

(1) ( ~H,A) accepts (t, a) for all t ∈ [s, ~H ′]k, or

(2) ( ~H,A) rejects (t, a) for all t ∈ [s, ~H ′]k.

For b ∈ N[<∞], let

Ob =
⋃
{[t, ~H] : [t, ~H]× [b, A] ⊆ O}. (9.52)

Applying Lemma 9.10 to

B = {∅ 6= b ∈ N[<∞] : Ob 6= ∅}, (9.53)

we may consider the following two cases.

Case 1. There is an infinite set B ⊆ A such that B contains no member of
B. We claim that in this case

[∅, ~H ]× [∅, B] ∩ O = ∅. (9.54)

Otherwise, there exist x ∈
∏

i Hi and X ⊆ B such that (x,X) ∈ O. Then
for some k ∈ N and ℓ ∈ X ,

[x ↾ k]× [X ∩ {0, ., ℓ},N ] ⊆ O. (9.55)

Letting b = X ∩ {0, ., ℓ}, it follows that b ∈ B and b ⊆ B, a contradiction.

Case 2. There is an infinite set B ⊆ A such that B|B contains a barrier F

on B. Applying Lemma 9.11, we can find C ⊆ B, ~J ≤n
~H and a relatively

clopen subset P ⊆
∏

i Ji such that

Ob ∩
∞∏

i=0

Ji = P for all b ∈ F|C. (9.56)

Pick n > n in A such that P ∩
∏∞

i=0 Ji depends only on coordinates < n.
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Claim 9.16.1 Suppose s ∈
∏

i<n Ji and [s, ~J]∩P = ∅. Then for every D ⊆

C and every b ∈ F|C, there exists E ⊆ D such that ([s, ~J ]× [b, E]) ∩O = ∅.

Proof. Pick s ∈
∏

i<n Ji avoiding P and pick b ∈ F|C. Let

Bb = {∅ 6= c ∈ (C/b)[<∞] : Ob∪c ∩ [s, ~J ] 6= ∅}. (9.57)

Applying Lemma 9.10 to Bb and D, we have the following two cases.

Case 2.1. There is an infinite set E ⊆ D that contains no members of Bb.
Then as in Case 1, we check that

([s, ~J ]× [b, E]) ∩ O = ∅. (9.58)

Case 2.2. There is an infinite set E ⊆ D/b such that Bb|E contains a barrier

Fb on E. Applying Lemma 9.11, we find F ⊆ E, ~K ≤n
~J and a nonempty

relatively clopen subset Q ⊆ [s, ~K] such that

Ob∪c ∩ [s, ~K] = Q for all c ∈ Fb|F. (9.59)

We claim that Ob ∩ [s, ~K] 6= ∅, contradicting the choice of P and s. To see
this, choose ℓ ∈ A′/b such that Q depends only on coordinates < ℓ and an

s ∈
∏

i<ℓKi end-extending s such that [s, ~K] ⊆ Q. Tracing back through
the definitions, one sees that

[s, ~H ] ⊆ Ob∪c for all c ∈ Fb|F. (9.60)

From the definition of Ob∪c and the fact that Fb|E is a barrier on E, we get

([s, ~H]× [b, F ]) ⊆ O. (9.61)

By the properties of ~H,A, and A′ we know that ( ~H,A) decides (s̄, b). From

Lemma 9.13 (b) and the fact that ( ~H, F ) accepts (s, b), we infer that ( ~H,A)
must also accept (s, b). It follows that

[s, ~H]× [b, A] ⊆ O (9.62)

and therefore [s, ~H ] ⊂ Ob. Since s end-extends s, which was chosen to avoid
the relatively clopen subset P of

∏∞
i=0 Ji depending on coordinates < n < ℓ,

we infer that

Ob ∩
∏∞

i=0
Ji 6= P , (9.63)

a contradiction. This shows that Case 2.2 is impossible. This also finishes
the proof of the claim. 2

Using Claim 9.16.1, we build a decreasing sequence

C = C0 ⊇ C1 ⊇ .... ⊇ Ck ⊇ ....

of infinite subsets of C such that if nk = minCk, then (nk) is a strictly
increasing sequence of positive integers and such that for every k, every
b ∈ F , b ⊆ {n0, . . . , nk}, and every s ∈

∏
i<n Ji,

[s, ~J] ∩ P = ∅ implies ([s, ~J ]× [b, Ck+1]) ∩ O = ∅. (9.64)



248 CHAPTER 9

Let C∞ = {nk : n ∈ N}. Then ~J ≤n
~H, C∞ ⊆ A, and n ≥ n satisfy the

condition of Lemma 9.16, or in other words, for every s ∈
∏

i<n Ji, either

([s, ~J ]× [∅, C∞]) ⊆ O (9.65)

or

([s, ~J ]× [∅, C∞]) ∩O = ∅. (9.66)

This finishes the proof. 2

9.3 PARAMETRIZED RAMSEY PROPERTY

Throughout this section, (mi) is a fixed infinite nondecreasing sequence of
positive integers. We adopt the notation and definitions from the previous
section, as well as the notation and definitions from the previous chapter.
For example, a regular pair (N,M) is a pair of infinite subsets of N such that
N ⊆M and M \N is infinite, a fact which we denote by

N ⊂∞ M. (9.67)

For regular pairs (Q,P ) and (N,M), we write (Q,P ) ≤ (N,M) whenever

N ⊂∞ Q ⊂∞ P ⊂∞ M. (9.68)

Let (Q,P ) ≤n (N,M) denote the fact that (Q,P ) ≤ (N,M) and

Q ∩ n = N ∩ n and P ∩ n = M ∩ n. (9.69)

Definition 9.17 A subset X ⊆ N∞ × N[∞] is para-Ramsey if for every
regular pair (N,M), every RM ((mi))-sequence ~H of finite subsets of N, and
every a ∈ N[<∞], there exist a regular pair (Q,P ) ≤n (N,M), an RP ((mi))-

sequence ~J ≤n
~H, an integer k ≥ n, and an infinite set B ⊆ A such that for

all s ∈
∏

i<k Ji

[s, ~J ]× [a,B] ⊆ X or [s, ~J ]× [a,B] ⊆ X c. (9.70)

Note the following reformulation of Lemma 9.16 from the previous section.

Lemma 9.18 Every open subset of N∞ × N[∞] is para-Ramsey.

To show that the field of para-Ramsey subsets at N∞×N[∞] is a σ-field, we
need to adopt the notion of fusion to this context.

Definition 9.19 A fusion sequence is an infinite sequence of the form

(Nk,Mk, ~H
k, nk, Ak) (9.71)

such that for all k,

(1) (Nk,Mk) is a regular pair,

(2) ~Hk is a RMk
((mi))-sequence of finite subsets of N,



PARAMETRIZED RAMSEY THEORY 249

(3) nk < nk+1,

(4) (Nk+1,Mk+1) ≤nk
(Nk,Mk),

(5) ~Hk+1 ≤nk
~Hk,

(6) (Mk+1 \Nk+1) ∩ [nk, nk+1) 6= ∅,

(7) Ak ⊇ Ak+1 and min(Ak+1) > min(Ak).

