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Preface

I. Ramsey theory is the general area of combinatorics devoted to the study of

the pigeonhole principles that appear in mathematical practice. It originates from

the works of Ramsey [Ra] and van der Waerden [vdW], and at the early stages of

its development the focus was on structural properties of graphs and hypergraphs.

However, the last 40 years or so, Ramsey theory has expanded significantly, both

in scope and in depth, and is now constantly interacting with analysis, ergodic

theory, logic, number theory, probability theory, theoretical computer science, and

topological dynamics.

This book (which inherits, to some extent, the diversity of the field) is a detailed

exposition of a number of Ramsey-type results concerning product spaces or, more

accurately, finite Cartesian products F1×· · ·×Fn where the factors F1, . . . , Fn may

be equipped with an additional structure depending upon the context. Product

spaces are ubiquitous in mathematics and are admittedly elementary objects, yet

they exhibit a variety of Ramsey properties which depend on the dimension n and

the size of each factor. Quantifying properly this dependence is one of the main

goals of Ramsey theory, a goal which can sometimes be quite challenging.

I.1. The first example of a product space of interest to us in this book is the

discrete hypercube

An := A× · · · ×A︸ ︷︷ ︸
n−times

where n is a positive integer and A is a nonempty finite set. In fact, we will

be mostly interested in the high-dimensional case (that is, when the dimension n

is large compared with the cardinality of A), but apart from this assumption no

further constraints will be imposed on the set A.

A classical result concerning the structure of high-dimensional hypercubes was

discovered in 1963 by Hales and Jewett [HJ]. It asserts that for every partition of

An into, say, two pieces, one can always find a “sub-cube” of An which is entirely

contained in one of the pieces of the partition. The Hales–Jewett theorem paved

the way for a thorough study of the Ramsey properties of discrete hypercubes and

related structures, and it triggered the development of several infinite-dimensional

extensions. This material is the content of Chapters 2, 4 and 5.

Around 30 years after the work of Hales and Jewett, another fundamental

result of Ramsey theory was proved by Furstenberg and Katznelson [FK4]. It

is a natural, yet quite deep, refinement of the Hales–Jewett theorem and asserts

that every dense subset of An (that is, every subset of An whose cardinality is

iii
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proportional to that of An) must contain a “sub-cube” of An. Much more recently,

the work of Furstenberg and Katznelson was revisited by several authors and a

number of different proofs of this important result have been found. This line of

research eventually led to a better understanding of the structure of dense subsets

of hypercubes both in the finite and the infinite dimensional setting. We present

these developments in Chapters 8 and 9.

I.2. A second example relevant to the theme of this book is the product space

T1× · · · × Td

where d is a positive integer and T1, . . . , Td are nonempty trees. Partitions of

products spaces of this form appear in the context of Ramsey theory for trees.

However, in this case we are interested in the somewhat different regime where the

dimension d is regarded as being fixed while the trees T1, . . . , Td are assumed to be

sufficiently large and even possibly infinite. Chapter 3 is devoted to this topic.

I.3. The last main example of a product space which we are considering in this

book is of the form

Ω1× · · · × Ωn

where n is a positive integer and for each i ∈ {1, . . . , n} the set Ωi is the sample

space of a probability space (Ωi,Σi, µi). We view, in this case, the set Ω1×· · ·×Ωn
also as a probability space equipped with the product measure µ1× · · · × µn.

A powerful result concerning products of probability spaces, with several con-

sequences in Ramsey theory, was proved around 10 years ago. It asserts that for

every finite family F of measurable events of Ω1× · · · ×Ωn whose joint probability

is negligible, one can approximate the members of F by lower-complexity events

(that is, by events which depend on fewer coordinates) whose intersection is empty.

This result is known as the removal lemma and in this generality is due to Tao

[Tao1], though closely related discrete analogues were obtained earlier by Gowers

[Go5] and, independently, by Nagle, Rödl, Schacht and Skokan [NRS, RSk]. We

present these results in Chapter 7.

Finally, in Chapter 6 we discuss certain aspects of the regularity method. It

originates from the work of Szemerédi [Sz1, Sz2] and is used to show that dense

subsets of discrete structures are inherently pseudorandom. We follow a probabilis-

tic approach in the presentation of the method, emphasizing its relevance not only in

the context of graphs and hypergraphs, but also in the analysis of high-dimensional

product spaces.

II. This book is addressed to researchers in combinatorics, but also working

mathematicians and advanced graduate students who are interested in this part of

Ramsey theory. The prerequisites for reading this book are rather minimal; it only

requires familiarity, at the graduate level, with probability theory and real analysis.

Some familiarity with the basics of Ramsey theory (as exposed, for instance, in the

book of Graham, Rothschild and Spencer [GRS]) would also be beneficial, though

it is not necessary.
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To assist the reader we have included six appendices, thus making this book

essentially self-contained. In Appendix A we briefly discuss some properties of

primitive recursive functions, while in Appendix B we present a classical estimate for

the Ramsey numbers due to Erdős and Rado [ER]. In Appendix C we recall some

results related to the Baire property which are needed in Section 3.2. Appendix

D contains an exposition of a part of the theory of ultrafilters and idempotents in

compact semigroups; we note that this material is used only in Section 4.1. Finally,

in Appendix E we present the necessary background from probability theory, and

in Appendix F we discuss open problems.

It is needless to say that this book is based on the work of many researchers

who made Ramsey theory a rich and multifaceted area. Several new results are also

included. Bibliographical information on the content of each chapter is contained

in its final section named as “Notes and remarks”.

Acknowledgments. During the preparation of this book we have been greatly

helped from the comments and remarks of Thodoris Karageorgos and Kostas Tyros.

We extend our warm thanks to both of them.

Athens Pandelis Dodos

January 2015 Vassilis Kanellopoulos
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CHAPTER 1

Basic concepts

1.1. General notation

1.1.1. Throughout this book, by N = {0, 1, . . . } we shall denote the set of all

natural numbers. Moreover, for every positive integer n we set [n] := {1, . . . , n}.
For every set X by |X| we shall denote its cardinality. If k ∈ N with k 6 |X|,

then by
(
X
k

)
we shall denote the set of all subsets of X of cardinality k, that is,(

X

k

)
= {Y ⊆ X : |Y | = k}. (1.1)

On the other hand, if X is infinite, then [X]∞ stands for the set of all infinite

subsets of X. The powerset of X will be denoted by P(X).

1.1.2. If X and Y are nonempty sets, then a map c : X → Y will be called a

Y -coloring of X, or simply a coloring if X and Y are understood. A finite coloring

of X is a coloring c : X → Y where Y is finite, and if |Y | = r for some positive

integer r, then c will be called an r-coloring. The nature of the set Y is irrelevant

from a Ramsey theoretic perspective, and so we will view every r-coloring of X as

a map c : X → [r].

Given a coloring c : X → Y, a subset Z of X is said to be monochromatic

(with respect to the coloring c) provided that c(z1) = c(z2) for every z1, z2 ∈ Z, or

equivalently, that Z ⊆ c−1({y}) for some y ∈ Y .

1.1.3. Let X be a (possibly infinite) nonempty set and Y a nonempty finite

subset of X. For every A ⊆ X the density of A relative to Y is defined by

densY (A) =
|A ∩ Y |
|Y |

. (1.2)

If it is clear from the context which set Y we are referring to (for instance, if Y

coincides with X), then we shall drop the subscript Y and we shall denote the

above quantity simply by dens(A). More generally, for every f : X → R we set

Ey∈Y f(y) =
1

|Y |
∑
y∈Y

f(y). (1.3)

Notice that for every A ⊆ X we have densY (A) = Ey∈Y 1A(y) where 1A stands for

the characteristic function of A, that is,

1A(x) =

{
1 if x ∈ A,
0 otherwise.

(1.4)

1
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The quantities densY (A) and Ey∈Y f(y) have a natural probabilistic interpretation

which is very important in the context of density Ramsey theory. Specifically,

denoting by µY the uniform probability measure on X concentrated on Y , we see

that densY (A) = µY (A) and Ey∈Y f(y) =
∫
f dµY . A review of those tools from

probability theory which are needed in this book can be found in Appendix E.

1.1.4. Recall that a hypergraph is a pair H = (V,E) where V is a nonempty set

and E ⊆ P(V ). The elements of V are called the vertices of H while the elements

of E are called its edges. If E is a nonempty subset of
(
V
r

)
for some r ∈ N, then

the hypergraph H will be called r-uniform. Thus, a 2-uniform hypergraph is just a

graph with at least one edge.

1.1.5. For every function f : N→ N and every ` ∈ N by f (`) : N→ N we shall

denote the `-th iteration of f defined recursively by the rule{
f (0)(n) = n,

f (`+1)(n) = f
(
f (`)(n)

)
.

(1.5)

Note that this is a basic example of primitive recursion (see Appendix A).

1.2. Words over an alphabet

Let A be a nonempty alphabet, that is, a nonempty set. For every n ∈ N by An

we shall denote the set of all sequences of length n having values in A. Precisely,

A0 contains just the empty sequence while if n > 1, then

An =
{

(a0, . . . , an−1) : ai ∈ A for every i ∈ {0, . . . , n− 1}
}
. (1.6)

Also let

A<n+1 =

n⋃
i=0

Ai and A<N =
⋃
n∈N

An. (1.7)

The elements of A<N are called words over A, or simply words if A is understood.

The length of a word w over A, denoted by |w|, is defined to be the unique natural

number n such that w ∈ An. For every i ∈ N with i 6 |w| by w � i we shall denote

the word of length i which is an initial segment of w. (In particular, we have that

w � 0 is the empty word.) More generally, if X is a nonempty subset of A<N such

that for every w ∈ X we have i 6 |w|, then we set

X � i = {w � i : w ∈ X}. (1.8)

If w and u are two words over A, then the concatenation of w and u will be denoted

by wau. Moreover, for every pair X,Y of nonempty subsets of A<N we set

XaY = {wau : w ∈ X and u ∈ Y }. (1.9)

The infimum of w and u, denoted by w ∧ u, is defined to be the greatest common

initial segment of w and u. Note that the infimum operation can be extended to

nonempty sets of words. Specifically, for every nonempty subset X of A<N the

infimum of X, denoted by ∧X, is the word over A of greatest length which is an

initial segment of every w ∈ X. Observe that w∧u = ∧{w, u} for every w, u ∈ A<N.
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If<A is a linear order on A, then for every distinct w, u ∈ A<N we write w <lex u

provided that: (i) |w| = |u| > 1, and (ii) if w = (w0, . . . , wn−1), u = (u0, . . . , un−1)

and i0 = |w ∧ u|, then wi0 <A ui0 . Notice that for every positive integer n the

partial order <lex restricted on An is the usual lexicographical order.

1.2.1. Located words. Let A be a nonempty alphabet. For every (possibly

empty) finite subset J of N by AJ we shall denote the set of all functions from J

into A. An element of the set ⋃
J⊆N finite

AJ (1.10)

is called a located word over A. Clearly, every word over A is a located word over

A. Indeed, notice that for every n ∈ N we have

A{i∈N: i<n} = An. (1.11)

Conversely, we may identify located words over A with words over A as follows.

Definition 1.1. Let A be a nonempty alphabet and let J be a nonempty finite

subset of N. Set j = |J | and let n0 < · · · < nj−1 be the increasing enumeration

of J . The canonical isomorphism associated with J is the bijection IJ : Aj → AJ

defined by the rule

IJ(w)(ni) = wi (1.12)

for every i ∈ {0, . . . , j − 1} and every w = (w0, . . . , wj−1) ∈ Aj.
Moreover, observing that A∅ = A0 = {∅}, we define the canonical isomorphism

I∅ associated with the empty set to be the identity.

If J,K are two finite subsets of N with J ⊆ K and w ∈ AK is a located word

over A, then by w � J we shall denote the restriction of w on J . Notice that

w � J ∈ AJ . Moreover, if I, J is a pair of finite subsets of N with I ∩ J = ∅, then

for every u ∈ AI and every v ∈ AJ by (u, v) we shall denote the unique element z

of AI∪J such that z � I = u and z � J = v.

1.2.2. Variable words. Let A be a nonempty alphabet and let n be a positive

integer. We fix a set {x0, . . . , xn−1} of distinct letters which is disjoint from A. We

view {x0, . . . , xn−1} as a set of variables. An n-variable word over A is a word v over

the alphabet A∪{x0, . . . , xn−1} such that: (i) for every i ∈ {0, . . . , n−1} the letter

xi appears in v at least once, and (ii) if n > 2, then for every i, j ∈ {0, . . . , n − 1}
with i < j all occurrences of xi precede all occurrences of xj .

If A is understood and n > 2, then n-variable words over A will be referred

to as n-variable words. On the other hand, 1-variable words over A will be called

simply as variable words and their variable will be denoted by x. A left variable

word (over A) is a variable word whose leftmost letter is x.

Remark 1.1. The concept of a variable word is closely related to the notion

of a parameter word introduced by Graham and Rothschild [GR]. Specifically, an

n-parameter word over A is also a finite sequence having values in the alphabet

A ∪ {x0, . . . , xn−1} which satisfies (i) above and such that: (ii)′ if n > 2, then for

every i, j ∈ {0, . . . , n − 1} with i < j the first occurrence of xi precedes the first
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occurrence of xj . In particular, every n-variable word is an n-parameter word. Of

course, when n = 1 the two notions coincide.

Now let A,B be nonempty alphabets. If v is a variable word over A and b ∈ B,

then by v(b) we shall denote the unique word over A ∪B obtained by substituting

in v all appearances of the variable x with b. Notice that if b ∈ A, then v(b) is

a word over A, while v(x) = v. More generally, let v be an n-variable word over

A and let b0, . . . , bn−1 ∈ B. By v(b0, . . . , bn−1) we shall denote the unique word

over A∪B obtained by substituting in v all appearances of the letter xi with bi for

every i ∈ {0, . . . , n− 1}. Observe that if B = A∪{x0, . . . , xm−1} for some m ∈ [n],

then v(b0, . . . , bn−1) is a word over A if and only if (b0, . . . , bn−1) is a word over

A; on the other hand, v(b0, . . . , bn−1) is an m-variable word over A if and only if

(b0, . . . , bn−1) is an m-variable word over A. Taking into account these remarks, for

every m ∈ [n] we set

Subwm(v)=
{
v(b0, . . . , bn−1) : (b0, . . . , bn−1) is an m-variable word over A

}
(1.13)

and we call an element of Subwm(v) as an m-variable subword of v. Note that for

every u ∈ Subwm(v) and every ` ∈ [m] we have Subw`(u) ⊆ Subw`(v).

1.3. Combinatorial spaces

Throughout this section, let A be a finite alphabet with |A| > 2. A combina-

torial space of A<N is a set of the form

V =
{
v(a0, . . . , an−1) : a0, . . . , an−1 ∈ A

}
(1.14)

where n is a positive integer and v is a n-variable word over A. (Note that both

n and v are unique since |A| > 2.) The positive integer n is called the dimension

of V and is denoted by dim(V ). The 1-dimensional combinatorial spaces will be

called combinatorial lines.

Now let V be a combinatorial space of A<N and set n = dim(V ). Also let v

be the (unique) n-variable word over A which generates V via formula (1.14) and

notice that v induces a bijection between An and V . We will give this bijection a

special name as follows.

Definition 1.2. Let V be a combinatorial space of A<N. Set n = dim(V ) and

let v be the n-variable word which generates V via formula (1.14). The canonical

isomorphism associated with V is the bijection IV : An → V defined by the rule

IV
(
(a0, . . . , an−1)

)
= v(a0, . . . , an−1) (1.15)

for every (a0, . . . , an−1) ∈ An.

We will view an n-dimensional combinatorial space V as a “copy” of An and,

using the canonical isomorphism, we will identify V with An for most practical pur-

poses. This identification is very convenient and will be constantly used throughout

this book.
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We proceed to discuss two alternative ways to define combinatorial spaces.

First, for every nonempty finite sequence (vi)
n−1
i=0 of variable words over A we set

V =
{
v0(a0)a. . .a vn−1(an−1) : a0, . . . , an−1 ∈ A

}
(1.16)

and we call V the combinatorial space of A<N generated by (vi)
n−1
i=0 . Observe that

two different finite sequences of variable words over A might generate the same

combinatorial space of A<N.

Next, let V be a combinatorial space of A<N, set n = dim(V ) and let v be the

n-variable word over A which generates V via formula (1.14). Recall that v is a

nonempty word over the alphabet A∪ {x0, . . . , xn−1} and write v = (v0, . . . , vm−1)

where m = |v|. For every j ∈ {0, . . . , n− 1} we set

Xj =
{
i ∈ {0, . . . ,m− 1} : vi = xj

}
. (1.17)

Clearly, X0, . . . , Xn−1 are nonempty subsets of {0, . . . ,m − 1} and if n > 2, then

max(Xi) < min(Xi+1) for every i ∈ {0, . . . , n − 2}. The sets X0, . . . , Xn−1 are

called the wildcard sets of V . We also set

S = {0, . . . ,m− 1} \
( n−1⋃
j=1

Xi

)
(1.18)

and we call S the set of fixed coordinates of V . Finally, the constant part of V is the

located word v � S ∈ AS . Note that the wildcard sets, the set of fixed coordinates

and the constant part completely determine a combinatorial space.

1.3.1. Subspaces. If V and U are two combinatorial spaces of A<N, then

we say that U is a combinatorial subspace of V if U is contained in V . For every

combinatorial space V of A<N and every m ∈ [dim(V )] by Subspm(V ) we shall

denote the set of all m-dimensional combinatorial subspaces of V .

We will present two different representations of the set Subspm(V ) which are

both straightforward consequences of the relevant definitions. The first representa-

tion relies on the canonical isomorphism IV associated with V .

Fact 1.3. Let V be a combinatorial space of A<N and set n = dim(V ). Then

for every m ∈ [n] the map

Subspm(An) 3 R 7→ IV (R) ∈ Subspm(V ) (1.19)

is a bijection.

The second representation will enable us to identify combinatorial subspaces

with subwords. Specifically, we have the following fact.

Fact 1.4. Let V be a combinatorial space of A<N. Set n = dim(V ) and let v be

the n-variable word over A which generates V via formula (1.14). Then for every

m ∈ [n] the map

Subwm(v) 3 u 7→ {u(a0, . . . , am−1) : a0, . . . , am−1 ∈ A} ∈ Subspm(V ) (1.20)

is a bijection.
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1.3.2. Restriction on smaller alphabets. Let V be a combinatorial space

of A<N and let IV be the canonical isomorphism associated with V . For every

B ⊆ A with |B| > 2 we define the restriction of V on B by the rule

V � B =
{

IV (u) : u ∈ Bdim(V )
}
. (1.21)

Notice that the map IV : Bdim(V ) → V � B is a bijection, and so we may identify the

restriction of V on B with a combinatorial space of B<N. Having this identification

in mind, for every m ∈ [dim(V )] we set

Subspm(V � B) =
{

IV (X) : X ∈ Subspm(Bdim(V ))
}
. (1.22)

By Definition 1.2 and (1.21), we have the following fact.

Fact 1.5. Let V be a combinatorial space of A<N and let m ∈ [dim(V )]. Also

let B ⊆ A with |B| > 2. Then for every R ∈ Subspm(V � B) there exists a unique

U ∈ Subspm(V ) such that R = U � B.

In particular, we have Subspm(V � B) ⊆ {U � B : U ∈ Subspm(V )}.

1.4. Reduced and extracted words

We are about to introduce two classes of combinatorial objects which are gen-

erated from sequences of variable words. In what follows, let A denote a finite

alphabet with at least two letters.

1.4.1. Reduced words and variable words. Let (wi)
n−1
i=0 be a nonempty

finite sequence of variable words over A.

A reduced word1 of (wi)
n−1
i=0 is a word w over A of the form

w = w0(a0)a. . .a wn−1(an−1) (1.23)

where (a0, . . . , an−1) is a word over A. The set of all reduced words of (wi)
n−1
i=0 will

be denoted by [(wi)
n−1
i=0 ]. Observe that [(wi)

n−1
i=0 ] coincides with the combinatorial

space of A<N generated by (wi)
n−1
i=0 .

A reduced variable word of (wi)
n−1
i=0 is a variable word v over A of the form

v = w0(α0)a. . .a wn−1(αn−1) (1.24)

where (α0, . . . , αn−1) is a variable word over A. (Notice, in particular, that there

exists i ∈ {0, . . . , n− 1} such that αi = x.) The set of all reduced variable words of

(wi)
n−1
i=0 will be denoted by V[(wi)

n
i=0].

More generally, a finite sequence (vi)
m−1
i=0 of variable words over A is said to

be a reduced subsequence of (wi)
n−1
i=0 if m ∈ [n] and there exist a strictly increasing

sequence (ni)
m
i=0 in N with n0 = 0 and nm = n, and a sequence (αj)

n−1
j=0 in A∪ {x}

such that for every i ∈ {0, . . . ,m− 1} we have x ∈ {αj : ni 6 j 6 ni+1 − 1} and

vi = wni(αni)
a. . .a wni+1−1(αni+1−1). (1.25)

For everym ∈ [n] by Vm[(wi)
n−1
i=0 ] we shall denote the set of all reduced subsequences

of (wi)
n−1
i=0 of length m. Note that V1[(wi)

n−1
i=0 ] = V[(wi)

n−1
i=0 ].

1This terminology is, of course, group theoretic. The reader should have in mind though that

it has somewhat different meaning in the present combinatorial context.
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The above notions can be extended to infinite sequences of variable words.

Specifically, let w = (wi) be a sequence of variable words over A. For every positive

integer n let w � n = (wi)
n−1
i=0 and set

[w] =

∞⋃
n=1

[w � n] and V[w] =

∞⋃
n=1

V[w � n]. (1.26)

An element of [w] will be called a reduced word of w while an element of V[w] will

be called a reduced variable word of w. Moreover, for every positive integer m we

define the set of all reduced subsequences of w of length m by the rule

Vm[w] =

∞⋃
n=m

Vm[w � n] (1.27)

Finally, we say that an infinite sequence v = (vi) of variable words over A is a

reduced subsequence of w if for every integer m > 1 we have v � m ∈ Vm[w]. The

set of all reduced subsequences of w of infinite length will be denoted by V∞[w].

We proceed to discuss some basic properties of reduced words and variable

words. We first observe that if (wi)
n−1
i=0 is a finite sequence of variable words over A,

then every reduced subsequence of (wi)
n−1
i=0 corresponds to a combinatorial subspace

[(wi)
n−1
i=0 ]. More precisely, we have the following fact.

Fact 1.6. Let (wi)
n−1
i=0 be a nonempty finite sequence of variable words over A

and set W = [(wi)
n−1
i=0 ]. Then for every m ∈ [n] the map

Vm[(wi)
n−1
i=0 ] 3 (vi)

m−1
i=0 7→ [(vi)

m−1
i=0 ] ∈ Subspm(W ) (1.28)

is onto. Moreover, this map is a bijection between V1[(wi)
n−1
i=0 ] and Subsp1(W ).

We also have the following coherence properties.

Fact 1.7. Let v,w be two nonempty sequences (of finite or infinite length) of

variable words over A and assume that v is a reduced subsequence of w. Then we

have [v] ⊆ [w], V[v] ⊆ V[w] and Vm[v] ⊆ Vm[w] for every positive integer m which

is less than or equal to the length of v. Moreover, if both v and w are infinite

sequences, then we have V∞[v] ⊆ V∞[w].

1.4.2. Extracted words and variable words. As in the previous subsec-

tion, let (wi)
n−1
i=0 be a nonempty finite sequence of variable words over A.

An extracted word of (wi)
n−1
i=0 is a reduced word of a subsequence of (wi)

n−1
i=0

while an extracted variable word of (wi)
n−1
i=0 is a reduced variable word of a sub-

sequence of (wi)
n−1
i=0 . (Thus, an extracted variable word of (wi)

n−1
i=0 is of the form

wi0(α0)a. . .a wi`(α`) where ` ∈ N, 0 6 i0 < · · · < i` 6 n − 1 and (α0, . . . , α`) is

a variable word over A.) An extracted subsequence of (wi)
n−1
i=0 is a reduced sub-

sequence of a subsequence of (wi)
n−1
i=0 . By E[(wi)

n−1
i=0 ] and EV[(wi)

n−1
i=0 ] we shall

denote the sets of all extracted words and all extracted variable words of (wi)
n−1
i=0

respectively. Moreover, for every m ∈ [n] the set of all extracted subsequences of

(wi)
n−1
i=0 of length m will be denoted by EVm[(wi)

n−1
i=0 ].
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Next, let w = (wi) be an infinite sequence of variable words over A. We set

E[w] =

∞⋃
n=1

E[w � n] and EV[w] =

∞⋃
n=1

EV[w � n] (1.29)

and for every positive integer m let

EVm[w] =

∞⋃
n=m

EVm[w � n]. (1.30)

On the other hand, by EV∞[w] we shall denote the set of all infinite extracted

subsequences of w, that is, the set of all (infinite) sequences of variable words over

A which are reduced subsequences of a subsequence of w.

We close this section with the following analogue of Fact 1.7.

Fact 1.8. Let v,w be two nonempty sequences (of finite or infinite length) of

variable words over A and assume that v is an extracted subsequence of w. Then

we have E[v] ⊆ E[w], EV[v] ⊆ EV[w] and EVm[v] ⊆ EVm[w] for every positive

integer m which is less than or equal to the length of v. Moreover, if both v and w

are infinite sequences, then we have EV∞[v] ⊆ EV∞[w].

1.5. Carlson–Simpson spaces

Let A be a finite alphabet with |A| > 2. This alphabet will be fixed through-

out this section. A finite-dimensional Carlson–Simpson system over A is a pair

〈t, (wi)d−1
i=0 〉 where t is a word over A and (wi)

d−1
i=0 a nonempty finite sequence of left

variable words over A. The length d of the finite sequence (wi)
d−1
i=0 will be called

the dimension of the system.

A finite-dimensional Carlson–Simpson space of A<N is a set of the form

W = {t} ∪
{
taw0(a0)a. . .a wm−1(am−1) : m ∈ [d] and a0, . . . , am−1 ∈ A

}
(1.31)

where 〈t, (wi)d−1
i=0 〉 is a finite-dimensional Carlson–Simpson system over A. Note

that the system 〈t, (wi)d−1
i=0 〉 which generates W via formula (1.31) is unique; it

will be called the generating system of W . The dimension of W , denoted by

dim(W ), is the dimension of its generating system (that is, the length of the fi-

nite sequence (wi)
d−1
i=0 ). The 1-dimensional Carlson–Simpson spaces will be called

Carlson–Simpson lines.

Let W be a finite-dimensional Carlson–Simpson space of A<N, set d = dim(W )

and let 〈t, (wi)d−1
i=0 〉 be its generating system. For every m ∈ {0, . . . , d} we define

the m-level W (m) of W by setting W (0) = {t} and

W (m) =
{
taw0(a0)a. . .a wm−1(am−1) : a0, . . . , am−1 ∈ A

}
(1.32)

if m ∈ [d]. Observe that W = W (0) ∪ · · · ∪W (d) and notice that for every m ∈ [d]

the m-level W (m) of W is an m-dimensional combinatorial subspace of Anm where

nm = |t|+
∑m−1
i=0 |wi|. The level set of W , denoted by L(W ), is defined by

L(W ) =
{
n ∈ N : W (m) ⊆ An for some m ∈ {0, . . . , d}

}
. (1.33)

Equivalently, we have L(W ) =
{
|t|} ∪

{
|t|+

∑m−1
i=0 |wi| : m ∈ [d]

}
.
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1.5.1. Subsystems and subspaces. Let d,m be positive integers, and let

w = 〈t, (wi)d−1
i=0 〉 and u = 〈s, (vi)m−1

i=0 〉 be two Carlson–Simpson systems over A of

dimensions d and m respectively. We say that u is a subsystem of w if m 6 d

and there exist a strictly increasing sequence (ni)
m
i=0 in {0, . . . , d} and a sequence

(aj)
nm−1
j=0 in A ∪ {x} such that the following conditions are satisfied.

(C1) If n0 = 0, then s = t. Otherwise, we have a0, . . . , an0−1 ∈ A and

s = taw0(a0)a. . .a wn0−1(an0−1).

(C2) For every i ∈ {0, . . . ,m− 1} we have ani = x and

vi = wni(ani)
a. . .a wni+1−1(ani+1−1).

The set of all m-dimensional subsystems of w will be denoted by Subsysm(w).

On the other hand, if W and U are two finite-dimensional Carlson–Simpson

spaces of A<N, then we say that U is a (Carlson–Simpson) subspace of W if U

is contained in W . (This implies, in particular, that dim(U) 6 dim(W ).) For

every m ∈ [dim(W )] by SubCSm(W ) we shall denote the set of all m-dimensional

Carlson–Simpson subspaces of W . Notice that, setting

W � m+ 1 = W (0) ∪ · · · ∪W (m), (1.34)

we have W � m+ 1 ∈ SubCSm(W ).

There is a natural correspondence between subsystems and subspaces. Indeed,

let W and U be two finite-dimensional Carlson–Simpson spaces of A<N generated

by the systems w and u respectively, and observe that U is a subspace of W if and

only if u is a subsystem of w. More precisely, we have the following fact.

Fact 1.9. Let W be a finite-dimensional Carlson–Simpson space of A<N and

let w be its generating system. For every Carlson–Simpson subspace U of W let

wU be its generating system. Then for every m ∈ [dim(W )] the map

SubCSm(W ) 3 U 7→ wU ∈ Subsysm(w) (1.35)

is a bijection.

1.5.2. Canonical isomorphisms. Let d be a positive integer and note that

the archetypical example of a d-dimensional Carlson–Simpson space of A<N is the

set A<d+1 of all finite sequences in A of length less than or equal to d. In fact,

every d-dimensional Carlson–Simpson space of A<N can be viewed as a “copy” of

A<d+1. The philosophy is identical to that in Section 1.3.

Definition 1.10. Let W be a finite-dimensional Carlson–Simpson space of

A<N, set d = dim(W ) and let 〈t, (wi)d−1
i=0 〉 be its generating system. The canonical

isomorphism associated with W is the bijection IW : A<d+1 →W defined by setting

IW (∅) = t and

IW
(
(a0, . . . , am−1)

)
= taw0(a0)a. . .a wm−1(am−1) (1.36)

for every m ∈ [d] and every (a0, . . . , am−1) ∈ Am.
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The canonical isomorphism preserves all structural properties one is interested

in while working in the category of Carlson–Simpson spaces. In particular, we have

the following analogue of Fact 1.3.

Fact 1.11. Let W be a finite-dimensional Carlson–Simpson space of A<N and

set d = dim(W ). Then for every m ∈ [d] the map

SubCSm(A<d+1) 3 R 7→ IW (R) ∈ SubCSm(W ) (1.37)

is a bijection.

Another basic property of canonical isomorphisms is that they preserve infima.

Fact 1.12. Let W be a finite-dimensional Carlson–Simpson space of A<N.

Then for every nonempty subset F of A<dim(W )+1 we have IW (∧F ) = ∧IW (F ).

We continue by presenting a method to produce Carlson–Simpson spaces from

combinatorial spaces. The method is based on canonical isomorphisms. Specifically,

let W be a finite-dimensional Carlson–Simpson space of A<N and let m ∈ [dim(W )].

Recall that for every U ∈ SubCSm(W ) the m-level U(m) of U is an m-dimensional

combinatorial space of A<N. Let d = dim(W ), and set

SubCSmax
m (W ) =

{
U ∈ SubCSm(W ) : U(m) ⊆W (d)

}
. (1.38)

That is, SubCSmax
m (W ) is the set of all m-dimensional Carlson–Simpson subspaces

of W whose last level is contained in the last level of W .

Lemma 1.13. Let W a finite-dimensional Carlson–Simpson space of A<N and

set d = dim(W ). Then for every m ∈ [d] the map

SubCSmax
m (W ) 3 U 7→ U(m) ∈ Subspm

(
W (d)

)
(1.39)

is a bijection.

Proof. Notice that every V ∈ Subspm(Ad) is of the form V = R(m) for some

unique R ∈ SubCSmax
m (A<d+1). By Fact 1.11 and taking into account this remark,

the result follows. �

1.5.3. Restriction on smaller alphabets. Let W be a finite-dimensional

Carlson–Simpson space of A<N and let IW be the canonical isomorphism associated

with W . As in Subsection 1.3.2, for every B ⊆ A with |B| > 2 we define the

restriction of W on B by the rule

W � B =
{

IW (u) : u ∈ B<dim(W )+1
}

(1.40)

and for every m ∈ [dim(W )] we set

SubCSm(W � B) =
{

IW (X) : X ∈ SubCSm(B<dim(W )+1)
}
. (1.41)

Observe that the map IW : B<dim(W )+1 →W � B is a bijection. Moreover, we have

the following fact.

Fact 1.14. Let W be a finite-dimensional Carlson–Simpson space of A<N. Also

let m ∈ [dim(W )] and B ⊆ A with |B| > 2. Then for every R ∈ SubCSm(W � B)

there exists a unique U ∈ SubCSm(W ) such that R = U � B.

In particular, we have SubCSm(W � B) ⊆ {U � B : U ∈ SubCSm(W )}.
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1.5.4. Infinite-dimensional Carlson–Simpson spaces. We proceed to dis-

cuss the infinite versions of the concepts introduced in this section so far.

An infinite-dimensional Carlson–Simpson system over A is a pair 〈t, (wi)〉
where t is a word over A and (wi) is a sequence of left variable words over A.

On the other hand, an infinite-dimensional Carlson–Simpson space of A<N is a set

of the form

W = {t} ∪
{
taw0(a0)a. . .a wm(am) : m ∈ N and a0, . . . , am ∈ A

}
(1.42)

where 〈t, (wi)〉 is an infinite-dimensional Carlson–Simpson system over A. This

system is clearly unique and will also be called the generating system of W . Re-

spectively, for every m ∈ N the m-level W (m) of W is defined by setting W (0) = t

and W (m) = {taw0(a0)a. . .a wm−1(am−1) : a0, . . . , am−1 ∈ A} if m > 1, while the

level set of W is defined by

L(W ) = {n ∈ N : W (m) ⊆ An for some m ∈ N}. (1.43)

We have the following analogue of Definition 1.10.

Definition 1.15. Let W be an infinite-dimensional Carlson–Simpson space of

A<N and let 〈t, (wi)〉 be its generating system. The canonical isomorphism associ-

ated with W is the bijection IW : A<N →W defined by setting IW (∅) = t and

IW
(
(a0, . . . , am)

)
= taw0(a0)a. . .a wm(am) (1.44)

for every m ∈ N and every a0, . . . , am ∈ A.

Now let W be an infinite-dimensional Carlson–Simpson space of A<N. A

Carlson–Simpson subspace of W is a finite or infinite dimensional Carlson–Simpson

space of A<N which is contained in W . For every positive integer m by SubCSm(W )

we shall denote the set of all m-dimensional Carlson–Simpson subspaces of W while

SubCS∞(W ) stands for the set of all infinite-dimensional Carlson–Simpson sub-

spaces of W . We close this section with the following analogue of Fact 1.11.

Fact 1.16. Let W be an infinite-dimensional Carlson–Simpson space of A<N.

Also let m be a positive integer. Then the maps

SubCSm(A<N) 3 R 7→ IW (R) ∈ SubCSm(W ) (1.45)

and

SubCS∞(A<N) 3 R 7→ IW (R) ∈ SubCS∞(W ) (1.46)

are both bijections.

1.6. Trees

By the term tree we mean a (possibly empty) partially ordered set (T,<T ) such

that the set {s ∈ T : s <T t} is finite and linearly ordered under <T for every t ∈ T .

The cardinality of this set is defined to be the length of t in T and will be denoted

by |t|T . For every n ∈ N the n-level of T , denoted by T (n), is defined to be the set

T (n) = {t ∈ T : |t|T = n}. (1.47)
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The height of T , denoted by h(T ), is defined as follows. First, we set h(T ) = 0 if T

is empty. If T is nonempty and there exists n ∈ N such that T (n) = ∅, then we set

h(T ) = max{n ∈ N : T (n) 6= ∅}+ 1;

otherwise, we set h(T ) =∞. Notice that the height of a nonempty finite tree T is

the cardinality of the set of all nonempty levels of T .

An element of a tree T is called a node of T . For every node t of T by SuccT (t)

we shall denote the set of all successors of t in T , that is,

SuccT (t) = {s ∈ T : t = s or t <T s}. (1.48)

The set of immediate successors of t in T is the subset of SuccT (t) defined by

ImmSuccT (t) = {s ∈ T : t <T s and |s|T = |t|T + 1}. (1.49)

A node t of T is called maximal if ImmSuccT (t) is empty.

A nonempty tree T is said to be finitely branching (respectively, pruned) if

for every t ∈ T the set of immediate successors of t in T is finite (respectively,

nonempty). It is said to be rooted if T (0) is a singleton; in this case, the unique

node of T (0) is called the root of T .

A chain of a tree T is a subset of T which is linearly ordered under <T . A

maximal (with respect to inclusion) chain of T is called a branch of T . The tree T

is said to be balanced if all branches of T have the same cardinality. Note that a

tree of infinite height is balanced if and only if it is pruned.

Now let T be a tree and let D be a subset of T . The level set of D in T ,

denoted by LT (D), is defined to be the set

LT (D) = {n ∈ N : D ∩ T (n) 6= ∅}. (1.50)

Moreover, for every n ∈ N let

D � n =
⋃

{m∈N:m<n}

D ∩ T (m). (1.51)

(In particular, D � 0 is the empty tree.) Note that if D = T and n > 1, then

T � n = T (0) ∪ · · · ∪ T (n− 1). (1.52)

More generally, for every M ⊆ N we set

D �M =
⋃
m∈M

D ∩ T (m). (1.53)

Finally, if D is finite, then we define the depth of D in T , denoted by depthT (D),

to be the least n ∈ N such that D ⊆ T � n. Observe that for every nonempty finite

subset D of T we have depthT (D) = max
(
LT (D)

)
+ 1.

1.6.1. Strong subtrees. A subtree of a tree (T,<T ) is a subset of T viewed

as a tree equipped with the induced partial ordering. An initial subtree of T is a

subtree of T of the form T � n for some n ∈ N with n < h(T ). The following class

of subtrees is of particular importance in the context of Ramsey theory.

Definition 1.17. A subtree S of a tree T is said to be strong if either S is

empty, or S is nonempty and satisfies the following conditions.
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(a) The tree S is rooted and balanced.

(b) Every level of S is a subset of some level of T , that is, for every n ∈ N
with n < h(S) there exists m ∈ N such that S(n) ⊆ T (m).

(c) For every non-maximal node s ∈ S and every t ∈ ImmSuccT (s) the set

ImmSuccS(s) ∩ SuccT (t) is a singleton.

For every k ∈ N with k < h(T ) by Strk(T ) we shall denote the set of all strong

subtrees of T of height k. Notice that Str0(T ) contains only the empty tree; on

the other hand, we have Str1(T ) =
{
{t} : t ∈ T

}
and so we may identify the set

Str1(T ) with T . If T has infinite height, then by Str<∞(T ) and Str∞(T ) we shall

denote the set of all strong subtrees of T of finite and infinite height respectively.

We isolate below some elementary (though basic) properties of strong subtrees.

Fact 1.18. Let T be a tree and let S be a strong subtree of T .

(a) Every strong subtree of S is also a strong subtree of T .

(b) If T is pruned and S ∈ Strk(T ) for some k ∈ N, then there is R ∈ Str∞(T )

(not necessarily unique) such that S = R � k.

1.6.2. Homogeneous trees. Let b ∈ N with b > 2 and recall that [b]<N

stands for the set of all finite sequences having values in [b]. We view [b]<N as a

tree equipped with the (strict) partial order @ of end-extension. In particular, for

every positive integer n the set [b]<n is the initial subtree of [b]<N of height n.

A homogeneous tree is a nonempty strong subtree T of [b]<N for some b ∈ N
with b > 2. The (unique) integer b is called the branching number of T and is

denoted by bT . Note that a homogeneous tree T of height k is just a “copy” of

[bT ]<k inside [bT ]<N. More precisely, we have the following definition.

Definition 1.19. Let T be a homogeneous tree of finite height. The canonical

isomorphism associated with T is the unique bijection IT : [bT ]<h(T ) → T such that

for every t, t′ ∈ [bT ]<h(T ) we have

(P1) |t| = |t′| if and only if |IT (t)|T = |IT (t′)|T ,

(P2) t @ t′ if and only if IT (t) @ IT (t′), and

(P3) t <lex t
′ if and only if IT (t) <lex IT (t′).

Respectively, the canonical isomorphism associated with a homogeneous tree T of

infinite height is the unique bijection IT : [bT ]<N → T satisfying (P1), (P2) and

(P3) for every t, t′ ∈ [bT ]<N.

1.6.3. Vector trees. A vector tree is a finite sequence T = (T1, . . . , Td) of

trees having common height. This common height is defined to be the height of T

and will be denoted by h(T). A vector tree T = (T1, . . . , Td) is said to be finitely

branching (respectively, pruned, rooted, balanced) if for every i ∈ [d] the tree Ti is

finitely branching (respectively, pruned, rooted, balanced).

If T = (T1, . . . , Td) is a vector tree, then a vector subset of T is a finite sequence

D = (D1, . . . , Dd) where Di ⊆ Ti for every i ∈ [d]. As in (1.51), for every n ∈ N let

D � n = (D1 � n, . . . ,Dd � n) (1.54)
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and, more generally, for every M ⊆ N let

D �M = (D1 �M, . . . ,Dd �M). (1.55)

In particular, if D = T and n > 1, then we have T � n = (T1 � n, . . . , Td � n).

Now let D = (D1, . . . , Dd) be a vector subset of T = (T1, . . . , Td). If Di is finite

for every i ∈ [d], then the depth of D in T, denoted by depthT(D), is defined by

depthT(D) = min{n ∈ N : D is a vector subset of T � n}. (1.56)

On the other hand, we say that D is level compatible if there exists L ⊆ N such

that LTi(Di) = L for every i ∈ [d]. The (unique) set L will be denoted by LT(D)

and will be called the level set of D in T. Moreover, for every n ∈ LT(D) we set

⊗D(n) =
(
D1 ∩ T1(n)

)
× · · · ×

(
Dd ∩ Td(n)

)
(1.57)

and we define the level product of D by the rule

⊗D =
⋃

n∈LT(D)

⊗D(n). (1.58)

In particular, for every n ∈ N with n < h(T) we have

⊗T(n) = T1(n)× · · · × Td(n)

and

⊗T =
⋃

n<h(T)

⊗T(n).

Finally, for every t = (t1, . . . , td) ∈ ⊗T by |t|T we shall denote the unique natural

number n such that t ∈ ⊗T(n).

1.6.4. Vector strong subtrees. The concept of a strong subtree is naturally

extended to vector trees. Specifically, we have the following definition.

Definition 1.20. Let T = (T1, . . . , Td) be a vector tree. A vector strong

subtree of T is a vector subset S = (S1, . . . , Sd) of T which is level compatible

(that is, there exists L ⊆ N with LTi(Si) = L for every i ∈ [d]) and such that Si is

a strong subtree of Ti for every i ∈ [d].

Notice that every vector strong subtree S of a vector tree T is a vector tree

on its own, and observe that its height h(S) coincides with the common height of

S1, . . . , Sd. For every k ∈ N with k < h(T) by Strk(T) we shall denote the set of all

vector strong subtrees of T of height k. If, in addition, T is of infinite height, then

by Str<∞(T) and Str∞(T) we shall denote the set of all vector strong subtrees of

T of finite and infinite height respectively.

We close this subsection with the following analogue of Fact 1.18.

Fact 1.21. Let T be a vector tree and let S be a vector strong subtree of T.

(a) Every vector strong subtree of S is also a vector strong subtree of T.

(b) If T is pruned and S∈Strk(T) for some k ∈ N, then there is R ∈ Str∞(T)

(not necessarily unique) such that S = R � k.
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1.6.5. Vector homogeneous trees. A vector homogeneous tree is a vector

tree T = (T1, . . . , Td) such that Ti is homogeneous for every i ∈ [d]. Observe

that a vector homogeneous tree T = (T1, . . . , Td) is a vector strong subtree of

([bT1 ]<N, . . . , [bTd ]<N) with h(T) > 1.

1.7. Notes and remarks

1.7.1. The notion of a combinatorial line originates from the classical paper

of Hales and Jewett [HJ]. On the other hand, the concepts of a reduced and an

extracted word appeared first in the work of Carlson [C]. Carlson–Simpson spaces

were introduced in [CS]; however, our exposition follows later presentations (see,

e.g., [DKT3, McC1]).

1.7.2. There are several (essentially) equivalent ways to define trees. We fol-

lowed the set theoretic approach mainly for historical reasons (see, in particular,

the discussion in Section 3.4). We also note that the notion of a strong subtree was

introduced by Laver in the late 1960s (see also [M2, M3]).
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Coloring theory





CHAPTER 2

Combinatorial spaces

2.1. The Hales–Jewett theorem

The following theorem is due to Hales and Jewett [HJ] and the corresponding

bounds are due to Shelah [Sh1].

Theorem 2.1. For every pair k, r of positive integers with k > 2 there exists

a positive integer N with the following property. If n > N , then for every alphabet

A with |A| = k and every r-coloring of An there exists a variable word w over A

of length n such that the set {w(a) : a ∈ A} is monochromatic. The least positive

integer with this property will be denoted by HJ(k, r).

Moreover, the numbers HJ(k, r) are upper bounded by a primitive recursive

function belonging to the class E5.

The Hales–Jewett theorem is considered to be one of the cornerstones of modern

Ramsey theory, for several good reasons. We will single out two of these reasons

which appear to be the most substantial.

First, the Hales–Jewett theorem is at the right level of generality, and as such,

it is applicable to a wide range of problems. This is ultimately related to the

rich combinatorial nature of the hypercube An which can encode both algebraic

and geometric information. For example, looking at the expansion of the natural

numbers in base ` (where ` > 2 is a fixed integer), one sees that the Hales–Jewett

theorem implies the theorem of van der Waerden on arithmetic progressions [vdW].

In fact, with a bit more effort (see [GRS] for details) one sees that the Hales–Jewett

theorem also implies the higher-dimensional analogue1 of this classical result. The

penetrating power of the Hales–Jewett theorem is unique and there are numerous

more examples some of which we will encounter later on in this book.

Beyond the scope of applications, the Hales–Jewett theorem is a constant source

of inspiration in Ramsey theory. In particular, there are several different proofs (as

well as extensions) of this result. We will follow Shelah’s proof [Sh1] which proceeds

by induction on the cardinality of the finite alphabet A. The general inductive step

splits into two parts. First, given a finite coloring c of An, one finds a combinatorial

subspace W of An of large dimension such that the coloring c restricted on W is

“simple”. Once the coloring has been made “simple”, the proof is completed with

an application of the inductive assumptions. This method is very fruitful and many

of the results that we present in this book are proved following this general scheme.

1The higher-dimensional version of the van der Waerden theorem is known as Gallai’s theorem

(see [GRS]).
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Of course, to implement this strategy, one has to define what a “simple” coloring

actually is, and this is usually the most interesting part of the proof. In the context

of the Hales–Jewett theorem, the definition of the proper concept of “simplicity”

was undoubtedly a significant conceptual breakthrough in the work of Shelah and

has proven to be very influential. This is the notion of an insensitive coloring which

we are about to introduce.

2.1.1. Insensitive sets and insensitive colorings. Let A be a finite al-

phabet with |A| > 2 and a, b ∈ A with a 6= b. Also let z, y be two words

over A. We say that z and y are (a, b)-equivalent provided that: (i) |z| = |y|,
and (ii) if z = (z0, . . . , zn−1) and y = (y0, . . . , yn−1) with n > 1, then for every

i ∈ {0, . . . , n− 1} and every γ ∈ A \ {a, b} we have

zi = γ if and only if yi = γ.

That is, the words z and y are (a, b)-equivalent if they have the same length and

possibly differ only in the coordinates taking values in {a, b}.

Definition 2.2. Let A be a finite alphabet with |A| > 2 and a, b ∈ A with

a 6= b. Also let S be a set of words over A.

(a) We say that S is (a, b)-insensitive provided that for every z ∈ S and every

y ∈ A<N if z and y are (a, b)-equivalent, then y ∈ S.

(b) We say that S is (a, b)-insensitive in a combinatorial space W of A<N if

I−1
W (S∩W ) is an (a, b)-insensitive subset of A<N where IW is the canonical

isomorphism associated with W (see Definition 1.2).

Notice that the family of all (a, b)-insensitive subsets of A<N is an algebra of

sets. In particular, it is closed under intersections, unions and complements. The

same remark applies to the family of all (a, b)-insensitive sets in a combinatorial

space W of A<N.

The notion of an insensitive set is naturally extended to colorings as follows.

Definition 2.3. Let A be a finite alphabet with |A| > 2 and a, b ∈ A with

a 6= b. Also let r be a positive integer, W a combinatorial space of A<N and c an

r-coloring of W . We say that the coloring c is (a, b)-insensitive in W if for every

p ∈ [r] the set c−1({p}) is (a, b)-insensitive in W .

Notice that if W is a combinatorial space of A<N of dimension d and c is an

r-coloring of W , then for every z ∈ Ad and every p ∈ [r] we have c
(
IW (z)

)
= p if

and only if z ∈ I−1
W

(
c−1({p}) ∩W

)
. Using this observation we obtain the following

characterization of insensitive colorings.

Fact 2.4. Let A be a finite alphabet with |A| > 2 and a, b ∈ A with a 6= b. Also

let W be a combinatorial space of A<N of dimension d and c a finite coloring of W .

Then the coloring c is (a, b)-insensitive in W if and only if c
(
IW (z)

)
= c
(
IW (y)

)
for every z, y ∈ Ad which are (a, b)-equivalent.
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2.1.2. Shelah’s insensitivity lemma. We are now in a position to state the

key result in Shelah’s proof of the Hales–Jewett theorem.

Lemma 2.5 (Shelah’s insensitivity lemma). For every triple k, d, r of positive

integers there exists a positive integer N with the following property. If n > N ,

then for every alphabet A with |A| = k + 1, every a, b ∈ A with a 6= b and every

coloring c : An → [r] there exists a d-dimensional combinatorial subspace W of An

such that the coloring c is (a, b)-insensitive in W . The least positive integer with

this property will be denoted by Sh(k, d, r).

Moreover, the numbers Sh(k, d, r) are upper bounded by a primitive recursive

function belonging to the class E4.

The first step towards the proof of Lemma 2.5 is an extension of Fact 2.4. It will

enable us to reduce Lemma 2.5 to the construction of a d-dimensional combinatorial

subspace W on which the coloring c satisfies a property seemingly weaker than

insensitivity.

Sublemma 2.6. Let A be an alphabet with |A| > 2 and a, b ∈ A with a 6= b.

Also let W be a combinatorial space of A<N of dimension d and c a finite coloring

of W . Then the coloring c is (a, b)-insensitive in W if and only if

c
(
IW (vaaau)

)
= c
(
IW (vabau)

)
for every i ∈ {0, . . . , d− 1}, every v ∈ Ai and every u ∈ Ad−i−1.

Proof. First we notice that for every i ∈ {0, . . . , d − 1}, every v ∈ Ai and

every u ∈ Ad−i−1 the words vaaau and vabau are (a, b)-equivalent. Therefore the

“only if” part follows readily by Fact 2.4.

Conversely, let z, y ∈ Ad and assume that z and y are (a, b)-equivalent. By Fact

2.4, it is enough to show that c
(
IW (z)

)
= c
(
IW (y)

)
. To this end, let ` be the number

of coordinates where z and y differ. We select a finite sequence (z0, . . . , z`) in Ad

such that: (i) z0 = z, (ii) z` = y, and (iii) for every i ∈ [`−1] the words zi−1 and zi
differ in exactly one coordinate at which one of them takes the value a and the other

the value b. Invoking our assumption we see that c
(
IW (z0)

)
= · · · = c

(
IW (z`)

)
,

and since z0 = z and z` = y, we conclude that c
(
IW (z)

)
= c
(
IW (y)

)
. The proof of

Sublemma 2.6 is completed. �

It is convenient to introduce the following notation. For every nonempty al-

phabet A, every a ∈ A and every positive integer i we set

ai = (a, . . . , a︸ ︷︷ ︸
i−times

). (2.1)

Also let a0 denote the empty word.

The next result is the combinatorial core of Shelah’s insensitivity lemma and

deals with the first nontrivial case, namely when “d = 1”.

Sublemma 2.7. For every pair k, r of positive integers we have Sh(k, 1, r) = r.
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Proof. First we observe that Sh(k, 1, r) > r. This is obvious if r = 1, and so,

we may assume that r > 2. Let A be a finite alphabet with |A| > 2 and fix a, b ∈ A
with a 6= b. Define c : Ar−1 → {0, . . . , r − 1} by

c
(
(a0, . . . , ar−2)

)
= |{i ∈ {0, . . . , r − 2} : ai = a}|

and notice that c
(
w(a)

)
6= c
(
w(b)

)
for every variable word w over A of length r−1.

This implies, of course, that Sh(k, 1, r) > r.
We proceed to show that Sh(k, 1, r) 6 r. Fix an integer n > r, an alphabet A

with |A| = k + 1 and a coloring c : An → [r]. We also fix a, b ∈ A with a 6= b. We

need to find a variable word w over A of length n such that c
(
w(a)

)
= c
(
w(b)

)
. To

this end we define

D(a, b, n) = {aiabn−i : 0 6 i 6 n} ⊆ An. (2.2)

The set D(a, b, n) satisfies the following crucial property: every pair of distinct

elements of D(a, b, n) forms a combinatorial line over the alphabet {a, b} of length

n. Indeed, let z, y ∈ D(a, b, n) with z 6= y and write z = aiabn−i and y = ajabn−j

where 0 6 i < j 6 n. Setting w = aiaxj−iabn−j , we see that w is a variable word

over {a, b} of length n such that w(a) = y and w(b) = z.

Now observe that |D(a, b, n)| = n+1 > r. Therefore, by the classical pigeonhole

principle, there exist z1, z2 ∈ D(a, b, n) with z1 6= z2 and such that c(z1) = c(z2).

By the previous discussion, there exists a variable word w over {a, b} of length n

such that {w(a), w(b)} = {z1, z2}. Clearly, w is as desired. The proof of Sublemma

2.7 is completed. �

We need to introduce some numerical invariants. Specifically, let f : N5 → N
be defined by

f(k, d, r, i, n) =

{
r(k+1)n+d−i−1

if n+ d− i− 1 > 0,

0 otherwise
(2.3)

and define g : N4 → N recursively by the rule{
g(k, d, r, 0) = 0,

g(k, d, r, i+ 1) = g(k, d, r, i) + f
(
k, d, r, i, g(k, d, r, i)

)
.

(2.4)

Finally, we define φ : N3 → N by

φ(k, d, r) = g(k, d, r, d). (2.5)

The function f has double exponential growth and so it is majorized by a function

belonging to the class E3. It follows that both g and φ are upper bounded by

primitive recursive functions belonging to the class E4. Moreover, notice that

φ(k, 1, r) = r. (2.6)

We are ready to give the proof of Lemma 2.5.

Proof of Lemma 2.5. We fix a pair k, r of positive integers. It is enough to

show that for every positive integer d we have

Sh(k, d, r) 6 φ(k, d, r). (2.7)
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Notice, first, that the case “d = 1” follows from Sublemma 2.7 and (2.6). So assume

that d > 2. For every i ∈ {0, . . . , d} we set Ni = g(k, d, r, i). Observe that N0 = 0,

Nd = g(k, d, r, d) = φ(k, d, r) and

Ni+1 = Ni + f(k, d, r, i,Ni) = Ni + r(k+1)Ni+d−i−1

(2.8)

for every i ∈ {0, . . . , d− 1}. In particular, the estimate in (2.7) will follow once we

show that Sh(k, d, r) 6 Nd.
To this end, let n > Nd and A an alphabet with |A| = k+1. Also let c : An → [r]

be a coloring and fix a, b ∈ A with a 6= b. First we claim that we may assume that

n = Nd. Indeed, we select an element z0 ∈ An−Nd and we define c′ : ANd → [r] by

the rule c′(z) = c(zaz0) for every z ∈ ANd . If W is a d-dimensional combinatorial

subspace of ANd such that the coloring c′ is (a, b)-insensitive in W, then so is the

coloring c in the d-dimensional combinatorial subspace Waz0 of An.

The desired d-dimensional combinatorial subspace W of ANd will be generated

by a sequence (wi)
d−1
i=0 of variable words over A (actually over the smaller alphabet

{a, b}). This sequence of variable words will be selected by backwards induction

subject to the following conditions.

(C1) For every i ∈ {0, . . . , d− 1} the length of wi is ni where

ni = Ni+1 −Ni = r(k+1)Ni+d−i−1

. (2.9)

(C2) For every z ∈ ANd−1 we have c
(
zawd−1(a)

)
= c
(
zawd−1(b)

)
.

(C3) For every i ∈ {0, . . . , d− 2}, every z ∈ ANi and every y ∈ Ad−i−1 we have

c
(
zawi(a)aIWi+1

(y)
)

= c
(
zawi(b)

aIWi+1
(y)
)

where Wi+1 is the combinatorial subspace of ANd−Ni+1 generated by the

finite sequence (wj)
d−1
j=i+1 via formula (1.16) and IWi+1

is the canonical

isomorphism associated with Wi+1.

The first step is identical to the general one, and so let i ∈ {0, . . . , d − 2} and

assume that the variable words wi+1, . . . , wd−1 have been selected so that the above

conditions are satisfied. By (2.9), we may identify [r]A
Ni×Ad−i−1

with [ni]. We

define a coloring C : Ani → [ni] by the rule

C(u) =
〈
c
(
zauaIWi+1

(y)
)

: (z, y) ∈ ANi ×Ad−i−1
〉

for every u ∈ Ani . (For the first step we set C(u) = 〈c(zau) : z ∈ ANd−1〉.) By

Sublemma 2.7 applied to the coloring C, there exists a variable word w over A of

length ni such that C
(
w(a)

)
= C

(
w(b)

)
. We set wi = w and we observe that with

this choice the above conditions are satisfied. The selection of the sequence (wi)
d−1
i=0

is thus completed.

It remains to check that the coloring c is (a, b)-insensitive in the combinatorial

subspace W of ANd generated by the sequence (wi)
d−1
i=0 . Indeed, by conditions (C2)

and (C3), we see that c
(
IW (vaaau)

)
= c
(
IW (vabau)

)
for every i ∈ {0, . . . , d− 1},

every v ∈ Ai and every u ∈ Ad−i−1. By Sublemma 2.6, we conclude that the

coloring c is (a, b)-insensitive in W and the proof of Lemma 2.5 is completed. �
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2.1.3. Proof of Theorem 2.1. As we have already mentioned, the proof

proceeds by induction on k. The initial case “k = 2” follows from Sublemma 2.7.

Indeed, for every positive integer r we have HJ(2, r) = Sh(1, 1, r) and so

HJ(2, r) = r. (2.10)

Next, let k > 2 and assume that the result has been proved up to k. The following

lemma is the second main step of the proof of Theorem 2.1.

Lemma 2.8. Let k, r be positive integers with k > 2 and assume that the number

HJ(k, r) has been estimated. Also let A be an alphabet with |A| = k+1 and a, b ∈ A
with a 6= b. Finally, let n, d be positive integers with n > d > HJ(k, r), c an

r-coloring of An and W a d-dimensional combinatorial subspace of An. If the

coloring c is (a, b)-insensitive in W , then there exists a combinatorial line of An

which is monochromatic with respect to c.

Proof. Set B = A \ {b} and define c′ : Bd → [r] by c′(z) = c
(
IW (z)

)
where

IW is the canonical isomorphism associated with W (see Definition 1.2). Since

|B| = k and d > HJ(k, r), there exists a variable word w over B of length d such

that the combinatorial line {w(β) : β ∈ B} of Bd is monochromatic with respect

to c′. Therefore, the set {
IW
(
w(β)

)
: β ∈ B

}
(2.11)

is contained in W and is monochromatic with respect to c. Next observe that

w(a) and w(b) are (a, b)-equivalent words of Ad and recall that the coloring c is

(a, b)-insensitive in W . By Fact 2.4, we obtain that c
(
IW (w(a))

)
= c
(
IW (w(b))

)
.

It follows from the previous discussion that the set

U =
{

IW
(
w(β)

)
: β ∈ B

}
∪
{

IW
(
w(b)

)}
(2.12)

is a combinatorial line of An which is monochromatic with respect to c. The proof

of Lemma 2.8 is completed. �

We are now ready to estimate the numbers HJ(k+1, r). Specifically, by Lemmas

2.5 and 2.8, we see that

HJ(k + 1, r) 6 Sh
(
k,HJ(k, r), r

)
(2.13)

for every positive integer r. This completes, of course, the proof of the general

inductive step.

Finally, the fact that the Hales–Jewett numbers are upper bounded by a prim-

itive recursive function belonging to the class E5 is an immediate consequence of

(2.10) and (2.13), and the upper bounds for the numbers Sh(k, d, r) obtained by

Lemma 2.5. The proof of Theorem 2.1 is completed.

2.2. The multidimensional Hales–Jewett theorem

The following result is known as the multidimensional Hales–Jewett theorem

and is a natural refinement of Theorem 2.1.
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Theorem 2.9. For every triple k, d, r of positive integers with k > 2 there exists

a positive integer N with the following property. If A is an alphabet with |A| = k,

then for every combinatorial space W of A<N of dimension at least N and every

r-coloring of W there exists a monochromatic d-dimensional combinatorial subspace

of W . The least positive integer with this property will be denoted by MHJ(k, d, r).

Moreover, the numbers MHJ(k, d, r) are upper bounded by a primitive recursive

function belonging to the class E5.

We will present two proofs of Theorem 2.9. The first proof is a modification of

Shelah’s proof of the Hales–Jewett theorem.

First proof of Theorem 2.9. It is enough to observe that for every triple

k, d, r of positive integers with k > 2 we have MHJ(2, d, r) = Sh(1, d, r) and

MHJ(k + 1, d, r) 6 Sh
(
k,MHJ(k, d, r), r

)
. (2.14)

The estimate in (2.14) is, of course, the analogue of (2.13) and can be easily proved

using Shelah’s insensitivity lemma and arguing as in Lemma 2.8. The first proof of

Theorem 2.9 is completed. �

The second proof of Theorem 2.9 is more general and relies on a direct appli-

cation of the Hales–Jewett theorem. In particular, given an alphabet A, the idea is

to use words over an appropriately selected finite Cartesian product Ad of A. We

will see, later on, more applications of this technique.

We proceed to the details. Let A be a finite alphabet with |A| > 2 and let d, `

be positive integers. Notice that the finite alphabets (Ad)` and Ad·` have the same

cardinality, and so, they can be identified in many ways. In the following definition

we fix a convenient, for our purposes, identification.

Definition 2.10. Let A be a finite alphabet with |A| > 2 and d, ` positive

integers. We define a map T: (Ad)` → Ad·` as follows. Let b0, . . . , b`−1 ∈ Ad be

arbitrary. For every i ∈ {0, . . . , d − 1} and every j ∈ {0, . . . , ` − 1} denote by bi,j
the i-th coordinate of bj and define

T
(
(b0, . . . , b`−1)

)
= (b0,0, . . . , b0,`−1)a. . .a(bd−1,0, . . . , bd−1,`−1). (2.15)

The next fact is straightforward.

Fact 2.11. Let A, d, ` and T be as in Definition 2.10. If m ∈ {0, . . . , d · `− 1},
then let im ∈ {0, . . . , d − 1} and jm ∈ {0, . . . , ` − 1} be the unique integers such

that m = im · ` + jm. Finally, let b0, . . . , b`−1 ∈ Ad and a0, . . . , ad·`−1 ∈ A. Then

T
(
(b0, . . . , b`−1)

)
= (a0, . . . , ad·`−1) if and only if am is the im-th coordinate of bjm

for every m ∈ {0, . . . , d · `− 1}.

The main property of the map T is described in the following lemma.

Lemma 2.12. Let A be a finite alphabet with |A| > 2 and d, ` positive integers,

and set B = Ad and N = d · `. Let T: B` → AN be as in Definition 2.10.

Then the image under the map T of a combinatorial line of B` is a d-dimensional

combinatorial subspace of AN .
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Proof. Fix a combinatorial line L of B`. Let X be the wildcard set of L,

S the set of its fixed coordinates and (fj)j∈S ∈ BS its constant part. For every

i ∈ {0, . . . , d−1} let Xi = {x+i·` : x ∈ X} and observe that max(Xi) < min(Xi+1).

Moreover, for every a ∈ A set

Sa = {i · `+ j : j ∈ S and the i-th coordinate of fj is a}.

Now let w = (w0, . . . , wN−1) ∈ AN be arbitrary. By Fact 2.11, we see that w ∈ T(L)

if and only if: (i) for every i ∈ {0, . . . , d− 1} the located word w � Xi is constant,

and (ii) for every a ∈ A and every m ∈ Sa we have wm = a. Therefore, the set T(L)

is a d-dimensional combinatorial subspace of AN with wildcard sets X0, . . . , Xd−1.

The proof of Lemma 2.12 is completed. �

We are ready to give the second proof of Theorem 2.9.

Second proof of Theorem 2.9. Fix a triple k, d, r of positive integers with

k > 2. We will show that

MHJ(k, d, r) 6 d ·HJ(kd, r). (2.16)

To this end, set ` = HJ(kd, r) and N = d · `. Also fix an alphabet A with |A| = k

and set B = Ad. Finally, let W be an N -dimensional combinatorial space of A<N

and c : W → [r] an r-coloring of W . We set c′ = c ◦ IW ◦ T where IW : AN →W is

the canonical isomorphism associated with W (see Definition 1.2) and T: B` → AN

is as in Definition 2.10. Notice that c′ is an r-coloring of B`. Since |B| = kd and

` = HJ(kd, r), there exists a combinatorial line L of B` which is monochromatic

with respect to c′. We set V = IW
(
T(L)

)
. By Lemma 2.12 and Fact 1.3, we see

that V is a d-dimensional combinatorial subspace of W which is monochromatic

with respect to c. This shows that the estimate in (2.16) is satisfied and the second

proof of Theorem 2.9 is completed. �

We close this section with the following proposition which provides significantly

better upper bounds for the multidimensional Hales–Jewett numbers when “k = 2”.

Proposition 2.13. For every pair d, r of positive integers we have

MHJ(2, d, r) 6 d · r3d−1

. (2.17)

Proof. It is similar to the proof of Sublemma 2.7. The choice of the alphabet

is irrelevant, and so we may assume that A = {0, 1}. It is also convenient to

introduce the following terminology. We say that a variable word w over {0, 1} is

simple if there exist i, j, k ∈ N with j 6= 0 such that w = 0iaxja1k. Respectively,

we say that a combinatorial line over {0, 1} is simple if it is generated by a simple

variable word. Finally, for every n ∈ N let

D(n) = {0ia1n−i : 0 6 i 6 n} ⊆ {0, 1}n. (2.18)

Notice that |D(n)| = n+1. Arguing as in the proof of Sublemma 2.7, it is easy to see

that there exists a bijection between
(
D(n)

2

)
and the set of all simple combinatorial

lines of {0, 1}n. In particular, for every positive integer n there are exactly
(
n+1

2

)
simple combinatorial lines of {0, 1}n.
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Claim 2.14. Let d, r be positive integers and define a sequence (ni) in N recur-

sively by the rule {
n0 = r,

ni+1 = r
∏i
j=0

(
nj+1

2

)
.

(2.19)

If Nd =
∑d−1
i=0 ni, then for every coloring c : {0, 1}Nd → [r] there exists a finite

sequence (wi)
d−1
i=0 of simple variable words over {0, 1} such that: (i) wi has length

ni for every i ∈ {0, . . . , d−1}, and (ii) the combinatorial subspace of ANd generated

by (wi)
d−1
i=0 is monochromatic.

Proof of Claim 2.14. By induction on d. The case “d = 1” follows from

Sublemma 2.7. Let d > 1 and assume that the result has been proved up to d. Write

Nd+1 =
∑d
i=0 ni = Nd + nd and let c : {0, 1}Nd+1 → [r] be an arbitrary coloring.

For every s ∈ D(nd) we define cs : {0, 1}Nd → [r] by the rule cs(y) = c(yas) for

every y ∈ {0, 1}Nd . Notice that the cardinality of the set of all finite sequences

(vi)
d−1
i=0 such that vi is a simple variable word over {0, 1} of length ni for every

i ∈ {0, . . . , d− 1}, is equal to(
n0 + 1

2

)
· · ·
(
nd−1 + 1

2

)
=

d−1∏
i=0

(
ni + 1

2

)
.

Moreover,

|D(nd)| = nd + 1
(2.19)

= r

d−1∏
i=0

(
ni + 1

2

)
+ 1.

Taking into account the above remarks, applying our inductive assumption to each

coloring in the family {cs : s ∈ D(nd)} and using the classical pigeonhole principle,

we select s, t ∈ D(nd) with s 6= t and a sequence (v0, . . . , vd−1) of simple variable

words over {0, 1} such that vi has length ni for every i ∈ {0, . . . , d−1} and satisfying

the following property. If V is the d-dimensional combinatorial subspace of {0, 1}Nd
generated by the sequence (v0, . . . , vd−1), then c(yas) = c(zat) for every y, z ∈ V .

Finally, let vd be the unique simple variable word over {0, 1} of length nd such that

{vd(0), vd(1)} = {s, t}. Clearly, the finite sequence (v0, . . . , vd−1, vd) is as desired.

The proof of Claim 2.14 is completed. �

Fix a pair d, r of positive integers. By (2.19), we have ni+1 = ni
(
ni+1

2

)
6 n3

i

and so ni 6 r3i for every i ∈ N. Therefore, by Claim 2.14, we conclude that

MHJ(2, d, r) 6
d−1∑
i=0

ni 6
d−1∑
i=0

r3i 6 d · r3d−1

and the proof of Proposition 2.13 is completed. �

2.3. Colorings of combinatorial spaces

So far we have been dealing with colorings of points of combinatorial spaces.

We will now change our perspective and we will consider colorings of combinatorial

spaces of a fixed dimension. Specifically, this section is devoted to the proof of the

following result which is a significant extension of the Hales–Jewett theorem.
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Theorem 2.15. For every quadruple k, d,m, r of positive integers with k > 2

and d > m there exists a positive integer N with the following property.

If n > N and A is an alphabet with |A| = k, then for every n-variable word w

over A and every r-coloring of Subwm(w) there exists v ∈ Subwd(w) such that the

set Subwm(v) is monochromatic. The least positive integer with this property will

be denoted by GR(k, d,m, r).

Moreover, the numbers GR(k, d,m, r) are upper bounded by a primitive recur-

sive function belonging to the class E6.

We remark that Theorem 2.15 is a variant2 of the Graham–Rothschild theorem

[GR] which refers to m-parameter words instead of m-variable words. We will not

use the Graham–Rothschild theorem in this book, and so our choice of the acronym

“GR” will not cause confusion. However, the reader should have in mind that these

two results refer to different types of structures.

Also note that, taking into account the correspondence between m-variable

words and m-dimensional combinatorial spaces (see Fact 1.4), Theorem 2.15 is

equivalently formulated as follows.

Theorem 2.15′. Let k, d,m, r be positive integers with k > 2 and d > m. If

A is an alphabet with |A| = k, then for every combinatorial space W of A<N of

dimension at least GR(k, d,m, r) and every r-coloring of Subspm(W ) there exists

V ∈ Subspd(W ) such that the set Subspm(V ) is monochromatic.

The proof of Theorem 2.15 will be given in Subsection 2.3.3. It follows the

general scheme we discussed in Section 2.1. More precisely, given a finite coloring

c of Subwm(w), the strategy is to find u ∈ Subw`(w), where ` is sufficiently large,

such that for every v ∈ Subwm(u) the color c(v) of v depends only on the position

of its variables. In this way, Theorem 2.15 is effectively reduced to a simpler

statement which is a finite version of the Milliken–Taylor theorem [M1, Tay1].

The finite version of the Milliken–Taylor theorem, as well as some related results

of independent interest, are presented in Subsections 2.3.1 and 2.3.2.

2.3.1. The disjoint unions theorem. A disjoint sequence is a nonempty

finite sequence F = (F0, . . . , Fn−1) of nonempty finite subsets of N with the prop-

erty that Fi ∩ Fj = ∅ for every i, j ∈ {0, . . . , n − 1} with i 6= j. A disjoint se-

quence F = (F0, . . . , Fn−1) is said to be block if max(Fi) < min(Fj) for every

i, j ∈ {0, . . . , n− 1} with i < j. The set of nonempty unions of a disjoint sequence

F = (F0, . . . , Fn−1) is defined by

NU(F) =
{ ⋃
s∈S

Fs : S is a nonempty subset of {0, . . . , n− 1}
}
. (2.20)

2In fact, not only are Theorem 2.15 and the Graham–Rothschild theorem similar statements

but also the corresponding known bounds are of the same order of magnitude. Specifically, Shelah

has shown (see [Sh1, page 687]) that the original Graham–Rothschild numbers are also upper

bounded by a primitive recursive function belonging to the class E6.
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The following result is known as the disjoint unions theorem3 and appeared first in

[GR]. The corresponding primitive recursive bounds are taken from [Tay2].

Theorem 2.16. For every pair d, r of positive integers there exists a positive

integer N with the following property. If n > N , then for every disjoint sequence

F = (F0, . . . , Fn−1) and every r-coloring of NU(F) there exists a disjoint sequence

G = (G0, . . . , Gd−1) in NU(F) such that the set NU(G) is monochromatic. The

least positive integer with this property will be denoted by T(d, r).

Moreover, the numbers T(d, r) are upper bounded by a primitive recursive func-

tion belonging to the class E4.

The proof of the disjoint unions theorem is based on the following lemma which

is an appropriate interpretation of the multidimensional Hales–Jewett theorem for

the alphabet A = {0, 1}.

Lemma 2.17. Let n, r be positive integers and set N = MHJ(2, n+ 1, r). Also

let F = (F0, . . . , FN−1) be a disjoint sequence and c : NU(F)→ [r] a coloring. Then

there exist a set E ∈ NU(F) and a disjoint sequence G = (G0, . . . , Gn−1) in NU(F)

with E ∩
(⋃n−1

i=0 Gi
)

= ∅ and such that the set {E} ∪ {E ∪ H : H ∈ NU(G)} is

monochromatic.

Proof. For every set X let X(0) = ∅ and X(1) = X. We identify {0, 1}N with

the set of all unions (not necessarily nonempty) of F via the map

{0, 1}N 3 (ε0, . . . , εN−1) 7→
N−1⋃
j=0

F
(εj)
j

and we extend the coloring c to an r-coloring of {0, 1}N . By the choice of N ,

there exists a combinatorial subspace V of {0, 1}N of dimension n + 1 which is

monochromatic. Let X0, . . . , Xn be the wildcard sets of V, S the set of its fixed

coordinates and (fj)j∈S ∈ {0, 1}S its constant part. We set

E =
( ⋃
j∈S

F
(fj)
j

)
∪
( ⋃
j∈X0

Fj

)
.

Also for every i ∈ {0, . . . , n− 1} let

Gi =
⋃

j∈Xi+1

Fj .

It is easy to check that the set E and the disjoint sequence G = (G0, . . . , Gn−1) are

as desired. The proof of Lemma 2.17 is completed. �

We are ready to give the proof of Theorem 2.16.

Proof of Theorem 2.16. We define f : N2 → N recursively by the rule{
f(r, 0) = 1,

f(r, i+ 1) = MHJ
(
2, f(r, i) + 1, r

)
.

(2.21)

3The disjoint unions theorem has a number theoretic counterpart which is known as the

non-repeating sums theorem and is attributed to Rado [Rado1, Rado2], Folkman (unpublished)

and J. H. Sanders [Sa1].
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By Proposition 2.13, we see that f is upper bounded by a primitive recursive

function belonging to the class E4. Hence, the proof will be completed once we

show that

T(d, r) 6 f(r, (d− 1) · r + 1) (2.22)

for every pair d, r of positive integers. To this end we need the following claim.

Claim 2.18. Let r, ` ∈ N with r > 1 and ` > 2, and set N = f(r, `). Also

let F = (F0, . . . , FN−1) be a disjoint sequence and c : NU(F) → [r] a coloring.

Then there exists a disjoint sequence E = (E0, . . . , E`−1) in NU(F) such that for

every i ∈ {0, . . . , ` − 2} the set {Ei} ∪
{
Ei ∪ H : H ∈ NU

(
(Ei+1, . . . , E`−1)

)}
is

monochromatic.

Granting Claim 2.18, the estimate in (2.22) follows from the classical pigeonhole

principle.

It remains to prove Claim 2.18. Fix the parameters r and ` and for every

i ∈ {0, . . . , `− 1} set ni = f(r, i). By (2.21), we have ni+1 = MHJ(2, ni + 1, r) for

every i ∈ {0, . . . , `− 2}. Hence, by Lemma 2.17 and backwards induction, we may

select a disjoint sequence (Ei)
`−1
i=0 in NU(F) and a finite sequence (Gi)`i=0 of disjoint

sequences with G` = F and satisfying the following conditions for every i ∈ [`− 1].

(C1) The set Ei belongs to NU(Gi+1). Moreover, the sequence Gi is a disjoint

sequence in NU(Gi+1) of length ni such that Ei ∩
(⋃
Gi
)

= ∅.
(C2) The set {Ei} ∪ {Ei ∪H : H ∈ NU(Gi)} is monochromatic.

We set E = (E0, . . . , E`−1). Using conditions (C1) and (C2), we see that E is as

desired. This completes the proof of Claim 2.18, and as we have indicated, the

proof of Theorem 2.16 is also completed. �

The second result in this subsection is the following variant of Theorem 2.16. It

refers to block, instead of disjoint, sequences and is the finite analogue of Hindman’s

theorem [H].

Proposition 2.19. For every pair d, r of positive integers there exists a positive

integer N with the following property. If n > N , then for every block sequence

F = (F0, . . . , Fn−1) and every r-coloring of NU(F) there exists a block sequence

G = (G0, . . . , Gd−1) in NU(F) such that the set NU(G) is monochromatic. The

least positive integer with this property will be denoted by H(d, r).

Moreover, the numbers H(d, r) are upper bounded by a primitive recursive func-

tion belonging to the class E4.

As in Appendix B, for every triple d,m, r of positive integers by R(d,m, r) we

denote the corresponding Ramsey number. Recall that R(d,m, r) is defined to be

the least integer n > d such that for every n-element set X and every r-coloring of(
X
m

)
there exists Z ∈

(
X
d

)
such that the set

(
Z
m

)
is monochromatic. For the proof of

Proposition 2.19 we need the following consequence of Ramsey’s theorem.

Fact 2.20. Let m, r be positive integers. Also let X be a set with

|X| > R(2m,m, rm) (2.23)
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and c : {F ⊆ X : 1 6 |F | 6 m} → [r] an r-coloring of the family of all nonempty

subsets of X of cardinality at most m. Then there exists Y ∈
(
X
m

)
such that for

every i ∈ [m] the set
(
Y
i

)
is monochromatic.

Proof. Clearly we may assume that X ⊆ N. For every nonempty subset F of

X and every i ∈ {1, . . . , |F |} we denote by F � i the set of the first i elements of F .

We define C :
(
X
m

)
→ [r]m by the rule C(F ) = 〈c(F � i) : i ∈ [m]〉. By (2.23), there

exists a subset Z of X with |Z| = 2m such that the set
(
Z
m

)
is monochromatic with

respect to C. We set Y = Z � m. It is easy to see that Y is as desired. The proof

of Fact 2.20 is completed. �

We proceed to the proof of Proposition 2.19.

Proof of Proposition 2.19. By Theorems 2.16 and B.1, it is enough to

show that for every pair d, r of positive integers we have

H(d, r) 6 R
(
2T(d, r),T(d, r), rT(d,r)

)
. (2.24)

To this end, fix the parameters d, r and set m = T(d, r) and N = R(2m,m, rm).

Let n > N and F = (F0, . . . , Fn−1) a block sequence. Also let c : NU(F) → [r] be

a coloring. Notice that the map

{S ⊆ {0, . . . , n− 1} : 1 6 |S| 6 m} 3 S 7→
⋃
s∈S

Fs ∈ NU(F)

is an injection. Hence, by Fact 2.20, there is a block sequence E = (E0, . . . , Em−1)

in NU(F) such that c
(⋃

s∈S Es
)

= c
(⋃

t∈T Et
)

for every pair S, T of nonempty

subsets of {0, . . . ,m − 1} with |S| = |T |. By the choice of m, there is a disjoint

sequenceH = (H0, . . . ,Hd−1) in NU(E) such that the set NU(H) is monochromatic.

For every j ∈ {0, . . . , d− 1} let Sj be the unique subset of {0, . . . ,m− 1} such that

Hj =
⋃
s∈Sj Es. Notice that (S0, . . . , Sd−1) is a disjoint sequence of nonempty

subsets of {0, . . . ,m−1}. Therefore, we may select a block sequence (T0, . . . , Td−1)

such that Tj ⊆ {0, . . . ,m− 1} and |Tj | = |Sj | for every j ∈ {0, . . . , d− 1}. We set

G = (G0, . . . , Gd−1) where Gj =
⋃
t∈Tj Et for every j ∈ {0, . . . , d− 1}. Clearly G is

as desired. The proof of Proposition 2.19 is thus completed. �

2.3.2. The finite version of the Milliken–Taylor theorem. First we

introduce some pieces of notation and some terminology. Given two block sequences

F = (F0, . . . , Fn−1) and G = (G0, . . . , Gm−1), we say that G is a block subsequence

of F if for every i ∈ {0, . . . ,m− 1} we have Gi ∈ NU(F). For every block sequence

F of length n and every integer m ∈ [n] we denote by Blockm(F) the set of all

block subsequences of F of length m. Also let F � m = (F0, . . . , Fm−1) and notice

that F � m ∈ Blockm(F). If G is a block subsequence of F , then the depth of G in

F , denoted by depthF (G), is defined to be the least integer d ∈ [n] such that G is

a block subsequence of F � d. Finally, for every m ∈ [n] we define

Blockmax
m (F) = {G ∈ Blockm(F) : depthF (G) = n}. (2.25)

That is, Blockmax
m (F) is the set of all block subsequences of F of length m and of

maximal depth.
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This subsection is devoted to the proof of the following theorem which is the

finite version of the Milliken–Taylor theorem [M1, Tay1].

Theorem 2.21. For every triple d,m, r of positive integers with d > m there

exists a positive integer N with the following property. For every block sequence F
of length at least N and every r-coloring of Blockm(F) there exists G ∈ Blockd(F)

such that the set Blockm(G) is monochromatic. The least positive integer with this

property will be denoted by MT(d,m, r).

Moreover, the numbers MT(d,m, r) are upper bounded by a primitive recursive

function belonging to the class E6.

For the proof of Theorem 2.21 we need to do some preparatory work. Specifi-

cally, we define h : N4 → N recursively by the rule{
h(`,m, r, 0) = 1,

h(`,m, r, i+ 1) = H
(
h(`,m, r, i), r2`m

)
+ 1

(2.26)

where `,m and r vary over all positive integers. If some of the parameters `,m, r

happens to be zero, then we set h(`,m, r, i) = 0. By Proposition 2.19, we see that

the function h is upper bounded by a primitive recursive function belonging to the

class E5. The following lemma is the main step of the proof of Theorem 2.21.

Lemma 2.22. Let `,m,N, r be positive integers with ` > m+ 1 and such that

N = m− 1 + h(`,m, r, `−m). (2.27)

Also let F = (F0, . . . , FN−1) be a block sequence and c : Blockm+1(F) → [r] a

coloring. Then there exists G ∈ Block`(F) such that for every X ,Y ∈ Blockm+1(G)

with X � m = Y � m we have c(X ) = c(Y).