The limits of the fusion sequence (Nk,Mk, ~H
k, nk, Ak) are defined as follows:

N∞ =
∞⋃

k=0

Nk,

M∞ =

∞⋂

k=0

Mk,

H∞
i = lim

k→∞
Hk

i ,

A∞ = {min(Ak) : k ∈ N} ∪ a

for some finite set a ⊆ N, which may or may not be added to A∞, depending
on the context. Note that (N∞,M∞) is a regular pair of infinite subsets of
N and that

(N∞,M∞) ≤nk
(Nk,Mk) for all k. (9.72)

Note moreover that ~H∞ = (H∞) is an RM∞((mi))-sequence and that

~H∞ ≤nk
~Hk for all k. (9.73)

Lemma 9.20 The para-Ramsey subsets of N∞ × N[∞] form a σ-field.

Proof. Let (Xk) be a given sequence of para-Ramsey sets and let (N,M), n,
~H, [a,A] be the given inputs of Definition 9.17 needed for checking that

X =

∞⋃

k=0

Xk (9.74)

is para-Ramsey. Starting from the initial values N0 = N,M0 = M0, n0 =
n, ~H0 = ~H and A0 = A we build a fusion sequence (Nk,Mk, ~H

k, nk, Ak),

as follows. Suppose Nk,Mk, ~H
k,nk, and Ak have been determined. Applying

the assumption that Xk is para-Ramsey, successively over all

b ⊆ a ∪ {min(A0), . . . ,min(Ak)} , (9.75)

we get an (Nk+1,Mk+1) ≤nk
(Nk,Mk), an RMk+1

((mi))-sequence ~Hk+1 ≤nk

~Hk, an integer n̄ ≥ nk, and an infinite set Ak+1 ⊆ Ak such that for all

b ⊆ a ∪ {min(A0), . . . ,min(Ak)} and all s ∈
∏

i<n̄
~Hk+1

i , either

[s, ~Hk+1]× [b, Ak+1] ⊆ Xk or [s, ~Hk+1]× [b, Ak+1] ⊆ X c
k . (9.76)
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We assume that min(Ak+1) > min(Ak),max(a). Having constructed the

fusion sequence we take its limits (N∞,M∞), ~H∞ and

A∞ = a ∪ {min(Ak) : k ∈ N}.

It follows that

X ∩

(
∞∏

i=0

H∞
i × [a,A∞]

)
(9.77)

is a relatively open subset of (
∏

i H
∞
i ) × [a,A∞], so we can finish using

Lemma 9.18. 2

Corollary 9.21 All Borel subsets of N∞ × N[∞] are para-Ramsey.

Corollary 9.22 (Galvin-Prikry) All Borel subsets of N[∞] are Ramsey.

We are now ready to state and prove the main result of this section.

Theorem 9.23 The field of para-Ramsey subsets of N∞ × N[∞] is closed
under the Souslin operation.

Proof. Let Xv (v ∈ N[<∞]) be a given Souslin scheme of para-Ramsey subsets
of N∞ × N[∞]. We assume that Xv ⊆ Xu whenever v end-extends u. Let2

X =
⋃

V ∈N[∞]

⋂

n∈N

Xrn(V ). (9.78)

Similarly as before, we consider the relativized versions

X ∗
v =

⋃

V ∈[v,N]

⋂

n≥|v|

Xrn(V ) (9.79)

for v ∈ N[<∞].
Let (N,M), ~H, n and [a,A] be given inputs as in Definition 9.17 for check-

ing that the set X is para-Ramsey. Starting from the initial values

N0 = N,M0 = M,n0 = n, ~H0 = ~H, and A0 = A,

we build a fusion sequence

(Nk,Mk, ~H
k, nk, Ak) (9.80)

as follows. Suppose that Nk,Mk, ~H
k, nk, and Ak have been determined. Let

p = 2nk+1
∣∣∣
⋃

j∈Mk∩nk

∏
i<j H

k
i

∣∣∣ . (9.81)

Since RNk
((mi)) eventually dominates R(p)((mi)), we find a minimal integer

n̄k ≥ nk such that

RNk
(m0, . . . ,mi) ≥ R

(p)(m0, . . . ,mi) for all i ≥ n̄k. (9.82)

2Recall that rn(V ) is the set formed by taking the first n members of V .
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Let (sℓ, vℓ, bℓ) (ℓ ≤ m) be an enumeration of

(
∏

i<n̄k
Hk

i )× P(nk)× P(a ∪ {min(A0), . . . ,min(Ak)}). (9.83)

Suppose there exist (Q,P ) ≤ (Nk,Mk), an SP ((mi))-sequence ~J ≤ ~Hk and
infinite B ⊆ Ak such that

[s0, ~J ]× [b0, B] ∩ X ∗
v0

= ∅. (9.84)

Since Nk ⊆ Q ⊆ P we have that

|Ji| = RP (m0, . . . ,mi) ≥ RNk
(m0, . . . ,mi) ≥ R

(p)(m0, . . . ,mi) for i ≥ n̄k.
(9.85)

So, we can find (Q0, P0) ≤nk
(Nk,Mk) and an RP0((mi))-sequence ~J0 such

that

(1) J0
i ⊆ Ji for i ≥ n̄k

(2) J0
i ⊆ H

k
i for nk ≤ i < n̄k

(3) J0
i = Hk

i for i < nk.

Note that ~J0 ≤nk
~Hk and [s0, ~J

0] ⊆ [s0, ~J ], so we have that

[s0 ~J0]× [b0, B] ∩ X ∗
v0

= ∅. (9.86)

Let B0 = B.
If such (Q,P ) ≤ (Nk,Mk), J ≤ ~Hk and B ⊆ An cannot be found, set

~J0 = ~Hk, B0 = Ak, (Q0, P0) = (Nk,Mk). (9.87)

Now starting from ~J0, (Q0, P0), and B0 in place of ~Hk, (Nk, Pk), and Ak, we

find a regular pair (Q1, P1) ≤nk
(Q0, P0), an RP1((mi))-sequence ~J0, and an

infinite B1 ⊆ B such that either

[s1, ~J
1]× [b1, B1] ∩ X ∗

v1
= ∅ (9.88)

or else it is impossible to find a (Q,P ) ≤ (Q0, P0), an Rp((mi))-sequence

J ≤ ~J0, and an infinite set B ⊆ B0 such that

[s1, ~J ]× [b1, B] ∩ X ∗
v1

= ∅, (9.89)

and so on. Proceeding this way, we successively treat each triple (sℓ, vℓ, bℓ)
(ℓ ≤ m) and arrive at (Qm, Pm) ≤nk

(Nk,Mk), an RPm
((mi))-sequence

~Jm ≤nk
~Hk and infinite Bm ⊆ A. Let

(Nk+1,Mk+1) = (Qm, Pm),

~Hk+1 = ~Jm,

Ak+1 =Bm/max{minAk,max(a)}.
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Choose nk+1 > n̄k such that Mk+1 \ Nk+1 has a point in the interval
[nk, nk+1). This ends the description of the inductive step in the fusion con-
struction.

Note for future reference that a triple Nk+1, (Mk+1, ~H
k+1), and Ak+1

constructed in this way has the following property:

(4)k For every s ∈
∏

i<nk
Hk+1

i , every v ⊆ {0, 1, . . . , nk} and every

b ⊆ a ∪ {min(A0), . . . ,min(Ak)} ,

either

([s,Hk+1]× [b, Ak+1]) ∩X∗
v = ∅,

or else it is impossible to find a regular pair (Q,P ) ≤ (Nk+1,Mk+1), an

RP ((mi))-sequence ~J ≤ ~Hk+1 , and an infinite set B ⊆ Ak+1 such that

([s, ~J ]× [b, B]) ∩ X ∗
v = ∅.