Proof. For every i ∈ {m − 1, . . . , ` − 1} set Ni = h(`,m, r, ` − 1 − i) and

observe that 1 = N`−1 6 Ni 6 Nm−1 = N − (m− 1). Also notice that

Ni−1 = H
(
Ni, r

2`m
)

+ 1 (2.28)

for every i ∈ {m, . . . , `− 1}.
Recursively we will select two sequences (Gi)`−1

i=m−1 and (Hi)`−1
i=m−1 of block

subsequences of F and a sequence (Ei)
`−1
i=m−1 in NU(F) such that the following

conditions are satisfied for every i ∈ {m− 1, . . . , `− 1}.
(C1) We have |Gi| = i, |Hi| = Ni − 1 and

max
(⋃
Gi
)
< min(Ei) 6 max(Ei) < min

(⋃
Hi
)
.

(C2) If i > m, then Gi = Gi−1
aEi−1.

(C3) If i > m, then Ei
aHi is a block subsequence of Hi−1.

(C4) If i > m, then c
(
ZaX

)
= c
(
ZaY

)
for every Z ∈ Blockmax

m (Gi) and every

X,Y ∈ NU
(
Ei
aHi

)
.

For the first step of the recursive selection we set Gm−1 = F � (m−1), Em−1 = Fm−1

and Hm−1 = (Fm, . . . , FN−1). By (2.27), we see that with these choices condition

(C1) is satisfied. The other conditions are superfluous in this case, and so the first

step of the selection is completed.
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Let i ∈ {m, . . . , ` − 1} and assume that the block sequences Gm−1, . . . ,Gi−1

and Hm−1, . . . ,Hi−1 as well as the sets Em−1, . . . , Ei−1 have been selected. First

we set Gi = Gi−1
aEi−1. For notational convenience let B = Blockmax

m (Gi). We

define a coloring C : NU(Hi−1) → [r]B by the rule C(X) = 〈c(ZaX) : Z ∈ B〉.
Notice that |B| < 2im < 2`m. Moreover, by our inductive assumptions, we have

that |Hi−1| = Ni−1 − 1 and so, by (2.28), the length of Hi−1 is H
(
Ni, r

2`m
)
. By

Proposition 2.19, there exists a block subsequence V = (V0, . . . , VNi−1) of Hi−1

such that NU(V) is monochromatic with respect to the coloring C. We set Ei = V0

and Hi = (V1, . . . , VNi−1). It is easy to check that with these choices conditions

(C1) up to (C4) are fulfilled. The recursive selection is thus completed.

We set G = G`−1 and we claim that G is as desired. Indeed, notice first that G is

a block subsequence of F of length `. Let X ,Y ∈ Blockm+1(G) with X � m = Y � m
and write X = ZaX and Y = ZaY where Z = X � m = Y � m. There exists

a unique i ∈ {m, . . . , ` − 1} such that Z ∈ Blockmax
m (Gi) and X,Y ∈ NU(Ei

aHi).
Therefore, by condition (C4), we conclude that c(X ) = c(ZaX) = c(ZaY ) = c(Y).

The proof of Lemma 2.22 is completed. �

We are ready to give the proof of Theorem 2.21.

Proof of Theorem 2.21. Notice first that

MT(d, 1, r) = H(d, r). (2.29)

On the other hand, by Lemma 2.22, we see that

MT(d,m+ 1, r) 6 m− 1 + h
(
MT(d,m, r),m, r,MT(d,m, r)−m

)
(2.30)

for every triple d,m, r of positive integers with d > m+ 1.

Finally, recall that the function h is upper bounded by a primitive recursive

function belonging to the class E5. Therefore, by (2.29), (2.30) and Proposition 2.19,

we see that the numbers MT(d,m, r) are upper bounded by a primitive recursive

function belonging to the class E6. The proof of Theorem 2.21 is completed. �

2.3.3. Proof of Theorem 2.15. We begin by introducing some numerical

invariants. First, let f : N6 → N be defined by

f(k, `,m, r, i, n) = HJ
(
k, r(k+m)n+`−i−1)

(2.31)

if k > 2, r > 1 and n+ `− i− 1 > 0; otherwise, we set f(k, `,m, r, i, n) = 0. Next,

we define g : N5 → N recursively by the rule{
g(k, `,m, r, 0) = 0,

g(k, `,m, r, i+ 1) = g(k, `,m, r, i) + f
(
k, `,m, r, i, g(k, `,m, r, i)

)
.

(2.32)

By Theorem 2.1, we see that the function g is upper bounded by a primitive recur-

sive function belonging to the class E6.

We also need to introduce some pieces of notation. Specifically, let A be a finite

alphabet with |A| > 2 and n,m ∈ N with n > m > 1. For every m-variable word

w = (w0, . . . , wn−1) over A of length n and every j ∈ {0, . . . ,m− 1} let

Xj =
{
i ∈ {0, . . . , n− 1} : wi = xj

}
. (2.33)
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That is, Xj is the set of coordinates where the j-th variable xj appears in w. Set

X (w) = (X0, . . . , Xm−1) (2.34)

and notice that X (w) is a block sequence.

As we have already pointed out, the strategy of the proof is to reduce Theorem

2.15 to Theorem 2.21. This is achieved with the following lemma.

Lemma 2.23. Let k, `,m, r be positive integers with k > 2 and ` > m, and set

N = g(k, `,m, r, `).

Then for every alphabet A with |A| = k and every r-coloring c of the set of all

m-variable words over A of length N there exists an `-variable word w over A of

length N such that c(y) = c(z) for every y, z ∈ Subwm(w) with X (y) = X (z).

The following result is the analogue of Sublemma 2.6 and its proof is identical

to that of Sublemma 2.6.

Sublemma 2.24. Let `,m be positive integers with ` > m and A a finite alphabet

with |A| > 2. Also let w be an `-variable word over A and c a finite coloring of

Subwm(w). Then the following are equivalent.

(a) We have c(y) = c(z) for every y, z ∈ Subwm(w) with X (y) = X (z).

(b) For every m-variable word (α0, . . . , α`−1) over A, if i ∈ {0, . . . , `− 1} is

such that αi ∈ A, then

c
(
w(α0, . . . , αi−1, a, αi+1, . . . , α`−1)

)
= c
(
w(α0, . . . , αi−1, b, αi+1, . . . , α`−1)

)
for every a, b ∈ A.

We proceed to the proof of Lemma 2.23.

Proof of Lemma 2.23. Clearly, we may assume that ` > m + 1. For every

i ∈ {0, . . . , `} set Ni = g(k, `,m, r, i). Moreover, for every i ∈ {0, . . . , ` − 1} let

Mi = Ni + `− i− 1. Notice that N0 = 0, M0 = `− 1, N` = N , M`−1 = N`−1 and

Ni+1 = Ni + HJ
(
k, r(k+m)Mi

)
(2.35)

for every i ∈ {0, . . . , `− 1}.
Let A be an alphabet with |A| = k and c an r-coloring of the set of allm-variable

words over A of lengthN . By backwards induction, we will select a sequence (wi)
`−1
i=0

of variable words over A such that the following conditions are satisfied.

(C1) For every i ∈ {0, . . . , `− 1} the variable word wi has length ni where

ni = Ni+1 −Ni
(2.35)

= HJ
(
k, r(k+m)Mi

)
. (2.36)

(C2) For every m-variable word v over A of length M`−1 and every a, b ∈ A we

have c
(
vaw`−1(a)

)
= c
(
vaw`−1(b)

)
.

(C3) For every i ∈ {0, . . . , `−2} and every m-variable word v = (v0, . . . , vMi−1)

over A of length Mi, setting

v(i) = v � Ni and v(i+1) = wi+1(vNi)
awi+2(vNi+1)a. . .a w`−1(vMi−1), (2.37)

we have c
(
v(i)awi(a)av(i+1)

)
= c
(
v(i)awi(b)

av(i+1)
)

for every a, b ∈ A.
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The first step is identical to the general one, and so let i ∈ {0, . . . , ` − 2} and

assume that the variable words wi+1, . . . , w`−1 have been selected so that the above

conditions are satisfied. For every m-variable word v = (v0, . . . , vMi−1) over A of

length Mi let v(i) and v(i+1) be as in (2.37) and observe that v(i)azav(i+1) is an

m-variable word over A of length N for every z ∈ Ani . We define a coloring C of

Ani by the rule

C(z) =
〈
c(v(i)azav(i+1)) : v is an m-variable word over A of length Mi

〉
.

(We set C(z) = 〈c(vaz) : v is an m-variable word over A of length M`−1〉 for the

case “i = `− 1”.) Notice that the number of all m-variable words over A of length

Mi is less than (k+m)Mi . Hence, by (2.36), there exists a variable word w over A of

length ni such that the combinatorial line {w(a) : a ∈ A} of Ani is monochromatic

with respect to C. We set wi = w and we observe that with this choice the above

conditions are satisfied. The selection of the sequence (wi)
d−1
i=0 is thus completed.

We set w = w0(x0)a. . .a w`−1(x`−1). It is clear that w is an `-variable word

over A of length N` = N . Moreover, by conditions (C1) and (C2), it satisfies

the following property. For every i ∈ {0, . . . , ` − 1} and every pair (α0, . . . , α`−1)

and (β0, . . . , β`−1) of m-variable words over A of length `, if αj = βj for every

j ∈ {0, . . . , `−1}\{i} and αi, βi ∈ A, then c
(
w(α0, . . . , α`−1)

)
= c
(
w(β0, . . . , β`−1)

)
.

By Sublemma 2.24 and taking into account the previous remarks, we see that w is

as desired. The proof of Lemma 2.23 is completed. �

We are now ready for the last step of the proof of Theorem 2.15. By Lemma

2.23 and Theorem 2.21, we see that

GR(k, d,m, r) 6 g
(
k,MT(d,m, r),m, r,MT(d,m, r)

)
. (2.38)

Hence, by (2.38), Theorem 2.21 and the fact that g is dominated by a function

belonging to the class E6, we conclude that the numbers GR(k, d,m, r) are upper

bounded by a primitive recursive function also belonging to the class E6. The proof

of Theorem 2.15 is completed.

2.3.4. Colorings of combinatorial lines. We close this section with the

following result due to Tyros [Ty] which provides better upper bounds for the

Graham–Rothschild numbers for the important special case “m = 1”.

Proposition 2.25. There exists a primitive recursive function ψ : N3 → N
belonging to the class E5 such that

GR(k, d, 1, r) 6 ψ(k, d, r) (2.39)

for every triple k, d, r of positive integers with k > 2.

The proof of Proposition 2.25 is a modification of Shelah’s proof of the

Hales–Jewett theorem and relies on the following analogue of Definition 2.2 in the

context of variable words.

Definition 2.26. Let A be a finite alphabet with |A| > 2 and a, b ∈ A with

a 6= b. Also let n, d be positive integers with n > d and c a finite coloring of the

set of all variable words over A of length n. Finally, let w be a d-variable word
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over A of length n. We say that the coloring c is (a, b)-insensitive in Subw1(w) if

c(u) = c(v) for every u, v ∈ Subw1(w) which are (a, b)-equivalent when viewed as

words over the alphabet A ∪ {x}.

We have the following analogue of Shelah’s insensitivity lemma.

Lemma 2.27. For every triple k, d, r of positive integers there exists a positive

integer N with the following property. If n > N , then for every alphabet A with

|A| = k+1, every a, b ∈ A with a 6= b and every r-coloring c of the set of all variable

words over A of length n, there exists a d-variable word w over A of length n such

that the coloring c is (a, b)-insensitive in Subw1(w). The least positive integer with

this property will be denoted by Shv(k, d, r).

Moreover, the numbers Shv(k, d, r) are upper bounded by a primitive recursive

function belonging to the class E4.

For the proof of Lemma 2.27 we need to introduce some slight variants of the

functions f, g and φ defined in (2.3), (2.4) and (2.5) respectively. Specifically, we

define f ′ : N5 → N by

f ′(k, d, r, i, n) =

{
r(k+2)n+d−i−1

if n+ d− i− 1 > 0,

1 otherwise.
(2.40)

Also let g′ : N4 → N be defined recursively by the rule{
g′(k, d, r, 0) = 0,

g′(k, d, r, i+ 1) = g′(k, d, r, i) + f ′
(
k, d, r, i, g′(k, d, r, i)

) (2.41)

and define φ′ : N3 → N by setting

φ′(k, d, r) = g′(k, d, r, d). (2.42)

Notice that g′ and φ′ are both upper bounded by primitive recursive functions

belonging to the class E4.

Proof of Lemma 2.27. We will show that for every triple k, d, r of positive

integers we have

Shv(k, d, r) 6 φ′(k, d, r). (2.43)

Notice, first, that Shv(k, 1, r) = 1 = φ′(k, 1, r), and so we may assume that d > 2.

For every i ∈ {0, . . . , d} let Ni = g′(k, d, r, i) and Mi = Ni+d− i−1. Observe that

N0 = 0, M0 = d− 1 and

Ni+1 = Ni + r(k+2)Mi (2.44)

for every i ∈ {0, . . . , d− 1}. Therefore, it is enough to show that Shv(k, d, r) 6 Nd.
To this end let n > Nd, A an alphabet with |A| = k + 1 and a, b ∈ A with a 6= b.

Also let c be an r-coloring of the set of all variable words over A of length n. Clearly,

we may assume that n = Nd. By backwards induction and arguing as in the proof

of Lemma 2.5, we select a sequence (wi)
d−1
i=0 of variable words over A such that the

following conditions are satisfied.
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(C1) For every i ∈ {0, . . . , d− 1} the variable word wi has length ni where

ni = Ni+1 −Ni
(2.44)

= r(k+2)Mi .

(C2) We have c
(
vawd−1(a)

)
= c
(
vawd−1(b)

)
for every variable word v over A

of length N`−1.

(C3) For every i ∈ {0, . . . , d − 2} and every variable word v over A of length

Mi, writing v = (v0, . . . , vMi−1) and setting

v(i) = v � Ni and v(i+1) = wi+1(vNi)
awi+2(vNi+1)a. . .a wd−1(vMi−1),

we have c
(
v(i)awi(a)av(i+1)

)
= c
(
v(i)awi(b)

av(i+1)
)
.

We define w = w0(x0)a. . .a wd−1(xd−1). By conditions (C1)–(C3), it is clear that

w is as desired. The proof of Lemma 2.27 is completed. �

We are ready to complete the proof of Proposition 2.25.

Proof of Proposition 2.25. First observe that, by Proposition 2.19 and

Lemma 2.27, for every pair d, r of positive integers we have

GR(2, d, 1, r) 6 Shv

(
1,H(d, r), r

)
. (2.45)

On the other hand, invoking Lemma 2.27 once again, we see that

GR(k + 1, d, 1, r) 6 Shv

(
k,GR(k, d, 1, r), r

)
(2.46)

for every triple k, d, r of positive integers with k > 2.

Now recall that, by Proposition 2.19, the numbers H(d, r) are upper bounded

by a primitive recursive function belonging to the class E4. Therefore, by (2.45),

(2.46) and Lemma 2.27, we conclude that the numbers GR(k, d, 1, r) are upper

bounded by a primitive recursive function belonging to the class E5. The proof of

Proposition 2.25 is completed. �

2.4. Notes and remarks

2.4.1. We have already pointed out that there are several different proofs of

the Hales–Jewett theorem. The original proof was combinatorial in nature and was

based on a color focusing argument, a method invented by van der Waerden [vdW].

The color focusing argument is very flexible, but has the drawback that it yields

upper bounds of Ackermann type. Nevertheless, it is still influential and there are

some interesting recent results which are proved using this method (see, e.g., [W]).

There is a second approach which utilizes the structure of the Stone–Čech

compactification βX of a discrete topological space X, a classical construction which

can also be identified with the set of all ultrafilters on X. The use of ultrafilters in

the context of the Hales–Jewett theorem was first implemented by Carlson [C] and

further developed by several authors (see, e.g., [BBH, B2, HM1, McC2]). This

is a very fruitful approach which in addition leads to elegant proofs.

A third approach (closely related to the work of Carlson) was developed by

Furstenberg and Katznelson in [FK3]. It uses tools from topological dynamics (the

branch of the theory of dynamical systems which studies the behavior of iterations of

continuous transformations acting on sufficiently regular spaces) and was motivated
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by Furstenberg’s proof [F] of Szemerédi’s theorem on arithmetic progressions [Sz1].

As such, it is naturally placed in the general context of ergodic Ramsey theory (see,

e.g., [McC1]).

In spite of their diversity, the aforementioned proofs shed no light on the be-

havior of the Hales–Jewett numbers. In particular, the best known general upper

bounds for these invariants are the ones obtained by Shelah, but still they are huge

when compared to the known lower bounds. It is one of the central open prob-

lems of Ramsey theory to obtain tight estimates for the numbers HJ(k, r) and any

significant improvement on Shelah’s bounds would be of fundamental importance.

2.4.2. We note that the proof of Theorem 2.15 that we presented, follows the

method developed by Shelah in his proof of the Graham–Rothschild theorem (see

[Sh1, Theorem 2.2]). Working with m-variable words instead of m-parameter words

makes the argument slightly more involved, but the overall strategy is identical. We

also note that Theorem 2.15 has several infinite-dimensional extensions4. We will

discuss in detail these extensions in Chapter 4.

4Theorem 2.15 can be derived, of course, from these extensions via a standard compactness

argument. However, this reduction is ineffective and gives no quantitative information for the

numbers GR(k, d,m, r).



CHAPTER 3

Strong subtrees

3.1. The Halpern–Läuchli theorem

The topic of this section is the study of partitions of finite Cartesian products

of trees. Specifically, given a coloring of the product of a finite tuple (T1, . . . , Td)

of rooted, pruned and finitely branching trees, the goal is to find for each i ∈ [d]

a “structured” subset Si of the tree Ti such that the product S1 × · · · × Sd is

monochromatic. This problem is, of course, interesting on its own, but is also

essential for the development of Ramsey theory for trees.

It is easy to see that some restriction has to be imposed on the colorings under

consideration. Indeed, let T and S be two, say, dyadic trees of infinite height and

color red an element (t, s) of T ×S if |t|T > |s|S ; otherwise, color it blue. Clearly, if

A and B are infinite subsets of T and S respectively, then A×B contains elements

of both colors. To avoid this pathological behavior, it is thus necessary to restrict

our attention to colorings of certain subsets of products of trees. In this context,

the most natural (and practically useful) choice is to consider colorings of level

products. It turns out that once this restriction is imposed, one can obtain a very

satisfactory positive answer to the aforementioned problem. This is the content of

the following theorem. General notation and terminology about trees can be found

in Section 1.6.

Theorem 3.1. Let T = (T1, . . . , Td) be a rooted, pruned and finitely branching

vector tree. Then for every finite coloring of the level product ⊗T of T there exists a

vector strong subtree S of T of infinite height whose level product is monochromatic.

Theorem 3.1 is known as the strong subtree version of the Halpern–Läuchli

theorem and its formulation is due to Laver. It is a consequence of a slightly more

general result due to Halpern and Läuchli [HL]. However, from a combinatorial

perspective, Theorem 3.1 is the most important result of this kind.

The aforementioned result of Halpern and Läuchli can be stated in several

equivalent ways. We will state the “dominating set version” which is quite close to

the original formulation of Halpern and Läuchli. It also deals with colorings of level

products of vector trees but it does not refer to vector strong subtrees. Instead it

refers to dominating sets, a concept which we are about to introduce.

Let T = (T1, . . . , Td) be a rooted, pruned and finitely branching vector tree.

Also let D = (D1, . . . , Dd) be a vector subset of T and t = (t1, . . . , td) ∈ ⊗T. We

say that D is t-dominating provided that: (i) D is level compatible (that is, the

sets D1, . . . , Dd have a common level set), and (ii) for every n ∈ N with n > |t|T
39



40 3. STRONG SUBTREES

there exists m ∈ N such that for every i ∈ [d] and every s ∈ SuccTi(ti) ∩ Ti(n)

there exists w ∈ Di ∩ Ti(m) with s 6Ti w. If D is T(0)-dominating, then it will be

referred to simply as dominating.

We are now ready to state the dominating set version of the Halpern–Läuchli

theorem.

Theorem 3.2. Let d be a positive integer and T = (T1, . . . , Td) a rooted, pruned

and finitely branching vector tree. Also let D be a dominating vector subset of T

and P a subset of the level product ⊗D of D. Then, either

(a) there exists a vector subset X of D which is dominating and whose level

product is contained in P, or

(b) there exists a vector subset Y of D which is t-dominating for some t ∈ ⊗T

and whose level product is contained in the complement of P.

The proof of Theorem 3.2 will be given in Subsection 3.1.1. As we have already

indicated, Theorem 3.1 follows from Theorem 3.2. The argument is simple and

we will present it at this point. To this end, notice the following consequence of

Theorem 3.2: if c is a finite coloring of the level product of a rooted, pruned and

finitely branching vector tree T, then one of the colors contains the level product

of a vector subset D of T which is t-dominating for some t ∈ ⊗T. Using this

observation, Theorem 3.1 follows from the following general fact.

Fact 3.3. Let T be a rooted, pruned and finitely branching vector tree, and

t ∈ ⊗T. Also let D = (D1, . . . , Dd) be a t-dominating vector subset of T. Then for

every s = (s1, . . . , sd) ∈ ⊗SuccT(t) ∩ ⊗D there exists S ∈ Str∞(T) with S(0) = s

and such that Si ⊆ Di for every i ∈ [d].

Proof. Recursively and invoking the definition of a t-dominating vector set,

we select a strictly increasing sequence (mn) in LT(D) with m0 = |s|T and such

that for every n ∈ N, every i ∈ [d] and every s ∈ SuccTi(si) ∩ Ti(mn + 1) there

exists w ∈ Di ∩Ti(mn+1) with s 6Ti w. It is then easy to construct for each i ∈ [d]

a strong subtree Si of Ti such that Si(n) ⊆ Di ∩ Ti(mn) for every n ∈ N. �

3.1.1. Proof of Theorem 3.2. We follow the proof from [AFK] which

proceeds by induction on the number of trees. First, we need to introduce some

pieces of notation concerning dominating sets.

Let T = (T1, . . . , Td) be a rooted, pruned and finitely branching vector tree.

If A = (A1, . . . , Ad) and B = (B1, . . . , Bd) are vector subsets of T, then we say

that B dominates A if for every i ∈ [d] and every a ∈ Ai there exists b ∈ Bi with

ai 6Ti bi. For every vector subset D = (D1, . . . , Dd) of T and every m ∈ N let

D(m) =
(
D1 ∩ T1(m), . . . , Dd ∩ Td(m)

)
. (3.1)

(In particular, if D is a subset of a pruned tree T , then D(m) stands for the set

D ∩ T (m) for every m ∈ N.) Moreover, for every t = (t1, . . . , td) ∈ ⊗T we set

SuccT(t,D) =
(
SuccT1

(t1) ∩D1, . . . ,SuccTd(td) ∩Dd

)
. (3.2)

Notice that SuccT(t,D) is a vector subset of SuccT(t). The following fact is

straightforward.
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Fact 3.4. Let T be a rooted, pruned and finitely branching vector tree, and

t ∈ ⊗T. Also let D be a vector subset of T.

(a) The vector set D is t-dominating if and only if SuccT(t,D) is dominating

in the vector tree SuccT(t).

(b) If D is t-dominating, then there is a dominating vector subset E of T

such that D is a vector subset of E, LT(E) = LT(D) and satisfying

SuccT(t,E) = SuccT(t,D).

We will also need the following fact.

Fact 3.5. Let T be a rooted, pruned and finitely branching vector tree, and

t ∈ ⊗T. Also let D be a t-dominating vector subset of T. Then there exists an

infinite subset L of its level set LT(D) such that for every infinite subset M of L

the restriction D �M is t-dominating.

Proof. Clearly, we may assume that D is dominating. We select a strictly

increasing sequence (`n) in LT(D) such that D(`n) dominates T(n) for every n ∈ N,

and we set L = {`n : n ∈ N}. The proof of Fact 3.5 is completed. �

We now proceed to the details of the proof of Theorem 3.2. The initial case

“d = 1” is the content of the following lemma.

Lemma 3.6. Let T be a rooted, pruned and finitely branching tree, and D a

dominating subset of T . If P is a subset of D, then either P is dominating, or

there exists t ∈ T such that D \ P is t-dominating.

Proof. Assume that P is not dominating. Then there exists n0 ∈ N such that

T (n0) is not dominated by P (m) for every m ∈ N. Let L ⊆ LT (D) be as in Fact

3.5. The set T (n0) is finite since the tree T is finitely branching. Therefore, by the

classical pigeonhole principle, there exist a node t0 ∈ T (n0) and an infinite subset

M of L such that P ∩ T (m) ∩ SuccT (t0) = ∅ for every m ∈M .

We will show that D \ P is t0-dominating. Indeed, let n > |t0|T be arbi-

trary. Since D � M is dominating, there exists m ∈ M such that D(m) domi-

nates SuccT (t0) ∩ T (n). On the other hand, by the previous discussion, we see

that D ∩ T (m) ∩ SuccT (t0) = (D \ P ) ∩ T (m) ∩ SuccT (t0). This implies that

(D \ P ) ∩ T (m) dominates SuccT (t0) ∩ T (n). Since n was arbitrary, we conclude

that D \ P is t0-dominating and the proof of Lemma 3.6 is completed. �

The rest of this subsection is devoted to the proof of the general inductive

step. Specifically, let d be a positive integer and assume that the result has been

proved for any d-tuple (T1, . . . , Td) of rooted, pruned and finitely branching trees.

We emphasize that, in what follows, this positive integer d will be fixed. Also it is

convenient to denote a (d + 1)-tuple of trees as (T,W ) where T = (T1, . . . , Td) is

a d-tuple of trees and W is a tree. Respectively, a vector subset of (T,W ) will be

denoted as (D, E) where D is a vector subset of T and E is a subset of W . Notice,

in particular, that (D, E) is dominating if and only if both D and E are dominating

and have a common level set.
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Lemma 3.7. Let T1, . . . , Td,W be rooted, pruned and finitely branching trees

and set T = (T1, . . . , Td). Also let D be a dominating vector subset of T and C an

infinite chain of W with LT(D) = LW (C). Then for every subset P of ⊗(T,W )

one of the following is satisfied.

(a) There exist a vector subset X of D and an infinite subchain A of C such

that X is dominating, LT(X) = LW (A) and ⊗(X, A) ⊆ P.

(b) There exist a vector subset Y of D, an infinite subchain B of C and

t ∈ ⊗T such that Y is dominating, LT

(
SuccT(t,Y)

)
= LW (B) and

⊗
(
SuccT(t,Y), B

)
∩ P = ∅.

Proof. Let (wn) be the 6W -increasing enumeration of C and set

R =
⋃
n∈N

{
t ∈ ⊗D : |t|T = |wn|W and (t, wn) ∈ P

}
.

By our inductive assumptions, one of the following alternatives is satisfied.

(A1) There exists a vector subset X of D which is dominating and whose level

product is contained in R.

(A2) There exist t ∈ ⊗T and a vector subset Z of D which is t-dominating and

whose level product is contained in ⊗D \ R.

If alternative (A1) holds true, then we set A = C � LT(X). It is easy to check

that the first part of the lemma is satisfied for X and A. Otherwise, by Fact

3.4, we may select a dominating vector subset Y of T such that LT(Y) = LT(Z)

and SuccT(t,Y) = SuccT(t,Z). Therefore, setting B = C � LT(Y), we see that

⊗(SuccT(t,Y), B) = ⊗(SuccT(t,Z), B) ⊆ ⊗(Z, B) ⊆ ⊗(T,W ) \ P. The proof of

Lemma 3.7 is completed. �

We are about to introduce a family of sets which plays a crucial role in the

proof of Theorem 3.2.

Definition 3.8. Let T and W be as in Lemma 3.7. Also let t ∈ ⊗T, w ∈ W
and P ⊆ ⊗(T,W ). By D(t, w,P) we denote the family of all dominating vector

subsets (D, E) of (T,W ) satisfying the following property. For every dominating

vector subset Y of D and every v ∈ SuccW (w)∩E there exist a dominating vector

subset X of Y and an infinite chain C ⊆ SuccW (v) ∩ E such that

LT

(
SuccT(t,X)

)
= LW (C) and ⊗

(
SuccT

(
t,X), C

)
⊆ P. (3.3)

Note that in Definition 3.8 we do not demand that t and w have necessarily

the same length. This will be crucial in the following lemma.

Lemma 3.9. Let T and W be as in Lemma 3.7. Also let (D, E) be a dominating

vector subset of (T,W ) and P ⊆ ⊗(D, E). Then one of the following is satisfied.

(a) There exists an infinite subset L of L(T,W )(D, E) such that (D � L,E � L)

belongs to D
(
T(0),W (0),P

)
.

(b) There exist t′ ∈ ⊗T, w′ ∈W and a vector subset (D′, E′) of (D, E) such

that (D′, E′) belongs to D(t′, w′,Q) where Q = ⊗(D, E) \ P.
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Proof. Assume that neither (a) nor (b) is satisfied. We will derive a contra-

diction using Lemma 3.7. To this end fix an enumeration (tn) of the level product

⊗T of T. By Fact 3.5, we also fix an infinite subset M of L(T,W )(D, E) such that

(D � N,E � N) is dominating for every infinite subset N of M . Recursively, we

will select two sequences (w∗n) and (wn) in E �M , a sequence (Dn) of dominating

vector subsets of D � M and two strictly increasing sequences (`n) and (mn) of

natural numbers such that the following conditions are satisfied.

(C1) If X is a dominating vector subset D0 and C ⊆ SuccW (w∗0) ∩ (E � M) is

an infinite chain with LW (C) = LT(X), then ⊗(X, C) * P.

(C2) For every n ∈ N we have |w∗n|W = `n < mn. Moreover,
(
Dn(mn), E(mn)

)
dominates

(
T(`n),W (`n)

)
and wn ∈ E(mn) ∩ SuccW (w∗n).

(C3) For every n ∈ N we have that Dn+1 is a dominating vector subset of

Dn and w∗n+1 ∈ SuccW (wn) ∩ En where En = E � LT(Dn). More-

over, for every dominating vector subset X of Dn+1 and every infinite

chain C ⊆ SuccW (w∗n+1) ∩ En with LW (C) = LT(X) we have that

⊗
(
SuccT(tn,X), C

)
* Q.

The first step of the recursive selection (i.e., the choice of D0, w∗0 , w0, `0 and m0)

follows from our assumption that part (a) is not satisfied. The next steps are carried

out using the negation of part (b).

We set

D∞ =
⋃
n∈N

Dn(mn) and C∞ = {wn : n ∈ N}.

By conditions (C2) and (C3), we see that D∞ is a dominating vector subset of D0

and C∞ is an infinite chain of SuccW (w∗0) ∩ (E � M) with LW (C∞) = LT(D∞).

Therefore, by (C1) and Lemma 3.7, there exist a dominating vector subset Y of D∞,

an infinite subchain B of C∞ and t ∈ ⊗T such that LT

(
SuccT(t,Y)

)
= LW (B)

and ⊗
(
SuccT(t,Y), B

)
⊆ Q.

We are now in a position to derive the contradiction. Let n0 ∈ N be such that

tn0
= t and set N = {mn : n > n0 + 1}, C = B � N and X = Y � N . First observe

that ⊗
(
SuccT(tn0

,X), C
)
⊆ ⊗

(
SuccT(t,Y), B

)
⊆ Q. Next, by (C2) and (C3),

notice that X is a dominating vector subset of Dn0+1 and C ⊆ SuccW (w∗n0+1)∩En0

is an infinite chain with LW (C) = LT(X) = N . Therefore, invoking condition

(C3) once again, we conclude that ⊗
(
SuccT(tn0

,X), C
)
* Q. This is clearly a

contradiction. The proof of Lemma 3.9 is thus completed. �

The following lemma is the last step of the proof.

Lemma 3.10. Let T and W be as in Lemma 3.7, t′ ∈ ⊗T and w′ ∈ W . Also

let Q ⊆ ⊗(T,W ) and (D′, E′) ∈ D(t′, w′,Q). Then for every (s, v) ∈ ⊗(T,W )

with s ∈ ⊗SuccT(t′) and v ∈ SuccW (w′) there exists a vector subset (D′′, E′′) of

(D′, E′) which is (s, v)-dominating and such that ⊗(D′′, E′′) ⊆ Q.

Proof. We fix (s, v) ∈ ⊗(T,W ) with s ∈ ⊗SuccT(t′) and v ∈ SuccW (w′), and

we set ` = |s|T = |v|W . The proof is based on the following claim.
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Claim 3.11. For every integer n > ` there exist m ∈ N, a dominating vec-

tor subset X of D′ and a subset H of E′ such that
(
X(m), H(m)

)
dominates(

T(n),SuccW (v) ∩W (n)
)

and ⊗
(
SuccT

(
s,X(m)

)
, H(m)

)
⊆ Q.

Granting Claim 3.11 the proof of the lemma is completed as follows. Recur-

sively and using Claim 3.11, we may select a strictly increasing sequence (mn) in

N with m0 > `, a sequence (Xn) of vector subsets of D′ and a sequence (Hn) of

subsets of E′ such that for every n ∈ N we have that
(
Xn(mn), Hn(mn)

)
dominates(

T(n),SuccW (v) ∩W (n)
)

and ⊗
(
SuccT

(
s,X(mn)

)
, H(mn)

)
⊆ Q. Hence, setting

D′′ =
⋃
n∈N

SuccT

(
s,X(mn)

)
and E′′ =

⋃
n∈N

Hn(mn),

we see that D′′ and E′′ satisfy the requirements of the lemma.

It remains to prove Claim 3.11. Notice first that (D′, E′) ∈ D(s, v,Q). Fix an

integer n > ` and let (wk)rk=1 be an enumeration of the set SuccW (v) ∩W (n). By

repeated applications of Definition 3.8, we obtain a sequence (Xk)rk=1 of dominating

vector subsets of D′ and a sequence (Ck)rk=1 of infinite chains of E′ such that the

following conditions are satisfied.

(C1) For every k ∈ [r] we have that Ck ⊆ SuccW (wk)∩E′, LT(Xk) = LW (Ck)

and ⊗
(
SuccT(s,Xk), Ck

)
⊆ P.

(C2) For every k ∈ {2, . . . , r} we have that Xk is a vector subset of Xk−1.

Let L = LT(Xr) = LW (Cr). We set m = min(L), X = Xr and H =
⋃r
k=1(Ck � L).

It is easy to check that with these choices the result follows. This completes the

proof of Claim 3.11, and as we have already indicated, the proof of Lemma 3.10 is

also completed. �

We are in a position to complete the proof of the general inductive step of the

theorem. Let T1, . . . , Td,W be rooted, pruned and finitely branching trees and set

T = (T1, . . . , Td). Also let (D, E) be a dominating subset of (T,W ) and P a subset

of ⊗(D, E), and assume that P does not contain the level product of a dominating

vector subset of (D, E). This assumption implies, in particular, that for every

infinite subset L of L(T,W )(D, E) we have that (D � L,E � L) /∈ D
(
T(0),W (0),P).

By Lemmas 3.9 and 3.10, we see that the complement of P must contain the level

product of a vector subset (D′′, E′′) of (D, E) which is (s, v)-dominating for some

(s, v) ∈ ⊗(T,W ). This completes the proof of the inductive step and so the entire

proof of Theorem 3.2 is completed.

3.2. Milliken’s tree theorem

We now turn our attention to finite colorings of strong subtrees. These ques-

tions were investigated in detail by Milliken in [M2, M3]. His results, collectively

known as Milliken’s tree theorem, are naturally categorized according to the height

of the strong subtrees that we color. To state them, it is convenient to introduce

some pieces of notation.
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Let T be a rooted, balanced and finitely branching vector tree. For every k ∈ N,

every A ∈ Strk(T) and every integer m > k let

Strm(A,T) = {S ∈ Strm(T) : S � k = A}. (3.4)

If, in addition, T has infinite height1, then we set

Str<∞(A,T) = {S ∈ Str<∞(T) : S � k = A} (3.5)

and

Str∞(A,T) = {S ∈ Str∞(T) : S � k = A}. (3.6)

In the special case where A = T � k, the above sets will be denoted simply by

Strm(k,T), Str<∞(k,T) and Str∞(k,T) respectively. Notice, in particular, that

Strm(0,T) = Strm(T), Str<∞(0,T) = Str<∞(T) and Str∞(0,T) = Str∞(T). Fi-

nally, recall that for every vector subset X of T the depth of X in T is the least

n ∈ N such that X is a vector subset of T � n; it is denoted by depthT(X).

3.2.1. Colorings of strong subtrees of finite height. The first instance

of the circle of results that we present in this section deals with colorings of strong

subtrees of a fixed finite height. Specifically, we have the following theorem.

Theorem 3.12. For every rooted, pruned and finitely branching vector tree T,

every positive integer k and every finite coloring of Strk(T) there is S ∈ Str∞(T)

such that the set Strk(S) is monochromatic.

Note that there is also a finite version of Theorem 3.12 which is obtained with

a standard compactness argument. A quantitative refinement of this finite version

will be presented in Section 3.3.

The proof of Theorem 3.12 is based on the following lemma.

Lemma 3.13. Let T = (T1, . . . , Td) be a rooted, pruned and finitely branching

vector tree. Also let k ∈ N and A ∈ Strk(T), and set n = depthT(A). Then for

every F ⊆ Strk+1(T) there exists S ∈ Str∞(n,T) such that either Strk+1(A,S) ⊆ F
or Strk+1(A,S) ∩ F = ∅.

Proof. Notice that the case “k = 0” is a restatement of the strong subtree

version of the Halpern–Läuchli theorem. Therefore, in what follows, we may assume

that k > 1.

First we will deal with the case “d = 1”. Specifically, let T be a rooted,

pruned and finitely branching tree, k a positive integer and A ∈ Strk(T ). Set

n = depthT (A) and fix F ⊆ Strk+1(T ). Let {t1, . . . , t`} be an enumeration of the

n-level T (n) of T . For every i ∈ [`] let Si = SuccT (ti) and set S = (S1, . . . , S`).

For every s ∈ ⊗S we define E(A, s) ∈ Strk+1(A, T ) as follows. Let A(k − 1) be the

(k − 1)-level of A and notice that A(k − 1) ⊆ T (n− 1). For every t ∈ A(k − 1) set

I(t) =
{
i ∈ [`] : ti ∈ ImmSuccT (t)

}
and let

I(A) =
⋃

t∈A(k−1)

I(t).

1Notice that a balanced vector tree T has infinite height if and only if it is pruned.
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Finally, for every s = (s1, . . . , s`) ∈ ⊗S we define

E(A, s) = A ∪ {si : i ∈ I(A)}.

It is easy to see that the map

⊗S 3 s 7→ E(A, s) ∈ Strk+1(A, T )

is a surjection. Therefore, by Theorem 3.1, there exists R = (R1, . . . , R`) ∈ Str∞(S)

such that either {E(A, s) : s ∈ ⊗R} ⊆ F or {E(A, s) : s ∈ ⊗R} ∩ F = ∅. We set

S = (T � n) ∪
⋃̀
i=1

Ri.

Clearly, we have S ∈ Str(n, T ) and either Strk+1(A,S) ⊆ F or Strk+1(A,S)∩F = ∅.
We now proceed to the general case. Let d > 2 and let T = (T1, . . . , Td),

k, A, n and F be as in the statement of the lemma. We fix an element τ with

τ /∈ Ti for every i ∈ [d] and for every vector subset W = (W1, . . . ,Wd) of T we

set τ(W) = {τ} ∪
⋃d
i=1Wi. We set T = τ(T) and A = τ(A). Notice that T is

naturally viewed as a pruned and finitely branching tree with root τ . Moreover,

A is a strong subtree of T of height k + 1 and of depth n + 1. Finally, observe

that the sets Strk+1(A,T) and Strk+2(A, T ), as well as the sets Str∞(n,T) and

Str∞(n + 1, T ), can be identified via the map W 7→ τ(W). Taking into account

these remarks, we see that the general case is reduced to the case “d = 1”. The

proof of Lemma 3.13 is thus completed. �

Notice that for every rooted, pruned and finitely branching vector tree T and

every n ∈ N the set of all vector strong subtrees of T of depth n is finite. Therefore,

by repeated applications of Lemma 3.13, we obtain the following corollary.

Corollary 3.14. Let T be a rooted, pruned and finitely branching vector tree.

Then for every n ∈ N and every finite coloring of Str<∞(T) there is S ∈ Str∞(n,T)

such that for every vector strong subtree A of T with depthT(A) = n the set

Strh(A)+1(A,S) is monochromatic.

We are now ready to give the proof of Theorem 3.12.

Proof of Theorem 3.12. By induction on k. The case “k = 1” follows from

the strong subtree version of the Halpern–Läuchli theorem, and so let k > 1 and

assume that the result has been proved up to k. Fix a rooted, pruned and finitely

branching vector tree T and let c be a finite coloring of Strk+1(T). Recursively and

using Corollary 3.14, we select a sequence (Tn) in Str∞(T) such that: (i) T0 = T,

(ii) Tn+1 ∈ Str∞(n+ k,Tn) for every n ∈ N, and (iii) the family Strk+1(A,Tn+1)

is monochromatic for every A ∈ Strk(Tn) with depthTn(A) = n + k. For every

n ∈ N write Tn = (T
(n)
1 , . . . , T

(n)
d ) and for every i ∈ [d] set

Ri = (T
(0)
i � k) ∪

∞⋃
n=1

T
(n)
i (n+ k − 1).

Notice that R = (R1, . . . , Rd) is a vector strong subtree of T of infinite height.

Also observe that c(B) = c(C) for every B,C ∈ Strk+1(R) with B � k = C � k.
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In other words, the coloring of Strk+1(R) is reduced to a coloring of Strk(R). By

our inductive assumptions, there exists S ∈ Str∞(R) ⊆ Str∞(T) such that the set

Strk+1(S) is monochromatic. The proof of Theorem 3.12 is completed. �

3.2.2. Colorings of strong subtrees of infinite height. Let T be a rooted,

pruned and finitely branching vector tree. A subset F of Str∞(T) is called Ramsey

if for every S ∈ Str∞(T) there exists R ∈ Str∞(S) such that either Str∞(R) ⊆ F
or Str∞(R) ∩ F = ∅. It is called completely Ramsey if for every S ∈ Str∞(T) and

every A ∈ Str<∞(S) there exists R ∈ Str∞(A,S) such that either Str∞(A,R) ⊆ F
or Str∞(A,R) ∩ F = ∅. Clearly, if F is completely Ramsey, then it is Ramsey.