Let (N∞,M∞), ~H∞ and A∞ = a ∪ {min(Ak) : k ∈ N} be the limits of the
fusion sequence (Nk,Mk, nk, H

k, Ak).
For v ∈ N [<∞], we form the set

Ψ(X∗
v )) =

⋃{
[s, ~H∞]× [b, A∞] : [s, ~H∞]× [b, A∞] ∩ X ∗

V = ∅
}
. (9.90)

Then put

Φ(X ∗
v ) = (Xv ∩

∏∞
r=0H

∞
i × [a,A∞]) \Ψ(X ∗

v ) (9.91)

Then Φ(X ∗
v ) is a para-Ramsey set for all v ∈ N[<∞]. Therefore, for each

v ∈ N[<∞], the difference

Mv = Φ(X ∗
v ) \

⋃

ℓ>max(v)

Φ(X ∗
v∪{ℓ}) (9.92)

is also para-Ramsey. Note also that

Mv ⊆ Φ(X ∗
v ) \ X ∗

v for all v ∈ N[<∞]. (9.93)

Now we go on to define the second fusion sequence

(Qk, Pk, pk, ~J
k, Bk), (9.94)

starting from the initial values

Q0 = N∞, P0 =M∞, p0 = n, ~J0 = ~H∞, and B0 = A∞

and making sure that (pk) is a subsequence of (nk). Applying the fact that
the setsMv are para-Ramsey, it is clear that we can choose the second fusion
to have the following property.
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(5)k For some p̄k ∈ [pk, pk+1) it holds that whenever s ∈
∏

i<p̄k
Jk+1

i ,

b ⊆ a ∪ {min(B0), . . . ,min(Bk)}

and v ⊆ {0, 1, . . . , pk} are given, then either

[s, ~Jk+1]× [b, Bk+1] ⊆Mv or [s, ~Jk+1]× [b, Bk+1] ∩Mv = ∅. (9.95)

Moreover, besides the assumption that the sequence (p̄k) is a subsequence
of the sequence (n̄k), we require that p̄k = n̄ℓ implies nℓ ≥ pk. We claim
that in (5)k we always have the second alternative. Suppose not and fix an
integer k, a sequence s ∈

∏
i<p̄k

Jk+1
i and a set

b ⊆ ∪{min(B0), . . . ,min(Bk)} (9.96)

end-extending a such that

[s, ~Jk+1]× [b, Bk+1] ⊆Mv. (9.97)

Let ℓ be such that p̄k = n̄ℓ. Then nℓ ≥ pk, so we have that

s ∈
∏

i<nℓ

Hℓ+1
i , v ⊆ {0, . . . , nℓ} , (9.98)

b ⊆ a ∪ {min(A0), . . . ,min(Aℓ)} . (9.99)

Note that (Qk+1, Pk+1) ≤ (Nℓ+1,Mℓ+1), ~Jk+1 ≤ ~Hℓ+1 and Bk+1 ⊆ Aℓ+1

show that the second alternative of (4)ℓ does not hold, so we have the first,
i.e.,

[s, ~Hℓ+1]× [b, Aℓ+1] ∩ X ∗
v = ∅. (9.100)

Then by our definition,

[s, ~H∞]× [b, A∞] ⊆ Ψ(X ∗
v ). (9.101)

SoMv intersects Ψ(X∗
v ), contradicting that the fact Mv is a subset of Φ(X ∗

v )
that is disjoint from Ψ(X ∗

v ).

Having performed the fusion procedure, we arrive at a fusion sequence
(Qk, Pk, pk, ~J

k, Bk) satisfying (5)k for all k. Let

(Q∞, P∞), ~J∞ and B∞ = a ∪ {min(Bk) : k ∈ N}

be the limits of this fusion sequence. Then from the fact just established,
which says that in (5)k the second alternative always holds, we conclude that

((
∏∞

i=0 J
∞
i )× [a,B∞]) ∩Mv = ∅ for all v ∈ N[∞]. (9.102)

As in the previous proofs of this nature, one easily checks that (9.102) has
the following consequence:
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X ∗
∅ ∩ (

∏∞
i=0 J

∞
i × [a,B∞]) = Φ(X ∗

∅ ) ∩ (
∏∞

i=0 Ji × [a,B∞]). (9.103)

Since Φ(X ∗
0 ) is para-Ramsey, we can find k > n, a (Q,P ) ≤n (Q∞, P∞),

an RP ((mi))-sequence ~J ≤n
~J∞, and an infinite B ⊆ B∞ such that for all

s ∈
∏

i<k Ji, either

[s, ~J ]× [a,B] ⊆ Φ
(
X ∗

∅

)
or

([s, ~J ]× [a,B]) ∩ Φ
(
X ∗

∅

)
= ∅.

Since X = X ∗
∅ this, together with Equation ((9.103)), gives us the conclusion

of the theorem. 2

Corollary 9.24 Every analytic subset of N∞ × N[∞] is para-Ramsey.

Corollary 9.25 (Silver) Every analytic subset of N[∞] is Ramsey.

9.4 INFINITE-DIMENSIONAL RAMSEY THEOREM

PARAMETRIZED BY INFINITE PRODUCTS OF FINITE SETS

In this section we state and prove what appears to be the optimal parame-
trized form of the infinite-dimensional Ramsey theorem.

Theorem 9.26 (Parametrized Infinite-Dimensional Ramsey Theorem) Let
(mi) be an infinite nondecreasing sequence of positive integers and define
ni = RN(m0, . . . ,mi). Then for every Souslin-measurable coloring

c : (
∏∞

i=0 ni)× N[∞] → 2, (9.104)

there exist Hi ⊆ ni, with |Hi| = mi for all i, and an infinite set H ⊆ N such
that c in constant on the product (

∏∞
i=0Hi)×H [∞].

Proof. Applying Theorem 9.23, we find an infinite set M ⊆ N, an RM ((mi))-
sequence Ji ⊆ ni(i ∈ N), an integer k, and an infinite set H ⊆ N such that for

all s ∈
∏

i<k Ji, the coloring c is constant on [s, ~J ]×H [∞]. Since RM ((mi))
dominates SM ((mi)), which in turn dominates S((mi)), by Lemma 8.5, there
exist Hi ⊆ Ji, |Hi| = mi for all i and ε < 2 such that for all s ∈

∏
i<k Hi, the

constant value of c on [s, ~J ]×H [∞] is equal to ε. It follows that c is constant
on the product (

∏∞
i=0Hi)×H [∞]. 2

Corollary 9.27 For every infinite sequence (mi) of positive integers and
every integer ℓ, there is an infinite sequence (ni) of positive integers such
that for every Souslin-measurable coloring

c : (
∏∞

i=0 ni)× N[∞] → {0, 1, . . . , ℓ− 1} , (9.105)
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there exist Hi ⊆ ni with |Hi| = mi for all i, and an infinite set H ⊆ N such
that the product

(
∏∞

i=0Hi)×H [∞] (9.106)

is monochromatic.

Proof. By the previous theorem, the conclusion is true for ℓ = 2 and the
multicoloring version follows by successive application of this version. 2

However, working as in the proof of Theorem 8.30 from the previous chapter,
we have the following general fact which shows that in this context the num-
ber of colors can always be increased by going to an appropriate subsequence
of (ni).

Lemma 9.28 Let ℓ be an integer ≥ 2. Suppose that (mi) is an infinite
sequence of positive integers and that (ni) is an infinite increasing sequence
of integers with the property that for every Souslin-measurable ℓ-coloring of
the product

(
∏∞

i=0 ni)× N[∞] (9.107)

there exist Hi ⊆ ni with |Hi| = mi for all i, and an infinite set H ⊆ N
such that the product (

∏∞
i=0Hi) × H [∞] is monochromatic. Then for every

Souslin-measurable (ℓ + 1)-coloring of the product

(
∏∞

i=0 n2i+1)× N[∞] (9.108)

there exist Hi ⊆ ni with |Hi| = mi for all i, and an infinite set H ⊆ N such
that the product (

∏∞
i=0Hi)×H [∞] is monochromatic

Proof. Since the proof is quite analogous to that of Theorem 8.30, we only
give a sketch. Let

c : (
∏∞

i=0 n2i+1)× N[∞] → {0, 1, ..., ℓ} (9.109)

be a given Souslin-measurable coloring. Define

d : (
∏∞

i=0 ni)× N[∞] → Z (9.110)

by d((xi), X) = c((x2i+1), X)− c((x2i), X). Define now

c̄ : (
∏∞

i=0 ni)× N[∞] → {0, ..., ℓ− 1} (9.111)

by letting

c̄((xi), X) = 0 if d((xi), X) ∈ {0,−2}
= 1 if d((xi), X) ∈ {−1, 1, 2}
= 2 if d((xi), X) ∈ {−3, 3}
...
= ℓ− 1 if d((xi), X) ∈ {−ℓ, ℓ}.

(9.112)

Since this coloring uses no more than ℓ colors, there exist an infinite sub-
product

∏∞
i=0Hi of

∏∞
i=0 ni such that |Hi| = mi for all i and an infinite set

H ⊆ N such that c̄ is constant on the product

(
∏∞

i=0Hi)×H [∞]. (9.113)
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Then working as in the proof of Theorem 8.30 one shows that the original
coloring c is constant either on (

∏∞
i=0H2i+1)×H [∞] or on (

∏∞
i=0H2i)×H

[∞].
Details are left to the interested reader. 2

Note that in the case of polarized partition calculus of Chapter 8, taking
for example, mi to be the constant sequence mi = 2, we know that the
sequence ni = A4(3 + i) satisfies the partition relation




n0

n1

n2

...


→




2
2
2
...


 (9.114)

in the realm of Souslin-measurable colorings. In the case of parametrized
partition properties, nothing of this sort is known. For example, the following
question is wide open.

Question 9.29 Is there a primitive recursive sequence (ni) such that for
every Souslin-measurable coloring

c : (
∏∞

i=0 ni)× N[∞] → 2 (9.115)

there exist Hi ⊆ ni, |Hi| = 2 for all i, and infinite H ⊆ N such that the
product

(
∏∞

i=0Hi)×H [∞] (9.116)

is monochromatic?

There are indications that the infinite-dimensional Ramsey theorem para-
metrized by products of finite sets is considerably stronger than the corre-
sponding partition theorem for the products of finite sets alone. Consider,
for example, the following simple observation.

Lemma 9.30 For every analytic subset A of some product
∏∞

i=0Hi of finite
subsets of N there is a Gδ-subset G of the product

(
∏∞

i=0Hi)× N[∞] (9.117)

such that if for some subproduct
∏∞

i=0 Ji ⊆
∏∞

i=0Hi and infinite H ⊆ N we
have that (

∏∞
i=0 Ji)×H [∞] is either included in or disjoint from G, then the

product
∏∞

i=0 Ji is either included or is disjoint from A.

Proof. Take a continuous map f : N[∞] →
∏∞

i=0Hi such that A = rang(f).
Let3

G =
{

(x,X) : (∃Y ∈ N[∞]) [f (Y ) = x & (∀n ∈ N) (Y (n) ≤ X (n))]
}

Then G is a Gδ-subset of the product (
∏∞

i=0Hi)×N[∞]. Consider a subprod-
uct

∏∞
i=0 Ji ⊆

∏∞
i=0Hi and infinite H ⊆ N such that (

∏∞
i=0 Ji) × H [∞] is

3Here Y (n) and X(n) denote the nth members of Y and X, respectively, according to
the increasing enumeration of these subsets of N.
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either included or is disjoint from G. First of all, note that if (
∏∞

i=0 Ji)×H [∞]

is included in G then clearly
∏∞

i=0 Ji ⊆ A. Suppose now that

(
(
∏∞

i=0 Ji)×H [∞]
)
∩ G = ∅. (9.118)

We claim that in this case (
∏∞

i=0 Ji) ∩ A = ∅. To see this, consider an
x ∈

∏∞
i=0 Ji and suppose that x ∈ A. Let Y ∈ N[∞] be such that f(Y ) = x.

Find an X ∈ H [∞] such that Y (n) ≤ X(n) for all n ∈ N. Then by definition
of G, we conclude that (x,X) ∈ G, and therefore, (x,X) belongs to the
interesction ((

∏∞
i=0 Ji) ×H [∞]) ∩ G, which is a contradiction. This finishes

the proof. 2

It follows that for a given infinite sequence (mi) of positive integers, the
existence of infinite sequence (ni) of positive integers such that the polarized
partition relation




n0

n1

n2

...


→




m0

m1

m2

...


 (9.119)

holds in the realm of Souslin-measurable colorings follows from the Gσ-case
of the Parametrized Infinite-Dimensional Ramsey Theorem, a fact essentially
of the same level of difficulty as the result that open sets belong to the field
of para-Ramsey sets (proved above in Section 9.2). This way of proving
polarized partition relations, however, gives no bounds on (ni) in terms of
(mi). This was one of the reasons for asking Question 9.29 above. It is also
worth restating that question in the following finitary form.

Question 9.31 Is there a primitive recursive sequence (ni) of positive inte-
gers such that for every coloring

c :
⋃

k

∏

i<k

ni → 2,

there exist Hi ⊆ ni such that |Hi| = 2 for all i and such that the set
{
k : c ↾

∏

i<k

Hi is constant

}

is infinite?

NOTES TO CHAPTER NINE

The parametrized Ramsey theory of this chapter was developed in the papers
of DiPrisco-Llopis-Todorcevic [22] and DiPrisco-Todorcevic [23] although its
final form presented above appears in the paper of Todorcevic [108] contain-
ing an essential improvement which allowed us to prove the Parametrized
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Infinite-Dimensional Ramsey Theorem (Theorem 9.26) without the use of
any additional set-theoretic assumptions. The previous work needed the ad-
ditional set-theoretic assumption that subsets of N[∞] representable as con-
tinuous images of coanalytic subsets of NN have the Ramsey property. The
finite-dimensional Ramsey theorem has been parametrized by products of
finite sets in an earlier paper by Henle [46]. It is natural to expect that
similar methods will extend the Parametrized Infinite-Dimensional Ramsey
Theorem into the context where monochromatic products of finite sets of
prescribed cardinalities are replaced by sets of prescribed masses relative to
a fixed submeasure on the power-set of N. These extensions will be guided
by applications of the Parametrized Infinite-Dimensional Ramsey Theorem
which at this point are mostly in the analysis of the set-theoretic forcing (see
for example [23] and [115]) but this is likely to change with time.
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SET THEORETIC NOTATION

The cardinality of a set S is denoted by |S|. If X is a subset of X, we shall
sometimes use the notation Xc for its complement in S, the set S \X.