Using the axiom of choice one can easily construct subsets of Str∞(T) which

are not Ramsey. However, these examples are by no means “canonical” and one

expects to be able to prove that “simple” subsets of Str∞(T) are not only Ramsey

but in fact completely Ramsey. This basic intuition turns out to be correct. The

proper concept of “simplicity” in this context is related to the complexity of a given

subset of Str∞(T) with respect to an appropriate topology on Str∞(T) which we

are about to introduce.

Let

E =
{

Str∞(A,S) : S ∈ Str∞(T) and A ∈ Str<∞(S)
}

(3.7)

and define the Ellentuck topology on Str∞(T) to be the topology generated by E ,

that is, the smallest topology on Str∞(T) that contains every member of E . It is

easy to see that the family E is actually a basis for the Ellentuck topology.

We are ready to state the main result of this section. General facts about the

Baire property can be found in Appendix C.

Theorem 3.15. Let T be a rooted, pruned and finitely branching vector tree.

Then a subset of Str∞(T) is completely Ramsey if and only if it has the Baire

property in the Ellentuck topology.

Although the Ellentuck topology on Str∞(T) is somewhat exotic2, Theorem

3.15 has some consequences which refer to another, more natural, topology on the

set Str∞(T). Specifically, for every S,R ∈ Str∞(T) with S 6= R let

dT(S,R) = 2−n (3.8)

where n is the least natural number with S � n 6= R � n. Also let dT(S,S) = 0 for

every S ∈ Str∞(T). It is easy to see that dT is a metric on Str∞(T) and the metric

space (Str∞(T), dT) is separable and complete. Moreover, the family

M = {Str∞(A,T) : A is a finite vector strong subtree of T} (3.9)

is a basis for this metric topology on Str∞(T). In particular, by (3.7) and (3.9),

we see that the metric topology on Str∞(T) is coarser than the Ellentuck topology,

and as a consequence we obtain the following corollary.

Corollary 3.16. Let T be a rooted, pruned and finitely branching vector tree.

Then every C-set of (Str∞(T), dT) is completely Ramsey.

2For instance, the Ellentuck topology on Str∞(T) is neither second countable nor metrizable.
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Proof. First recall that the family of C-sets of (Str∞(T), dT) is the smallest

σ-algebra on Str∞(T) containing all metrically open sets and closed under the

Souslin operation (see Appendix C). Since every metrically open set is open in the

Ellentuck topology, by Proposition C.2 and Theorem C.3, we see that every C-set

of (Str∞(T), dT) has the Baire property in the Ellentuck topology. By Theorem

3.15, the result follows. �

The rest of this section is devoted to the proof of Theorem 3.15. The argument

is somewhat lengthy and so we will comment on it for the benefit of the reader.

After some initial reductions, Theorem 3.15 boils down to showing that every open

set in the Ellentuck topology is completely Ramsey. Let O be such a set and fix

S ∈ Str∞(T) and A ∈ Str<∞(S). Since O is open, we may find a basic open set

Str∞(B,R) which is contained in Str∞(A,S) and such that either Str∞(B,R) ⊆ O
or Str∞(B,R) ∩ O = ∅. Note that this fact barely misses to prove that the set O
is completely Ramsey, and observe that what we actually need to ensure is that

the aforementioned basic open set Str∞(B,R) can be chosen so that B = A. This

selection is the combinatorial core of the proof and is achieved by implementing, as

pigeonhole principle, the strong subtree version of the Halpern–Läuchli theorem in

a powerful method discovered by Galvin and Prikry [GR] and further developed

by Ellentuck [E]. The following definitions are the main conceptual tools.

Definition 3.17. Let T be a rooted, pruned and finitely branching vector tree.

Also let F ⊆ Str∞(T), S ∈ Str∞(T) and A ∈ Str<∞(S). We say that S accepts

A into F if Str∞(A,S) ⊆ F . We say that S rejects A from F if there is no

R ∈ Str∞(A,S) accepting A into F . Finally, we say that S decides A relative to

F if either S accepts A into F or S rejects A from F .

If the family F is understood, then we will simply say that S accepts, rejects

and decides A respectively.

We need some basic properties concerning the above notions which are gathered

in the following fact.

Fact 3.18. Let T, F , S and A be as in Definition 3.17. Also let R ∈ Str∞(S)

such that A ∈ Str<∞(R). Then the following hold.

(a) If S accepts A, then R accepts A.

(b) If S rejects A, then R rejects A.

(c) If S decides A, then R decides A in the same way that S does.

(d) There exists Y ∈ Str∞(depthS(A),S) which decides A.

Proof. Parts (a), (b) and (c) are straightforward consequences of the relevant

definitions. For part (d) notice that if S rejects A, then we may set Y = S.

Otherwise, there exists R ∈ Str∞(A,S) such that Str∞(A,R) ⊆ F . We select

Y ∈ Str∞(depthS(A),S) so that Str∞(A,Y) = Str∞(A,R). Clearly, Y is as

desired. The proof of Fact 3.18 is completed. �

We proceed with the following lemma.
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Lemma 3.19. Let T, F , S and A be as in Definition 3.17. Then there exists

Y ∈ Str∞(A,S) which decides every B ∈ Str<∞(A,Y).

Proof. By passing to a vector strong subtree of S of infinite height, we may

assume that A is an initial vector subtree of S. Hence, setting n0 = h(A), we

have A = S � n0. Recursively, we select a sequence (Yn) in Str∞(S) such that the

following conditions are satisfied.

(C1) We have that Y0 ∈ Str∞(A,S) and Y0 decides A.

(C2) For every n > 1 we have that Yn ∈ Str∞(n0 + n,Yn−1). Moreover, Yn

decides every B ∈ Str<∞(A,Yn−1) with depthYn−1
(B) = n0 + n.

The above construction can be easily carried out using part (d) of Fact 3.18. By

condition (C1), there exists Y ∈ Str∞(S) such that Y ∈ Str∞(n0 +n,Yn) for every

n ∈ N. Using conditions (C1) and (C2) and Fact 3.18, we see that Y is as desired.

The proof of Lemma 3.19 is completed. �

The heart of the proof of Theorem 3.15 lies in the following lemma.

Lemma 3.20. Let T, F , S and A be as in Definition 3.17. Assume that S re-

jects A. Then there is R ∈ Str∞(A,S) such that R rejects every B ∈ Str<∞(A,R).

Proof. By Lemma 3.19, there exists Y ∈ Str∞(A,S) which decides every

B ∈ Str<∞(A,Y). Since S rejects A, by Fact 3.18, we see that Y also rejects A.

We set n0 = h(A). Recursively, we will select a sequence (Rn) in Str∞(A,Y) such

that the following conditions are satisfied for every n ∈ N.

(C1) Setting

An =
{
A′ ∈ Str<∞(A,Rn) : depthRn

(A′) = n0 + n
}
, (3.10)

we have that Rn rejects every A′ ∈ An.

(C2) We have Rn+1 ∈ Str∞(n0 + n,Rn).

(C3) Let An be as in (3.10). Then, setting

Bn+1 =
⋃

A′∈An

{
B ∈ Str<∞(A′,Rn+1) : h(B) = h(A′) + 1

}
, (3.11)

we have that Rn+1 rejects every B ∈ Bn+1.

Assuming that the above selection has been carried out, the proof of the lemma

is completed as follows. First we observe that, by condition (C2), there exists a

unique R ∈ Str∞(A,S) such that R ∈ Str∞(n0 + n,Rn) for every n ∈ N. We

claim that R is as desired. Indeed, let A′ ∈ Str<∞(A,R) be arbitrary. Then

depthR(A′) = n0 + n for some n ∈ N. Since R ∈ Str∞(n0 + n,Rn) we have

A′ ∈ An. Hence, by condition (C1) and Fact 3.18, we conclude that R rejects A′.

It remains to carry out the recursive selection. First we set R0 = Y . Since

A0 = {A} and Y rejects A, we see that with this choice condition (C1) is satisfied.

The other conditions are superfluous for “n = 0” and so the first step of the

recursive selection is completed. Let n ∈ N and assume that R0, . . . ,Rn have

been selected so that the above conditions are satisfied. Recall that Y decides

every B ∈ Str<∞(A,Y). Since Rn ∈ Str∞(A,Y), by Fact 3.18, we see that every
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B ∈ Str<∞(A,Rn) is either accepted or rejected by Rn. Hence, by Corollary 3.14

and Fact 3.18, we may select Z ∈ Str∞(n0 + n,Rn) such that for every A′ ∈ An
we have that either: (i) Z accepts every B ∈ Str<∞(A′,Z) with h(B) = h(A′) + 1,

or (ii) Z rejects every B ∈ Str<∞(A′,Z) with h(B) = h(A′) + 1. We claim that

alternative (ii) is satisfied for every A′ ∈ An. Indeed, let A′ ∈ An and assume that

for A′ the first alternative holds true. Then for every X ∈ Str∞(A′,Z) we have

that Z accepts X � (h(A′) + 1) which implies, in particular, that X ∈ F . Thus we

see that Str∞(A′,Z) ⊆ F , which is equivalent to saying that Z accepts A′. Since

Z ∈ Str∞(Rn), this contradicts our inductive assumption that Rn rejects A′.

We set Rn+1 = Z and we claim that with this choice conditions (C1), (C2)

and (C3) are satisfied. To this end notice, first, that Rn+1 ∈ Str∞(n0 + n,Rn).

Moreover, by the discussion in the previous paragraph, we have that Rn+1 rejects

every member of Bn+1. Therefore, we only need to check that condition (C1) is

satisfied. Let A′ ∈ An+1 be arbitrary. Looking at the initial vector subtree of A′ of

height h(A′)− 1, we see that there exists a unique i ∈ [n+ 1] such that A′ belongs

to Bi. If i = n + 1, then we are done. Otherwise, by our inductive assumptions,

we have that Ri rejects A′. Since Rn+1 ∈ Str∞(Ri), by Fact 3.18, we conclude

that Rn+1 rejects A′. The recursive selection is completed, and as we have already

indicated, the proof of Lemma 3.20 is also completed. �

We are now ready to give the proof of Theorem 3.15.

Proof of Theorem 3.15. We emphasize that in what follows all topological

notions refer to the Ellentuck topology. For every subset X of Str∞(T) by X and

Int(X ) we denote the closure and the interior of X respectively.

The proof is based on a series of claims. We start with the following.

Claim 3.21. If X is completely Ramsey, then X \ Int(X ) is nowhere dense.

Proof of Claim 3.21. Assume not. It is then possible to find S ∈ Str∞(T)

and A ∈ Str<∞(S) such that Str∞(A,S) ⊆ X \ Int(X ). The set X is completely

Ramsey, and so there exists R ∈ Str∞(A,S) such that either Str∞(A,R) ⊆ X or

Str∞(A,R)∩X = ∅. If the second alternative holds true, then Str∞(A,R)∩X = ∅
which implies that Str∞(A,R)∩X \ Int(X ) = ∅. Note that this is impossible, since

Str∞(A,R) ⊆ Str∞(A,S) ⊆ X \ Int(X ). It follows that the first alternative must

be satisfied, that is, Str∞(A,R) ⊆ X . But then Str∞(A,R) ⊆ Int(X ) which also

implies that Str∞(A,R) ∩ X \ Int(X ) = ∅. Having arrived to a contradiction, the

proof of Claim 3.21 is completed. �

We proceed with the following crucial claim.

Claim 3.22. Every open set is completely Ramsey.

Proof of Claim 3.22. Fix an open subset O of Str∞(T). Let S ∈ Str∞(T)

and A ∈ Str<∞(S) be arbitrary. We need to find R ∈ Str∞(A,S) such that either

Str∞(A,R) ⊆ O or Str∞(A,R) ∩ O = ∅.
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We set n0 = h(A). By Fact 3.18, we may assume that A = S � n0 and

that S decides A relative to O. If S accepts A into O, then we are done. Oth-

erwise, by Lemma 3.20, there exists R ∈ Str∞(A,S) such that R rejects every

B ∈ Str<∞(A,R) from O. We will show that Str∞(A,R) ∩ O = ∅. Indeed, let

X ∈ Str∞(A,R) be arbitrary. Also let n ∈ N and set Bn = X � (n0 + n). Notice

that R rejects Bn fromO since Bn ∈ Str<∞(A,R). This implies, in particular, that

Str∞(n0 + n,X) = Str∞(Bn,X) * O and so there is Yn ∈ Str∞(n0 + n,X) such

that Yn /∈ O. In this way we select a sequence (Yn) in the complement of O such

that Yn ∈ Str∞(n0 +n,X) for every n ∈ N. The family {Str∞(n+n0,X) : n ∈ N}
is a neighborhood basis for X. Hence, the sequence (Yn) converges to X. Since

the complement of O is closed, we conclude that X /∈ O which implies, of course,

that Str∞(A,R) ∩ O = ∅. The proof of Claim 3.22 is completed. �

It is convenient to introduce the following terminology. We say that a subset

N of Str∞(T) is Ramsey null if for every S ∈ Str∞(T) and every A ∈ Str<∞(S)

there exists R ∈ Str∞(A,S) such that Str∞(A,R) ∩N = ∅.
Also recall that a family I of subsets of a set X is called a σ-ideal provided

that: (i) for every A ∈ I and every B ⊆ A we have B ∈ I, and (ii) for every

sequence (An) in I we have
⋃
nAn ∈ I.

Claim 3.23. The family of Ramsey null subsets of Str∞(T) is a σ-ideal.

Proof of Claim 3.23. It is easy to see that if N is Ramsey null, then so is

every subset of N . Therefore, it is enough to prove that the family of Ramsey null

subsets of Str∞(T) is closed under countable unions. To this end, let (Nn) be a

sequence of Ramsey null sets and denote by N their union. Also let S ∈ Str∞(T)

and A ∈ Str<∞(S) be arbitrary. We set n0 = h(A). Notice that we may assume

that S � n0 = A. We need to find R ∈ Str∞(A,S) such that Str∞(A,R) ∩N = ∅.
Recursively and using our assumption that every set Nn is Ramsey null, we select a

sequence (Rn) in Str∞(A,S) with R0 = S and satisfying the following conditions

for every n ∈ N.

(C1) We have Rn+1 ∈ Str∞(n0 + n,Rn).

(C2) For every B ∈ Str<∞(A,Rn) with depthRn
(B) = n0 + n we have that

Str∞(B,Rn+1) ∩Nn = ∅.
By (C1), there exists R ∈ Str∞(A,S) such that R ∈ Str∞(n0 + n,Rn+1) for every

n ∈ N. We will show that Str∞(A,R)∩N = ∅. Indeed, let X ∈ Str∞(A,R). Also

let n ∈ N be arbitrary and set C = X � (n0 + n). By our construction, we have

Str∞(C,Rn+1) ∩ Nn = ∅. This yields, in particular, that X /∈ Nn. Since n was

arbitrary, we see that X /∈ N which implies, of course, that Str∞(A,R∞)∩N = ∅.
The proof of Claim 3.23 is completed. �

The following claim is the final step of the argument.

Claim 3.24. A subset of Str∞(T) is meager if and only if it is Ramsey null.

Proof of Claim 3.24. LetM be a meager subset of Str∞(T). We will show

that M is Ramsey null. By Claim 3.23, we may assume that M is nowhere
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dense. Let S ∈ Str∞(T) and A ∈ Str<∞(S) be arbitrary. By Claim 3.22, the

set M is completely Ramsey. Hence, there exists R ∈ Str∞(A,S) such that either

Str∞(A,R) ⊆ M or Str∞(A,R) ∩M = ∅. Since M is nowhere dense, we have

Int
(
M
)

= ∅. This implies that Str∞(A,R) ∩M = ∅ and so Str∞(A,R) ∩M = ∅.
Conversely, let N be a Ramsey null subset of Str∞(T). We will show that N

is nowhere dense in Str∞(T). Indeed, if not, then there exist S ∈ Str∞(T) and

A ∈ Str<∞(S) such that Str∞(A,S) ⊆ N . Since N is Ramsey null, we may find

R ∈ Str∞(A,S) such that Str∞(A,R) ∩ N = ∅. This, of course, implies that

Str∞(A,R) ∩N = ∅, a contradiction. The proof of Claim 3.24 is completed. �

We are now ready to complete the proof of Theorem 3.15. First we observe that,

by Claim 3.21, every completely Ramsey set has the Baire property. Conversely

assume that X has the Baire property and write X = O4M where O is open

and X is meager. Let S ∈ Str∞(T) and A ∈ Str<∞(S) be arbitrary. By Claim

3.24, there exists R ∈ Str∞(A,S) such that Str∞(A,R) ∩ M = ∅. Next, by

Claim 3.22, we may select W ∈ Str∞(A,R) such that either Str∞(A,W) ⊆ O
or Str∞(A,W) ∩ O = ∅. The first case implies that Str∞(A,W) ⊆ X while the

second case yields that Str∞(A,W) ∩ X = ∅. Therefore, the set X is completely

Ramsey, and so, the entire proof of Theorem 3.15 is completed. �

3.2.3. Applications. Let T be a rooted, pruned and finitely branching vector

tree. Also let k be a positive integer. With every finite coloring c of
(N
k

)
we associate

a finite coloring C of Strk(T) defined by the rule

C(A) = c
(
LT(A)

)
.

Moreover, notice that for every S ∈ Str∞(T) the map

Strk(S) 3 A 7→ LT(A) ∈
(
LT(S)

k

)
is a surjection. Taking into account these remarks, we see that Theorem 3.12

implies the infinite version of Ramsey’s classical theorem [Ra]. Using essentially

the same arguments, we also see that Theorem 3.15 implies Ellentuck’s theorem [E]

on definable partitions of infinite subsets of N.

The next result is an extension of Theorem 3.12 in the spirit of the work of

Nash-Williams [NW] and Galvin [Ga1].

Corollary 3.25. Let T be a rooted, pruned and finitely branching vector tree,

and F a family of vector strong subtrees of T of finite height. Then there exists

S ∈ Str∞(T) such that either: (i) Str<∞(S)∩F = ∅, or (ii) for every R ∈ Str∞(S)

there exists n ∈ N such that R � n ∈ F .

Proof. We set O =
⋃

A∈F Str∞(A,T) and we observe that O is open both

in the Ellentuck and in the metric topology of Str∞(T). By Theorem 3.15, there

exists S ∈ Str∞(T) such that either Str∞(S) ∩ O = ∅ or Str∞(S) ⊆ O. Notice

that every vector strong subtree of S of finite height is the initial vector subtree of

some vector strong subtree of S of infinite height. Therefore, the first alternative
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is equivalent to saying that Str<∞(S) ∩F = ∅. The proof of Corollary 3.25 is thus

completed. �

Our last application deals with colorings of infinite chains of dyadic trees. We

will use as a model the tree [2]<N, henceforth denoted for simplicity by D. Given

a subset S of D, we denote by Chains∞(S) the set of all infinite chains of D which

are contained in S. Notice that the set Chains∞(S) can be identified with the set

of all sequences (sn) in S such that sn @ sn+1 for every n ∈ N. In particular, if

D is endowed with the discrete topology and DN with the product topology, then

Chains∞(D) is a closed (hence, Polish) subspace DN. All topological notions below

refer to the relative topology on Chains∞(D).

Now let C be a definable subset of Chain∞(D). We address the question

whether there exists a “nice” subtree S of D such that either Chains∞(S) ⊆ C
or Chains∞(S)∩ C = ∅. It is initially unsettling to observe that this problem has a

negative answer in the category of strong subtrees of D. Indeed, color an infinite

chain (sn) of D red if s0
a1 v s1; otherwise, color it blue. Notice that this is a

clopen partition of Chains∞(D). However, every strong subtree of D of infinite

height contains chains of both colors.

It turns out that the right category for studying this problem is that of regular

dyadic subtrees of D (see [Ka2]). Recall that a subtree R of D is said to be regular

dyadic provided that: (i) every t ∈ R has exactly two immediate successors in R,

and (ii) for every n ∈ N there exists m ∈ N such that the n-level R(n) of R is

contained in T (m).

We have the following theorem, essentially due to Stern [St] (see also [Paw]).

Theorem 3.26. Let C ⊆ Chains∞(D) be a C-set. Then there exists a regular

dyadic subtree R of D such that either Chains∞(R) ⊆ C or Chains∞(R) ∩ C = ∅.

Proof. In spite of the examples mentioned above, we will reduce the result

to Corollary 3.16. To this end, first we will “extend” C to a color of Str∞(D).

Specifically, for every S ∈ Str∞(D) let (sn) be the leftmost branch of S. (Recall

that the leftmost branch of S is the unique sequence (sn) such that for every n ∈ N
the node sn is the lexicographically least element of the n-level S(n) of S.) Notice

that the leftmost branch of S is an infinite chain of D. Also observe that the

map Φ: Str∞(D) → Chains∞(D) which assigns to each S ∈ Str∞(D) its leftmost

branch, is continuous when Str∞(D) is equipped with the metric topology. By

Proposition C.5, we see that Φ−1(C) is a C-set with respect to the metric topology

of Str∞(D). Therefore, by Corollary 3.16, there exists a strong subtree S of D of

infinite height such that either Str∞(S) ⊆ Φ−1(C) or Str∞(S)∩Φ−1(C) = ∅. Notice

that this monochromatic subtree is not the desired one since the image of Str∞(S)

under the map Φ is not onto Chains∞(S).

However, this is not a serious problem and can be easily bypassed if we appro-

priately “trim” the tree S. Specifically, let

R0 = {∅} ∪
∞⋃
n=1

{
(a0, . . . , a2n−1) ∈ [2]2n : ai = 1 if i is even

}
. (3.12)
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Also let IS : D → S be the canonical isomorphism associated with the homogeneous

tree S (see Definition 1.19) and define R = IS(R0). Observe that R is a regular

dyadic subtree of D. Moreover, note that every infinite chain of R is the leftmost

branch of a strong subtree of S. It follows, in particular, that Chains∞(R) ⊆ C if

Str∞(S) ⊆ Φ−1(C), while Chains∞(R)∩C = ∅ if Str∞(S)∩Φ−1(C) = ∅. The proof

of Theorem 3.26 is completed. �

3.3. Homogeneous trees

In this section we study colorings of strong subtrees of a homogeneous tree of

finite, but sufficiently large, height. Our main objective is to obtain quantitative

information for the corresponding “Milliken numbers” for this important special

class of trees.

To this end we will not rely on the strong subtree version of the Halpern–Läuchli

theorem as we did in Section 3.2. Instead, we will use the following finite version

of Theorem 3.1 which is, essentially, a consequence of the Hales–Jewett theorem.

The relation between the Hales–Jewett theorem and the Halpern–Läuchli theorem

for homogeneous trees is well understood and can be traced back to the work of

Carlson and Simpson [CS].

Proposition 3.27. For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2

for all i ∈ [d] and every pair `, r of positive integers there exists a positive integer

N with the following property. If T = (T1, . . . , Td) is a vector homogeneous tree

with bTi = bi for all i ∈ [d] and h(T) > N, then for every r-coloring of ⊗T there

exists S ∈ Str`(T) such that the level product ⊗S of S is monochromatic. The least

positive integer with this property will be denoted by HL(b1, . . . , bd | `, r).
Moreover, there exists a primitive recursive function φ : N3 → N belonging to

the class E5 such that

HL(b1, . . . , bd | `, r) 6 φ
( d∏
i=1

bi, `, r
)

(3.13)

for every d > 1, every b1, . . . , bd > 2 and every `, r > 1.

Proof. We have already pointed out that the result is a consequence of the

Hales–Jewett theorem, but we will give a streamlined proof using Proposition 2.25

instead. Specifically, we will show that

HL(b1, . . . , bd | `, r) 6 GR
( d∏
i=1

bi, `, 1, r
)
. (3.14)

Clearly, by Proposition 2.25, this is enough to complete the proof.

To see that the estimate in (3.14) is satisfied, fix the “dimension” d and the

parameters b1, . . . , bd, `, r. Set N = GR
(∏d

i=1 bi, `, 1, r
)

and let T = (T1, . . . , Td)

be a vector homogeneous tree with bTi = bi for all i ∈ [d] and h(T) > N . Notice

that we may assume that Ti = [bi]
<N for every i ∈ [d].

The main observation of the proof is that we can “code” the level product of T

with words over the alphabet A = [b1]× · · · × [bd]. Specifically, for every i ∈ [d] let
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πi : A→ [bi] be the natural projection. We extend πi to a map π̄i : A<N → [bi]
<N

by the rule π̄i(∅) = ∅ and π̄i
(
(a0, . . . , an−1)

)
=
(
πi(a0), . . . , πi(an−1)

)
for every

n ∈ [N − 1] and every a0, . . . , an−1 ∈ A. Finally, we define I : A<N → ⊗T by

I(w) =
(
π̄1(w), . . . , π̄d(w)

)
for every w ∈ A<N . It is easy to see that the map I is a bijection. Moreover, for

every natural number n < N we have I(An) = [b1]n × · · · × [bd]
n.

Now let c : ⊗T → [r] be a coloring. We will associate with c an r-coloring C

of Subsp1(AN ). First we define a map Φ: Subsp1(AN ) → A<N as follows. Let L

be a combinatorial line of AN and let X be its wildcard set. We select w ∈ L and

we set Φ(L) = w � min(X) ∈ A<N . Notice that Φ(L) is independent of the choice

of w. Next, we define C : Subsp1(AN )→ [r] by C = c ◦ I ◦ Φ. By the choice of N ,

there exists W ∈ Subsp`(AN ) such that the set Subsp1(W ) is monochromatic with

respect to C. Let X0, . . . , X`−1 be the wildcard sets of W and set

S =

`−1⋃
i=0

{w � min(Xi) : w ∈W}.

Also for every i ∈ [d] let Si = π̄i(S) and set S = (S1, . . . , Sd). Notice that

Φ
(
Subsp1(W )

)
= S, I(S) = ⊗S and S ∈ Str`(T). Moreover, by the definition

of the coloring C and the choice of W , the level product of S is monochromatic

with respect to c. This shows that the estimate in (3.14) is satisfied, and the proof

of Proposition 3.27 is completed. �

We are now ready to state the main result of this section.

Theorem 3.28. For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for

all i ∈ [d] and every triple `, k, r of positive integers with ` > k there exists a positive

integer N with the following property. If T = (T1, . . . , Td) is a vector homogeneous

tree with bTi = bi for all i ∈ [d] and h(T) > N, then for every r-coloring of Strk(T)

there exists S ∈ Str`(T) such that the set Strk(S) is monochromatic. The least

positive integer with this property will be denoted by Mil(b1, . . . , bd | `, k, r).

Moreover, for every integer d > 1 the numbers Mil(b1, . . . , bd | `, k, r) are upper

bounded by a primitive recursive function belonging to the class E7.

The proof of Theorem 3.28 proceeds by induction on k and follows the general

scheme we discussed in Section 2.1. The main tool is Lemma 3.30 below, which

will enable us to “simplify” a given finite coloring of Strk(T) by passing to a vector

strong subtree of T of sufficiently large height.

We start with the following lemma.

Lemma 3.29. Let d > 1 and let b1, . . . , bd, k, r, n,M be positive integers with

bi > 2 for all i ∈ [d] and n > k. Also let T = (T1, . . . , Td) be a vector homogeneous

tree such that bTi = bi for all i ∈ [d] and c : Strk+1(T)→ [r] a coloring. We set

q = q(b1, . . . , bd, k, n) = |{A ∈ Strk(T) : depthT(A) = n}|. (3.15)
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Assume that

h(T) > n+ φ
( d∏
i=1

b
bni
i ,M, rq

)
(3.16)

where φ : N3 → N is as in Proposition 3.27. Then there exists W ∈ Strn+M (n,T)

such that the set Strk+1(A,W) is monochromatic for every A ∈ Strk(W) with

depthW(A) = n.

Proof. It is similar to the proof of Lemma 3.13. Unfortunately the notation

is more cumbersome since we need to work with vector trees. However, the general

strategy is identical.

We proceed to the details. Let i ∈ [d] be arbitrary and fix an enumeration

{ti1, . . . , tibni } of the n-level Ti(n) of Ti. For every j ∈ [bni ] let Sij = SuccTi(t
i
j) and

set Si = (Si1, . . . , S
i
bni

). Observe that bSij = bi for every j ∈ [bni ]. Also let

S = (S1, . . . ,Sd) = (S1
1 , . . . , S

1
bni
, . . . , Sd1 , . . . , S

d
bnd

)

and notice that

h(S) = h(T)− n
(3.16)

> φ
( d∏
i=1

b
bni
i ,M, rq

)
(3.13)

> HL
(
b1, . . . , b1︸ ︷︷ ︸
bn1−times

, . . . , bd, . . . , bd︸ ︷︷ ︸
bnd−times

|M, rq
)
. (3.17)

Next, for every A ∈ Strk(T) with depthT(A) = n and every s ∈ ⊗S we define

E(A, s) ∈ Strk+1(A,T) as follows. Write A = (A1, . . . , Ad) and s = (s1, . . . , sd)

where si = (si1, . . . , s
i
bni

) ∈ ⊗Si for every i ∈ [d]. For every i ∈ [d] and every

t ∈ Ai(k − 1) let

I(t) =
{
j ∈ [bni ] : tij ∈ ImmSuccTi(t)

}
and set

E(Ai, si) = Ai ∪
{
sij : j ∈ I(t) for some t ∈ Ai(k − 1)

}
.

Finally, we define E(A, s) =
(
E(A1, s1), . . . , E(Ad, sd)

)
.

Now set F = {A ∈ Strk(T) : depthT(A) = n}. Observe that |F| = q by the

choice of q in (3.15). Also let C : ⊗ S→ [r]F be defined by the rule

C(s) =
〈
c
(
E(A, s)

)
: A ∈ F

〉
.

By (3.17), there exists a vector strong subtree R of S with h(R) = M such that

⊗R is monochromatic with respect to C. Notice that R is of the form

R = (R1, . . . ,Rd) = (R1
1, . . . , R

1
bni
, . . . , Rd1, . . . , R

d
bnd

)

where Rij is a strong subtree of Sij for every i ∈ [d] and every j ∈ [bni ].

For every i ∈ [d] let

Wi = (Ti � n) ∪
bni⋃
j=1

Rij .

We set W = (W1, . . . ,Wd) and we claim that W is as desired. Indeed, first observe

that W ∈ Strn+M (n,T). Next, let A ∈ Strk(T) with depthT(A) = n be arbitrary.
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Note that A ∈ F and Strk+1(A,W) = {E(A, s) : s ∈ ⊗R}. By the definition

of C and the choice of R, we conclude that Strk+1(A,W) is monochromatic with

respect to the coloring c. The proof of Lemma 3.29 is completed. �

We need to introduce some numerical invariants. For every positive integer d

we define a function gd : Nd+4 → N recursively by the rulegd(b, `, k, r, 0) = 1,

gd(b, `, k, r, j + 1) = φ
(∏d

i=1 b
b
|`−j−1|
i
i , gd(b, `, k, r, j), r

2
∑d
i=1 b

`
i

)
+ 1

(3.18)

where b = (b1, . . . , bd) ∈ Nd with bi > 2 for all i ∈ [d], `, k, r are positive integers

and φ : N3 → N is as in Proposition 3.27. If bi 6 1 for some i ∈ [d] or if some of

the parameters `, k, r happens to be zero, then we set gd(b1, . . . , bd, `, k, r, j) = 0.

Since φ belongs to the class E5, we see that the function gd is upper bounded by

a primitive recursive function belonging to the class E6. Note that this bound is

uniform with respect to d.

As we have already pointed out, the following lemma is the main step towards

the proof of Theorem 3.28.

Lemma 3.30. Let d > 1 and let b1, . . . , bd, `, k, r be positive integers with bi > 2

for all i ∈ [d] and ` > k + 1. Also let T = (T1, . . . , Td) be a vector homogeneous

tree such that bTi = bi for all i ∈ [d] and

h(T) = k − 1 + gd(b1, . . . , bd, `, k, r, `− k). (3.19)

Finally, let c : Strk+1(T) → [r] be a coloring. Then there exists S ∈ Str`(T) such

that c(B) = c(C) for every B,C ∈ Strk+1(S) with B � k = C � k.

Proof. For every n ∈ {k−1, . . . , `−1} let Mn = gd(b1, . . . , bd, `, k, r, `−1−n).

Notice that 1 = M`−1 6Mn 6Mk−1 = h(T)− (k − 1) and if n > k, then

Mn−1 = φ
( d∏
i=1

b
bni
i ,Mn, r

2
∑d
i=1 b

`
i
)

+ 1. (3.20)

Recursively, we will select a sequence (Sn)`−1
n=k−1 of vector strong subtrees of T with

Sk−1 = T such that the following conditions are satisfied.

(C1) We have h(Sn) = n+Mn.

(C2) If n > k, then Sn ∈ Strn+Mn(n,Sn−1).

(C3) If n > k, then for every A ∈ Strk(Sn) with depthSn(A) = n the set

Strk+1(A,Sn) is monochromatic.

Let n ∈ {k, . . . , `− 1} and assume that the vector trees Sk−1, . . . ,Sn−1 have been

selected. Set q = |{A ∈ Strk(Sn−1) : depthSn−1
(A) = n}| and notice that

d∑
i=1

b`i >
d∑
i=1

bni > log2 q. (3.21)
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By Corollary A.4, we may assume that for every b,m, r, r′ ∈ N with r > r′ we have

φ(b,m, r) > φ(b,m, r′). Hence,

h(Sn−1)
(C1)
= (n− 1) +Mn−1

(3.20)
= n+ φ

( d∏
i=1

b
bni
i ,Mn, r

2
∑d
i=1 b

`
i
)

(3.21)

> n+ φ
( d∏
i=1

b
bni
i ,Mn, r

q
)
. (3.22)

By Lemma 3.29, there exists a vector strong subtree Sn of Sn−1 satisfying conditions

(C1), (C2) and (C3). The recursive selection is completed.

We set S = S`−1 and we claim that S is as desired. To this end notice, first, that

h(S) = ` − 1 + M`−1 = `. Let B,C ∈ Strk+1(S) with B � k = C � k be arbitrary.

Set A = B � k = C � k and n = depthS(A). Observe that n ∈ {k, . . . , ` − 1}.
By condition (C2), we see that S ∈ Str`(n,Sn). This implies, in particular, that

A ∈ Strk(Sn), depthSn(A) = n and B,C ∈ Strk+1(A,Sn). By condition (C3), we

conclude that c(B) = c(C) and the proof of Lemma 3.30 is completed. �

We are ready to give the proof of Theorem 3.28.

Proof of Theorem 3.28. Fix the positive integer d. Observe that

Mil(b1, . . . , bd | `, 1, r
)

= HL(b1, . . . , bd | `, r). (3.23)

On the hand, by Lemma 3.30, we see that

Mil(b | `, k + 1, r) 6 k − 1 + gd
(
b,Mil(b | `, k, r), k, r,Mil(b | `, k, r)− k

)
(3.24)

for every b = (b1, . . . , bd) ∈ Nd with bi > 2 for all i ∈ [d] and every triple `, k, r of

positive integers with ` > k + 1. Now recall that the function gd is upper bounded

by a primitive recursive function belonging to the class E6. Hence, by (3.23), (3.24)

and Proposition 3.27, we conclude that the numbers Mil(b1, . . . , bd | `, k, r
)

are upper

bounded by a primitive recursive function in the class E7. The proof of Theorem

3.28 is completed. �

3.4. Notes and remarks

3.4.1. Theorem 3.2 was discovered in 1966 as a result needed for the construc-

tion of a model of set theory in which the Boolean prime ideal theorem is true but

not the full axiom of choice (see [HLe]). The original proof was based on tools from

logic and somewhat later a second proof was found by Harrington (unpublished)

using set theoretic techniques. Purely combinatorial proofs were given much later

by Argyros, Felouzis and Kanellopoulos [AFK], and by Todorcevic [To].

Theorem 3.1 was first formulated in the late 1960s by Laver who also obtained

in [L] an extension of this result that concerns partitions of products of infinitely

many trees. Yet another proof of Theorem 3.1 was given by Milliken [M2] using

methods developed by Halpern and Läuchli in [HL].
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3.4.2. As we have already mentioned, all the results in Subsections 3.2.1 and

3.2.2 are due to Milliken. Milliken also addressed the natural problem of getting

quantitative refinements of Theorem 3.12 (see, in particular, [M2, Section 5]). In

this direction, the primitive recursive bounds obtained by Theorem 3.28 are new

and encompass all cases considered by Milliken.

We also note that Theorem 3.15 is naturally placed in the general context

of topological Ramsey spaces. This theory, initiated by Carlson [C] and further

developed by Todorcevic [To], is an extension of the works of Galvin and Prikry

[GP], and Ellentuck [E].

3.4.3. Besides the work of Milliken [M2, M3] and Stern [St], there is a large

number of results in the literature dealing with Ramsey properties of trees and

perfect sets of reals. Examples include the work of Galvin [Ga2] and Blass [B1] on

colorings of finite subsets of the reals, the work of Louveau, Shelah and Veličković

[LSV] on colorings of “rapidly increasing” sequences of reals, and the work of

Kanellopoulos [Ka2] on colorings of “rapidly increasing” dyadic trees. These results

are based on the strong subtree version of the Halpern–Läuchli theorem and can

be derived from Milliken’s tree theorem arguing as in the proof of Theorem 3.26.





CHAPTER 4

Variable words

4.1. Carlson’s theorem

The central theme of this chapter is the study of Ramsey properties of sequences

of variable words. Most of the results that we present can be roughly classified as

infinite-dimensional extensions of the Hales–Jewett theorem and its consequences,

though there are finite-dimensional phenomena in this context not covered by the

analysis in Chapter 2 (see, in particular, Section 4.3). The present section is entirely

devoted to the proof of the following theorem due to Carlson [C]. General facts

about extracted variable words can be found in Section 1.4.

Theorem 4.1. Let A be a finite alphabet with |A| > 2 and w = (wn) a sequence

of variable words over A. Then for every finite coloring of the set EV[w] of all

extracted variable words of w there exists an extracted subsequence v = (vn) of w

such that the set EV[v] is monochromatic.

Carlson’s theorem is, arguably, one of the finest results in Ramsey theory. It

unifies and extends several strong results, including the Carlson–Simpson theorem,

Hindman’s theorem and many more. We present in detail a number of its conse-

quences in Section 4.2.

We also note that no combinatorial proof of Carlson’s theorem has been found

so far1 and all known proofs are based on the use of ultrafilters and/or methods

from topological dynamics. Proofs of this sort were first discovered by Galvin and

Glazer. This line of research was subsequently further developed by several authors

and is now an active part of Ramsey theory. We review this theory, and in particular

those tools needed for the proof of Carlson’s theorem, in Appendix D.

Proof of Theorem 4.1. We follow the proof from [HS]. We fix a letter x

not belonging to A which we view as a variable, and we set S = (A ∪ {x})<N.

Notice that the set S equipped with the operation of concatenation is a semigroup.

Therefore, by Proposition D.5, the space βS of all ultrafilters on S equipped with

the binary operation a defined by

R ∈ VaW ⇔ (Vv)(Ww) [vaw ∈ R]

is a compact semigroup. We recall that a basic open set of βS is of the form

(R)βS = {V ∈ βS : R ∈ V} for some R ⊆ S.

1We remark, however, that most of the consequences of Carlson’s theorem can be proved by

purely combinatorial means.
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We fix a sequence w = (wn) of variable words over A. For every m ∈ N let

Cm = E[(wn)∞n=m], Vm = EV[(wn)∞n=m] and Sm = Cm ∪ Vm (4.1)

and define

γC =

∞⋂
m=0

(Cm)βS , γV =

∞⋂
m=0

(Vm)βS and γS =

∞⋂
m=0

(Sm)βS . (4.2)

We have the following claim.

Claim 4.2. The following hold.

(a) The spaces γS and γC are compact subsemigroups of βS. Moreover, γV

is a two-sided ideal of γS.

(b) For every a ∈ A the semigroup homomorphism S 3 v 7→ v(a) ∈ S (with

the convention that v(a) = v if v ∈ A<N) is extended to a continuous

homomorphism Ta : γS → γC which is the identity on γC.

Proof of Claim 4.2. (a) As in Appendix D, for every R ⊆ S by C`βS(R)

we denote the closure of the set eS(R) = {eS(r) : r ∈ R} in βS. By (D.2), we

have C`βS(R) = (R)βS for every R ⊆ S. Hence, the family {(Sm)βS : m ∈ N} is

a decreasing sequence of nonempty closed subsets of βS which implies that the set

γS =
⋂∞
m=0(Sm)βS is a nonempty compact subset of βS. Arguing similarly we see

that γC and γV are both nonempty compact subsets of βS.

We proceed to show that γS is a subsemigroup of βS. Let V,W ∈ γS be

arbitrary. Notice that

VaW ∈ γS ⇔ (∀m ∈ N) [Sm ∈ VaW]. (4.3)

Therefore, it is enough to prove that Sm ∈ VaW for every m ∈ N. We first observe

that

(∀m ∈ N)(∀v ∈ Sm)(∃` ∈ N) [S` ⊆ {w ∈ S : vaw ∈ Sm}]. (4.4)

Indeed, let m ∈ N and v ∈ Sm. Then v ∈ E[(wn)`−1
n=m] ∪ EV[(wn)`−1

n=m] for some

` > m + 1. Clearly vaS` ⊆ Sm and so S` ⊆ {w ∈ S : vaw ∈ Sm}. Since S` ∈ W,

we see that {w ∈ S : vaw ∈ Sm} ∈ W. Hence,

Sm ⊆ {v ∈ S : {w ∈ S : vaw ∈ Sm} ∈ W}.

This implies that {v ∈ S : {w ∈ S : vaw ∈ Sm} ∈ W} ∈ V which is equivalent to

saying that Sm ∈ VaW.

With identical arguments we see that γC is a compact subsemigroup of βS.

Therefore, the proof of this part of the claim will be completed once we show that

γV is a two-sided ideal of γS. So let V ∈ γV and W ∈ γS. Arguing as in the proof

of (4.4), we see that

(∀m ∈ N)(∀v ∈ Vm)(∃` ∈ N) [S` ⊆ {w ∈ S : vaw ∈ Vm}] (4.5)

which is easily seen to imply that Vm ∈ VaW for every m ∈ N. This shows, of

course, that VaW ∈ γV . Conversely notice that

(∀m ∈ N)(∀w ∈ Sm)(∃` ∈ N) [V` ⊆ {v ∈ S : wav ∈ Vm}]. (4.6)
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This yields that Vm ∈ WaV for every m ∈ N and so WaV ∈ γV . Thus γV is a

two-sided ideal of γS.