When σ = (σn) is a (typically finite) sequence of objects, we use the nota-
tion |σ| to denote the length of the sequence which is indeed its cardinality
provided we identify σ with the corresponding set of ordered pairs of the
form 〈n, σn〉.

N = {0, 1, 2, ...} is the set of non negative integers.
N+ = {1, 2, ...} is the set of positive integers.
Each integer n ∈ N is identified with the set {0, 1, . . . , n− 1}.
R is the set of real numbers.
Q is the set of rational numbers.

The usual notion of the cartesian power Mk for k ∈ N or k = N is
frequently restricted to some “symmetric” subset M [k] of Mk, and this re-
striction depends on the structure present on M and the Ramsey theoretic
results one wishes to obtain. For example, when M is simply a set with no
structure, then its symmetric power is

M [k] = {S ⊆M : |S| = k}.

We shall use M [∞] instead of M [N], and similarly, sometimes we use M∞

instead of MN. Whenever we define the symmetric power M [k], we have the
variations

M [≤l] =
⋃

k≤l M
[k], M [<l] =

⋃
k<l M

[k], and M [<∞] =
⋃

k∈N M
[k].
(9.120)

Of course, we use the similar notation M≤l, M<l, and M<∞ in the case of
full Cartesian powers. We shall consider M<∞ also a tree with the ordering
⊑ of end-extension. In this case we shall typically work with the complete
binary tree 2<∞ or the tree N<∞ of finite sequences of integers. When we
refer to the set N[<∞] as a tree, we identify it with a subtree of N<∞ by
identifying a finite set with its increasing enumeration. The Cantor set 2N

and the Baire space NN have their metrics given by 2−△(x,y), where for
distinct x and y,

△(x, y) = min{n : x(n) 6= y(n)}. (9.121)

The function △ is also giving us a lexicographical ordering

x <lex y iff x(△(x, y)) < y(△(x, y)). (9.122)
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Note that this formula (9.121) makes sense even for finite sequences x and y
provided that they are incomparable in the ordering ⊑ of end-extension. It
follows that the formula (9.122) makes sense also when x and y are two finite
sequences incomparable in the ordering ⊑ . If we supplement this definition
by the requirement that

x <lex y whenever x ⊏ y,

we get a lexicographical ordering on 2<∞ and N<∞, still denoted the same
way, <lex . This of course is not the only way one can supplement the defi-
nition (9.122). For example, we can supplement the formula (9.122), which
applies when x and y are incomparable, with the following definition

x <0
lex y whenever y ⊏ x

when x and y are comparable. As indicated this gives us another version of
the lexicographical ordering on 2<∞ and N<∞ denoted by <0

lex . Note that
two linear orderings <lex and <0

lex coincide on antichains of these two trees.

By Ord we denote the class of ordinals and by < the well-ordering of
this class. We shall identify an ordinal β with the set of its predecessors,
i.e, β = {α : α < β}. A structure of the form (X,R), where R is a binary
relation onX, 4 is well-founded if there is no infinite sequence (xn) of pairwise
distinct elements of X such that (xn+1, xn) ∈ R for all n. Thus is equivalent
to saying that every subset Y of X has an R-minimal element, an element y
of Y such that (x, y) 6∈ R for all x ∈ Y, x 6= y. Given a well-founded binary
structure (X,R), one can define its rank function

ρR : X → Ord,

recursively as follows:

ρR(y) = sup({ρR(x) + 1 : x ∈ X \ {y} and (x, y) ∈ R}),

where we use the convention sup(∅) = 0. Thus in particular ρR(y) = 0,
whenever y is a minimal element of X, i.e, an element of X with the property
that there is no x ∈ X \ {y} such that (x, y) ∈ R. Let

rk(X,R) = sup{ρR(x) + 1 : x ∈ X},

the rank of the well-founded structure (X,R).

TOPOLOGICAL NOTIONS

Here we follow standard terminology and notation (see, for example, [58]).
Recall that a topological space is a pair (X, T ) where X is some set and T
a collection of subsets of X containing the set X and closed under taking

4A binary relation on X is any subset R of X2.
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finite intersections and arbitrary unions. The sets from T are called open
and their complements in X are called closed. Given a subset A of X, we let
A denote the closure of A in (X, T ), the minimal closed superset of X.

Given a topological space (X, T ), we say that two disjoint subsets A and
B of X can be separated if there exist open sets U ⊇ A and V ⊇ B such that
U ∩ V = ∅. This leads us to some standard separation axioms that one can
put on a given space (X, T ). For example, if every pair of distinct points can
be separated, the space is T2, or Hausdorff . If every point can be separated
from a closed subset of X that does not contain the point, then the space
is regular . This separation axiom is of course stronger than T2 when points
in X are assumed to be closed. A basis for a topological space (X, T ) is a
collection B ⊆ T with the property that T = {

⋃
X : X ⊆ B}. A subbasis is

a collection B ⊆ T with the property that B∗ = {
⋂
X : X ⊆ B and X finite}

forms a basis of (X, T ). A neighborhood basis of a point x in X is a collection
Bx of open subsets of X containing the point x such that every other open
set containing x includes a member of Bx. A topological space (X, T ) is
separable if it has a countable dense subset, i.e., a countable set D ⊆ X such
that D = X.

A metric space is a pair (X, ρ), where X is a set and ρ is a function
mapping ordered pairs of elements of X into nonnegative reals such that

(1) ρ(x, y) = 0 if and only if x = y,

(2) ρ(x, y) = ρ(y, x),

(3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

The topology of a metric space is generated by open balls of (X, d), the sets
of the form Bδ(x) = {y ∈ X : ρ(x, y) < δ}, where x ∈ X and δ > 0. If for
a topological space (X, T ) we can find a metric ρ on X such that the open
ρ-balls form a basis for the topology T , then we call (X, T ) a metrizable
space. The following two well-known results that give sufficient conditions
for the existence of such a metric are quite useful (see, for example, [58] and
[54]).

Theorem 9.32 (Urysohn) Every regular Hausdorff space with a countable
basis is metrizable.

Theorem 9.33 (Birkhoff-Kakutani) Every Hausdorff topological group with
a countable neighborhood basis at the identity is metrizable.

A sequence (xn) of elements of some metric space (X, ρ) is a Cauchy
sequence if for every ε > 0 there is m such that ρ(xk, xl) < ε for all k, l ≥ m.
Recall that a metric space (X, ρ) is said to be complete if every Cauchy
sequence has a limit. A topological space X is Polish if it is separable and
metrizable by a complete metric.

Recall the separation axiom of Tychonov that guarantees that a given
space (X, T ) can be embedded as a subspace of a Tychonov cube [0, 1]I : For
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every x ∈ X and every closed subset F of X such that x 6∈ F, there is a
continuous function f : X → [0, 1] such that f(x) = 0 and f(y) = 1 for
all y ∈ F. A space that satisfies this axiom is called a Tychonov space. It
follows that every Tychonov space X has a compactification γX, a compact
space containing X as a dense subpace. In particular, every Tychonov space
X has a maximal such compactification called Čech-Stone compactification
βX charaterized by the fact that every continuous mapping f : X → [0, 1]
extends to a continuous βf : βX → [0, 1]. Particularly interesting is the
Čech-Stone compactification βN of N. One useful representation of βN is
obtained by taking the closure of the sequence of projections πn : 2N → {0, 1}

inside the Tychonov cube {0, 1}2
N

,

βN = {πn : n ∈ N}.