(b) Fix a ∈ A. By Proposition D.9, there exists a unique continuous semigroup

homomorphism Ta : βS → βS such that Ta(v) = v(a) for every v ∈ S. Let W ∈ γS
and recall that Ta(W) = {X ⊆ S : T−1

a (X) ∈ W}. Also let m ∈ N be arbitrary. It

is easy to see that Sm ⊆ T−1
a (Cm). Since Sm ∈ W, we have T−1

a (Cm) ∈ W. Hence,

Cm ∈ Ta(W) for every m ∈ N which implies that Ta(W) ∈ γC.

Now let W ∈ γC. We will show that Ta(W) = W. By the maximality of

ultrafilters, it is enough to prove that X ∈ Ta(W) for every X ∈ W. To this end,

let X ∈ W. Set Y = X ∩ C0 and notice that Y ∈ W. Moreover, Y ⊆ T−1
a (Y ) and

so T−1
a (Y ) ∈ W which is equivalent to saying that Y ∈ Ta(W). Since Y ⊆ X we

conclude that X ∈ Ta(W). The proof of Claim 4.2 is completed. �

The following claim is the main step of the proof.

Claim 4.3. There exists an idempotent V ∈ γV such that for every a ∈ A we

have Ta(V)
aV = VaTa(V) = V.

Proof of Claim 4.3. The space γC is a compact semigroup on its own.

Hence, by Lemma D.11 and Proposition D.12, there exists a minimal idempotent

W of γC. Note thatW is also an idempotent of γS. Next recall that, by Claim 4.2,

γV is a two-sided ideal of γS. Therefore, by Corollary D.15, there exists an idem-

potent V ∈ γV with V 4 W. This implies, in particular, that WaV = VaW = V.

Fix a ∈ A. Since Ta(W) =W we have

Ta(V) = Ta(WaV) = Ta(W)aTa(V) =WaTa(V) (4.7)

and

Ta(V) = Ta(VaW) = Ta(V)aTa(W) = Ta(V)aW. (4.8)

Moreover,

Ta(V) = Ta(VaV) = Ta(V)aTa(V). (4.9)

It follows that Ta(V) is an idempotent of γC and Ta(V) 4 W. The ultrafilter W
is a minimal idempotent of γC and so Ta(V) = W. Hence, Ta(V)aV = WaV = V
and VaTa(V) = VaW = V. The proof of Claim 4.3 is completed. �

We proceed with the following claim.

Claim 4.4. Let V be as in Claim 4.3. Also let X ∈ V. Then there exists an

extracted subsequence v of w such that EV[v] ⊆ X.

Proof of Claim 4.4. Since V ∈ γV and EV[w] = EV[(wn)∞n=0] = V0 ∈ V,

we may assume that V consists of subsets of EV[w]. Let Y ∈ V be arbitrary. By

Claim 4.3, for every a ∈ A we have Ta(V)aV = VaTa(V) = V which implies that

(Vv)(Vu)(∀a ∈ A) [v(a)au ∈ Y ∧ vau(a) ∈ Y ].

On the other hand, we have VaV = V and so

(Vv)(Vu) [v ∈ Y ∧ u ∈ Y ∧ vau ∈ Y ].
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Since EV[(v, u)] = {v(a)au : a ∈ A} ∪ {vau(a) : a ∈ A} ∪ {v, u, vau} for every

v, u ∈ EV[w], we conclude that

(Vv)(Vu)
[
EV[(v, u)] ⊆ Y

]
. (4.10)

In what follows for every v, u ∈ EV[w] we write v < u if there exists a positive

integer m such that v ∈ EV[(wn)m−1
n=0 ] and u ∈ Vm = EV[(wn)∞n=m].

Now let X ∈ V. Recursively, we will select a decreasing sequence (Xn) of

subsets of X and a sequence (vn) in EV[w] such that for every n ∈ N we have

(C1) vn ∈ Xn, Xn ∈ V, vn < vn+1 and Xn+1 = {u ∈ V0 : EV[(vn, u)] ⊆ Xn}.
First we set X0 = X. By (4.10) applied for “Y = X0”, there exists v0 ∈ V0 such

that, setting X1 = {u ∈ V0 : EV[(v0, u)] ⊆ X0}, we have X1 ∈ V. Next, let n

be a positive integer and assume that the sets X0, . . . , Xn and the variable words

v0, . . . , vn−1 have been selected. Let m > 1 be such that vn−1 ∈ EV[(wn)m−1
n=0 ].

Notice that EV[(wn)∞n=m] = Vm ∈ V. Therefore, by (4.10) applied for “Y = Xn”,

we may select vn ∈ Vm such that {u ∈ V0 : EV[(vn, u)] ⊆ Xn} ∈ V. Finally, let

Xn+1 = {u ∈ V0 : EV[(vn, u)] ⊆ Xn} and observe that with these choices the

recursive selection is completed.

We set v = (vn). Since vn ∈ V0 and vn < vn+1 for every n ∈ N, we see that

v is an extracted subsequence of (wn). We will show that EV[v] ⊆ X. To this

end, for every m, i ∈ N let EV(v,m, i) be the set of all variable words of the form

vi0(a0)a. . .a vim(am) where i0 < · · · < im is a finite strictly increasing sequence in

N with i0 = i and (a0, . . . , am) is a variable word over A. By induction on m, we

will show that EV(v,m, i) ⊆ Xi for every i ∈ N. Notice that EV(v, 0, i) = {vi} for

every i ∈ N, and so the case “m = 0” follows immediately by the properties of the

above recursive selection. Let m ∈ N and assume that EV(v,m, i) ⊆ Xi for every

i ∈ N. Fix a strictly increasing sequence i0 < · · · < im+1 in N and a variable word

(a0, . . . , am+1) over A. We have to prove that vi0(a0)a. . .a vim+1(am+1) ∈ Xi0 . We

consider the following cases.

Case 1: there exists j ∈ [m + 1] such that aj = x. In this case, setting

v = vi1(a1)a. . .a vim+1(am+1), we have v ∈ EV(v,m, i1) ⊆ Xi1 . Hence,

v ∈ Xi1 ⊆ Xi0+1 = {u ∈ V0 : EV[(vi0 , u)] ⊆ Xi0}.

Also observe that vi0(a)av ∈ EV[(vi0 , v)] for every a ∈ A ∪ {x}. Therefore, we

conclude that vi0(a0)a. . .a vim+1
(am+1) ∈ Xi0 .

Case 2: we have aj ∈ A for every j ∈ [m+ 1]. Recall that (a0, . . . , am+1) is a

variable word over A. Therefore, by our assumptions, we obtain that a0 = x. We

set v′ = vi1(x)a. . .a vim+1
(am+1). Arguing precisely as in the previous case we see

that v′ ∈ {u ∈ V0 : EV[(vi0 , u)] ⊆ Xi0}. Hence,

vi0(a0)avi1(a1)a. . .a vim+1(am+1) = vi0
av′(a1) ∈ EV[(vi0 , v

′)] ⊆ Xi0

as desired.

The above cases are exhaustive, and so this completes the proof of the general

inductive step. Finally, recall that the sequence (Xn) is decreasing and X0 = X.
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It follows, in particular, that EV(v,m, i) ⊆ Xi ⊆ X for every m, i ∈ N. Therefore,

EV[v] =
⋃

(m,i)∈N2 EV(v,m, i) ⊆ X and the proof of Claim 4.4 is completed. �

We are now ready to complete the proof of the theorem. Let V ∈ γV be as in

Claim 4.3 and fix a finite coloring c : EV[w]→ [r]. There exists p ∈ [r] such that the

set c−1({p}) belongs to the ultrafilter V. By Claim 4.4, there exists an extracted

sequence v = (vn) of w such that EV[v] ⊆ c−1({p}). The proof of Theorem 4.1 is

thus completed. �

4.2. Applications

In this section we present several applications of Carlson’s theorem. We start

with the following theorem due to Carlson and Simpson [CS].

Theorem 4.5. Let A be a finite alphabet with |A| > 2. Then for every finite

coloring of the set of all words over A there exist a word w over A and a sequence

(un) of left variable words over A such that the set

{w} ∪
{
wau0(a0)a. . .a un(an) : n ∈ N and a0, . . . , an ∈ A

}
is monochromatic.

The Carlson–Simpson theorem is not only an infinite-dimensional extension of

the Hales–Jewett theorem but it also refines the Hales–Jewett theorem by providing

information on the structure of the wildcard set of the monochromatic variable

word. This additional information (namely, that the sequence (un) consists of left

variable words) has further combinatorial consequences. For instance, Theorem 4.5

is easily seen to imply the strong subtree version of the Halpern–Läuchli theorem

for vector homogeneous trees.

The idea to extend the scope of applications of the Hales–Jewett theorem by

providing information on the structure of the wildcard set of the monochromatic

variable word, is quite fruitful and some recent trends in Ramsey theory are pointing

in this direction. A well-known example is the polynomial Hales–Jewett theorem

due to Bergelson and Leibman [BL].

Proof of Theorem 4.5. Let c : A<N → [r] be a finite coloring. Notice that

every variable word v over A is written, uniquely, as v∗av∗∗ where v∗ is a word

over A and v∗∗ is a left variable word over A. (If v is a left variable word, then

v∗ is the empty word and v∗∗ = v.) Using this decomposition we see that the

coloring c corresponds to an r-coloring C of the set of all variable words over A

which is defined by the rule C(v) = c(v∗). By Theorem 4.1, there exist p ∈ [r] and

a sequence v = (vn) of variable words over A such that EV[v] ⊆ C−1({p}).
Fix α ∈ A and set w = v0(α)av∗1 . Also let un = v∗∗n+1

av∗n+2 for every n ∈ N.

We will show that the word w and the sequence (un) are as desired. Notice, first,

that un is left variable word for every n ∈ N. Next observe that w = (v0(α)av1)∗

and v0(α)av1 ∈ EV[v]. This implies, of course, that c(w) = p. Finally, let n ∈ N
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and a0, . . . , an ∈ A be arbitrary. Observe that

wau0(a0)a. . .a un(an) = (v0(α)av∗1)a(v∗∗1 (a0)av∗2)a. . .a (v∗∗n+1(an)
a
v∗n+2)

= v0(α)av1(a0)a. . .a vn+1(an)av∗n+2

= (v0(α)av1(a0)a. . .a vn+1(an)avn+2)∗.

Since v0(α)av1(a0)a. . .a vn+1(an)avn+2 ∈ EV[v] we conclude that

c
(
wau0(a0)a. . .a un(an)

)
= C

(
v0(α)av1(a0)a. . .a vn+1(an)avn+2

)
= p.

The proof of Theorem 4.5 is completed. �

The following result is a version of Theorem 4.1 for extracted words. It was

obtained independently by Carlson [C], and by Furstenberg and Katznelson [FK3].

Theorem 4.6. Let A be a finite alphabet with |A| > 2 and w = (wn) a sequence

of variable words over A. Then for every finite coloring of the set E[w] of all

extracted words of w there exists an extracted subsequence v of w such that the set

E[v] is monochromatic.

Proof. We fix a finite coloring c : E[w] → [r]. We also fix an element α ∈ A
and we define a coloring C : EV[w]→ [r] by the rule C(v) = c

(
v(α)

)
. By Theorem

4.1, there exist p ∈ [r] and an extracted subsequence u = (un) of w such that

EV[u] ⊆ C−1({p}). We set vn = u2n
au2n+1(α) for every n ∈ N and we observe

that v = (vn) is an extracted subsequence of w. We claim that c(w) = p for every

w ∈ E[v]. Indeed, let w be an extracted word of v. There exist n ∈ N, a finite

strictly increasing sequence i0 < · · · < in in N and a0, . . . , an ∈ A such that

w = vi0(a0)a. . .a vin(an) = u2i0(a0)au2i0+1(α)a. . .a u2in(an)au2in+1(α).

Set v = u2i0(a0)au2i0+1(x)a. . .a u2in(an)au2in+1(x) and observe that v ∈ EV[u]

and v(α) = w. Hence, c(w) = c
(
v(α)

)
= C(v) = p and the proof of Theorem 4.6 is

completed. �

The next application is a higher-dimensional extension of Carlson’s theorem.

Theorem 4.7. Let A be a finite alphabet with |A| > 2. Also let m be a positive

integer. Then for every sequence w = (wn) of variable words over A and every

finite coloring of the set EVm[w] there exists an extracted subsequence v of w such

that the set EVm[v] is monochromatic.

For the proof of Theorem 4.7 we need to introduce some pieces of notation.

Specifically, let A be a finite alphabet with |A| > 2 and w = (wn) a sequence of

variable words over A. For every pair `,m of positive integers with ` 6 m and every

(ui)
`−1
i=0 ∈ EV̀ [w] we set

EVm[(ui)
`−1
i=0 ,w] =

{
v ∈ EVm[w] : v � ` = (ui)

`−1
i=0

}
. (4.11)

Moreover, for every positive integer n let

EV∞[n,w] = {v ∈ EV∞[w] : v � n = w � n}. (4.12)

We are ready to give the proof of Theorem 4.7.
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Proof of Theorem 4.7. By induction on m. The case “m = 1” is the con-

tent of Theorem 4.1, and so let m > 1 and assume that the result has been proved up

to m. Fix a sequence w = (wn) of variable words over A and let c : EVm+1[w]→ [r]

be a finite coloring. Recursively, we will select a sequence (wn) of extracted subse-

quences of w with w0 = w and satisfying the following conditions for every n ∈ N.

(C1) We have wn+1 ∈ EV∞[m+ n,wn].

(C2) For every (vi)
m−1
i=0 ∈ EVm[wn+1 � (m+ n)] the set EVm+1[(vi)

m−1
i=0 ,wn+1]

is monochromatic.

Assuming that the above selection has been carried out, the proof is completed

as follows. By condition (C1) and the fact that w0 = w, there exists a unique

u ∈ EV∞[w] such that u ∈ EV∞[m + n,wn] for every n ∈ N. By condition (C2),

we see that c
(
(si)

m
i=0

)
= c
(
(ti)

m
i=0

)
for every pair (si)

m
i=0 and (ti)

m
i=0 in EVm+1[u]

with si = ti for every i ∈ {0, . . . ,m−1}. It follows, in particular, that the coloring of

EVm+1[u] is reduced to a coloring of EVm[u]. Hence, by our inductive assumptions,

there exists v ∈ EV∞[u] such that EVm+1[v] is monochromatic with respect to c.

It remains to carry out the recursive selection. First we set w0 = w. Let n ∈ N
and assume that the sequences w0, . . . ,wn have been selected so that (C1) and (C2)

are satisfied. Write wn = (w
(n)
i ) and notice that the set F := EVm[(w

(n)
i )m+n−1

i=0 ]

is finite. Define C : EV[(w
(n)
i )∞i=m+n]→ [r]F by the rule

C(v) =
〈
c
(
(v0, . . . , vm−1, v)

)
: (v0, . . . , vm−1) ∈ F

〉
.

By Theorem 4.1, there exists an extracted subsequence s = (si) of (w
(n)
i )∞i=m+n

such that the set EV[s] is monochromatic with respect to C. We set w
(n+1)
i = w

(n)
i

if i ∈ {0, . . . ,m + n − 1} and w
(n+1)
i = si−m−n if i > m + n. It is then clear that

the sequence wn+1 = (w
(n+1)
i ) is as desired. This completes the recursive selection,

and as we have already indicated, the proof of Theorem 4.7 is also completed. �

Recall that a nonempty finite sequence F = (F0, . . . , Fn−1) of nonempty finite

subsets of N is said to be block if max(Fi) < min(Fj) for every i, j ∈ {0, . . . , n− 1}
with i < j. Respectively, we say that an infinite sequence X = (Xn) of nonempty

finite subsets of N is block if max(Xi) < min(Xj) for every i, j ∈ N with i < j. For

every infinite block sequence X = (Xn) and every positive integer m we denote by

Blockm(X ) the set of all block sequences F = (F0, . . . , Fm−1) of length m such that

for every i ∈ {0, . . . ,m− 1} there exists G ⊆ N with Fi =
⋃
n∈GXn.

The following result is due, independently, to Milliken [M1] and Taylor [Tay1].

The case “m = 1” is Hindman’s theorem [H].

Theorem 4.8. For every positive integer m and every finite coloring of the set

of all block sequences of length m there exists an infinite block sequence X = (Xn)

such that the set Blockm(X ) is monochromatic.

Proof. Fix an integer m > 1 and a finite coloring c of the set of all block

sequences of length m. Also fix a finite alphabet A with |A| > 2 and a sequence

w of variable words over A. For every ` ∈ [m] and every v = (vi)
`−1
i=0 ∈ EV̀ [w]

let F (v) be the sequence of wildcard sets of the `-dimensional combinatorial space
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[(vi)
`−1
i=0 ] and notice the F (v) is a block sequence of length `. Thus, we can define

a finite coloring C of EVm[w] by the rule C(v) = c
(
F (v)

)
. By Theorem 4.7,

there exists an extracted subsequence u = (un) of w such that the set EVm[u] is

monochromatic with respect to the coloring C. Fix α ∈ A. We set X0 = F (u0) and

Xn = F
(
u0(α)a. . .a un−1(α)aun

)
for every n > 1. It is easy to see that the infinite

block sequence (Xn) is as desired. The proof of Theorem 4.8 is completed. �

We close this section with the following analogue of Theorem 4.7 for reduced

variable words (see Subsection 1.4.1 for the relevant definitions).

Theorem 4.9. Let A be a finite alphabet with |A| > 2. Also let m be a positive

integer. Then for every sequence w = (wn) of variable words over A and every

finite coloring of the set Vm[w] of all reduced subsequences of w of length m there

exists a reduced subsequence v of w such that the set Vm[v] is monochromatic.

Although Theorem 4.9 is quite similar to Theorem 4.7, the reader should have

in mind that these two statements refer to different types of structures. Also note

that Theorem 4.9 implies Theorem 2.15 via a standard argument but, of course,

this reduction is ineffective. We proceed to the proof of Theorem 4.9.

Proof of Theorem 4.9. First we select a reduced subsequence u = (un) of

w such that for every t ∈ EV[u] there exist a unique n ∈ N, a unique finite strictly

increasing sequence i0 < · · · < in in N and a unique a variable word (a0, . . . , an) over

A such that t = ui0(a0)a. . .a uin(an). (This property is guaranteed, for example, if

the reduced subsequence (un) of (wn) satisfies |un+1| >
∑n
i=0 |un| for every n ∈ N.)

For every t ∈ EV[u] we shall denote by suppu(t) the unique set {i0, . . . , in} of

indices which correspond to t.

Fix α ∈ A. For every t = ui0(a0)a. . .a uin(an) ∈ EV[u] and every m1,m2 ∈ N
with m1 6 i0 6 in 6 m2 let Qu|m2

m1
(t) be the reduced variable word of (ui)

m2
i=m1

which is defined by the rule

Qu|m2
m1

(t) = um1
(bm1

)a. . .a um2
(bm2

) (4.13)

where bi0 = a0, . . . , bin = an and bi = α if i ∈ {m1, . . . ,m2} \ suppu(t). We view

the word Qu|m2
m1

(t) as a “reduced extension” of t. Using these “reduced extensions”

we define a map Qu : EVm[u]→ Vm[u] as follows. Let t = (t0, . . . , tm−1) ∈ EVm[u].

Set p0 = 0 and pi+1 = max
(
suppu(ti)

)
+ 1 for every i ∈ {0, . . . ,m− 1}, and let

Qu

(
t) =

(
Qu|p1−1

p0 (t0), . . . , Qu|pm−1
pm−1

(tm−1)
)
. (4.14)

Now fix a finite coloring c : Vm[u] → [r]. We define C : EVm[u] → [r] by the rule

C(t) = c
(
Qu(t)

)
for every t ∈ EVm[u]. By Theorem 4.7, there exist p ∈ [r] and an

extracted subsequence y = (yn) of u such that EVm[y] ⊆ C−1({p}). Let m0 = 0

and mn+1 = max
(
suppu(yn)

)
+ 1 for every n ∈ N. We set

vn = Qu|mn+1−1
mn (yn) (4.15)

for every n ∈ N and we observe that v = (vn) is a reduced subsequence of u.

Since u is a reduced subsequence of w, we see that v ∈ V∞[w]. We will show

that c(s) = p for every s ∈ Vm[v]. Indeed, let s = (s0, . . . , sm−1) ∈ Vm[v] be
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arbitrary. There exist a finite strictly increasing sequence 0 = `0 < · · · < `m in N
and a0, . . . , a`m−1 ∈ A ∪ {x} such that for every i ∈ {0, . . . ,m− 1} we have

si = v`i(a`i)
a. . .a v`i+1−1(a`i+1−1) ∈ V[(vj)

`i+1−1
j=`i

].

For every i ∈ {0, . . . ,m− 1} set

ti = y`i(a`i)
a. . .a y`i+1−1(a`i+1−1)

and notice that t = (t0, . . . , tm−1) ∈ Vm[y] ⊆ EVm[y] and Qu(t) = s. It follows

that c(s) = c
(
Qu(t)

)
= C(t) = p and the proof of Theorem 4.9 is completed. �

4.3. Finite versions

We now turn our attention to the study of the finite analogues of the main re-

sults presented in this chapter so far. Our primary objective is to obtain quantita-

tive information for the numerical invariants associated with these finite analogues.

The main tools are the Hales–Jewett theorem and its consequences.

4.3.1. The finite version of the Carlson–Simpson theorem. The fol-

lowing result is the finite version of Theorem 4.5.

Proposition 4.10. For every triple k, d, r of positive integers with k > 2 there

exists a positive integer N with the following property. If A is an alphabet with

|A| = k, then for every Carlson–Simpson space T of A<N of dimension at least N

and every r-coloring of T there exists a d-dimensional Carlson–Simpson subspace

of T which is monochromatic. The least positive integer with this property will be

denoted by cs(k, d, r).

Moreover, the numbers cs(k, d, r) are upper bounded by a primitive recursive

function belonging to the class E5.

Proof. It is similar to the proof of Theorem 4.5. Precisely, we will show that

cs(k, d, r) 6 GR(k, d+ 1, 1, r). (4.16)

By Proposition 2.25, this will complete the proof.

To this end, fix a triple k, d, r of positive integers with k > 2, and let A be an

alphabet with |A| = k. Also let

n > GR(k, d+ 1, 1, r) (4.17)

and T an n-dimensional Carlson–Simpson space of A<N generated by the system

〈t, (vi)n−1
i=0 〉. Finally, let c be an r-coloring of T . Set v = (tav0, v1, . . . , vn−1) and

recall that every v ∈ V1[v] is written as v∗av∗∗ where v∗ is a word over A and

v∗∗ is a left variable word over A; moreover, observe that v∗ ∈ T . We define an

r-coloring C of V1[v] by C(v) = c(v∗) and we notice that, by (4.17), there exists

(ui)
d
i=0 ∈ Vd+1[v] such that the set V1[(ui)

d
i=0] is monochromatic with respect to

C. Set s = u∗0 and wi = u∗∗ai u∗i+1 for every i ∈ {0, . . . , d − 1}, and let S be the

Carlson–Simpson space of A<N generated by the system 〈s, (wi)d−1
i=0 〉. Clearly, S

is a d-dimensional Carlson–Simpson subspace of T which is monochromatic with

respect to c. The proof of Proposition 4.10 is completed. �
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We have already pointed out that the Carlson–Simpson theorem implies both

the Hales–Jewett theorem and the strong subtree version of the Halpern–Läuchli

theorem for vector homogeneous trees. The following corollary provides finer quan-

titative information.

Corollary 4.11. The following hold.

(a) For every triple k, d, r of positive integers with k > 2 we have

MHJ(k, d, r) 6 cs(k, d, r). (4.18)

(b) For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for all i ∈ [d]

and every pair `, r of positive integers with ` > 2 we have

HL(b1, . . . , bd | `, r) 6 cs
( d∏
i=1

bi, `− 1, r
)

+ 1. (4.19)

Proof. First we argue for part (a). Let k, d, r be positive integers with k > 2

and set N = cs(k, d, r). Also let A be an alphabet with |A| = k and c : AN → [r]

a coloring. Fix an element α ∈ A and for every i ∈ N let αi be as in (2.1). We

define a coloring c′ : A<N+1 → [r] by the rule c′(w) = c(waαN−|w|) for every

w ∈ A<N+1. By the choice of N , there exists a d-dimensional Carlson–Simpson

system 〈s, (wi)d−1
i=0 〉 over A such that the Carlson–Simpson space generated by this

system is monochromatic with respect to c′. Setting j = N − |s| −
∑d−1
i=0 |wi| and

W = {saw0(a0)a. . .a wd−1(ad−1)aαj : a0, . . . , ad−1 ∈ A}, we see that W is a

monochromatic, with respect to c, d-dimensional combinatorial subspace of AN .

The proof of part (b) is similar to the proof of Proposition 3.27. Fix the

“dimension” d and the parameters b1, . . . , bd, `, r and set N = cs
(∏d

i=1 bi, `− 1, r
)
.

Let T = (T1, . . . , Td) be a vector homogeneous tree with bTi = bi for all i ∈ [d] and

h(T) > N + 1. Clearly, we may assume that Ti = [bi]
<N+1 for every i ∈ [d]. Also

let c : ⊗T→ [r] be a coloring. We set A = [b1]× · · · × [bd] and for every i ∈ [d] we

define π̄i : A<N+1 → [bi]
<N+1 precisely as in the proof of Proposition 3.27. Next,

define I : A<N+1 → ⊗T by the rule I(w) =
(
π̄1(w), . . . , π̄d(w)

)
and recall that the

map I is a bijection. Hence, the coloring c induces a coloring c′ : A<N+1 → [r]

defined by c′ = c ◦ I. Let S be a Carlson–Simpson subspace of A<N+1 of dimension

` − 1 which is monochromatic with respect to c′. For every i ∈ [d] set Si = π̄i(S)

and observe that Si is a Carlson–Simpson subspace of [bi]
<N+1 having the same

level set as S. It follows, in particular, that S = (S1, . . . , Sd) is a vector strong

subtree of T. Since I(S) = ⊗S, we conclude that the level product ⊗S of S is

monochromatic with respect to c and the proof of Corollary 4.11 is completed. �

4.3.2. Extracted words of finite sequences of variable words. This

subsection is devoted to the proof of the following finite version of Theorem 4.6.

Theorem 4.12. For every triple k, d, r of positive integers with k > 2 there

exists a positive integer N with the following property. If n > N and A is an

alphabet with |A| = k, then for every finite sequence (wi)
n−1
i=0 of variable words over

A and every r-coloring of the set E[(wi)
n−1
i=0 ] of all extracted words of (wi)

n−1
i=0 there
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exists an extracted subsequence (vi)
d−1
i=0 of (wi)

n−1
i=0 such that the set E[(vi)

d−1
i=0 ] is

monochromatic. The least integer with this property will be denoted by c(k, d, r).

Moreover, the numbers c(k, d, r) are upper bounded by a primitive recursive

function belonging to the class E5.

It is convenient to introduce the following notation. Let F be a nonempty finite

subset of N and A a finite alphabet with |A| > 2. For every n ∈ F let wn be either

a word or a variable word over A. By
∏
n∈F wn we shall denote the concatenation

of {wn : n ∈ F} in increasing order of indices. That is, if i0 < · · · < im is the

increasing enumeration of F , then∏
n∈F

wn = wi0
a. . .a wim . (4.20)

We are ready to give the proof of Theorem 4.12.

Proof of Theorem 4.12. It is similar to the second proof of the multidi-

mensional Hales–Jewett theorem in Section 2.2.

Fix a triple k, d, r of positive integers with k > 2 and set m = H(d, r) where

H(d, r) is as in Proposition 2.19. We will show that

c(k, d, r) 6 m ·HJ
(
km, r2m−1

)
. (4.21)

Indeed, let n > m · HJ
(
km, r2m−1

)
and fix an alphabet A with |A| = k. Also let

(wi)
n−1
i=0 be a finite sequence of variable words over A and let c : E[(wi)

n−1
i=0 ] → [r]

be a coloring. For every i ∈ {0, . . . ,m− 1} fix xi /∈ A and set x = (x0, . . . , xm−1).

Observe that for every positive integer p the set of all variable words over Am of

length p is naturally identified with the set (Am ∪ {x})p \ (Am)p. Next, set

` = HJ
(
km, r2m−1

)
(4.22)

and for every i ∈ {0, . . . ,m− 1} define πi : A
m ∪ {x} → A ∪ {x} by

πi
(
(a0, . . . , am−1)

)
=

{
ai if ai ∈ A,
x if ai = xi

(4.23)

and Ti : (Am ∪ {x})` → [(wi·`+j)
`−1
j=0] ∪V[(wi·`+j)

`−1
j=0] by

Ti
(
(b0, . . . , b`−1)

)
=

`−1∏
j=0

wi·`+j
(
πi(bj)

)
. (4.24)

Notice that for every i ∈ {0, . . . ,m− 1} we have

Ti
(
(Am)`

)
= [(wi·`+j)

`−1
j=0] and Ti

(
(Am ∪ {x})` \ (Am)`

)
⊆ V[(wi·`+j)

`−1
j=0].

Also observe that for every v ∈ (Am ∪ {x})` \ (Am)` (that is, v is a variable word

over Am of length `) and every (a0, . . . , am−1) ∈ Am, setting ui = Ti(v), we have

Ti

(
v
(
(a0, . . . , am−1)

))
= ui(ai). (4.25)

We have the following claim.
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Claim 4.13. There exists a finite sequence (ui)
m−1
i=0 of variable words over A

with ui ∈ V[(wi·`+j)
`−1
j=0] for every i ∈ {0, . . . ,m − 1} and satisfying the following

property. For every nonempty subset F of {0, . . . ,m− 1} there exists pF ∈ [r] such

that c
(∏

i∈F ui(ai)
)

= pF for every (ai)i∈F ∈ AF .

Proof of Claim 4.13. Let F =
{
F ⊆ {0, . . . ,m − 1} : F 6= ∅

}
and define

C : (Am)` → [r]F by the rule

C
(
(b0, . . . , b`−1)

)
=
〈
c
(∏
i∈F

Ti
(
(b0, . . . , b`−1)

))
: F ∈ F

〉
. (4.26)

By the choice of ` in (4.22), there exists v ∈ (Am ∪ {x})` \ (Am)` such that the

combinatorial line L :=
{
v
(
(a0, . . . , am−1)

)
: (a0, . . . , am−1) ∈ Am

}
of (Am)` is

monochromatic with respect to C. It follows, in particular, that for every F ∈ F
there exists pF ∈ [r] such that for every (a0, . . . , am−1) ∈ Am we have

c
(∏
i∈F

Ti

(
v
(
(a0, . . . , am−1)

)))
= pF . (4.27)

For every i ∈ {0, . . . ,m − 1} we set ui = Ti(v). Notice that ui ∈ V[(wi·`+j)
`−1
j=0].

Moreover, by (4.25) and (4.27), we see that for every F ∈ F and every (ai)i∈F ∈ AF
we have c

(∏
i∈F ui(ai)

)
= pF . The proof of Claim 4.13 is completed. �

The following claim is the second step of the proof. It is a consequence of

Proposition 2.19.

Claim 4.14. Let (ui)
m−1
i=0 be as in Claim 4.13. Then there exists an extracted

subsequence (vi)
d−1
i=0 of (ui)

m−1
i=0 such that the set E[(vi)

d−1
i=0 ] is monochromatic.

Proof of Claim 4.14. For every nonempty F ⊆ {0, . . . ,m − 1} let pF ∈ [r]

be as in Claim 4.13. The map F 7→ pF is, of course, an r-coloring of the set of

all nonempty subsets of {0, . . . ,m − 1}. Since m = H(d, r), by Proposition 2.19,

there exist p0 ∈ [r] and a block sequence (F0, . . . , Fd−1) of nonempty subsets of

{0, . . . ,m− 1} such that
⋃
i∈G Fi 7→ p0 for every nonempty G ⊆ {0, . . . , d− 1}. We

set vi =
∏
j∈Fi ui for every i ∈ {0, . . . , d− 1}. It is clear that the sequence (vi)

d−1
i=0

is as desired. The proof of Claim 4.14 is completed. �

By Claims 4.13 and 4.14, we conclude that the estimate in (4.21) is satisfied.

Finally, the fact that the numbers c(k, d, r) are upper bounded by a primitive

recursive function belonging to the class E5 is an immediate consequence of Theorem

2.1, Proposition 2.19 and (4.21). The proof of Theorem 4.12 is completed. �

4.3.3. The finite version of Carlson’s theorem. The last result of this

section is the following finite version of Theorem 4.1.

Theorem 4.15. For every triple k, d, r of positive integers with k > 2 there

exists a positive integer N with the following property. If n > N and A is an

alphabet with |A| = k, then for every finite sequence (wi)
n−1
i=0 of variable words over

A and every r-coloring of the set EV[(wi)
n−1
i=0 ] of all extracted variable words of

(wi)
n−1
i=0 there exists an extracted subsequence (vi)

d−1
i=0 of (wi)

n−1
i=0 such that the set
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EV[(vi)
d−1
i=0 ] is monochromatic. The least positive integer with this property will be

denoted by C(k, d, r).

Moreover, the numbers C(k, d, r) are upper bounded by a primitive recursive

function belonging to the class E6.

The proof of Theorem 4.15 is conceptually close to the proof of Theorem 2.15.

However, the argument is slightly more involved since we work with extracted

variable words. The following lemma is the analogue of Lemma 2.23. It is the first

main step of the proof of Theorem 4.15.

Lemma 4.16. Let k, r, L be positive integers with k > 2 and define a finite

sequence (Ni)
L
i=0 in N recursively by the rule{

N0 = 0,

Ni+1 = Ni + HJ
(
k, r(k+1)2(Ni+L−i−1)

)
.

(4.28)

Let A be a finite alphabet with |A| = k, w = (wi)
NL−1
i=0 a finite sequence of vari-

able words over A and c : EV[w] → [r] a coloring. Then there exists a reduced

subsequence u = (ui)
L−1
i=0 of w with the following property. For every nonempty

subset F of {0, . . . , L − 1} and every (ai)i∈F , (bi)i∈F ∈ (A ∪ {x})F \ AF with

{i ∈ F : ai = x} = {i ∈ F : bi = x} we have c
(∏

i∈F ui(ai)
)

= c
(∏

i∈F ui(bi)
)
.

Proof. By backwards induction, we will select a sequence (ui)
L−1
i=0 of variable

words over A such that for every i ∈ {0, . . . , L− 1} the following are satisfied.

(C1) We have that ui is a reduced variable word of (wj)
Ni+1−1
j=Ni

.

(C2) Let F = F1 ∪ F2 where F1 ⊆ {0, . . . , Ni − 1} and F2 ⊆ {i+ 1, . . . , L− 1}
with the convention that F1 = ∅ if i = 0 while F2 = ∅ if i = L−1. Assume

that the set F is nonempty and let (aj)j∈F ∈ (A ∪ {x})F \AF . Then for

every a, b ∈ A we have

c
( ∏
j∈F1

wj(aj)
aui(a)a

∏
j∈F2

uj(aj)
)

= c
( ∏
j∈F1

wj(aj)
aui(b)

a
∏
j∈F2

uj(aj)
)
.

Assuming that the above selection has been carried out, the proof of the lemma is

completed as follows. We set u = (ui)
L−1
i=0 and we observe that, by condition (C1),

u is a reduced subsequence of w. Moreover, using condition (C2), we see that u

satisfies the requirements of the lemma.

It remains to carry out the above selection. The first step is identical to the

general one, and so let i ∈ {0, . . . , L − 2} and assume that the variable words

ui+1, . . . , uL−1 have been selected so that (C1) and (C2) are satisfied. We set

ni = Ni+1 −Ni
(4.28)

= HJ
(
k, r(k+1)2(Ni+L−i−1))

. (4.29)

Denote by F the family of all pairs (F1, F2) such that: (i) F1 ⊆ {0, . . . , Ni−1} with

F1 = ∅ if i = 0, (ii) F2 ⊆ {i+1, . . . , L−1}, and (iii) F1∪F2 6= ∅. Moreover, for every

nonempty F ⊆ N let B(F ) = (A ∪ {x})F \AF . Finally, set Wi = [(wj)
Ni+1−1
j=Ni

] and

let IWi
: Ani →Wi be the canonical isomorphism associated with the combinatorial
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space Wi (see Definition 1.2). We define a coloring C of Ani by the rule

C(z) =
〈
c
( ∏
j∈F1

wj(aj)
aIWi(z)

a
∏
j∈F2

uj(aj)
)

: (F1, F2) ∈ F and (aj) ∈ B(F1∪F2)
〉
.

Notice that |B(F1 ∪ F2)| 6 (k + 1)Ni+L−i−1 for every (F1, F2) ∈ F . Moreover, we

have |F| = 2Ni · 2L−i−1 − 1 6 (k + 1)Ni+L−i−1. Hence, by (4.29), there exists a

variable word u over A of length ni such that the combinatorial line {u(a) : a ∈ A}
of Ani is monochromatic with respect to C. Let ui be the unique variable word in

V[(wj)
Ni+1−1
j=Ni

] such that ui(a) = IWi

(
u(a)

)
for every a ∈ A, and observe that (C1)

and (C2) are satisfied for ui. The proof of Lemma 4.16 is completed. �

As in Subsection 2.3.2, for every block sequence X = (X0, . . . , Xn−1) of non-

empty finite subsets of N and every ` ∈ [n] by Block`(X ) we denote the set of all

block subsequences of X of length `. The following fact is a variant of Fact 2.20.

Fact 4.17. Let m, r be positive integers and set

L = MT(2m,m, rm). (4.30)

Also let X = (X0, . . . , XL−1) be a block sequence and c :
⋃m
`=1 Block`(X ) → [r].

Then there exists Z ∈ Blockm(X ) such that for every ` ∈ [m] the set Block`(Z) is

monochromatic.

Proof. We define C : Blockm(X ) → [r]m by C(H) = 〈c(H � `) : ` ∈ [m]〉. By

the choice of L in (4.30) and Theorem 2.21, there exists Y ∈ Block2m(X ) such that

the set Blockm(Y) is monochromatic with respect to C. It is then clear that the

block sequence Z = Y � m is as desired. The proof of Fact 4.17 is completed. �

We proceed with the following lemma.

Lemma 4.18. Let k,m, r be positive integers with k > 2. Set

L = MT(6m, 3m, r3m)

and let (Ni)
L
i=0 be as in (4.28). Also let A be a finite alphabet with |A| = k,

w = (wi)
NL−1
i=0 a finite sequence of variable words over A and c : EV[w]→ [r]. Then

there exist an extracted subsequence v = (vi)
m−1
i=0 of w and a finite sequence (rn)mn=1

in [r] with the following property. For every nonempty F ⊆ {0, . . . ,m−1} and every

(ai)i∈F ∈ (A ∪ {x})F \AF we have c
(∏

i∈F vi(ai)
)

= rn if |{i ∈ F : ai = x}| = n.

Proof. Let (ui)
L−1
i=0 be the reduced subsequence of w obtained by Lemma

4.16. For every n ∈ {0, . . . , L− 1} we set Xn = {n} and we observe that the finite

sequence X = (Xn)L−1
n=0 is block. Moreover, for every ` ∈ {2, . . . , 3m} and every

H = (H0, . . . ,H`−1) ∈ Block`(X ) denote by Λ(H) the set of all finite sequences

(ai)i∈∪H in A ∪ {x} such that

(a) ai ∈ A if and only if i ∈
⋃
{Hj : j is even and 0 6 j 6 `− 1} and

(b) ai = x if and only if i ∈
⋃
{Hj : j is odd and 0 6 j 6 `− 1}.
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Notice that, by Lemma 4.16, for every H ∈
⋃3m
`=2 Block`(X ) there exists pH ∈ [r]

such that for every (ai)i∈∪H ∈ Λ(H) we have

c
( ∏
i∈∪H

ui(ai)
)

= pH. (4.31)

Thus, we may define a coloring C :
⋃3m
`=1 Block`(X )→ [r] by the rule C(H) = pH if

H ∈
⋃3m
`=2 Block`(X ) and C(H) = r if H is a block sequence of length one. By Fact

4.17, there exists a block sequence Z = (Z0, . . . , Z3m−1) of subsets of {0, . . . , L−1}
such that for every ` ∈ [3m] the set Block`(Z) is monochromatic with respect to

the coloring C. In particular, for every ` ∈ {2, . . . , 3m} there exists p` ∈ [r] such

that pH = p` for every H ∈ Block`(Z).

We fix a letter α ∈ A. For every i ∈ {0, . . . ,m− 1} we set

vi =
( ∏
j∈Z3i

uj(α)
)a( ∏

j∈Z3i+1

uj

)a( ∏
j∈Z3i+2

uj(α)
)
. (4.32)

We have the following claim.

Claim 4.19. Let n ∈ [m], F ⊆ {0, . . . ,m− 1} and (ai)i∈F ∈ (A ∪ {x})F \ AF
such that |{i ∈ F : ai = x}| = n. Then we have c

(∏
i∈F vi(ai)

)
= p2n+1.

Proof of Claim 4.19. First we observe that 2n+1 6 3m and so the number

p2n+1 is well defined. For every i ∈ {0, . . . ,m− 1} we set

Ti = Z3i ∪ Z3i+1 ∪ Z3i+2.

Also let i1 < · · · < in be the increasing enumeration of the set {i ∈ F : ai = x}.
We define H = (Hj)

2n
j=0 ∈ Block2n+1(Z) as follows.

(a) If j = 0, then H0 =
⋃{

Ti : i ∈ F and i < i1
}
∪ Z3i1 .

(b) If j = 2n, then H2n = Z3in+2 ∪
⋃{

Ti : i ∈ F and in < i
}

.

(c) If j ∈ [n], then H2j−1 = Z3ij+1.

(d) If n > 2 and j ∈ [n− 1], then

H2j = Z3ij+2 ∪
⋃{

Ti : i ∈ F and ij < i < ij+1

}
∪ Z3ij+1

.

We also define (bq)q∈∪H ∈ (A ∪ {x})∪H \A∪H by the rule

bq =


x if q ∈

⋃
{Z3ij+1 : 1 6 j 6 n} =

⋃
{H2j−1 : 1 6 j 6 2n− 1},

ai if q ∈ Z3i+1 for some i ∈ F \ {i1, . . . , in},
α if q ∈

⋃
{Z3i ∪ Z3i+2 : i ∈ F}.

(4.33)

Notice that

∪H =
⋃
i∈F

Ti =
⋃
i∈F

(Z3i ∪ Z3i+1 ∪ Z3i+2)

and bq = x if and only if q ∈
⋃
{Hj : j is odd}. Therefore, (bq)q∈∪H ∈ Λ(H).

Moreover, it is easy to see that
∏
i∈F vi(ai) =

∏
q∈∪H uq(bq) and so

c
(∏
i∈F

vi(ai)
)

= c
( ∏
q∈∪H

uq(bq)
)

(4.31)
= pH = p2n+1.

The proof of Claim 4.19 is completed. �
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For every n ∈ [m] we set rn = p2n+1. By Claim 4.19, we see that the sequences

v = (vi)
m−1
i=0 and (rn)mn=1 are as desired. The proof of Lemma 4.18 is completed. �

The following lemma is the last step of the proof of Theorem 4.15.

Lemma 4.20. Let k, d, r be positive integers with k > 2. Set

L = MT
(
6H
(
d, r), 3H(d, r), r3H(d,r)

)
(4.34)

and let (Ni)
L
i=0 be as in (4.28). Also let A be a finite alphabet with |A| = k,

w = (wi)
NL−1
i=0 a finite sequence of variable words over A and c : EV[w] → [r].

Then there exists an extracted subsequence s = (si)
d−1
i=0 of w such that the set

EV[s] is monochromatic.

Proof. We set m = H
(
d, r). By (4.34) and Lemma 4.18, there exist an

extracted subsequence (vi)
m−1
i=0 of w and a finite sequence (rn)mn=1 in [r] such

that c
(∏

i∈F vi(ai)
)

= rn for every nonempty F ⊆ {0, . . . ,m − 1} and every

(ai)i∈F ∈ (A ∪ {x})F \ AF with |{i ∈ F : ai = x}| = n. By the choice of m

and Proposition 2.19, there exist p ∈ [r] and a block sequence F = (F0, . . . , Fd−1)

of subsets of {0, . . . ,m− 1} such that r|Y | = p for every Y ∈ NU(F). We set

si =
∏
j∈Fi

vj

for every i ∈ {0, . . . , d − 1} and we claim that s = (si)
d−1
i=0 is as desired. Indeed,

first observe that s is an extracted subsequence of w. Let H ⊆ {0, . . . , d− 1} and

(ai)i∈H ∈ (A ∪ {x})H \ AH be arbitrary. Set Q =
⋃
i∈H Fi ∈ NU(F). Moreover,

for every q ∈ Q let i(q) be the unique element of H such that q ∈ Fi(q) and set

bq = ai(q). Notice that∏
i∈H

si(ai) =
∏
i∈H

( ∏
j∈Fi

vj(ai)
)

=
∏
q∈Q

vq(bq).

Also observe that, setting H ′ = {i ∈ H : ai = x} and Y =
⋃
i∈H′ Fi, we have

{q ∈ Q : bq = x} = Y . Since Y ∈ NU(F) we conclude that

c
( ∏
i∈H

si(ai)
)

= c
( ∏
q∈Q

vq(bq)
)

= r|Y | = p

and the proof of Lemma 4.20 is completed. �

We are now ready to complete the proof of Theorem 4.15.

Proof of Theorem 4.15. Fix a triple k, d, r of positive integers with k > 2

and let L be as in (4.34). By Lemma 4.20, we see that

C(k, d, r) 6 NL (4.35)

where the number NL is as in (4.28). Now recall that, by Theorems 2.1 and 2.21

and Proposition 2.19, the Hales–Jewett numbers HJ(k, r) are upper bounded by a

primitive recursive function belonging to the class E5, the Milliken–Taylor numbers

MT(d,m, r) are upper bounded by a primitive recursive function belonging to the

class E6 and, finally, the numbers H(d, r) are upper bounded by a primitive recursive
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function belonging to the class E4. Hence, by (4.28), (4.34) and (4.35), we conclude

that the numbers C(k, d, r) are upper bounded by a primitive recursive function

belonging to the class E6. The proof of Theorem 4.15 is completed. �

4.4. Carlson–Simpson spaces

In this section we will present some basic Ramsey properties of Carlson–Simpson

spaces. These properties are naturally placed in the general context of this chapter,

though their importance will be highlighted in Chapters 5 and 9. The first result

in this direction is the following theorem.

Theorem 4.21. For every quadruple k, d,m, r of positive integers with k > 2

and d > m there exists a positive integer N with the following property. For every

alphabet A with |A| = k, every Carlson–Simpson space T of A<N of dimension at

least N and every r-coloring of SubCSm(T ) there exists S ∈ SubCSd(T ) such that

the set SubCSm(S) is monochromatic. The least positive integer with this property

will be denoted by CS(k, d,m, r).

Moreover, the numbers CS(k, d,m, r) are upper bounded by a primitive recursive

function belonging to the class E6.

As we discussed in Subsection 1.5.1, there is a natural correspondence between

Carlson–Simpson spaces and Carlson–Simpson systems. Using this correspondence,

we see that Theorem 4.21 is equivalently formulated as follows.

Theorem 4.21′. Let k, d,m, r be positive integers with k > 2 and d > m. Also

let n be an integer with n > CS(k, d,m, r). If A is an alphabet with |A| = k, then

for every Carlson–Simpson system w = 〈w, (wi)n−1
i=0 〉 over A and every r-coloring of

Subsysm(w) there exists u ∈ Subsysd(w) such that Subsysm(u) is monochromatic.

We proceed to the proof of Theorem 4.21.

Proof of Theorem 4.21. We will show that

CS(k, d,m, r) 6 GR(k, d+ 1,m+ 1, r)− 1 (4.36)

for every choice of admissible parameters. By Theorem 2.15, this is enough to

complete the proof.

First we need to do some preparatory work. Let A be a finite alphabet with

|A| > 2 and define Φ:
⋃∞
n=1

⋃n
`=1 Subsp`+1(An+1) →

⋃∞
`=1 SubCS`(A

<N) as fol-

lows. Let n > ` > 1 and V ∈ Subsp`+1(An+1). Let (X0, . . . , X`) be the sequence

of the wildcard sets of V and set Φ(V ) =
⋃`
i=0{v � min(Xi) : v ∈ V }. Notice that

Φ(V ) is a Carlson–Simpson space of A<N of dimension `. In particular, the map Φ

is well-defined. Also observe that for every i ∈ {0, . . . , `} the i-level of Φ(V ) is the

set {v � min(Xi) : v ∈ V }. We will need the following elementary fact.

Fact 4.22. Let n > ` > 1. Then Φ(An+1) = A<n+1 and

Φ
(
Subsp`+1

(
An+1)

)
= SubCS`(A

<n+1). (4.37)
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More generally, for every (n + 1)-dimensional combinatorial space W of A<N we

have

Φ
(
Subsp`+1(W )

)
= SubCS`

(
Φ(W )

)
. (4.38)

We are ready to show the estimate in (4.36). Fix the parameters k, d,m, r and

an integer n > GR(k, d+1,m+1, r)−1. Let A be an alphabet with |A| = k. Also let

T be a Carlson–Simpson space of A<N with dim(T ) = n and c : SubCSm(T )→ [r]

a coloring. By Fact 4.22, there exists a (n + 1)-dimensional combinatorial space

W of A<N such that Φ(W ) = T . Notice that n > m and so, by (4.38), we have

Φ
(
Subspm+1(W )

)
= SubCSm(T ). Therefore, by restricting Φ on the set of all

(m + 1)-dimensional combinatorial subspaces of W , we see that the map c ◦ Φ is

an r-coloring of Subspm+1(W ). Since dim(W ) = n + 1 > GR(k, d + 1,m + 1, r),

by Theorem 2.15, there exists a (d + 1)-dimensional combinatorial subspace V

of W such that the set Subspm+1(V ) is monochromatic with respect to c ◦ Φ.

We set S = Φ(V ). By Fact 4.22, we see that S ∈ SubCSd(T ) and, moreover,

Φ
(
Subspm+1(V )

)
= SubCSm(S). It follows, in particular, that the set SubCSm(S)

is monochromatic with respect to c. The proof of Theorem 4.21 is completed. �

We close this section with the following infinite version of Theorem 4.21.

Theorem 4.23. Let A be a finite alphabet with |A| > 2. Also let m be a positive

integer. Then for every infinite-dimensional Carlson–Simpson space T of A<N and

every finite coloring of the set SubCSm(T ) there exists an infinite-dimensional

Carlson–Simpson subspace S of T such that the set SubCSm(S) is monochromatic.

Proof. We fix an infinite-dimensional Carlson–Simpson space T of A<N and

a finite coloring c : SubCSm(T )→ [r]. Let 〈t, (tn)〉 be the Carlson–Simpson system

generating T . We set w0 = tat0 and wn = tn for every n > 1. Clearly w = (wn) is

a sequence of variable words over A.

As in the proof of Theorem 4.5, we write (uniquely) every variable word v

over A as v∗av∗∗ where v∗ is a word over A and v∗∗ is a left variable word over

A. Using this decomposition we define two maps Ψ: V∞[w] → SubCS∞(T ) and

ψ : Vm+1[w] → SubCSm(T ) as follows. If (zn) ∈ V∞[w], then let Ψ
(
(zn)

)
be

the infinite-dimensional Carlson–Simpson subspace of T which is generated by the

Carlson–Simpson system 〈z∗0 , (z∗∗an z∗n+1)〉. Respectively, if (un)mn=0 ∈ Vm+1[w],

then let ψ
(
(un)mn=0

)
be the m-dimensional Carlson–Simpson subspace of T which

is generated by the Carlson–Simpson system 〈u∗0, (u∗∗an u∗n+1)m−1
n=0 〉. Notice that

Ψ
(
V∞[z]

)
= SubCS∞

(
Ψ(z)

)
and ψ

(
Vm+1[z]

)
= SubCSm

(
Ψ(z)

)
(4.39)

for every z ∈ V∞[w]. Moreover, Ψ(w) = T and ψ
(
Vm+1[w]

)
= SubCSm(T ) and

so the map C = c ◦ ψ is an r-coloring of Vm+1[w]. By Theorem 4.9, there exist

p ∈ [r] and v ∈ V∞[w] such that Vm+1[v] ⊆ C−1({p}). Setting S = Ψ(v), we see

that S ∈ SubCS∞(T ) and SubCSm(S) ⊆ c−1({p}). The proof of Theorem 4.23 is

thus completed. �
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4.5. Notes and remarks

4.5.1. Theorem 4.1 is the content of Lemma 9.6 in [C]. Carlson worked in a

more general context and studied Ramsey properties of sequences of multivariable

words. As such, his arguments are somewhat different. The proof we presented is

more streamlined and is taken from [HS, Theorem 18.23]. Closely related proofs

appear in [FK3] and [BBH].

After the seminal work of Carlson, colorings of variable words have been studied

by several authors; see, e.g., [BBH, HM2, FK3]. Another result in this direction

was obtained by Gowers in [Go1] (see, also, [Ka1]). Gowers’ work was motivated

by a problem concerning the geometry of the Banach space c0.

4.5.2. The Carlson–Simpson theorem was the first infinite-dimensional exten-

sion of the Hales–Jewett and influenced, strongly, all subsequent related advances

in Ramsey theory. It appears as Theorem 6.3 in [CS]. The original proof was

combinatorial in nature and was based on a method invented by Baumgartner in

his proof [Bau] of Hindman’s theorem [H].

We also note that there are several results in the literature related to the

Carlson–Simpson theorem. Theorem 4.6 is of course in this direction, though closer

to the spirit of the Carlson–Simpson theorem is the work of McCutcheon in [McC2].

Other variants appear in [BBH] and [HM1].

4.5.3. All applications of Theorem 4.1 presented in Section 4.2 were observed

in [C]. Carlson also extended Theorems 4.7 and 4.9 for definable partitions of

infinite sequences of variable words (see Theorems 2 and 12 in [C]). These results

are in the spirit of Theorem 3.15 and are obtained by implementing Theorem 4.1

in the method developed by Galvin and Prikry [GP], and Ellentuck [E]. Detailed

presentations can be found in [HS, To].

4.5.4. The primitive recursive bounds obtained by Theorems 4.12 and 4.15

are new. Using these theorems one can obtain, of course, quantitative analogues of

all the results presented in Section 4.2. For instance, we have the following finite

version of Theorem 4.7.

Theorem 4.24. For every quadruple k, d,m, r of positive integers with k > 2

and d > m there exists a positive integer N with the following property. If A is an

alphabet with |A| = k, then for every finite sequence w of variable words over A of

length at least N and every r-coloring of the set EVm[w] there exists v ∈ EVd[w]

such that the set EVm[v] is monochromatic. The least positive integer with this

property will be denoted by C(k, d,m, r).

Moreover, the numbers C(k, d,m, r) are upper bounded by a primitive recursive

function belonging to the class E8.

4.5.5. Theorem 4.21 was observed in [DKT3]. We also note that there is a

version of Theorem 4.23 which is analogous to Theorem 3.15 and concerns defin-

able partitions of infinite-dimensional Carlson–Simpson spaces. This result can be

proved arguing as in the proof of Theorem 4.23 and using [C, Theorem 12] instead

of Theorem 4.9.





CHAPTER 5

Finite sets of words

In this chapter we study colorings of arbitrary nonempty finite sets of words.

Specifically, given a finite alphabet A with at least two letters, we will characterize

the Ramsey classes of finite subsets of A<N. This is achieved by introducing the

type of a nonempty finite subset F of A<N, an isomorphic invariant which encodes

a canonical embedding of F in a substructure of A<N. Substructures of interest

in this context are combinatorial spaces and Carlson–Simpson spaces of sufficiently

large dimension.

5.1. Subsets of combinatorial spaces

5.1.1. Definitions. Let A be a finite alphabet with |A| > 2 and <A a linear

order on A. For every a ∈ A and every integer p > 1 let ap be as in (2.1) and set

∆(Ap) = {ap : a ∈ A} ⊆ Ap. (5.1)

Also let F be a nonempty subset of An for some n ∈ N and set p = |F |. We are

about to define the following objects related to the set F .

5.1.1.1. The word representation R(F ) of F . If F = {w} for some w ∈ An,

then we set R(F ) = w. Assume that p > 2 and let w0 <lex · · · <lex wp−1 be the

lexicographical increasing enumeration of F . For every i ∈ {0, . . . , n−1} and every

j ∈ {0, . . . , p− 1} let wi,j be the i-th coordinate of wj and set

αi = (wi,0, . . . , wi,p−1).

We define

R(F ) = (α0, . . . , αn−1). (5.2)

Notice that R(F ) is a word over the alphabet Ap of length n.

5.1.1.2. The type τ(F ) of F . If p = 1, then we define τ(F ) to be the empty

word. If p > 2, then let R(F ) = (α0, . . . , αn−1) be the word representation of F

and set

X(F ) =
{
i ∈ {0, . . . , n− 1} : αi ∈ Ap \∆(Ap)

}
. (5.3)

Observe that the set X(F ) is nonempty. Also note that there exists a unique

block sequence X (F ) = (X0, . . . , Xm−1) of nonempty subsets of X(F ) satisfying

the following properties.

(P1) We have X(F ) = ∪X (F ).

(P2) For every ` ∈ {0, . . . ,m− 1} the located word R(F ) � X` is constant.

(P3) If m > 2, then for every ` ∈ {0, . . . ,m − 2}, every i ∈ X` and every

i′ ∈ X`+1 we have αi 6= αi′ .

81
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For every ` ∈ {0, . . . ,m − 1} let τ` be the unique letter of Ap \ ∆(Ap) such that

αi = τ` for every i ∈ X` and define

τ(F ) = (τ0, . . . , τm−1). (5.4)

That is, τ(F ) is the word over the alphabet Ap \∆(Ap) of length at most n which

is obtained by erasing first all letters of R(F ) which belong to ∆(Ap), then short-

ening the runs of the same letters of Ap \∆(Ap) to singletons and, finally, pushing

everything back together.

Example 5.1. Let A = [3] equipped with its natural order and let F be the

subset of [3]4 consisting of the words (1, 1, 2, 2), (1, 1, 2, 1), (2, 2, 2, 1) and (2, 2, 2, 3).

Write the set F in lexicographical increasing order as

{(1, 1, 2, 1) <lex (1, 1, 2, 2) <lex (2, 2, 2, 1) <lex (2, 2, 2, 3)}

and note that α0 = (1, 1, 2, 2), α1 = (1, 1, 2, 2), α2 = (2, 2, 2, 2) and α3 = (1, 2, 1, 3).

Therefore,

R(F ) =
(
(1, 1, 2, 2), (1, 1, 2, 2), (2, 2, 2, 2), (1, 2, 1, 3)

)
and τ(F ) =

(
(1, 1, 2, 2), (1, 2, 1, 3)

)
.

5.1.2. Basic properties. We first observe that the type is, essentially, inde-

pendent of the choice of the linear order on the alphabet A. Indeed, let <A, <
′
A

be two linear orders on A. Also let F ⊆ An and G ⊆ Al for some n, l ∈ N and

assume that both are nonempty. Denote by τ(F ), τ(G) the types of F,G when

computed using the linear order <A and by τ ′(F ), τ ′(G) the types of F,G when

computed using the linear order <′A. Then notice that τ(F ) = τ(G) if and only if

τ ′(F ) = τ ′(G). In light of this remark, in what follows we will not refer explicitly

to the linear order which is used to define the type.

We proceed with the following lemma which asserts that the type is preserved

under canonical isomorphisms.

Lemma 5.1. Let A be a finite alphabet with |A| > 2. Also let d ∈ N and F

a nonempty subset of Ad. Finally, let V be a d-dimensional combinatorial space

of A<N and IV the canonical isomorphism associated with V (see Definition 1.2).

Then we have τ(F ) = τ
(
IV (F )

)
.

Proof. Let v be the d-variable word over A which generates V and notice

that the set G = {v(a0, . . . , ad−1) : (a0, . . . , ad−1) ∈ F} has the same type with F .

Since IV (F ) = G, the proof of Lemma 5.1 is completed. �

Let A be a finite alphabet with |A| > 2 and set

T = {τ(F ) : F is a nonempty subset of An for some n ∈ N}.

Let τ = (τ0, . . . , τn−1) ∈ T be nonempty and observe that there exists a unique

positive integer p(τ) such that τ is a word over Ap(τ). Also notice that there is a

canonical way to “decode” τ and produce a set of type τ . Specifically, for every

i ∈ {0, . . . , n− 1} and every j ∈ {0, . . . , p(τ)− 1} let ai,j be the j-th coordinate of

τi and set

[τ ] =
{

(a0,j , . . . , an−1,j) : 0 6 j 6 p(τ)− 1
}
. (5.5)
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Observe that [τ ] is a subset of A|τ |, has cardinality p(τ) and is of type τ . More

generally, let V be a combinatorial space of A<N with dim(V ) = |τ |. Let IV be the

canonical isomorphism associated with V and define

[V, τ ] = IV
(
[τ ]
)
. (5.6)

By Lemma 5.1 and the previous remarks, we obtain the following fact.

Fact 5.2. Let A be a finite alphabet with |A| > 2. Also let τ ∈ T be nonempty

and V a combinatorial space of A<N with dim(V ) = |τ |. We set F = [V, τ ]. Then

we have F ⊆ V , |F | = p(τ) and τ(F ) = τ .

We will need a converse of Fact 5.2. More precisely, given a nonempty subset

F of An for some n ∈ N, we seek for a combinatorial space V of A<N of dimension

|τ(F )| such that [V, τ(F )] = F . It turns out that, in this context, this problem has

a very satisfactory answer.

Lemma 5.3. Let A be a finite alphabet with |A| > 2. Also let n ∈ N and F ⊆ An
with |F | > 2, and set m = |τ(F )|. Then there exists a unique m-dimensional

combinatorial space W of A<N such that: (i) [W, τ(F )] = F , and (ii) W ⊆ V for

every combinatorial space V of A<N with F ⊆ V .

We will denote by Env(F ) the combinatorial space obtained by Lemma 5.3 and

we will call it the envelope of F . We proceed to the proof of Lemma 5.3.

Proof of Lemma 5.3. Let R(F ) = (α0, . . . , αn−1) be the word representa-

tion of F . Also let X(F ) be as in (5.3) and set

S(F ) = {0, . . . , n− 1} \X(F ). (5.7)

Notice that if S(F ) 6= ∅, then for every i ∈ S(F ) there exists a unique ai ∈ A such

that αi = api . Finally, let X (F ) = (X0, . . . , Xm−1) be the block sequence satisfying

properties (P1)–(P3) in Subsection 5.1.1. We define W to be the combinatorial

subspace of An with wildcard sets X0, . . . , Xm−1 and constant part (fi)i∈S(F ) where

fi = ai for every i ∈ S(F ). We will show that W is as desired.

To this end notice, first, that dim(W ) = |τ(F )| and [W, τ(F )] = F . Next

let V be a combinatorial space of A<N with F ⊆ V . (This implies, in particular,

that V ⊆ An.) Let Y0, . . . , Yd−1 be the wildcard sets of V , Σ the set of its fixed

coordinates and (gi)i∈Σ ∈ AΣ its constant part. Since F ⊆ V , there exists a block

sequence (H0, . . . ,Hm−1) of nonempty finite subsets of {0, . . . , d− 1} such that

(a) for every ` ∈ {0, . . . ,m− 1} we have X` =
⋃
j∈H` Yj ,

(b) for every j ∈ {0, . . . , d − 1} if Yj ∩ S(F ) 6= ∅, then Yj ⊆ S(F ) and the

located word f � Yj is constant, and

(c) for every i ∈ S(F ) ∩ Σ we have fi = gi.

Using (a), (b) and (c), we conclude that W ⊆ V . Finally, let U be an arbitrary

m-dimensional combinatorial space of A<N satisfying (i) and (ii). Observe that

F = [U, τ(F )] ⊆ U and so, by property (ii) applied for “V = U”, we obtain that

W ⊆ U . With the same reasoning and by switching the roles of U and W , we see

that U ⊆W . Therefore, W = U and the proof of Lemma 5.3 is completed. �
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We close this subsection with the following result which shows that finite sets

of words of a given type are ubiquitous.

Lemma 5.4. Let A be a finite alphabet with |A| > 2. Also let n ∈ N and F a

nonempty subset of An. Then for every combinatorial space V of A<N of dimension

at least |τ(F )| there exists a subset G of V with τ(G) = τ(F ).

In particular, for every positive integer d the set

Td = {τ(F ) : F ⊆ An for some n ∈ N and |τ(F )| 6 d}

has cardinality at most 2|A|
d

.

Proof. We set p = |F | and m = |τ(F )|. We may assume, of course, that

p > 2 and m > 1. Fix U ∈ Subspm(V ) and set G = [U, τ(F )]. By Fact 5.2, we see

that the set G is as desired.

Now let d be a positive integer and notice that, by the previous discussion, for

every τ ∈ Td we may select a subset Gτ of Ad with τ(Gτ ) = τ . Observe that if

two subsets G,G′ of Ad have different types, then they are distinct. It follows that

the map Td 3 τ 7→ Gτ ∈ P(Ad) is an injection, and so |Td| 6 |P(Ad)| = 2|A|
d

. The

proof of Lemma 5.4 is completed. �

5.1.3. The main result. It is easy to see that there is no analogue of Ram-

sey’s classical theorem for colorings of subsets of combinatorial spaces of a fixed

cardinality. Indeed, let A be a finite alphabet with |A| > 2 and d, ` ∈ N with

|A|d > ` > 2. Also let W be a combinatorial space of A<N of dimension at least

d + 1 and define a coloring c of
(
W
`

)
as follows. Let F ∈

(
W
`

)
be arbitrary and

set c(F ) = τ(F ) if the type of F has length at most d; otherwise set c(F ) = 0.

Regardless of how large the dimension of W is, by Lemma 5.4 we see that for every

V ∈ Subspd+1(W ) the coloring c restricted on
(
V
`

)
takes all possible colors.

It turns out, however, that colorings which depend on the type are the only

obstacles to the Ramsey property. Specifically we have the following theorem.

Theorem 5.5. For every triple k, d, r of positive integers with k > 2 there

exists a positive integer N with the following property. If n > N and A is an

alphabet with |A| = k, then for every n-dimensional combinatorial space W of A<N

and every r-coloring of P(W ) there exists V ∈ Subspd(W ) such that every pair of

nonempty subsets of V with the same type is monochromatic. The least positive

integer with this property will be denoted by RamSp(k, d, r).

Moreover, the numbers RamSp(k, d, r) are upper bounded by a primitive recur-

sive function belonging to the class E6.

The proof of Theorem 5.5 is based on the following fact.

Fact 5.6. Let k, d, r be positive integers with k > 2. Also let A be an alphabet

with |A| = k and W a combinatorial space of A<N with

dim(W ) > GR
(
k, 2d, d, rd+1

)
. (5.8)

Then for every coloring c : W∪
⋃d
m=1 Subspm(W )→ [r] there exists V ∈ Subspd(W )

such that: (i) c(v1) = c(v2) for every v1, v2 ∈ V , and (ii) c(X) = c(Y ) for every

m ∈ [d] and every X,Y ∈ Subspm(V ).
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Proof. Fix a ∈ A. For every U ∈ Subspd(W ) and every 0 6 m 6 d let

U(a,m) =
{

IU (taad−m) : t ∈ Am
}

(5.9)

where IU is the canonical isomorphism associated with U and ad−m is as in (2.1).

Observe that U(a, 0) ∈ W while U(a,m) ∈ Subspm(W ) for every m ∈ [d]. We

define a coloring C : Subspd(W )→ [rd+1] by the rule

C(U) =
〈
c
(
U(a,m)

)
: m ∈ {0, . . . , d}

〉
.

By Theorem 2.15 and (5.8), there is Y ∈ Subsp2d(W ) such that the set Subspd(Y )

is monochromatic with respect to C. Notice that this is equivalent to saying that

for every m ∈ {0, . . . , d} there exists rm ∈ [r] such that c
(
U(a,m)

)
= rm for

every U ∈ Subspd(Y ). Write Y = Y a1 Y2 where Y1 and Y2 are both d-dimensional

combinatorial spaces of A<N and set

V = Y a1 IY2(ad) ∈ Subspd(Y ). (5.10)

We claim that V is as desired. We will argue only for part (ii) since the verification

of part (i) is similar. Fix m ∈ [d] and X̃ ∈ Subspm(V ). By the choice of V in

(5.10), we see that X̃ is of the form XaIY2
(ad) for some (unique) X ∈ Subspm(Y1).

Set U = Xa{IY2
(saam) : s ∈ Ad−m} and notice that U ∈ Subspd(Y ) and

U(a,m)
(5.9)
= IX(Am)aIY2(ad−maam) = XaIY2(ad) = X̃.

Therefore, c(X̃) = c
(
U(a,m)

)
= rm and the proof of Fact 5.6 is completed. �

We proceed to the proof of Theorem 5.5.

Proof of Theorem 5.5. Fix a triple k, d, r of positive integers with k > 2

and set ρ = r2k
d

. We will show that

RamSp(k, d, r) 6 GR
(
k, 2d, d, ρd+1

)
. (5.11)

By Theorem 2.15, this is enough to complete the proof. To this end, fix an alphabet

A with |A| = k and a combinatorial space W of A<N with

dim(W ) > GR
(
k, 2d, d, ρd+1

)
. (5.12)

Let c : P(W )→ [r] be a coloring and let Td be as in Lemma 5.4. For every τ ∈ Td we

will define an r-coloring Cτ of the set W ∪
⋃d
m=1 Subspm(W ) as follows. Assume,

first, that τ is the empty word. Then for every w ∈ W we set Cτ (w) = c({w}); if

X ∈ Subspm(W ) for some m ∈ [d], then we set Cτ (X) = 1. Next assume that τ

is nonempty. Then for every X ∈ Subsp|τ |(W ) we define Cτ (X) = c
(
[X, τ ]

)
where

[X, τ ] is as in (5.6). If X ∈W or if X ∈ Subspm(W ) for some m ∈ [d] with m 6= |τ |,
then we set Cτ (X) = 1.

Now define C : W ∪
⋃d
m=1 Subspm(W )→ [r]Td by the rule

C(X) = 〈Cτ (X) : τ ∈ Td〉. (5.13)

By Lemma 5.4, the set Td has cardinality at most 2k
d

. This implies, of course, that

C is a ρ-coloring of W ∪
⋃d
m=1 Subspm(W ). Hence, by Fact 5.6 and (5.12), there

exists V ∈ Subspd(W ) such that: (i) C is constant on V , and (ii) C is constant

on Subspm(V ) for every m ∈ [d]. We claim that V is as desired. Indeed, fix a
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pair G,G′ of nonempty subsets of V with τ(G) = τ(G′). Set τ = τ(G) and notice

that τ ∈ Td. If τ is the empty word, then both G and G′ are singletons. Since C

is constant on V , this is easily seen to imply that c(G) = c(G′). So assume that

|τ | > 1. Set m = |τ | and observe that m ∈ [d]. Let X = Env(G), Y = Env(G′) and

notice that, by Lemma 5.3, we have X,Y ∈ Subspm(V ). Using the fact that C is

constant on Subspm(V ) and invoking Lemma 5.3 once again, we conclude that

c(G) = c
(
[X, τ ]

)
= Cτ (X) = Cτ (Y ) = c

(
[Y, τ ]

)
= c(G′).

The proof of Theorem 5.5 is completed. �

5.2. Subsets of Carlson–Simpson spaces

5.2.1. Definitions. Let A be a finite alphabet with |A| > 2. Fix a linear

order <A on A and a letter χ not belonging to A. For every positive integer p set

Apχ =

p−1⋃
q=0

{χqaw : w ∈ Ap−q} and ∆(Apχ) =

p−1⋃
q=0

{χqaap−q : a ∈ A} (5.14)

where χq and ap−q are as in (2.1). Observe that ∆(Apχ) ⊆ Apχ.

Now let F be a nonempty finite subset of A<N and set p = |F |. We are

about to extend the analysis presented in Subsection 5.1.1 and introduce the word

representation R(F ) and the type τ(F ) associated with F .

To this end let L(F ) = {n ∈ N : F ∩ An 6= ∅} be the level set of F and set

L = |L(F )|. Write the set L(F ) in increasing order as n0 < · · · < nL−1 and set

pl = |F ∩ Anl | for every l ∈ {0, . . . , L − 1}. Notice that p =
∑L−1
l=0 pl. Also set

I0 = {n ∈ N : n < n0} and Il = {n ∈ N : nl−1 6 n < nl} if L > 2 and l ∈ [L − 1].

Observe that the family {I0, . . . , IL−1} is a partition of the set {0, . . . , nL−1 − 1}
into successive intervals. (However, note that the set I0 could be empty.)

5.2.1.1. The word representation R(F ) of F . It is a word over the alphabet

Apχ of length nL−1. For every i ∈ {0, . . . , nL−1 − 1} the i-th coordinate αi of R(F )

is defined as follows. Let l(i) ∈ {0, . . . , L − 1} be the unique integer such that

i ∈ Il(i). For every l ∈ {l(i), . . . , L− 1} let R(F ∩ Anl) be the word representation

of the set F ∩ Anl computed using the linear order <A. Recall that R(F ∩ Anl)
is a word (αl,0, . . . , αl,nl−1) of length nl over the alphabet Apl . Also notice that

nl > nl(i) > i. We set

q(i) = p−
L−1∑
l=l(i)

pl (5.15)

and we define

αi = χq(i)a
( L−1∏
l=l(i)

αl,i

)
= χq(i)aαl(i),i

a. . .a αL−1,i ∈ Apχ. (5.16)

Observe that if L = 1 (equivalently, if F ⊆ An0), then this definition leads to the

word representation of F as described in Subsection 5.1.1.
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5.2.1.2. The type τ(F ) of F . If L = 1, then the type of F is as defined in

Subsection 5.1.1. So assume that L > 2. Let R(F ) = (α0, . . . , αnL−1−1) be the

word representation of F . For every l ∈ {0, . . . , L− 2} we define Yl ⊆ Il+1 by

i ∈ Yl ⇔ αi = αnl and for every j ∈ {nl, . . . , i}
we have that either αj ∈ ∆(Apχ) or αj = αnl . (5.17)

Note that for every l ∈ {0, . . . , L − 2} the located word R(F ) � Yl is constant

and nl = min(Yl). Moreover, the finite sequence Y(F ) = (Y0, . . . , YL−2) is a block

sequence of subsets of {n0, . . . , nL−1 − 1}. Next we set

Y (F ) = ∪Y(F ) and X(F ) =
{
i ∈ {0, . . . , nL−1−1}\Y (F ) : αi /∈ ∆(Apχ)

}
. (5.18)

If X(F ) 6= ∅, then there exists a unique block sequence X (F ) = (X0, . . . , XM−1) of

nonempty subsets of X(F ) with the following properties.

(P1) We have X(F ) = ∪X (F ).

(P2) For every j ∈ {0, . . . ,M − 1} the located word R(F ) � Xj is constant.

(P3) If M > 2, then for every j ∈ {0, . . . ,M − 2}, every i ∈ Xj and every

i′ ∈ Xj+1 we have αi 6= αi′ .

Observe that for every l ∈ {0, . . . , L−2} and every j ∈ {0, . . . ,M−1} we have that

either max(Yl) < min(Xj) or max(Xj) < min(Yl). Therefore, there exists a unique

block sequence Z(F ) = (Z0, . . . , Zm−1), where m = (L− 1) +M , such that each of

the coordinates of Z(F ) is a coordinate of either Y(F ) or X (F ). In particular, for

every ` ∈ {0, . . . ,m − 1} there exists τ` ∈ Apχ such that αi = τ` for every i ∈ Z`.
We define the type of F by the rule

τ(F ) = (τ0, . . . , τm−1). (5.19)

Notice that τ(F ) is a word over the alphabet Apχ with L− 1 6 |τ(F )| 6 nL−1.

Example 5.2. Let A = [3] equipped with its natural order and F the subset

of [3]<N consisting of the words (1), (2, 2, 2, 2), (2, 2, 1, 2) and (1, 2, 1, 2, 3). Notice

that L(F ) = {1, 4, 5} and F ∩ [3]1 = {(1)}, F ∩ [3]4 = {(2, 2, 1, 2) <lex (2, 2, 2, 2)}
and F ∩ [3]5 = {(1, 2, 1, 2, 3)}. Therefore,

R(F ) =
(
(1, 2, 2, 1), (χ, 2, 2, 2), (χ, 1, 2, 1), (χ, 2, 2, 2), (χ, χ, χ, 3)

)
and τ(F ) =

(
(1, 2, 2, 1), (χ, 2, 2, 2), (χ, 1, 2, 1), (χ, χ, χ, 3)

)
.

5.2.2. Basic properties. As in Subsection 5.1.2, we remark that the type

is an intrinsic characteristic in the sense that the question whether two nonempty

finite sets of words over an alphabet A have the same type, is independent of the

particular choice of the linear order <A on A and the letter χ. Thus, we will not

refer explicitly to these data when we talk of properties of types.

The following lemma is the analogue of Lemma 5.1 and shows that the type is

preserved under canonical isomorphisms of Carlson–Simpson spaces.

Lemma 5.7. Let A be a finite alphabet with |A| > 2, d ∈ N and F a nonempty

subset of A<d+1. Also let T be a d-dimensional Carlson–Simpson space of A<N and

let IT be the canonical isomorphism associated with T (see Definition 1.10). Then

we have τ(F ) = τ
(
IT (F )

)
.
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Proof. We set p = |F | and L = |L(F )|. We may assume that p, L > 2

since the other cases follow from Lemma 5.1. Set G = IT (F ) and observe that

|G| = p and |L(G)| = L. Notice that the d-level T (d) of T is a d-dimensional

combinatorial space of A<N. Let H0, . . . ,Hd−1 be the wildcard sets of T (d), S the

set of its constant coordinates and (cj)j∈S ∈ AS its constant part. Finally, let

R(F ) = (α0, . . . , αn−1) and R(G) = (β0, . . . , β`−1) be the word representations of

F and G respectively. Then observe that

(a) for every i ∈ {0, . . . , d− 1} and every j ∈ Hi we have βj = αi, and

(b) for every j ∈ S we have βj ∈ ∆(Apχ).

Next, let X (F ), Y(F ) and X (G), Y(G) be the block sequences used for the defi-

nition of τ(F ) and τ(G) respectively. Using (a) and (b), we see that the following

properties are satisfied.

(P1) We have |Y(F )| = |Y(G)| = L− 1 and |X (F )| = |X (G)|.
(P2) If Y(F ) = (Y0, . . . , YL−2) and Y(G) = (Y ′0 , . . . , Y

′
L−2), then for every

l ∈ {0, . . . , L− 2} we have
⋃
i∈Yl Hi ⊆ Y ′l . Moreover, the constant located

words R(F ) � Yl and R(G) � Y ′l take the same value.

(P3) If X (F ) = (X0, . . . , XM−1) and X (G) = (X ′0, . . . , X
′
M−1), then for every

j ∈ {0, . . . ,M − 1} we have X ′j =
⋃
i∈Xj Hi. Moreover, the constant

located words R(F ) � Xj and R(G) � X ′j take the same value.

(P4) For every l ∈ {0, . . . , L − 2} and every j ∈ {0, . . . ,M − 1} we have

max(Yl) < min(Xj) if and only if max(Y ′l ) < min(X ′j); respectively, we

have max(Xj) < min(Yl) if and only if max(X ′j) < min(Y ′l ).

By properties (P1)–(P4) and the definition of type, we conclude that τ(F ) = τ(G).

The proof of Lemma 5.7 is completed. �

Now let A be a finite alphabet with |A| > 2 and set

T = {τ(F ) : F is a nonempty subset of A<N}.

Let τ = (τ0, . . . , τn−1) ∈ T be nonempty and notice that there exists a unique

positive integer p(τ) such that τ is a word over A
p(τ)
χ . Our goal is to “decode” τ

and produce a set of words of type τ . To this end, for every i ∈ {0, . . . , n− 1} and

every j ∈ {0, . . . , p(τ)− 1} let ai,j be the j-th coordinate of τi. Since τ ∈ T , we see

that for every j ∈ {0, . . . , p(τ)−1} there exists nj ∈ {0, . . . , n} such that ai,j ∈ A if

and only if i < nj . Let wj be the empty word if nj = 0 while wj = (a0,j , . . . , anj−1,j)

if nj > 1, and define

[τ ] = {w0, . . . , wp(τ)−1}. (5.20)

Note that [τ ] is a subset of A<|τ |+1, has cardinality p(τ) and is of type τ . Also

observe that this construction can be performed inside any Carlson–Simpson space.

Indeed, let T be a Carlson–Simpson space of A<N of dimension |τ |, let IT be the

canonical isomorphism associated with T and define

[T, τ ] = IT
(
[τ ]
)
. (5.21)

We have the following fact which follows from Lemma 5.7 taking into account the

previous remarks.
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Fact 5.8. Let A be a finite alphabet with |A| > 2. Also let τ ∈ T be nonempty

and T a Carlson–Simpson space of A<N with dim(T ) = |τ |. We set F = [T, τ ].

Then we have F ⊆ T , |F | = p(τ) and τ(F ) = τ .

As in Section 5.1, we will need a converse of Fact 5.8. This is the content of

the following lemma.

Lemma 5.9. Let A be a finite alphabet with |A| > 2. Also let F be a finite

subset of A<N with |F | > 2 and set m = |τ(F )|. Finally, let S be a (finite or

infinite dimensional) Carlson–Simpson space of A<N with F ⊆ S. Then there

exists T ∈ SubCSm(S) such that [T, τ(F )] = F .

We point out that, in contrast with Lemma 5.3, the Carlson–Simpson space

T obtained by Lemma 5.9 is not necessarily unique. For instance, let F be the

subset of [2]<5 consisting of the words (2), (1, 1, 1, 1) and (1, 1, 1, 2) and notice

that τ(F ) = {(2, 1, 1), (χ, 1, 1), (χ, 1, 2)}. Also let T1 and T2 be the 3-dimensional

Carlson–Simpson subspaces of [2]<5 generated by the systems 〈∅, (x), (x, 1), (x)〉 and

〈∅, (x), (x, x), (x)〉 respectively. Clearly T1 and T2 are incomparable under inclusion,

yet observe that [T1, τ(F )] = [T2, τ(F )] = F .

Proof of Lemma 5.9. Clearly we may assume that S is finite-dimensional.

We set d = dim(S) and we claim that we may also assume that S = A<d+1. Indeed,

let IS be the canonical isomorphism associated with S and set G = I−1
S (F ). By

Lemma 5.7, we have G ⊆ A<d+1 and τ(G) = τ(F ). Let R be a Carlson–Simpson

subspace of A<d+1 of dimension m such that [R, τ(G)] = G. We set T = IS(R) and

we observe that T ∈ SubCSm(S). Moreover, note that IT = IS ◦ IR and so

[T, τ(F )]
(5.21)

= IT
(
[τ(F )]

)
= IS

(
IR
(
[τ(F )]

))
= IS

(
[R, τ(G)]

)
= IS(G) = F.

Hence, in what follows we may assume that S = A<d+1.

Let L(F ) be the level set of F and set L = |L(F )|. Also set p = |F |. Assume

that L = 1 or, equivalently, that F ⊆ An for some n ∈ [d]. Consider the envelope

Env(F ) of F and notice that, by Lemma 5.3, we have Env(F ) ∈ Subspm(An)

and [Env(F ), τ(F )] = F . (Here, [Env(F ), τ(F )] is as in (5.6).) By Lemma 1.13,

there exists a unique m-dimensional Carlson–Simpson subspace R of A<n+1 whose

m-level R(m) is Env(F ). Since n ∈ [d], it follows that R ∈ SubCSm(A<d+1) and

[R, τ(F )] = [Env(F ), τ(F )] = F .