From this representation, one can readily get another representation of βN
as the set, denoted again by βN, of all ultrafilters on N with the topology
generated by the basic open sets of the form

A = {U ∈ βN : A ∈ U},

where A is an arbitrary subset of N. The fact that the space of all ultrafilters
on N is one representation of the Čech-Stone compactification of N explains
the meaning behind the notation

y = limn→U xn

for a sequence (xn) of points of some compact Hausdorff space K and y ∈ K.
Namely, if we let f : N→ K denote the map n 7→ xn, then y = βf(U).

There are several “hyperspaces” that one can associate with a given topo-
logical space (X, T ). The first one is the space C(X) of all continuous real-
valued functions defined on X with the topology of pointwise convergence,
or in other words the topology C(X) inherits when considered as a subspace
of RX equipped with the Tychonov product topology, i.e., the topology gen-
erated by the subbasis U×RX\{x} (x ∈ X). Another space one can associate
with (X, T ) is the exponential space exp(X), the collection of all closed sub-
sets of X with topology generated by basic sets of the form

{
F ∈ exp(X) : F ⊆

n⋃

k=0

Uk and F ∩ Uk 6= ∅ for all k = 0, . . . , n

}
,

where U0, . . . , Un is a finite sequence of open subsets of X. It is known that
exp(X) is compact when X is compact, but exp(X) may not be metrizable
when X is metrizable (see [58]). For example, the exponential space exp(N) is
not metrizable although N with its discrete topology is metrizable. In fact it
has been known since the 1950’s (see, for example, [50]) that even the closed
subspace N[∞] of exp(N) contains two disjoint closed subsets that cannot be
separated by two disjoint open sets.5

5The reader will have no difficulty verifying that indeed N[∞] with the subspace topol-
ogy is just another way to introduce the Ellentuck space considered in Chapter One.
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MEASURE AND CATEGORY

We follow standard books on this subject, such as [84] and [98]. A subset
N of a topological space X is nowhere dense if every nonempty open subset
of X can be refined to a nonempty open subset that is disjoint from N. A
subset M of some topological space X is of the first category, or meager, if
it can be covered by a sequence (Nk) of nowhere dense sets. Sets that are
not meager in X are called second category. These Baire category notions
become quite effective when X is assumed to be either a compact Hausdorff
space or a separable and completely metrizable space (a Polish space). For
example, the following characterization of meager subsets of the compact
Hausdorff space FN for every finite nonempty set F is particularly useful.

Lemma 9.34 For a finite set F 6= ∅, a subset M of FN is meager if and only
if there is an infinite sequence (σn) of finite disjointly supported functions
from N into F such that for every x in M , the set {n ∈ N : x ⊇ σn} is finite.

The following fact is central to the Baire category because of its many
uses.

Theorem 9.35 (Baire Category Theorem) No nonempty open subset of a
compact Hausdorff space or a complete metric space is meager. Equivalently,
if X is either a compact Hausdorff space or a complete metric space then the
intersection of any countable family of dense open subsets of X is dense in
X.

A subset A of a topological space X is locally meager if for every x ∈ X,
there is an open neighborhood U ∋ x such that A∩U is meager in X. Clearly,
every meager subset of X is locally meager. The following well-known fact
shows that the converse is true as well.

Theorem 9.36 (Banach Category Theorem) For every topological spaceX,
locally meager subsets of X are in fact meager in X. 2

A subset A of a topological space X has the property of Baire if it can be
represented as a symmetric difference

A = U△M = (U \M) ∪ (M \ U),

where U is an open and M is a meager subset of X .

Theorem 9.37 For any topological space X, the property of Baire subsets
of X form a σ-field of subsets of X. It is the σ-field generated by the open
subsets of X together with the meager sets.

Recall that the field of Borel subsets of X is the σ-field generated by the
open subsets of X. Thus, every Borel subset of X has the property of Baire,
although typically not vice versa.
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Recall also that for a subset B of some product X × Y and x in X , the
x-section, is the set

Bx = {y ∈ Y : (x, y) ∈ B},

while for y ∈ Y, the y-section of B is the set

By = {x ∈ X : (x, y) ∈ B}.

Theorem 9.38 (Kuratowski-Ulam) Suppose B is a meager subset of some
product X × Y of two Polish spaces. Then the set

{x ∈ X : Bx is meager in Y }

is meager in X.

We assume the reader is familiar with the basic theory of the Lebesgue
measure λk in the finite-dimensional Euclidean space Rk. For example, we
assume that the reader is familiar with the following characterization of sets
of Lebesgue measure-zero.

Lemma 9.39 A subset A of Rk has Lebesgue measure-zero if and only if
there is a sequence (Bn) of Euclidean balls6 such that

∑∞
n=0 λk(Bn) < ∞

and A ⊆
⋃∞

m=0

⋃∞
n=mBn.

Theorem 9.40 A subset A of Rk is Lebesgue measurable if and only if can
be written as symmetric difference of some Borel subset and some measure-
zero subset of Rk. Thus, the field of Lebesgue measurable subsets of Rk is the
σ-field generated by Borel and measure-zero subsets of Rk.

This shows that the Lebesgue measure is determined by its action on the
Borel sets and its outer regularity given in Lemma 9.39. Of the many other
properties of the Lebesgue measure, one can mention the fact that the cor-
responding measure algebra is separable, which amounts to the fact that
there is a sequence (Bn) of Lebesgue measurable sets such that for every
other Lebesgue measurable set A and every ε > 0, there is n such that
λk(A△Bn) < ε. It is well known that any two uncountable Polish spaces X
and Y are Borel isomorphic, i.e., a bijection ϕ : X → Y that maps Borel
subsets of X into Borel subsets of Y. These maps can be used to transfer
the Lebesgue measure from X = Rk to any other uncountable Polish spaces
Y thus yielding a Borel measure on Y defined by µ(B) = λk(ϕ−1(B)). The
following fact shows that the converse is also true.

Theorem 9.41 Let Y be a Polish space carrying a Borel measure µ such
that µ(Y ) = 1 and µ({y}) = 0 for all y ∈ Y. Then there exist Borel sets
X0 ⊆ [0, 1] and Y0 ⊆ Y and a Borel isomorphism ϕ : X0 → Y0 such that
µ(X0) = 1 and λ1(Y0) = 1 and such that µ(B) = λ1(ϕ−1(B)) for all Borel
sets B ⊆ Y0.

6Balls of Rk are sets of the form Bε(x) = {x ∈ Rk : (
∑

i<k |xi − yi|
2)

1
2 < ε} for some

ε > 0 and y ∈ Rk.
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There is, however, one important property of the Lebesgue measure not
shared by all Borel measures on Polish spaces. This is the notion of Lebesgue
density of a given measurable subset A of Rk at a given point x ∈ Rk,

dk (x,A) = lim
δ→0+

λk (Bδ (x) ∩A)

λk (Bδ (x))
.

For a given measurable set A ⊆ Rk, let

φ(A) = {x ∈ Rk : dk (x,A) = 1}.

Theorem 9.42 (Lebesgue Density Theorem) For every measurable subset
A of Rk, we have that λk(A△φ(A)) = 0.

Another important property of the Lebegue measure (and in fact any
complete measure space) is contained in the following famous result.

Theorem 9.43 (Fubini Theorem) Suppose that B is a measure-zero subset
of Rk and that k = m+ n. Then

λm({x ∈ Rm : λn(Bx) 6= 0}) = 0.