It remains to deal with the case |L| > 2. Write the set L(F ) in increasing order

as n0 < · · · < nL−1 and let R(F ) = (α0, . . . , αnL−1−1) be the word representation

of F . Also let Y (F ) and X(F ) be as in (5.18), and let Z(F ) = (Z0, . . . , Zm−1) be

the block sequence of subsets of {0, . . . , nL−1 − 1} which is used to define the type

τ(F ) of F . We set

S(F ) = {0, . . . , nL−1 − 1} \
(
Y (F ) ∪X(F )

)
. (5.22)

Observe that if S(F ) 6= ∅, then for every i ∈ S(F ) we have that αi ∈ ∆(Apχ).

Therefore, for every i ∈ S(F ) there exist ai ∈ A and q ∈ {0, . . . , p − 1}, both

unique, such that αi = χqaap−qi . Let W be the m-dimensional combinatorial
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subspace of AnL−1 with wildcard sets Z0, . . . , Zm−1 and constant part (fi)i∈S(F )

where fi = ai for every i ∈ S(F ). By Lemma 1.13 once again, there exists a unique

m-dimensional Carlson–Simpson subspace R of A<nL−1+1 such that R(m) = W .

Notice that nL−1 6 d and so R ∈ SubCSm(A<d+1). Moreover, by the definition of

τ(F ) and the choice of W , we see that [R, τ(F )] = F . The proof of Lemma 5.9 is

completed. �

We close this section with the following analogue of Lemma 5.4.

Lemma 5.10. Let A be a finite alphabet with |A| > 2. Also let F be a nonempty

subset of A<N. Then for every Carlson–Simpson space T of A<N of dimension at

least |τ(F )| there exists a subset G of T with τ(G) = τ(F ).

In particular, for every positive integer d the set

Td = {τ(F ) : F ⊆ A<N and |τ(F )| 6 d}

has cardinality at most 2|A|
d+1

.

Proof. We set p = |F | and m = |τ(F )|. We may assume that p > 2. Let T

be a Carlson–Simpson space of A<N with dim(T ) > m. We select S ∈ SubCSm(T )

and we set G = [S, τ(F )]. By Fact 5.8, the set G is as desired.

Using this property we see that for every positive integer d there exists an

injection Td 3 τ 7→ Gτ ∈ P(A<d+1). Therefore, |Td| 6 |P(A<d+1)| 6 2|A|
d+1

and

the proof of Lemma 5.10 is completed. �

5.2.3. The main result. We are now in a position to state the main result

of this section.

Theorem 5.11. For every triple k, d, r of positive integers with k > 2 there

exists a positive integer N with the following property. If n > N and A is an

alphabet with |A| = k, then for every n-dimensional Carlson–Simpson space T of

A<N and every r-coloring of P(T ) there exists S ∈ SubCSd(T ) such that every pair

of nonempty subsets of S with the same type is monochromatic. The least positive

integer with this property will be denoted by RamCS(k, d, r).

Moreover, the numbers RamCS(k, d, r) are upper bounded by a primitive recur-

sive function belonging to the class E6.

Theorem 5.11 is optimal, of course, as can be seen by coloring the subsets of T

according to their type. The proof of Theorem 5.11 is based on the following fact.

Fact 5.12. Let k, d, r be positive integers with k > 2. Also let A be an alphabet

with |A| = k and T a Carlson–Simpson space of A<N with

dim(T ) > CS(k, 2d, d, rd+1). (5.23)

Then for every coloring c : T ∪
⋃d
m=1 SubCSm(T )→ [r] there exists S ∈ SubCSd(T )

such that: (i) c(s1) = c(s2) for every s1, s2 ∈ S, and (ii) c(R) = c(R′) for every

m ∈ [d] and every R,R′ ∈ SubCSm(S).
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Proof. Fix c and define a coloring C : SubCSd(T )→ [rd+1] by the rule

C(U) =
〈
c
(
U � m+ 1

)
: m ∈ {0, . . . , d}

〉
where U � m+1 = U(0)∪· · ·∪ U(m) for every U ∈ SubCSd(T ) and m ∈ {0, . . . , d}.
By Theorem 4.21 and (5.23), there exists a 2d-dimensional Carlson–Simpson sub-

space Y of T such that the set SubCSd(Y ) is monochromatic with respect to C. In

particular, for everym ∈ {0, . . . , d} there exists rm ∈ [r] such that c(U � m+1) = rm
for every U ∈ SubCSd(Y ).

We set S = Y � d+ 1 ∈ SubCSd(T ) and we claim that S is as desired. Indeed,

let X ∈ S ∪
⋃d
m=1 SubCSm(S). We set m = 0 if X ∈ S; otherwise let m = dim(X).

Observe that there exists U ∈ SubCSd(Y ) such that X = U � m + 1. Therefore,

c(X) = c
(
U � m+ 1

)
= rm and the proof of Fact 5.12 is completed. �

We proceed to the proof of Theorem 5.11.

Proof of Theorem 5.11. It is similar to the proof of Theorem 5.5. Fix a

triple k, d, r of positive integers with k > 2 and set ρ = r2k
d+1

. We will show that

RamCS(k, d, r) 6 CS(k, 2d, d, ρd+1). (5.24)

By Theorem 4.21, this is enough to complete the proof. To this end, let A be an

alphabet with |A| = k and let T be a Carlson–Simpson space of A<N of dimension

at least CS(k, 2d, d, ρd+1). Fix a coloring c : P(T )→ [r] and let Td be as in Lemma

5.10. For every τ ∈ Td we define an r-coloring Cτ of T∪
⋃d
m=1 SubCSm(T ) as follows.

If τ is nonempty and R ∈ SubCS|τ |(T ), then we set Cτ (R) = c
(
[R, τ ]

)
where [R, τ ]

is as in (5.21). If τ is the empty word and t ∈ T , then we set Cτ (t) = c({t}). In all

other cases we define Cτ to be constantly equal to 1.

Now define C : T ∪
⋃d
m=1 SubCSm(T ) → [r]Td by C(X) = 〈Cτ (X) : τ ∈ Td〉.

By Lemma 5.10, the set Td has cardinality at most 2k
d+1

and so C is an ρ-coloring

of T ∪
⋃d
m=1 SubCSm(T ). Therefore, by Fact 5.12, there exists S ∈ SubCSd(T )

such that: (i) C is constant on S, and (ii) C is constant on SubCSm(S) for every

m ∈ [d]. We will show that S is as desired. Let G,G′ be a pair of nonempty subsets

of S with τ(G) = τ(G′) and set τ = τ(G). Notice that τ ∈ Td. Assume that τ is

the empty word or, equivalently, that both G and G′ are singletons. In this case,

using the fact that C is constant of S, we see that c(G) = c(G′). Next assume

that |τ | > 1. Set m = |τ | and observe that m ∈ [d]. By Lemma 5.9, there exist

R1, R2 ∈ SubCSm(S) such that [R1, τ ] = G and [R2, τ ] = G′. Hence,

c(G) = c
(
[R1, τ ]

)
= Cτ (R1) = Cτ (R2) = c

(
[R2, τ ]

)
= c(G′)

and the proof of Theorem 5.11 is completed. �

5.2.4. Infinite-dimensional Carlson–Simpson spaces. Let A be a finite

alphabet A with |A| > 2 and, as in Subsection 5.2.2, let

T = {τ(F ) : F is a nonempty subset of A<N}.

We have the following infinite version of Theorem 5.11.
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Theorem 5.13. Let A be a finite alphabet with |A| > 2 and let τ ∈ T . Also let

T be an infinite-dimensional Carlson–Simpson space of A<N. Then for every finite

coloring of P(T ) there exists an infinite-dimensional Carlson–Simpson subspace S

of T such that every pair of subsets of S with type τ is monochromatic.

Of course, by repeated applications of Theorem 5.13, one can deal simultane-

ously with any nonempty finite subset of T . However, we point out that an exact

infinite-dimensional extension of Theorem 5.11 does not hold true, as is shown in

the following example.

Example 5.3. Fix a finite alphabet A with |A| > 2. For every nonempty subset

F of A<N let ∧F be the infimum of F . (Recall that ∧F is the maximal common

initial segment of every w ∈ F .) We define a 2-coloring c of P(A<N) by the rule

c(F ) =

{
0 if F is nonempty and |∧F | < |τ(F )|,
1 otherwise.

Fix an infinite subset S of T and an infinite-dimensional Carlson–Simpson space

T of A<N. We will show that the set Pτ (T ) := {F ⊆ T : τ(F ) = τ} is not

monochromatic with respect to c for all but finitely many τ ∈ S. Indeed, let

{`0 < `1 < · · · } be the increasing enumeration of the level set of T . By Lemma

5.10, the set T`0 = {τ ∈ T : |τ | 6 `0} is finite. Let τ ∈ S \ T`0 be arbitrary and

set m = |τ |. Notice that m > 1 and so τ = τ(F ) for some F ⊆ A<N with |F | > 2.

We select a ∈ A and we set F0 = [τ ] and F1 = ama[τ ] where [τ ] is as in (5.20). By

Fact 5.8, we have τ(F0) = τ(F1) = τ . Also notice that ∧F0 = ∅ and ∧F1 = am.

Now let T0 = T � 2m+ 1 and set G0 = IT0(F0) and G1 = IT0(F1). By Lemma 5.7,

we see that τ(G0) = τ(G1) = τ . Moreover, |∧ G0| = |IT0(∧F0)| = `0 < |τ | and

|∧G2| = |IT0
(∧F1)| = `m > m = |τ | which implies that c(G0) = 0 and c(G1) = 1.

Hence, the set Pτ (T ) is not monochromatic.

We proceed to the proof of Theorem 5.13.

Proof of Theorem 5.13. If τ is the empty word, then the result follows

from (and is, in fact, equivalent to) the Carlson–Simpson theorem. So assume

that τ is nonempty and set m = |τ |. Let c : P(T ) → [r] be a finite coloring

and define C : SubCSm(T ) → [r] by the rule C(R) = c
(
[R, τ ]

)
. By Theorem 4.23,

there exists an infinite-dimensional Carlson–Simpson subspace S of T such that the

set SubCSm(S) is monochromatic with respect to the coloring C. Let F, F ′ be two

subsets of S with τ(F ) = τ(F ′) = τ . By Lemma 5.9, there exist U,U ′ ∈ SubCSm(S)

such that [U, τ ] = F and [U ′, τ ] = F ′. Therefore, c(F ) = C(U) = C(U ′) = c(F ′)

and the proof of Theorem 5.13 is completed. �

5.3. Notes and remarks

The material in Section 5.1 is due to Dodos, Kanellopoulos and Tyros and is

taken from [DKT4]. The analysis in Section 5.2 is new. Closely related results

have been also obtained by Furstenberg and Katznelson in [FK3].
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CHAPTER 6

Szemerédi’s regularity method

In this chapter we will discuss certain aspects of Szemerédi’s regularity method,

a remarkable discovery of Szemerédi [Sz2] asserting that dense sets of discrete struc-

tures are inherently pseudorandom. The method was first developed in the context

of graphs (see, e.g., [KS]), but it was realized recently that it can be formulated as

an abstract probabilistic principle. This abstraction yields streamlined proofs and,

more important, broadly extends the scope of applications of the method. In our

exposition we will follow this probabilistic approach.

6.1. Decompositions of random variables

6.1.1. Semirings and their uniformity norms. We are about to present

a decomposition of a given random variable into significantly simpler (and, conse-

quently, more manageable) components. To this end, we will need the following

slight strengthening of the classical concept of a semiring of sets (see also [BN]).

Definition 6.1. Let Ω be a nonempty set and k a positive integer. Also let S
be a collection of subsets of Ω. We say that S is a k-semiring on Ω if the following

properties are satisfied.

(P1) We have that ∅,Ω ∈ S.

(P2) For every S, T ∈ S we have that S ∩ T ∈ S.

(P3) For every S, T ∈ S there exist ` ∈ [k] and R1, . . . , R` ∈ S which are

pairwise disjoint and such that S \ T = R1 ∪ · · · ∪R`.

We view every element of a k-semiring S as a “structured” set and a linear

combination of few characteristic functions of elements of S as a “simple” function.

We will use the following norm in order to quantify how far from being “simple” a

given function is.

Definition 6.2. Let (Ω,Σ, µ) be a probability space, k a positive integer and

S a k-semiring on Ω with S ⊆ Σ. For every f ∈ L1(Ω,Σ, µ) we set

‖f‖S = sup
{∣∣ ∫

S

f dµ
∣∣ : S ∈ S

}
. (6.1)

The quantity ‖f‖S will be called the S-uniformity norm of f .

Note that, in general, the S-uniformity norm is a seminorm. However, observe

that if the k-semiring S is sufficiently rich, then the function ‖·‖S is indeed a norm.

Specifically, the function ‖ · ‖S is a norm if and only if the family {1S : S ∈ S}

95
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separates points in L1(Ω,Σ, µ), that is, for every f, g ∈ L1(Ω,Σ, µ) with f 6= g

there exists S ∈ S with
∫
S
f dµ 6=

∫
S
g dµ.

The simplest example of a k-semiring on a nonempty set Ω, is an algebra of

subsets of Ω. Indeed, notice that a family of subsets of Ω is a 1-semiring if and only

if it is an algebra. Another standard example is the collection of all intervals1 of a

linearly ordered set, a family which is easily seen to be a 2-semiring. The following

lemma will enable us to construct a variety of k-semirings.

Lemma 6.3. Let Ω be a nonempty set. Also let m, k1, . . . , km be positive integers

and set k =
∑m
i=1 ki. If Si is a ki-semiring on Ω for every i ∈ [m], then the family

S =
{ m⋂
i=1

Si : Si ∈ Si for every i ∈ [m]
}

(6.2)

is a k-semiring on Ω.

Proof. We may assume, of course, that m > 2. Notice that the family S
satisfies properties (P1) and (P2) in Definition 6.1. To see that property (P3) is

also satisfied, fix S, T ∈ S and write S =
⋂m
i=1 Si and T =

⋂m
i=1 Ti where Si, Ti ∈ Si

for every i ∈ [m]. We set P1 = Ω \ T1 and Pj = T1 ∩ · · · ∩ Tj−1 ∩ (Ω \ Tj) if

j ∈ {2, . . . ,m}. Observe that the sets P1, . . . , Pm are pairwise disjoint. Moreover,

Ω \
( m⋂
i=1

Ti

)
=

m⋃
j=1

Pj

and so

S \ T =
( m⋂
i=1

Si

)
\
( m⋂
i=1

Ti

)
=

m⋃
j=1

( m⋂
i=1

Si ∩ Pj
)
.

Let j ∈ [m] be arbitrary. Since Sj is a kj-semiring, there exist `j ∈ [kj ] and pairwise

disjoint sets Rj1, . . . , R
j
`j
∈ Sj such that Sj \ Tj = Rj1 ∪ · · · ∪R

j
`j

. Thus, setting

(a) B1 = Ω and Bj =
⋂

16i<j(Si ∩ Ti) if j ∈ {2, . . . ,m},
(b) Cj =

⋂
j<i6m Si if j ∈ {1, . . . ,m− 1} and Cm = Ω,

and invoking the definition of the sets P1, . . . , Pm we obtain that

S \ T =

m⋃
j=1

( `j⋃
n=1

(
Bj ∩Rjn ∩ Cj

))
. (6.3)

Now set I =
⋃m
j=1

(
{j} × [`j ]

)
and observe that |I| 6 k. For every (j, n) ∈ I let

U jn = Bj ∩ Rjn ∩ Cj and notice that U jn ∈ S, U jn ⊆ Rjn and U jn ⊆ Pj . This implies,

in particular, that the family {U jn : (j, n) ∈ I} is contained in S and consists of

pairwise disjoint sets. Moreover, by (6.3), we have

S \ T =
⋃

(j,n)∈I

U jn.

Hence, the family S satisfies property (P3) in Definition 6.1 and the proof of Lemma

6.3 is completed. �

1Recall that a subset I of a linearly ordered set (L,<) is said to be an interval if for every

x, y ∈ I and every z ∈ L with x < z < y we have z ∈ I.
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Next we isolate some basic properties of the S-uniformity norm. Recall that,

if (Ω,Σ, µ) is a probability space and Σ′ is a sub-σ-algebra of Σ, then for every

random variable f ∈ L1(Ω,Σ, µ) by E(f |Σ′) we denote the conditional expectation

of f relative to Σ′.

Lemma 6.4. Let (Ω,Σ, µ) be a probability space, k a positive integer and S a

k-semiring on Ω with S ⊆ Σ. Also let f ∈ L1(Ω,Σ, µ). Then the following hold.

(a) We have ‖f‖S 6 ‖f‖L1 .

(b) If Σ′ is a σ-algebra on Ω with Σ′ ⊆ S, then ‖E(f |Σ′)‖S 6 ‖f‖S .

(c) If S is a σ-algebra, then ‖f‖S 6 ‖E(f | S)‖L1
6 2‖f‖S .

Proof. Part (a) is straightforward. For part (b), fix a σ-algebra Σ′ on Ω with

Σ′ ⊆ S, and set P = {ω ∈ Ω : E(f |Σ′)(ω) > 0} and N = Ω \ P . Notice that

P,N ∈ Σ′ ⊆ S. Hence, for every S ∈ S we have∣∣ ∫
S

E(f |Σ′) dµ
∣∣ 6 max

{∫
P∩S

E(f |Σ′) dµ,−
∫
N∩S

E(f |Σ′) dµ
}

6 max
{∫

P

E(f |Σ′) dµ,−
∫
N

E(f |Σ′) dµ
}

= max
{∫

P

f dµ,−
∫
N

f dµ
}
6 ‖f‖S

which yields that ‖E(f |Σ′)‖S 6 ‖f‖S .

Finally, assume that S is a σ-algebra and observe that
∫
S
f dµ =

∫
S
E(f | S) dµ

for every S ∈ S. In particular, we have ‖f‖S 6 ‖E(f | S)‖L1
. Also let, as above,

P = {ω ∈ Ω : E(f | S)(ω) > 0} and N = Ω \ P . Since P,N ∈ S, we obtain that

‖E(f | S)‖L1
6 2 ·max

{∫
P

E(f | S) dµ,−
∫
N

E(f | S) dµ
}
6 2‖f‖S

and the proof of Lemma 6.4 is completed. �

We close this subsection by presenting some examples of k-semirings which

are relevant from a combinatorial perspective. In the first example the underlying

space is the product of a finite sequence of probability spaces. The corresponding

k-semirings are closely related to the development of Szemerédi’s regularity method

for hypergraphs and will be of particular importance in Chapter 7.

Example 6.1. Let n be a positive integer and (Ω1,Σ1, µ1), . . . , (Ωn,Σn, µn) a

finite sequence of probability spaces. By (Ω,Σ,µ) we shall denote their product

(see Appendix E). Moreover, if I ⊆ [n] is nonempty, then the product of the spaces

〈(Ωi,Σi, µi) : i ∈ I〉 will be denoted by (ΩI ,ΣI ,µI). In particular, we have

Ω =

n∏
i=1

Ωi and ΩI =
∏
i∈I

Ωi.

(By convention, Ω∅ stands for the empty set.) Notice that the σ-algebra ΣI is not

comparable with Σ, but it may be “lifted” to the full product Ω using the natural

projection πI : Ω→ ΩI . Specifically, let

BI =
{
π−1
I (A) : A ∈ ΣI

}
(6.4)
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and observe that BI is a sub-σ-algebra of Σ.

Now assume that n > 2 and let I be a family of nonempty subsets of [n]. Set

k = |I| and observe that, by Lemma 6.3, we may associate with the family I a

k-semiring SI on Ω defined by the rule

S ∈ SI ⇔ S =
⋂
I∈I

AI where AI ∈ BI for every I ∈ I. (6.5)

Note that if the family I satisfies [n] /∈ I and ∪I = [n], then it gives rise to a

non-trivial semiring whose corresponding uniformity norm is a genuine norm.

It turns out that there is a minimal non-trivial semiring Smin one can obtain

in this way. It corresponds to the family Imin =
(

[n]
1

)
and is particularly easy to

grasp since it consists of all measurable rectangles of Ω. The Smin-uniformity norm

is known as the cut norm and was introduced by Frieze and Kannan [FrK].

At the other extreme, this construction also yields a maximal non-trivial semir-

ing Smax on Ω. It corresponds to the family Imax =
(

[n]
n−1

)
and consists of those

subsets of the product which can be written as A1 ∩ · · · ∩ An where for every

i ∈ [n] the set Ai is measurable and does not depend on the i-th coordinate. The

Smax-uniformity norm is known as the Gowers box norm and was introduced by

Gowers [Go4, Go5].

In the second example the underlying space is a combinatorial space of A<N

where A is a finite alphabet with at least two letters. The building blocks of the

corresponding k-semirings are the insensitive sets introduced in Subsection 2.1.1.

Example 6.2. Let A be a finite alphabet with |A| > 2. Also let W be a

combinatorial space of A<N. We view W as a discrete probability space equipped

with the uniform probability measure. For every a, b ∈ A with a 6= b we set

A{a,b} = {X ⊆W : X is (a, b)-insensitive in W}. (6.6)

We have already pointed out in Subsection 2.1.1 that the family A{a,b} is an algebra

of subsets of W . These algebras can then be used to construct various semirings

on W . Specifically, let I ⊆
(
A
2

)
and set k = |I|. By Lemma 6.3, we see that the

family constructed from the algebras {A{a,b} : {a, b} ∈ I} via formula (6.2) is a

k-semiring on W . The maximal semiring obtained in this way corresponds to the

family
(
A
2

)
. We shall denote it by S(W ). Notice, in particular, that S(W ) is a

K-semiring on W where K = |A|(|A| − 1)2−1. Also observe that if |A| > 3, then

the S(W )-uniformity norm is actually a norm.

6.1.2. The main result. First we introduce some terminology and some

pieces of notation. We say that a function F : N→ R is a growth function provided

that: (i) F is increasing, and (ii) F (n) > n + 1 for every n ∈ N. Moreover, as in

Appendix E, for every nonempty set Ω and every finite partition P of Ω by AP
we shall denote the finite algebra on Ω generated by P. Recall that the nonempty

atoms of AP are precisely the members of P, and notice that a finite partition Q
of Ω is a refinement2 of P if and only if AQ ⊇ AP .

2If Q and P are two finite partitions of a nonempty set Ω, then recall that Q is said to be a

refinement of P if for every Q ∈ Q there exists P ∈ P with Q ⊆ P .
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Now for every pair k, ` of positive integers, every 0 < σ 6 1 and every growth

function F : N→ R we define h : N→ N recursively by rule{
h(0) = 1

h(i+ 1) = h(i) · (k + 1)dσ
2F (h(i))2`e

(6.7)

and we set

RegSz(k, `, σ, F ) = h
(
dσ−2`e

)
. (6.8)

Observe that if σ is rational and F : N→ N is a primitive recursive growth function

belonging to the class En for some n ∈ N, then the function h is also primitive

recursive and belongs to the class Em where m = max{4, n+ 1}.
The following theorem is the main result of this section and is essentially due

to Tao [Tao1, Tao2]. General facts about the conditional expectation relative to

a σ-algebra can be found in Appendix E.

Theorem 6.5. Let k, ` be positive integers, 0 < σ 6 1 and F : N→ R a growth

function. Also let (Ω,Σ, µ) be a probability space and S a k-semiring on Ω with

S ⊆ Σ. Finally, let F be a family in L2(Ω,Σ, µ) such that ‖f‖L2
6 1 for every

f ∈ F and with |F| = `. Then there exist

(i) a positive integer M with M 6 RegSz(k, `, σ, F ),

(ii) a partition P of Ω with P ⊆ S and |P| = M , and

(iii) a finite refinement Q of P with Q ⊆ S

such that for every f ∈ F , writing f = fstr + ferr + funf where

fstr = E(f | AP), ferr = E(f | AQ)− E(f | AP) and funf = f − E(f | AQ), (6.9)

we have the estimates

‖ferr‖L2
6 σ and ‖funf‖S 6

1

F (M)
. (6.10)

In particular, for every f ∈ F the following hold.

(a) The function fstr is constant on each S ∈ P.

(b) The functions fstr and fstr + ferr are non-negative if f is non-negative.

If, in addition, f is [0, 1]-valued, then ferr and funf take values in [−1, 1]

while fstr and fstr + ferr take values in [0, 1].

(c) If Σ′ is a sub-σ-algebra of Σ with S ⊆ Σ′ and f is Σ′-measurable, then

the functions fstr, ferr and funf are also Σ′-measurable.

The proof of Theorem 6.5 will be given in the next subsection. We also note

that in Section 7.1 we will present a multidimensional version of Theorem 6.5 which

will enable us to decompose, simultaneously, a finite family of random variables with

respect to an arbitrary finite collection of k-semirings. This additional feature is

needed in the context of hypergraphs and related combinatorial structures. How-

ever, in all applications in this chapter there will be only one relevant k-semiring.
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6.1.3. Proof of Theorem 6.5. First we need to do some preparatory work.

Recall that a finite sequence (fi)
n
i=0 of integrable random variables on a proba-

bility space (Ω,Σ, µ) is said to be a martingale if there exists an increasing se-

quence (Ai)ni=0 of sub-σ-algebras of Σ such that: (i) fi ∈ L1(Ω,Ai, µ) for every

i ∈ {0, . . . , n}, and (ii) fi = E(fi+1 | Ai) if n > 1 and i ∈ {0, . . . , n− 1}. Note that

this is equivalent to saying that there exists f ∈ L1(Ω,Σ, µ) such that

fi = E(f | Ai) (6.11)

for every i ∈ {0, . . . , n}. We have the following basic property of successive differ-

ences3 of square-integrable finite martingales.

Fact 6.6. Let (Ω,Σ, µ) be a probability space. Also let n be a positive integer

and (Ai)ni=0 an increasing finite sequence of sub-σ-algebras of Σ. Then for every

f ∈ L2(Ω,Σ, µ) we have( n∑
i=1

‖E(f | Ai)− E(f | Ai−1)‖2L2

)1/2

6 ‖E(f | An)‖L2
. (6.12)

Proof. We set d0 = E(f | A0) and di = E(f | Ai) − E(f | Ai−1) if i ∈ [n]. By

Proposition E.1, the sequence (di)
n
i=0 is orthogonal in L2(Ω,Σ, µ). Therefore,( n∑

i=1

‖E(f | Ai)− E(f | Ai−1)‖2L2

)1/2

6
( n∑
i=0

‖di‖2L2

)1/2

=
∥∥ n∑
i=0

di
∥∥
L2

= ‖E(f | An)‖L2

and the proof of Fact 6.6 is completed. �

The following lemma is the first main step of the proof of Theorem 6.5.

Lemma 6.7. Let k be a positive integer and 0 < δ 6 1. Also let (Ω,Σ, µ) be a

probability space, S a k-semiring on Ω with S ⊆ Σ and Q a finite partition of Ω

with Q ⊆ S. Finally, let f ∈ L2(Ω,Σ, µ) be such that ‖f − E(f | AQ)‖S > δ. Then

there exists a refinement R of Q such that: (i) R ⊆ S, (ii) |R| 6 |Q|(k + 1), and

(iii) ‖E(f | AR)− E(f | AQ)‖L2
> δ.

Proof. By our assumptions, there exists S ∈ S such that∣∣ ∫
S

(
f − E(f | AQ)

)
dµ
∣∣ > δ. (6.13)

Since S is a k-semiring on Ω, there exists a refinement R of Q such that: (i) R ⊆ S,

(ii) |R| 6 |Q|(k + 1), and (iii) S ∈ AR. In particular, it follows that∫
S

E(f | AR) dµ =

∫
S

f dµ. (6.14)

3Successive differences of martingales are known as martingale difference sequences.
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Therefore, by the monotonicity of the Lp norms, we obtain that

δ
(6.13)
<

∣∣ ∫
S

(
f − E(f | AQ)

)
dµ
∣∣ (6.14)

=
∣∣ ∫
S

(
E(f | AR)− E(f | AQ)

)
dµ
∣∣

6 ‖E(f | AR)− E(f | AQ)‖L1

6 ‖E(f | AR)− E(f | AQ)‖L2

and the proof of Lemma 6.7 is completed. �

Let k be a positive integer, Ω a nonempty set and S a k-semiring on Ω. For

every N ∈ N and every finite partition P of Ω with P ⊆ S by ΠN
S (P) we shall denote

the set of all refinements Q of P which satisfy Q ⊆ S and |Q| 6 |P|(k + 1)N . We

proceed with the following lemma.

Lemma 6.8. Let k, ` be positive integers, 0 < δ, σ 6 1 and set N = dσ2δ−2`e.
Also let (Ω,Σ, µ) be a probability space, S a k-semiring on Ω with S ⊆ Σ, P a finite

partition of Ω with P ⊆ S and F a family in L2(Ω,Σ, µ) with |F| = `. Then there

exists Q ∈ ΠN
S (P) such that either

(a) ‖E(f | AQ)− E(f | AP)‖L2 > σ for some f ∈ F , or

(b) ‖E(f | AQ)−E(f | AP)‖L2 6 σ and ‖f−E(f | AQ)‖S 6 δ for every f ∈ F .

Proof. Assume that there is no Q ∈ ΠN
S (P) which satisfies the first part of

the lemma. Observe that this is equivalent to saying that

(H1) ‖E(f | AQ)− E(f | AP)‖L2
6 σ for every Q ∈ ΠN

S (P) and every f ∈ F .

We will use hypothesis (H1) to show that there exists Q ∈ ΠN
S (P) which satisfies

the second part of the lemma.

To this end we will argue by contradiction. Let Q ∈ ΠN
S (P) be arbitrary. By

hypothesis (H1) and our assumption that part (b) does not hold true, there exists

f ∈ F (possibly depending on the partition Q) such that ‖f − E(f | AQ)‖S > δ.

Hence, by Lemma 6.7, we obtain that

(H2) for every Q ∈ ΠN
S (P) there exist R ∈ Π1

S(Q) and f ∈ F such that

‖E(f | AR)− E(f | AQ)‖L2
> δ.

Recursively and using hypothesis (H2), we select a finite sequence P0, . . . ,PN of

finite partitions of Ω with P0 = P and a finite sequence f1, . . . , fN in F such that

for every i ∈ [N ] we have Pi ∈ Π1
S(Pi−1) and ‖E(fi | APi) − E(fi | APi−1

)‖L2
> δ.

The first property implies that Pj ∈ ΠN
S (Pi) for every i, j ∈ {0, . . . , N} with i < j.

In particular, we have PN ∈ ΠN
S (P). On the other hand, by the fact that |F| = `

and the classical pigeonhole principle, there exist g ∈ F and I ⊆ [N ] with |I| > N/`
and such that g = fi for every i ∈ I. Hence, ‖E(g | APi)− E(g | APi−1

)‖L2
> δ for

every i ∈ I. By Fact 6.6 applied to the random variable “f = g − E(g | AP)” and

the sequence (APi)Ni=0, we obtain that

σ 6 δ(N/`)1/2 6 δ|I|1/2 < ‖E(g | APN )− E(g | AP)‖L2
. (6.15)

Summing up we see that PN ∈ ΠN
S (P) and ‖E(g | APN )− E(g | AP)‖L2

> σ which

contradicts hypothesis (H1). The proof of Lemma 6.8 is thus completed. �

The last step of the proof of Theorem 6.5 is the content of the following lemma.
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Lemma 6.9. Let k, ` be positive integers, 0 < σ 6 1 and F : N → R a growth

function. Set L = dσ−2`e and define two sequences (Ni) and (Mi) in N recursively

by the rule {
N0 = 0 and M0 = 1,

Ni+1 = dσ2F (Mi)
2`e and Mi+1 = Mi(k + 1)Ni+1 .

(6.16)

Let (Ω,Σ, µ) be a probability space, S a k-semiring on Ω with S ⊆ Σ and F a family

in L2(Ω,Σ, µ) such that ‖f‖L2 6 1 for every f ∈ F and with |F | = `. Then there

exist i ∈ {0, . . . , L − 1} and two finite partitions P and Q of Ω with: (i) P ⊆ S,

(ii) |P| 6 Mi, (iii) Q ∈ Π
Ni+1

S (P), and (iv) ‖E(f | AQ) − E(f | AP)‖L2
6 σ and

‖f − E(f | AQ)‖S 6 1/F (Mi) for every f ∈ F .

Proof. It is similar to the proof of Lemma 6.8. Let i ∈ {0, . . . , L− 1} and let

P be a finite partition of Ω with P ⊆ S and |P| 6Mi. By Lemma 6.8, we see that

one of the following alternatives is satisfied.

(A1) There exists Q ∈ Π
Ni+1

S (P) such that ‖E(f | AQ)− E(f | AP)‖L2
6 σ and

‖f − E(f | AQ)‖S 6 1/F (Mi) for every f ∈ F .

(A2) There exist Q ∈ Π
Ni+1

S (P) and f ∈ F with ‖E(f | AQ)−E(f | AP)‖L2
> σ.

Of course, the proof of the lemma will be completed once we show that the first

alternative holds true for some i ∈ {0, . . . , L − 1} and some finite partition P as

described above.

Assume, towards a contradiction, that such a pair cannot be found. Recursively

and invoking alternative (A2), we select a finite sequence P0, . . . ,PL of finite parti-

tions of Ω with P0 = {Ω} and a finite sequence f1, . . . , fL in F such that for every

i ∈ [L] we have Pi ∈ Π
Ni+1

S (Pi−1) and ‖E(fi | APi)− E(fi | APi−1)‖L2 > σ. By the

classical pigeonhole principle, there exist g ∈ F and I ⊆ [L] with |I| > L/` > σ−2

and such that g = fi for every i ∈ I. By Fact 6.6, the previous discussion and the

fact that ‖g‖L2
6 1, we conclude that

1 6 σ|I|1/2 < ‖E(g | APL)‖L2
6 ‖g‖L2

6 1

which is clearly a contradiction. The proof of Lemma 6.9 is completed. �

We are now ready to complete the proof of Theorem 6.5.

Proof of Theorem 6.5. Fix the positive integers k and `, the constant σ

and the growth function F . Set L = dσ−2`e. Also let i ∈ {0, . . . , L − 1} and P,Q
be as in Lemma 6.9, and set M = |P|. We will show that the positive integer M

and the finite partitions P and Q are as desired.

To this end, let h be the function defined in (6.7) for the fixed data k, `, σ and

F . By (6.16), we have Mi = h(i) for every i ∈ N and so

M = |P| 6Mi 6Mdσ−2`e = h(dσ−2`e) (6.8)
= RegSz(k, `, σ, F ). (6.17)

Since P,Q ⊆ S and Q is a finite refinement of P, we see that M,P and Q satisfy

the requirements of the theorem. Next, let f ∈ F be arbitrary and set

fstr = E(f | AP), ferr = E(f | AQ)− E(f | AP) and funf = f − E(f | AQ).
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Clearly, it is enough to show that the random variables ferr and funf obey the

estimates in (6.10). Indeed, by the choice of P and Q in Lemma 6.9, we have

‖ferr‖L2
= ‖E(f | AQ)− E(f | AP)‖L2

6 σ. (6.18)

Moreover, invoking Lemma 6.9 once again and using the fact that the function

F : N→ R is increasing, we conclude that

‖funf‖S = ‖f − E(f | AQ)‖S 6
1

F (Mi)
6

1

F (M)
. (6.19)

The proof of Theorem 6.5 is completed. �

6.1.4. Uniform partitions. In this subsection we will obtain a consequence

of Theorem 6.5 which is more akin to the graph-theoretic versions of Szemerédi’s

regularity method and is somewhat easier to use in a combinatorial setting. To this

end, we give the following definition.

Definition 6.10. Let (Ω,Σ, µ) be a probability space, k a positive integer and

S a k-semiring on Ω with S ⊆ Σ. Also let f ∈ L1(Ω,Σ, µ), 0 < η 6 1 and S ∈ S.

We say that the set S is (f,S, η)-uniform if for every T ⊆ S with T ∈ S we have∣∣ ∫
T

(
f − E(f |S)

)
dµ
∣∣ 6 η · µ(S). (6.20)

Moreover, for every C ⊆ S we set Unf(C, f, η) = {C ∈ C : C is (f,S, η)-uniform}.

Notice that if S ∈ S with µ(S) = 0, then the set S is (f,S, η)-uniform for

every 0 < η 6 1. The same remark of course applies if the function f is constant

on S. Also note that the concept of (f,S, η)-uniformity is closely related to the

S-uniformity norm introduced in Definition 6.2. Indeed, let S ∈ S with µ(S) > 0

and observe that the set S is (f,S, η)-uniform if and only if the function f−E(f |S),

viewed as a random variable in L1(Ω,Σ, µS), has S-uniformity norm less than or

equal to η. In particular, the set Ω is (f,S, η)-uniform if and only if ‖f−E(f)‖S 6 η.

We have the following proposition (see [TV, Section 11.6]).

Proposition 6.11. For every pair k, ` of positive integers and every 0 < η 6 1

there exists a positive integer U(k, `, η) with the following property. Let (Ω,Σ, µ) be

a probability space, S a k-semiring on Ω with S ⊆ Σ and F a family in L2(Ω,Σ, µ)

such that ‖f‖L2 6 1 for every f ∈ F and with |F| = `. Then there exist a positive

integer M 6 U(k, `, η) and a partition P of Ω with P ⊆ S and |P| = M such that∑
S∈Unf(P,f,η)

µ(S) > 1− η (6.21)

for every f ∈ F .

The following lemma will enable us to reduce Proposition 6.11 to Theorem 6.5.

Lemma 6.12. Let (Ω,Σ, µ) be a probability space, k a positive integer and S
a k-semiring on Ω with S ⊆ Σ. Also let C be a nonempty finite subfamily of S
consisting of pairwise disjoint sets, f ∈ L1(Ω,Σ, µ) and 0 < η 6 1. Assume that

f admits a decomposition f = fstr + ferr + funf into integrable random variables
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such that fstr is constant on each S ∈ C and the functions ferr and funf obey the

estimates ‖ferr‖L1
6 η2/8 and ‖funf‖S 6 (η2/8)|C|−1. Then we have∑

S/∈Unf(C,f,η)

µ(S) 6 η. (6.22)

Proof. Fix S /∈ Unf(C, f, η). We select T ⊆ S with T ∈ S such that

η · µ(S) <
∣∣ ∫
T

(
f − E(f |S)

)
dµ
∣∣. (6.23)

The function fstr is constant on S and so, by (6.23), we see that

η · µ(S) <
∣∣ ∫
T

(
ferr − E(ferr |S)

)
dµ
∣∣+
∣∣ ∫
T

(
funf − E(funf |S)

)
dµ
∣∣. (6.24)

Next observe that∣∣ ∫
T

(
ferr − E(ferr |S)

)
dµ
∣∣ 6 2E(|ferr| |S) · µ(S) (6.25)

and ∣∣ ∫
T

(
funf − E(funf |S)

)
dµ
∣∣ 6 2‖funf‖S . (6.26)

Finally, notice that µ(S) > 0 since S /∈ Unf(C, f, η). Thus, setting

A = {S ∈ C : E(|ferr| |S) > η/4} and B = {S ∈ C : µ(S) 6 4η−1‖funf‖S}

and invoking (6.24)–(6.26), we obtain that C \Unf(C, f, η) ⊆ A ∪ B.

Now recall that the family C consists of pairwise disjoint sets. Hence,∑
S∈A

µ(S) 6
4

η

(∑
S∈A

∫
S

|ferr| dµ
)
6

4

η
‖ferr‖L1

6
η

2
. (6.27)

Moreover, ∑
S∈B

µ(S) 6
4‖funf‖S

η
· |B| 6 4‖funf‖S

η
· |C| 6 η

2
. (6.28)

By (6.27) and (6.28) and using the inclusion C \Unf(C, f, η) ⊆ A∪ B, we conclude

that the estimate in (6.22) is satisfied. The proof of Lemma 6.12 is completed. �

We proceed to the proof of Proposition 6.11.

Proof of Proposition 6.11. Fix k, ` and η. We set σ = η2/8 and we define

F : N → R by the rule F (n) = n/σ + 1 = 8n/η2 + 1 for every n ∈ N. Notice that

F is a growth function. We set U(k, `, η) = RegSz(k, `, σ, F ) and we claim that

with this choice the result follows. Indeed, let (Ω,Σ, µ) be a probability space and

S a k-semiring on Ω with S ⊆ Σ. Also let F be a family in L2(Ω,Σ, µ) such that

‖f‖L2
6 1 for every f ∈ F and with |F| = `. By Theorem 6.5, there exist a positive

integer M 6 U(k, `, η), a partition P of Ω with P ⊆ S and |P| = M , and for every

f ∈ F a decomposition f = fstr + ferr + funf into integrable random variables such

that fstr is constant on each S ∈ P, ‖ferr‖L2 6 σ and ‖funf‖S 6 1/F (M). By the

monotonicity of the Lp norms, we have ‖ferr‖L1
6 σ. Hence, by the choice of σ and

F and applying Lemma 6.12 for “C = P”, we conclude that the estimate in (6.21)

is satisfied for every f ∈ F . The proof of Proposition 6.11 is completed. �
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We close this section by presenting an application of Proposition 6.11 in the

context of the Hales–Jewett theorem (see also [Tao4]). Let A be a finite alphabet

with |A| > 2 and set K = |A|(|A| − 1)2−1. Also let W be a combinatorial space

of A<N. As in Example 6.2, we view W as a discrete probability space equipped

with the uniform probability measure and we denote by S(W ) the K-semiring on

W consisting of all subsets S of W which are written as

S =
⋂

{a,b}∈(A2)

X{a,b} (6.29)

where X{a,b} is (a, b)-insensitive in W for every {a, b} ∈
(
A
2

)
.

Now let D be a subset of W , 0 < ε 6 1 and S ∈ S(W ). Notice that the set S

is (1D,S(W ), ε2)-uniform if and only if for every T ⊆ S with T ∈ S(W ) we have

|densT (D)− densS(D)| · densW (T ) 6 ε2 · densW (S). (6.30)

In particular, if S is (1D,S(W ), ε2)-uniform, then for every T ⊆ S with T ∈ S(W )

and |T | > ε|S| we have |densT (D)−densS(D)| 6 ε. Thus, by Proposition 6.11 and

taking into account these remarks, we obtain the following corollary.