The following classical result (see [12] and [25]) is a variation on Fubini’s
theorem and it depends also on the regularity of the Lebesgue measure.

Theorem 9.44 (Brodski-Eggleston) Let k = m+ n, let ǫ > 0, and let F be
a closed subset of Rk such that λn(Fx) > ǫ for all x ∈ Rm. Then there is a
perfect subset P of Rm such that λn

(⋂
x∈P Fx

)
> ǫ.

Corollary 9.45 Let k = m+n and F be a subset of Rk of positive Lebesgue
measure. Then there is a perfect subset P of Rm such that λn

(⋂
x∈P Fx

)
> 0.

It is known that in Corollary 9.45 one cannot require that the perfect set P
be of positive measure.

BOREL AND ANALYTIC SETS

We follow here standard references on this subject, such as [58] or [54]. Recall
that a subset H of some metric space X is Borel if it belongs to the σ-field
B(X) of subsets of X generated by open sets. Particularly well behaved is
the family of all Borel subsets of some Polish space, as the following result
shows.

Theorem 9.46 Let (X, T ) be a Polish space and let H be a Borel subset
of X. Then there is a Polish topology TH ⊇ T such that H is a clopen set
relative to TH but B(X, TH) = B(X, T ).

Theorem 9.47 Suppose (X, T ) is a Polish space and f is a Borel function
from X into a separable metrizable space Y. Then there is a Polish topology
Tf ⊇ T such that f : (X, Tf )→ Y is continuous but B(X, TH) = B(X, T ).
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Definition 9.48 Given a topological space X, we say that a function f :
X → R is of Baire Class 1 if there is a sequence (fn) of continuous real-
valued functions defined on X such that f is a pointwise limit of (fn), mean-
ing that

limfn(x) = f(x) for all x ∈ X.

We let B1(X) denote the collection of all Baire Class 1 real-valued functions
on X and we usually equip B1(X) with the topology of pointwise convergence
on X, i.e., the topology the Tychonov cube RX induces on B1(X).

The following fundamental result gives a useful characterization of this
class of functions when X is assumed to be a Polish space.

Theorem 9.49 (Baire Characterization Theorem) A real-valued function f
defined on some Polish space X is of Baire Class 1 if and only if f has a
point of continuity on any closed subset of X.

A subset A if some metric space X is analytic if there is a Polish space Y
and a continuous map f : Y → X such that A = range(f). It is known that
every Borel subset of X is analytic but that the converse is in general false.
Recall also that there is a surjectively universal Polish space.

Theorem 9.50 Every Polish space X is a continuous image of NN.

It follows that the Baire space NN has a special place in the class of Polish
spaces. The following classical result (see, [54], (7.10)) shows the feature of
NN that distinguishes it from Polish spaces such as R.

Theorem 9.51 (Hurewicz) A Polish space X is σ-compact if and only if it
does not contain a closed subset homeomorphic to the Baire space NN.

It follows from Theorem 9.50 that for every analytic subset A of some metric
space X there is a continuous map f : NN → X such that A = range(f). For
s ∈ N<∞, let

Fs = {f(x) : x ⊇ s}.

Then we get a Souslin scheme Fs (s ∈ N<∞) of closed subsets of X such
that

A =
⋃

x∈NN

⋂

n∈N

Fx↾n.

The set on the right-hand side is the result of the Souslin operation applied
to the Souslin scheme and is usually denoted by A(Fs : s ∈ N<∞). The
following perfect-set property of analytic sets is in general not shared with
any other family of sets, such as, for example, the family of all coanalytic
sets.

Theorem 9.52 (Souslin) Every uncountable analytic set contains a com-
pact subset homeomorphic to the Cantor space 2N.
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The following fundamental property of analytic binary relations is also
worth pointing out.

Theorem 9.53 (Boundedness Theorem for Analytic Relations) Let R be
a well-founded binary relation on some Polish space X. Then the well-founded
structure (X,R) has countable rank.

The following classical result shows another important property of analytic
sets.

Theorem 9.54 (Christensen) The following are equivalent for a separable
metrizable space X :

(a) X is Polish,

(b) The family K(X) of all compact subsets of X is Tukey-reducible7 to
NN,

(c) The family K(X) of all compact subsets of X equipped with the Vietoris
topology is analytic.

SEQUENCES IN NORMED SPACES

We follow here some standard references such as [64] or [42]. A non-negative
real-valued function ‖ . ‖ defined on some vector space X over R or C is
called a norm if

(1) ‖ x ‖= 0 if and only if x = 0,

(2) ‖ λx ‖= |λ| ‖ x ‖,

(3) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ .

A normed space is a vector space with the norm, (X, ‖ . ‖). A Banach space
is a normed linear space (X, ‖ . ‖) that is complete in the associated metric
defined by ρ(x, y) =‖ x− y ‖ . By BX we denote the unit ball of X, the set

BX = {x ∈ X :‖ x ‖≤ 1},

and by SX we denote the unit sphere of X , the set

SX = {x ∈ X :‖ x ‖= 1}.

Two Banach spaces X and Y are isomorphic if there is a one-to-one onto
linear operator T : X → Y such that both T and T−1 are bounded linear
operators in the sense that sup{‖ T (x) ‖‖ x ‖≤ 1} <∞ and sup{‖ T−1(y) ‖
‖ y ‖≤ 1} < ∞. A Banach space Y is isomorphic to a quotient space of a
Banach space X if there is a bounded linear operator from X onto Y.

7Here we consider K(X) and NN directed sets ordered by the inclusion and the coordi-
natewise ordering, respectively.
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Each Banach space X has a dual space X∗ consisting of all bounded linear
functionals on X, i.e., linear functionals f on X such that

‖ f ‖= sup{|f(x)| :‖ x ‖≤ 1} <∞

Note that this defines a norm on X∗, making X∗ into a Banach space. A
Banach space X is said to be reflexive if X = X∗∗, or in other words, if
every bounded linear functional f∗ on X∗ is represented by a point x from
X, i.e., f∗(g) = g(x) for all g ∈ X∗.

One example of a Banach space is the space C(K) of all continuous real-
valued functions defined on some compact space K with the norm defined
by

‖ f ‖∞= sup{f(x) : x ∈ K}.

Note that the space ℓ∞ of all bounded sequences of scalars with the same
norm ‖ . ‖∞ is an example of a space from this class, i.e., ℓ∞ = C(βN). This
gives us also the definition of ℓ∞(Γ) for any other index set Γ in place of N.
Other examples of Banach spaces are the spaces ℓp (1 ≤ p <∞) of sequences
of real numbers such that

‖ x ‖p= (
∑∞

n=0 |x|
p)

1
p <∞. (9.123)

The space c0 of all sequences x = (xn) converging to 0 with the norm
‖ x ‖∞= sup{|xn| : n ∈ N} is another standard example. Note that the
sequence spaces c0 and ℓp (1 ≤ p <∞) contain the sequences of the form

en = (0, 0, . . . , 1, 0, 0, ...),

where the digit 1 occurs at the nth position. They have a special property
in each of these sequence spaces isolated by the following notion.

Definition 9.55 A Schauder basis for a Banach space X is a sequence (vi)
of elements of X such that for every x ∈ X there is a unique sequence (ai)
of scalars such that x =

∑∞
i=0 aivi.

Given a Schauder basis (vi) of X and n ∈ N, we can define the projection

Pn(
∑∞

i=0 aivi) =
∑n−1

i=0 aivi. Then the Pn are well-defined linear operators
whose norms ‖ Pn ‖= sup{‖ Pn(x) ‖:‖ x ‖≤ 1} are uniformly bounded. This
amounts to the existence of a constant C ≥ 1 such that

‖
∑m−1

i=0 aivi ‖≤ C ‖
∑n−1

i=0 aivi ‖ (9.124)

for every m < n and every sequence (ai)i<n of scalars. The minimal such C
is called the basic constant . If a sequence (vi) of elements of some Banach
space X is a Shauder basis for its closed linear span,

Y = span{vi : i ∈ N},

then we call it a Schauder basic sequence, or simply a basic sequence. Re-
ferring to the spaces c0 and ℓp (1 ≤ p < ∞), one sees not only that the
sequence (en) is a Shauder basis for each of these spaces but also that it is
an unconditional basis in the following sense.
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Definition 9.56 A Schauder basis (vn) of a Banach space X is uncondi-
tional if there is a constant C ≥ 1 such that for every finite E ⊆ F ⊆ N and
every sequence (an)n∈F of scalars ‖

∑
n∈E anvn‖ ≤ C · ‖

∑
n∈F anxn‖.

Here is one of the results that shows that this is an important notion.

Theorem 9.57 (James) Suppose that X is an infinite-dimensional Banach
space with an unconditional basis. Then either X is reflexive, or c0 embeds
into X, or ℓ1 embeds into X.

There is of course the corresponding notion for sequences indexed by an
arbitrary index set.

Definition 9.58 For a given a constant C ≥ 1, a sequence (xi)i∈I of ele-
ments of some Banach space E is said to be C-unconditional if for every
pair E and F of non-empty finite subsets of the index set I with E ⊆ F and
every choice (ai)i∈F of scalars, we have ‖

∑
i∈E aixi‖ ≤ C · ‖

∑
i∈F aixi‖.

While it is not true that every Banach space has a basis or an infinite
unconditional basic sequence, we have the following results.

Theorem 9.59 (Banach) Every infinite-dimensional Banach space has an
infinite Schauder basic sequence.

Theorem 9.60 (Johnson-Rosenthal) Every separable infinite-dimensional
Banach space has an infinite-dimensional quotient with a Shauder basis.

It is still unknown if this theorem is true without the separability restriction
but there are many sufficient conditions that guarantee this. For example,
we have the following list of sufficient conditions in terms of the dual space
X∗ of X (see, [42]; 5.10 on p.205).

Theorem 9.61 (Johnson-Rosenthal) Let X be an infinite-dimensional Ba-
nach space. Then X has an infinite-dimensional quotient with a Shauder
basis if one of the following conditions holds:

(1) X∗ contains a infinite-dimensional reflexive subspace.

(2) X∗ contains an isomorphic copy of the space c0.

(3) X∗ contains an isomorphic copy of the space ℓ1.

Combining this with Theorem 9.57, we have the following interesting suffi-
cient condition.

Theorem 9.62 (Rosenthal) If the dual X∗ of a Banach space X contains
an infinite normalized unconditional basic sequence then X has an infinite-
dimensional quotient with a Shauder basis.
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We mention another result of this sort, which, however, involves a topo-
logical condition.

Theorem 9.63 (Talagrand) The following are equivalent for an infinite-
dimensional Banach space X :

(1) ℓ∞ is a quotient of X.

(2) The unit ball of X∗ equipped with the topology8 of pointwise conver-
gence on X contains a homeomorphic copy of βN.

8Usually called the weak* topology of X∗.
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ed appl., (3),3:1–123, 1899.

[5] B. Balcar, J. Pelant, and P. Simon. The space of ultrafilters on N
covered by nowhere dense sets. Fund. Math., 110:11–24, 1980.

[6] J. E. Baumgartner. A short proof of Hindman’s theorem. J. Combi-
natorial Theory Ser. A, 17:384–386, 1974.

[7] J. E. Baumgartner. Partition relations for countable topological spaces.
J. Combin. Theory Ser. A, 43(2):178–195, 1986.

[8] V. Bergelson, A. Blass, and N. Hindman. Partition theorems for spaces
of variable words. Proc. London Math. Soc. (3), 68(3):449–476, 1994.

[9] A. Blass. A partition theorem for perfect sets. Proc. Amer. Math.
Soc., 82(2):271–277, 1981.

[10] A. Blass. Selective ultrafilters and homogeneity. Ann. Pure Appl.
Logic, 38:215–255, 1988.

[11] J. Bourgain, D. H. Fremlin, and M. Talagrand. Pointwise compact sets
of Baire-measurable functions. Amer. J. Math., 100(4):845–886, 1978.

[12] M.L. Brodski. On some properties of sets of positive measure. Uspehi
Matem. Nauk, 4:136–138, 1949.

[13] T. J. Carlson. An infinitary version of the Graham-Leeb-Rothschild
theorem. J. Combin. Theory Ser. A, 44(1):22–33, 1987.



272 BIBLIOGRAPHY

[14] T. J. Carlson. Some unifying principles in Ramsey theory. Discrete
Math., 68:117–169, 1988.

[15] T. J. Carlson and S. G. Simpson. A dual form of Ramsey’s theorem.
Adv. in Math., 53(3):265–290, 1984.

[16] T. J. Carlson and S. G. Simpson. Topological Ramsey theory. In
Mathematics of Ramsey theory, volume 5 of Algorithms Combin., pages
172–183. Springer, Berlin, 1990.

[17] W. W. Comfort. Ultrafilters: some old and some new results. Bull.
Amer. Math. Soc., 83:417–455, 1977.

[18] G. Debs. Effective properties in compact sets of Borel functions. Math-
ematika, 34(1):64–68, 1987.

[19] D. Devlin. Some partition theorems and ultrafilters on ω. Ph.D. Thesis,
Dartmouth College, 1979.

[20] C. A. Di Prisco and J. M. Henle. Partitions of products. J. Symbolic
Logic, 58(3):860–871, 1993.

[21] C. A. Di Prisco, J. Llopis, and S. Todorcevic. Borel partitions of
products of finite sets and the Ackermann function. J. Combin. Theory
Ser. A, 93(2):333–349, 2001.

[22] C. A. Di Prisco, J. Llopis, and S. Todorcevic. Parametrized partitions
of products of finite sets. Combinatorica, 24(2):209–232, 2004.

[23] C. A. Di Prisco and S. Todorcevic. Souslin partitions of products of
finite sets. Adv. Math., 176(1):145–173, 2003.

[24] P. Dodos and V. Kanellopoulos. On pairs of definable orthogonal fam-
ilies. Illinois Journal of Mathematics, 52:181–201, 2008.

[25] H.G. Eggleston. Two measure properties of cartesian product sets.
Quart. J. Math. Oxford, (2),5:108–115, 1954.

[26] A. Ehrenfeucht and A. Mostowski. Models of axiomatic theories ad-
mitting automorphisms. Fund. Math., 43:50–68, 1956.

[27] E. Ellentuck. A new proof that analytic sets are Ramsey. J. Symbolic
Logic, 39:163–165, 1974.

[28] R. Ellis. Lectures on topological dynamics. W. A. Benjamin, Inc., New
York, 1969.
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[44] J. D. Halpern and H. Läuchli. A partition theorem. Trans. Amer.
Math. Soc., 124:360–367, 1966.
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