Corollary 6.13. For every k ∈ N with k > 2 and every 0 < ε 6 1 there

exists a positive integer N(k, ε) with the following property. If A is an alphabet

with |A| = k, W is a combinatorial space of A<N and D is a subset of W , then

there exist a positive integer M 6 N(k, ε), a partition P of W with P ⊆ S(W ) and

|P| = M , and a subfamily P ′ ⊆ P with densW (∪P ′) > 1− ε such that

|densT (D)− densS(D)| 6 ε (6.31)

for every S ∈ P ′ and every T ⊆ S with T ∈ S(W ) and |T | > ε|S|.

6.2. Szemerédi’s regularity lemma

Let G = (V,E) be a finite graph and X,Y two nonempty disjoint subsets of V .

The edge density d(X,Y ) between X and Y is the quantity defined by

d(X,Y ) =
|E ∩ (X × Y )|
|X| · |Y |

. (6.32)

Also let 0 < ε 6 1. The pair (X,Y ) is said to be ε-regular (with respect to G) if for

every X ′ ⊆ X and every Y ′ ⊆ Y with |X ′| > ε|X| and |Y ′| > ε|Y | we have

|d(X ′, Y ′)− d(X,Y )| 6 ε. (6.33)

Otherwise, the pair (X,Y ) is said to be ε-irregular.

The following result is known as Szemerédi’s regularity lemma and is due to

Szemerédi [Sz2].

Theorem 6.14. For every 0 < ε 6 1 and every integer m > 1 there exist two

positive integers tSz(ε,m) and KSz(ε,m) with the following property. If G = (V,E)

is a finite graph with |V | > tSz(ε,m), then there exists an integer K with

m 6 K 6 KSz(ε,m) (6.34)
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and a partition V = {V1, . . . , VK} of V such that: (i) V is equitable in the sense

that
∣∣ |Vi| − |Vj |∣∣ 6 1 for every i, j ∈ [K], and (ii) the pair (Vi, Vj) is ε-regular for

all but at most ε
(
K
2

)
of the pairs 1 6 i < j 6 K.

Szemerédi’s regularity lemma is one of the most important structural results

about large dense graphs and has had a huge impact on the development of extremal

combinatorics. Several of its applications are discussed in [KS, KSSS].

We will present a proof of Szemerédi’s regularity lemma using Theorem 6.5 as

a main tool. In particular, for every finite graph G = (V,E) we view the set V ×V
as a discrete probability space equipped with the uniform probability measure. By

S(G) we shall denote the set of all rectangles of V × V , that is,

S(G) = {X × Y : X,Y ⊆ V }.

Notice that, by Lemma 6.3, the family S(G) is a 2-semiring.

We will also need the following facts. The first one relates the notion of unifor-

mity introduced in Definition 6.10 with the graph-theoretic concept of regularity.

Fact 6.15. Let G = (V,E) be a finite graph. Also let 0 < ε 6 1 and X,Y two

nonempty disjoint subsets of V . If the set X × Y is (1E ,S(G), ε3)-uniform, then

the pair (X,Y ) is ε-regular with respect to G.

Proof. LetX ′ ⊆ X and Y ′ ⊆ Y with |X ′| > ε|X| and |Y ′| > ε|Y | be arbitrary.

Notice that X ′ × Y ′ ∈ S(G) and densV×V (X ′ × Y ′) > ε2 · densV×V (X × Y ). By

our assumption that the set X × Y is (1E ,S(G), ε3)-uniform, we obtain that

|densX′×Y ′(E)− densX×Y (E)| · densV×V (X ′ × Y ′) 6 ε3 · densV×V (X × Y ).

Since densX′×Y ′(E) = d(X ′, Y ′) and densX×Y (E) = d(X,Y ), we conclude that

|d(X ′, Y ′)− d(X,Y )| 6 ε and the proof of Fact 6.15 is completed. �

The second fact is a general stability property of uniform sets.

Fact 6.16. Let (Ω,Σ, µ) be a probability space, k a positive integer and S
a k-semiring on Ω with S ⊆ Σ. Also let f be a [0, 1]-valued random variable,

0 < η, δ < 1 and S ∈ S with η + 3δ 6 1 and µ(S) > 0. Assume that the set S is

(f,S, η)-uniform. If S′ ∈ S is such that S ⊆ S′ and µ(S′) 6 (1 + δ)µ(S), then the

set S′ is (f,S, η + 3δ)-uniform.

Proof. We fix S′ ∈ S with S ⊆ S′ and µ(S′) 6 (1 + δ)µ(S). Let T ′ ⊆ S′ with

T ′ ∈ S be arbitrary and set T = T ′ ∩ S. Notice that T ∈ S and T ⊆ S. Moreover,

the fact that f takes values in [0, 1] implies that |f − E(f |S′)| 6 1. Thus, by our

assumptions and the triangle inequality, we obtain that∣∣ ∫
T ′

(
f − E(f |S′)

)
dµ
∣∣ 6 ∣∣ ∫

T ′\T

(
f − E(f |S′)

)
dµ
∣∣+
∣∣ ∫
T

(
f − E(f |S′)

)
dµ
∣∣

6 δµ(S) + ηµ(S) +

∫
T

|E(f |S)− E(f |S′)| dµ.
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Invoking once again the fact that the random variable f is [0, 1]-valued, we see that

|E(f |S)− E(f |S′)| 6 2µ(S′ \ S)/µ(S′). Therefore,∫
T

|E(f |S)− E(f |S′)| dµ 6 2µ(S′ \ S)

µ(S′)
· µ(T ) 6 2µ(S′ \ S) 6 2δµ(S).

Summing up, we conclude that∣∣ ∫
T ′

(
f − E(f |S′)

)
dµ
∣∣ 6 δµ(S) + ηµ(S) + 2δµ(S) 6 (η + 3δ)µ(S′)

and the proof of Fact 6.16 is completed. �

The third, and last, fact will enable us to produce an equitable partition of the

vertex set V of a finite graph from a given partition of V × V .

Fact 6.17. Let M be a positive integer and 0 < θ 6 1/2. Also let V be a finite

set with |V | > 4Mθ−3 and P a partition of V × V into M sets of the form X × Y
where X,Y ⊆ V . Then there exist a positive integer K with

(1− θ)θ−14M 6 K 6 2θ−14M , (6.35)

a family U = {U1, . . . , UK} of pairwise disjoint subsets of V and a partition

V = {V1, . . . , VK} of V such that: (i) |Ui| = bθ|V | · 4−Mc for every i ∈ [K],

(ii) the set Ui × Uj is contained in a (necessarily unique) element of P for every

i, j ∈ [K], (iii)
∣∣ |Vi| − |Vj |∣∣ 6 1 for every i, j ∈ [K], (iv) Ui ⊆ Vi for every i ∈ [K],

and (v) |Vi| 6 (1 + 3θ)|Ui| for every i ∈ [K].

Proof. We write the partition P as {Xi × Yi : i ∈ [M ]}. Let A and B be the

sets of all nonempty atoms of the algebras generated by the families {Xi : i ∈ [M ]}
and {Yi : i ∈ [M ]} respectively. We set R0 = {A ∩ B : A ∈ A and B ∈ B} and

we observe that R0 is a partition of V with |R0| 6 4M and such that the family

P ′ := {X × Y : X,Y ∈ R0} is a refinement of P. Next, we partition every X ∈ R0

into disjoint sets of size N = bθ|V | ·4−Mc plus an error set of size at most N . (Since

|V | > 4Mθ−3 we have N > 1, and so such a partition is possible.) Let E0 be the

union of all the error sets and let U1, . . . , UK be the remaining sets. Notice that

|E0| 6 |R0|N 6 4MN 6 θ|V |.

In particular, we have

|V | − θ|V | 6 KN 6 |V | (6.36)

which is easily seen to imply the estimate on K in (6.35). Also observe that for

every i, j ∈ [K] there exist X,Y ∈ R0 such that Ui ⊆ X and Uj ⊆ Y . This implies,

of course, that Ui × Uj ⊆ X × Y ∈ P ′. Using the fact that P ′ is a refinement of

P, we obtain that Ui ×Uj is contained in a unique element of P. Thus, the family

U := {U1, . . . , UK} satisfies parts (i) and (ii).

We proceed to define the partition V. We break up the set E0 arbitrarily into K

sets E1, . . . , EK such that
∣∣ |Ei|−|Ej |∣∣ 6 1 for every i, j ∈ [K] and we set Vi = Ui∪Ei

for every i ∈ [K]. It is then clear that the partition V := {V1, . . . , VK} satisfies parts

(iii) and (iv). To see that part (v) is also satisfied, let x = min{|Ei| : i ∈ [K]} and
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observe that x 6 |Ei| 6 x+1 for every i ∈ [K]. Notice that the family {E1, . . . , EK}
is a partition of E0 and recall that 0 < θ 6 1/2. Hence,

Kx 6 θ|V |
(6.36)

6 θ(1− θ)−1KN 6 2θKN.

which implies that 0 6 x 6 2θN . Using again the fact that 0 < θ 6 1/2 we see that

θ−2 − θ−1 > 1 and, in particular, that θ−1 6 bθ−2c. Since |V | > 4Mθ−3 we have

θN = θbθ|V | · 4−Mc > θbθ−2c > 1. Therefore, for every i ∈ [K] we obtain that

|Vi| = |Ui|+ |Vi \ Ui| = N + |Ei| 6 N + x+ 1 6 N + 3θN = (1 + 3θ)|Ui|.

The proof of Fact 6.17 is completed. �

We are ready to give the proof of Theorem 6.14.

Proof of Theorem 6.14. We follow the proof from [Tao2]. Fix 0 < ε 6 1

and a positive integer m. Let

η =
ε3

64
, θ =

η

45m
and σ =

η2

8
(6.37)

and define F : N → R by the rule F (n) = σ−1(2θ−14n)2 for every n ∈ N. Notice

that F is a growth function. Finally, let

M0 = RegSz(2, 1, σ, F ) (6.38)

and set

tSz(ε,m) = d4M0θ−3e and KSz(ε,m) = b2θ−14M0c. (6.39)

We will show that tSz(ε,m) and KSz(ε,m) are as desired.

Let G = (V,E) be an arbitrary finite graph with |V | > tSz(ε,m). By Theorem

6.5 applied for the 2-semiring S(G) and the family F = {1E}, there exist a positive

integer M 6 M0, a partition P of V × V with P ⊆ S(G) and |P| = M , and a

decomposition 1E = fstr + ferr + funf such that fstr is constant on each S ∈ P,

‖ferr‖L2
6 σ and ‖funf‖S 6 1/F (M). By the choice of tSz(ε,m) in (6.39) and the

fact that |P| = M 6 M0, we have |V | > 4Mθ−3. Thus, by Fact 6.17, there exist a

positive integer K with

(1− θ)θ−14M 6 K 6 2θ−14M , (6.40)

a family U = {U1, . . . , UK} of pairwise disjoint subsets of V and a partition

V = {V1, . . . , VK} of V satisfying parts (i)–(v) of Fact 6.17.

We claim that K and V satisfy the requirements of the theorem. Indeed, notice

first that, by (6.40) and the choice of θ and KSz(ε,m) in (6.37) and (6.39), we have

m 6 K 6 KSz(ε,m). Also let

D = {Vi × Vj : 1 6 i < j 6 K} and C = {Ui × Uj : 1 6 i < j 6 K}.

As in Definition 6.10, by Unf(D,1E , 2η) we denote the set of all Vi × Vj ∈ D such

that Vi×Vj is (1E ,S(G), 2η)-uniform. Respectively, Unf(C,1E , η) stands for set of

all Ui × Uj ∈ C such that Ui × Uj is (1E ,S(G), η)-uniform.

Let 1 6 i < j 6 K and assume that the pair (Vi, Vj) is ε-irregular. By (6.37),

we have 2η 6 ε3 and so, by Fact 6.15, we obtain that Vi × Vj /∈ Unf(D,1E , 2η).

Next observe that, by the choice of U and V, we have Ui × Uj ⊆ Vi × Vj and
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|Vi × Vj | 6 (1 + 15θ)|Ui × Uj |. On the other hand, by (6.37), we have 45θ 6 η

and η+ 45θ 6 1. Thus, by Fact 6.16 and the previous discussion, we conclude that

Ui × Uj /∈ Unf(C,1E , η). Therefore, it is enough to show that

|C \Unf(C,1E , η)| 6 ε
(
K

2

)
. (6.41)

To this end, notice that C ⊆ S(G) is a collection of pairwise disjoint sets. Moreover,

for every Ui × Uj ∈ C we have

densV×V (Ui × Uj) =
bθ|V | · 4−Mc2

|V |2
>
(θ4−M

2

)2 (6.40)

>
(1− θ

2K

)2 (6.37)

> (4K)−2.

Invoking the definition of the growth function F , we also have

|C| 6 K2
(6.40)

6 (2θ−14M )2 = σF (M)

and so ‖funf‖S 6 1/F (M) 6 σ|C|−1 = (η2/8)|C|−1. On the other hand, observe

that ‖ferr‖L1
6 ‖ferr‖L2

6 σ = η2/8. Hence, by Lemma 6.12 and the previous

estimates, we obtain that

|C \Unf(C,1E , η)| · (4K)−2 6
∑

Ui×Uj /∈Unf(C,1E ,η)

densV×V (Ui × Uj) 6 η. (6.42)

Finally, by (6.37) and (6.40), we see that K > 2 which implies that K2 6 4
(
K
2

)
.

Therefore, we conclude that

|C \Unf(C,1E , η)|
(6.42)

6 16ηK2
(6.37)

6
ε

4
K2 6 ε

(
K

2

)
.

The proof of Theorem 6.14 is completed. �

6.3. A concentration inequality for product spaces

6.3.1. The main result. In this section we will present a concentration

inequality for product spaces which asserts that every square-integrable random

variable defined on the product of sufficiently many probability spaces exhibits

pseudorandom behavior. Combinatorial applications will be discussed in Subsec-

tions 6.3.2 and 6.3.3.

First we introduce some notation concerning product spaces. Let n be a pos-

itive integer and let (Ω1,Σ1, µ1), . . . , (Ωn,Σn, µn) be a finite sequence of proba-

bility spaces. As in Example 6.1, by (Ω,Σ,µ) we shall denote their product,

while for every nonempty I ⊆ [n] by (ΩI ,ΣI ,µI) we shall denote the product

of the spaces 〈(Ωi,Σi, µi) : i ∈ I〉. (Recall that, by convention, Ω∅ stands for

the empty set.) If I ⊆ [n], x ∈ ΩI and y ∈ Ω[n]\I , then by (x,y) we shall de-

note the unique element z of Ω such that πI(z) = x and π[n]\I(z) = y. (Here,

πI : Ω → ΩI and π[n]\I : Ω → Ω[n]\I are the natural projections.) Finally, for

every function f : Ω → R and every x ∈ ΩI by fx : Ω[n]\I → R we shall denote

the map defined by fx(y) = f
(
(x,y)

)
. Notice, in particular, that for every subset

A of Ω the function (1A)x coincides with the characteristic function of the section

Ax = {y ∈ Ω[n]\I : (x,y) ∈ A} of A at x.
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Now for every positive integer `, every 0 < σ 6 1 and every F : N→ N we set

ConcProd(`, σ, F ) = F (dσ−3`e)(1). (6.43)

The following theorem is the main result of this section.

Theorem 6.18. Let ` be a positive integer, 0 < σ 6 1 and F : N → N such

that F (m) > m + 1 for every m ∈ N. Also let n be a positive integer with

n > F
(
ConcProd(`, σ, F )

)
+1 and let (Ω,Σ,µ) be the product of a finite sequence

(Ω1,Σ1, µ1), . . . , (Ωn,Σn, µn) of probability spaces. If F is a family in L2(Ω,Σ,µ)

such that ‖f‖L2
6 1 for every f ∈ F and with |F| = `, then there exists a positive

integer M with

M 6 ConcProd(`, σ, F ) (6.44)

such that for every nonempty I ⊆ {M + 1, . . . , F (M)} and every f ∈ F we have

µI
(
{x ∈ ΩI : |E(fx)− E(f)| 6 σ}

)
> 1− σ. (6.45)

The proof of Theorem 6.18 is also based on Fact 6.6. Specifically, let m ∈ [n]

and recall that (Ω[m],Σ[m],µ[m]) stands for the product of the probability spaces

(Ω1,Σ1, µ1), . . . , (Ωm,Σm, µm). As in Example 6.1, we may “extend” the σ-algebra

Σ[m] to the full product Ω using the projection π[m]. Indeed, for every m ∈ [n] let

Bm =
{
π−1

[m](A) : A ∈ Σ[m]

}
(6.46)

and observe that Bm = {A × Ω[n]\[m] : A ∈ Σ[m]} if m < n while Bn = Σ. It

follows that (Bm)nm=1 is an increasing finite sequence of sub-σ-algebras of Σ, and

so for every f ∈ L2(Ω,Σ,µ) with ‖f‖L2 6 1 the sequence E(f | B1), . . . ,E(f | Bn)

is a finite martingale which is contained in the unit ball of L2(Ω,Σ,µ). We have

the following property which is satisfied by all finite martingales of this form.

Lemma 6.19. Let l be a positive integer, 0 < η 6 1 and Φ: N → N such

that Φ(m) > m + 1 for every m ∈ N. Also let n ∈ N with n > Φ(dη−1le+1)(1).

Finally, let (Ω,Σ, µ) be a probability space, (Am)nm=1 an increasing finite sequence

of sub-σ-algebras of Σ and F a family in L2(Ω,Σ, µ) such that ‖f‖L2 6 1 for every

f ∈ F and with |F| = l. Then there exists a positive integer M with

M 6 Φ(dη−1le)(1) (6.47)

such that for every f ∈ F we have

‖E(f | AΦ(M))− E(f | AM )‖2L2
6 η. (6.48)

Proof. Assume that there is no positive integer M which satisfies (6.47) and

(6.48). This implies that for every M ∈ {1, . . . ,Φ(dη−1le)(1)} there exists f ∈ F such

that ‖E(f | AΦ(M)) − E(f | AM )‖2L2
> η. Therefore, for every i ∈ {1, . . . , dη−1le}

we may select fi ∈ F such that ‖E(fi | AΦ(Mi))−E(fi | AMi
)‖2L2

> η where M1 = 1

and Mi = Φ(Mi−1) = Φ(i−1)(1) if i > 2. By the classical pigeonhole principle,

there exist g ∈ F and a subset I of {1, . . . , dη−1le} with |I| > dη−1le/|F| and such

that fi = g for every i ∈ I. Hence, by Fact 6.6, we obtain that

1 6 η|I| < ‖E(g | An)‖2L2
6 ‖g‖2L2

6 1

which is clearly a contradiction. The proof of Lemma 6.19 is completed. �
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We will also need the following lemma. In its proof, and in the rest of this

subsection, we will follow the common practice when proving inequalities and we

will ignore measurability issues since they can be easily resolved with standard

arguments.

Lemma 6.20. Let I ⊆ [n] and assume that both I and [n] \ I are nonempty.

Then for every g, h ∈ L2(Ω,Σ,µ) we have∫
‖gx − hx‖2L1

dµI 6 ‖g − h‖2L2
. (6.49)

Proof. By Fubini’s theorem, we see that

‖g − h‖2L2
=

∫ (∫
|gx − hx|2 dµ[n]\I

)
dµI . (6.50)

On the other hand, by Jensen’s inequality, for every x ∈ ΩI we have

‖gx − hx‖2L1
=
(∫
|gx − hx| dµ[n]\I

)2

6
∫
|gx − hx|2 dµ[n]\I (6.51)

and so, taking the average over all x ∈ ΩI and using (6.50), we conclude that the

estimate in (6.49) is satisfied. The proof of Lemma 6.20 is completed. �

We are ready to give the proof of Theorem 6.18.

Proof of Theorem 6.18. Fix a family F in L2(Ω,Σ,µ) with ‖f‖L2
6 1 for

every f ∈ F and |F| = `. We apply Lemma 6.19 to the sequence (Bm)nm=1 defined

in (6.46), the family F and the constant “η = σ3”, and we obtain a positive integer

M 6 ConcProd(`, σ, F ) such that

‖E(f | BF (M))− E(f | BM )‖2L2
6 σ3 (6.52)

for every f ∈ F . We will show that the positive integer M is as desired.

Notice, first, that the estimate in (6.44) is satisfied. Next, fix a nonempty

subset I of {M + 1, . . . , F (M)} and let f ∈ F be arbitrary. We set

g = E(f | BF (M)) and h = E(f | BM ). (6.53)

We have the following claim.

Claim 6.21. For every x ∈ ΩI we have E(gx) = E(fx) and E(hx) = E(f).

Proof of Claim 6.21. Fix x ∈ ΩI . Since I ⊆ [F (M)], by (6.53) and Fubini’s

theorem, we see that for every y ∈ Ω[F (M)]\I the function g(x,y) : Ω[n]\[F (M)] → R
is constant and equal to E(f(x,y)). Therefore,

E(gx) =

∫
gx dµ[n]\I =

∫ (∫
g(x,y) dµ[n]\[F (M)]

)
dµ[F (M)]\I

=

∫
E(f(x,y)) dµ[F (M)]\I

=

∫ (∫
f(x,y) dµ[n]\[F (M)]

)
dµ[F (M)]\I

=

∫
fx dµ[n]\I = E(fx).
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We proceed to show that E(hx) = E(f). As above we observe that, by (6.53) and

Fubini’s theorem, for every z ∈ Ω[M ] the function hz : Ω[n]\[M ] → R is constant

and equal to E(fz). Since I ∩ [M ] = ∅, the function h(x,z) : Ω[n]\(I∪[M ]) → R is also

constant and equal to E(fz). Hence,

E(hx) =

∫
hx dµ[n]\I =

∫ (∫
h(x,z) dµ[n]\(I∪[M ])

)
dµ[M ]

=

∫
E(fz) dµ[M ] = E(f).

The proof of Claim 6.21 is completed. �

By Claim 6.21, for every x ∈ ΩI we have

|E(fx)− E(f)| =
∣∣ ∫ (gx − hx) dµ[n]\I

∣∣ 6 ‖gx − hx‖L1

and so, by (6.52), (6.53) and Lemma 6.20, we obtain that∫
|E(fx)− E(f)|2 dµI 6 σ3. (6.54)

By Markov’s inequality, we conclude that

µI
(
{x ∈ ΩI : |E(fx)− E(f)| 6 σ}

)
> 1− σ (6.55)

and the proof of Theorem 6.18 is completed. �

6.3.2. Combinatorial spaces. In the last two subsections we will present

two combinatorial applications of Theorem 6.18. The first one is in the context of

the Hales–Jewett theorem and asserts that every dense subset of a high-dimensional

hypercube can be effectively modeled as a family of measurable events indexed by

the elements of another hypercube of smaller, but large enough, dimension. Related

results will also be obtained in Chapters 8 and 9.

We proceed to the details. Let k, `,m be positive integers with k > 2 and

0 < ε 6 1. We set

σ = min{ε, k−m/2} (6.56)

and we define F : N→ N by the rule F (n) = n+m for every n ∈ N. Finally, let

RegSp(k, `,m, ε) = F
(
ConcProd(`, σ, F )

)
+ 1. (6.57)

We have the following lemma.

Lemma 6.22. Let k, `,m be positive integers with k > 2 and 0 < ε 6 1. Also

let A be an alphabet with |A| = k and n > RegSp(k, `,m, ε). If F is a family of

subsets of An with |F| = `, then there exists an interval I ⊆ {l ∈ N : l < n} with

|I| = m such that for every D ∈ F and every t ∈ AI we have

|dens(Dt)− dens(D)| 6 ε (6.58)

where Dt = {s ∈ A{l∈N : l<n}\I : (t, s) ∈ D} is the section of D at t.
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Proof. We view the sets A and An as discrete probability spaces equipped

with their uniform probability measures. Notice, in particular, that the probability

space An is the product of n many copies of A. Hence, by (6.57) and Theorem

6.18, if F is a family of subsets of An with |F| = `, then there exists an interval

I ⊆ {l ∈ N : l < n} with |I| = m such that for every D ∈ F we have

dens
(
{t ∈ AI : |dens(Dt)− dens(D)| 6 σ}

)
> 1− σ

(6.56)

> 1− k−m/2

which implies, of course, that |dens(Dt) − dens(D)| 6 σ for every t ∈ AI . Since

σ 6 ε we conclude that the estimate in (6.58) is satisfied and the proof of Lemma

6.22 is completed. �

6.3.3. Carlson–Simpson spaces. We proceed to discuss the analogue of

Lemma 6.22 in the context of the Carlson–Simpson theorem. To this end, we need

the following definition.

Definition 6.23. Let A be a finite alphabet with |A| > 2 and F a family of

subsets of A<N. Also let 0 < ε 6 1 and J a nonempty finite subset of N. We say

that the family F is (ε, J)-regular provided that for every D ∈ F , every n ∈ J ,

every (possibly empty) I ⊆ {j ∈ J : j < n} and every t ∈ AI we have

|dens
(
{s ∈ A{l∈N : l<n}\I : (t, s) ∈ D}

)
− densAn(D)| 6 ε. (6.59)

Notice that for every t ∈ AI the set {s ∈ A{l∈N : l<n}\I : (t, s) ∈ D} is just the

section of the set D ∩An at t. Therefore, Definition 6.23 guarantees that for every

D ∈ F, every n ∈ J and every I ⊆ {j ∈ J : j < n} the density of the sections of

D ∩An along elements of AI are essentially equal to the density of D ∩An.

We also need to introduce some numerical invariants. Specifically, let k, `,m

be positive integers with k > 2 and 0 < ε 6 1. We define h : N→ N recursively by

the rule {
h(0) = h(1) = 1,

h(i+ 1) = RegSp(k, `, h(i), ε)
(6.60)

where RegSp(k, `, h(i), ε) is as in (6.57), and we set

RegCS(k, `,m, ε) = h(m). (6.61)

The following lemma is the main result of this subsection.

Lemma 6.24. Let k, `,m be positive integers with k > 2 and 0 < ε 6 1.

Also let A be an alphabet with |A| = k and let J0 be a finite subset of N with

|J0| > RegCS(k, `,m, ε). If F a family of subsets of A<N with |F| = `, then there

exists a subset J of J0 with |J | = m such that the family F is (ε, J)-regular.

The proof of Lemma 6.24 is based on the following refinement of Lemma 6.22.

Sublemma 6.25. Let k, `, r be positive integers with k > 2 and 0 < ε 6 1.

Also let A be an alphabet with |A| = k and let J be a finite subset of N with

|J | > RegSp(k, `, r, ε). We set p = max(J). If F is a family of subsets of Ap with
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|F| = `, then there exists a subset J ′ of J \ {p} with |J ′| = r such that for every

D ∈ F , every subset I of J ′ and every t ∈ AI we have

|dens
(
{s ∈ A{l∈N : l<p}\I : (t, s) ∈ D}

)
− densAp(D)| 6 ε. (6.62)

Proof. First, recall that RegSp(k, `, r, ε) = F
(
ConcProd(`, σ, F )

)
+ 1 where

σ = min{ε, k−r/2} and F : N→ N is defined by F (i) = i+ r for every i ∈ N. Next

let n = |J | and observe that

n > RegSp(k, `, r, ε) = F
(
ConcProd

(
`, σ, F )

)
+ 1. (6.63)

In particular, we have n > 2. Let j1 < · · · < jn be the increasing enumeration of J

and set J∗ = J \ {p} = {j1, . . . , jn−1}. We view the sets Ap, A{ji}, . . . , A{jn−1} and

A{l∈N : l<p}\J∗ as discrete probability spaces equipped with their uniform probabil-

ity measures and, as in the proof of Lemma 6.22, we observe that the probability

space Ap is naturally identified with the product of the spaces A{ji}, . . . , A{jn−1}

and A{l∈N : l<p}\J∗ . By Theorem 6.18 and (6.63), if F is a family of subsets of Ap

with |F| = `, then there exists J ′ ⊆ {j1, . . . , jn−1} = J \ {p} with |J ′| = r such

that for every D ∈ F and every nonempty I ⊆ J ′, the set of all t ∈ AI satisfying

|dens
(
{s ∈ A{l∈N : l<p}\I : (t, s) ∈ D}

)
− densAp(D)| 6 σ.

has density at least 1−σ. Using the fact that σ = min{ε, k−r/2}, we conclude that

for every D ∈ F , every nonempty I ⊆ J ′ and every t ∈ AI we have

|dens
(
{s ∈ A{l∈N : l<p}\I : (t, s) ∈ D}

)
− densAp(D)| 6 ε.

Since the estimate in (6.62) is automatically satisfied if I is empty, the proof of

Sublemma 6.25 is completed. �

We are ready to give the proof of Lemma 6.24.

Proof of Lemma 6.24. Clearly, we may assume that m > 2. We fix a family

F of subsets of A<N with |F| = `. Recursively and using Sublemma 6.25, we select

a finite sequence J1, . . . , Jm−1 of subsets of J0 such that for every i ∈ [m − 1] the

following are satisfied.

(C1) We have |Ji| = h(m− i) where h is as in (6.60).

(C2) The set Ji is a subset of Ji−1 \ {max(Ji−1)}.
(C3) For every D ∈ F , every subset I of Ji and every t ∈ AI we have

|dens
(
{s ∈ A{l∈N : l<pi−1}\I : (t, s) ∈ D}

)
− densApi−1 (D)| 6 ε

where pi−1 = max(Ji−1).

We set J = {max(Jm−1), . . . ,max(J0)
}

. Using (C2) and (C3), we see that J is a

subset of J0 with |J | = m and such that the family F is (ε, J)-regular. The proof

of Lemma 6.24 is thus completed. �
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6.4. Notes and remarks

6.4.1. As we have already mentioned, Theorem 6.5 is due to Tao [Tao1, Tao2].

His approach, however, is somewhat different since he works with σ-algebras instead

of k-semirings. Our presentation follows [DKKa].

The idea to obtain uniformity estimates with respect to an arbitrary growth

function appeared first in [AFKS] and has been also considered by several other

authors (see, e.g., [LS, RSc1]). This particular feature of Theorem 6.5 is essential

when one needs to iterate this structural decomposition.

6.4.2. A weaker version of Theorem 6.14, restricted to bipartite graphs, was

first introduced in [Sz1] where it was used as a tool in the proof of Szemerédi’s

theorem on arithmetic progressions. The current form of Szemerédi’s regularity

lemma was obtained somewhat later in [Sz2].

We also note that the proof of Theorem 6.14 that we presented yields that the

numbers KSz(ε,m) are upper bounded by a primitive recursive function belonging

to the class E4. It is possible to obtain slightly better estimates by proceeding

with a more direct—but still probabilistic—argument (see, e.g., [ASp]). We point

out, however, that this tower-type dependence is actually necessary. Specifically, in

[Go2] examples were given of graphs for which any equitable partition satisfying

the second part of Theorem 6.14 has cardinality at least γ, where γ is a tower of

twos of height proportional to ε−1/16.

6.4.3. Theorem 6.18 is an abstract version of Lemma 3.2 in [DKT3]. Lemmas

6.22 and 6.24 are taken from [DKT3].

6.4.4. We remark that Theorems 6.5 and 6.18 can be extended to finite families

of random variables in Lp for any p > 1. (Of course, the corresponding bounds

will also depend upon the choice p.) These extensions are based on inequalities for

martingale difference sequences in Lp spaces (see [DKKa] and [DKT5] for details).





CHAPTER 7

The removal lemma

The removal lemma is a powerful result with several consequences in Ramsey

theory. It originates from the work of Ruzsa and Szemerédi in [RS], though its

full combinatorial strength was obtained much later by Gowers [Go5] and, inde-

pendently, by Nagle, Rödl, Schacht and Skokan [NRS, RSk]. However, as in the

case of Szemerédi’s regularity lemma, it also has a probabilistic formulation which

refers to the following natural measure-theoretic structures.

Definition 7.1. A hypergraph system is a triple

H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) (7.1)

where n is a positive integer, 〈(Ωi,Σi, µi) : i ∈ [n]〉 is a finite sequence of probability

spaces and H is a hypergraph on [n]. If the hypergraph H is r-uniform, then H

will be called an r-uniform hypergraph system.

For every hypergraph system H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) by (Ω,Σ,µ)

we shall denote the product of the spaces 〈(Ωi,Σi, µi) : i ∈ [n]〉. Moreover, as in

Example 6.1, for every nonempty e ⊆ [n] let (Ωe,Σe,µe) be the product of the

spaces 〈(Ωi,Σi, µi) : i ∈ e〉 and recall that the σ-algebra Σe can be “lifted” to the

full product Ω via the formula

Be =
{
π−1
e (A) : A ∈ Σe

}
(7.2)

where πe : Ω → Ωe is the natural projection. By convention, we set B∅ = {∅,Ω}.
The following theorem is the main result of this chapter and is due to Tao [Tao1].

Theorem 7.2. For every n, r ∈ N with n > r > 2 and every 0 < ε 6 1

there exist a strictly positive constant δ(n, r, ε) and a positive integer K(n, r, ε) with

the following property. Let H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform

hypergraph system and for every e ∈ H let Ee ∈ Be such that

µ
( ⋂
e∈H

Ee

)
6 δ(n, r, ε). (7.3)

Then for every e ∈ H there exists Fe ∈ Be with

µ(Ee \ Fe) 6 ε and
⋂
e∈H

Fe = ∅. (7.4)

Moreover, there exists a collection 〈Pe′ : e′ ⊆ e for some e ∈ H〉 of partitions of Ω

such that: (i) Pe′ ⊆ Be′ and |Pe′ | 6 K(n, r, ε) for every e′ ⊆ e ∈ H, and (ii) for

every e ∈ H the set Fe belongs to the algebra generated by the family
⋃
e′ e Pe′ .

117
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The proof of Theorem 7.2 is effective and follows a method first implemented

by Ruzsa and Szemerédi [RS]. It consists of two parts. The first part is a regular-

ity lemma for hypergraph systems which follows from a multidimensional version

of Theorem 6.5. The second part is a “counting lemma” which enables us to esti-

mate the probability of various events similar to those that appear in (7.3). These

preparatory steps are presented in Sections 7.1, 7.2 and 7.3. The proof of Theorem

7.2 is completed in Section 7.4 while in Section 7.5 we discuss applications.

7.1. A multidimensional version of Theorem 6.5

Let Ω be a nonempty set. As in Appendix E, for every finite partition P of Ω

by AP we shall denote the algebra on Ω generated by P. Moreover, for every finite

tuple C = (C1, . . . , Cd) of families of subsets of Ω and every nonempty I ⊆ [d] set

CI =
{⋂
i∈I

Ci : Ci ∈ Ci for every i ∈ I
}
. (7.5)

Note that, by Lemma 6.3, if S = (S1, . . . ,Sd) consists of k-semirings on Ω (where

k is a positive integer), then SI is a (k · |I|)-semiring on Ω. On the other hand, if

P = (P1, . . . ,Pd) is a tuple of finite partitions of Ω with Pi ⊆ Si for every i ∈ [d],

then the family PI is also a finite partition of Ω which is contained in SI .
The following theorem is a multidimensional version of Theorem 6.5 and is the

main result in this section. Recall that a growth function is an increasing function

F : N→ R which satisfies F (n) > n+ 1 for every n ∈ N.

Theorem 7.3. Let k, d, ` be positive integers, 0 < σ 6 1 and F : N → R a

growth function. Also let (Ω,Σ, µ) be a probability space and S = (S1, . . . ,Sd) a

d-tuple of k-semirings on Ω with Si ⊆ Σ for every i ∈ [d]. Finally, let F be a family

in L2(Ω,Σ, µ) with ‖f‖L2
6 1 for every f ∈ F and |F| = `. Then there exist

(a) a positive integer M with M 6 RegSz(k, ` · 2d, σ, F ),

(b) a d-tuple P = (P1, . . . ,Pd) of finite partitions of Ω with Pi ⊆ Si and

|Pi| 6M for every i ∈ [d], and

(c) a d-tuple Q = (Q1, . . . ,Qd) where Qi is a finite refinement of Pi with

Qi ⊆ Si for every i ∈ [d]

with the following property. For every f ∈ F and every nonempty subset I of [d],

letting SI , PI and QI be as in (7.5) and writing f = f Istr + f Ierr + f Iunf where

f Istr = E(f | API ), f
I
err = E(f | AQI

)−E(f | API ) and f Iunf = f−E(f | AQI
), (7.6)

we have the estimates

‖f Ierr‖L2
6 σ and ‖f Iunf‖SI 6

1

F (M)
(7.7)

where ‖ · ‖SI is the uniformity norm associated with the (k · |I|)-semiring SI .

The main point in Theorem 7.3 is that one can decompose a finite family of

random variables by using two collections of partitions which are implicated in the

same way as the corresponding semirings. This additional coherence property is

needed for the proof of Theorem 7.2.
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In spite of being stronger, Theorem 7.3 follows the same strategy as the proof

of Theorem 6.5. In particular, the reader is advised to review at this point the

material in Subsection 6.1.3.

It is convenient to introduce the following notation. Let k, d be positive integers,

Ω a nonempty set and S = (S1, . . . ,Sd) a d-tuple of k-semirings on Ω. Also let

P = (P1, . . . ,Pd) be a d-tuple of finite partitions of Ω with Pi ⊆ Si for every i ∈ [d].

For every N ∈ N by ΠN
S (P) we shall denote the set of all d-tuples Q = (Q1, . . . ,Qd)

such that for every i ∈ [d] we have: (i) Qi ⊆ Si, (ii) Qi is a refinement of Pi, and

(iii) |Qi| 6 |Pi|(k + 1)N . We have the following variant of Lemma 6.7.

Lemma 7.4. Let k, d be positive integers and 0 < δ 6 1. Also let (Ω,Σ, µ) be a

probability space, S = (S1, . . . ,Sd) a d-tuple of k-semirings on Ω with Si ⊆ Σ for

every i ∈ [d] and Q = (Q1, . . . ,Qd) a d-tuple of finite partitions of Ω with Qi ⊆ Si
for every i ∈ [d]. Finally, let f ∈ L2(Ω,Σ, µ) and let I ⊆ [d] be nonempty, and

assume that ‖f − E(f | AQI
)‖SI > δ. Then there exists R ∈ Π1

S(Q) such that

‖E(f | ARI
)− E(f | AQI

)‖L2 > δ.

Proof. We select S ∈ SI such that∣∣ ∫
S

(
f − E(f | AQI

)
)
dµ
∣∣ > δ. (7.8)

By (7.5), for every i ∈ I there exists Si ∈ Si such that

S =
⋂
i∈I

Si.

The d-tuple S = (S1, . . . ,Sd) consists of k-semirings on Ω, and so there exists

R = (R1, . . . ,Rd) ∈ Π1
S(Q) such that Si ∈ ARi for every i ∈ I. Therefore, we

have S ∈ ARI
and, consequently,∫

S

E(f | ARI
) dµ =

∫
S

f dµ. (7.9)

By (7.8), (7.9) and the monotonicity of the Lp norms, we conclude that

‖E(f | ARI
)− E(f | AQI

)‖L2 > δ

and the proof of Lemma 7.4 is completed. �

The next lemma follows arguing precisely as in the proof of Lemma 6.8 and

using Lemma 7.4 instead of Lemma 6.7.

Lemma 7.5. Let k, d, ` be positive integers, 0<δ, σ 6 1 and set N=dσ2δ−2` 2de.
Also let (Ω,Σ, µ) be a probability space, S = (S1, . . . ,Sd) a d-tuple of k-semirings on

Ω with Si ⊆ Σ for every i ∈ [d] and P = (P1, . . . ,Pd) a d-tuple of finite partitions

of Ω with Pi ⊆ Si for every i ∈ [d]. Finally, let F be a family in L2(Ω,Σ, µ) with

|F| = `. Then there exists Q ∈ ΠN
S (P) such that either

(a) ‖E(f | AQI
) − E(f | API )‖L2

> σ for some f ∈ F and some nonempty

subset I of [d], or

(b) ‖E(f | AQI
) − E(f | API )‖L2 6 σ and ‖f − E(f | AQI

)‖SI 6 δ for every

f ∈ F and every nonempty subset I of [d].
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The last step towards the proof of Theorem 7.3 is the following analogue of

Lemma 6.9. Its proof is identical to that of Lemma 6.9.

Lemma 7.6. Let k, d, ` be positive integers, 0 < σ 6 1 and F : N → R a

growth function. Set L = dσ−2` 2de and define two sequences (Nj) and (Mj) in N
recursively by the rule{

N0 = 0 and M0 = 1,

Nj+1 = dσ2F (Mj)
2` 2de and Mj+1 = Mj(k + 1)Nj+1 .

(7.10)

Let (Ω,Σ, µ) be a probability space and S = (S1, . . . ,Sd) a d-tuple of k-semirings

on Ω with Si ⊆ Σ for every i ∈ [d]. Also let F be a family in L2(Ω,Σ, µ) such that

‖f‖L2 6 1 for every f ∈ F and with |F| = `. Then there exist j ∈ {0, . . . , L − 1},
a d-tuple P = (P1, . . . ,Pd) of partitions of Ω with Pi ⊆ Si and |Pi| 6 Mj for

every i ∈ [d], and Q ∈ Π
Nj+1

S (P) such that ‖E(f | AQI
) − E(f | API )‖L2

6 σ and

‖f − E(f | AQI
)‖SI 6 1/F (Mj) for every f ∈ F and every nonempty I ⊆ [d].

We are ready to give the proof of Theorem 7.3.

Proof of Theorem 7.3. Fix the positive integers k, d, `, the constant σ and

the growth function F . Let j,P and Q be as in Lemma 7.6 and set M = Mj . We

claim that M,P and Q are as desired. Indeed, let h : N → N be the map defined

in (6.7) for the parameters k, ` · 2d, σ and F . By (7.10), we have Mj = h(j) and so

M = Mj 6Mdσ−2` 2de = h(dσ−2` 2de) (6.8)
= RegSz(k, ` · 2d, σ, F ).

Therefore, by Lemma 7.6, we see that M,P and Q satisfy the requirements of the

theorem. Finally, notice the estimate in (7.7) is an immediate consequence of (7.6)

and Lemma 7.6. The proof of Theorem 7.3 is completed. �

7.2. A regularity lemma for hypergraph systems

In this section we will present the first main step of the proof of Theorem

7.2. Specifically, given a uniform hypergraph system H and a finite collection C
of measurable events of its product space Ω, we will produce a sequence of finite

partitions which can be considered as “approximations” of the given events. These

partitions are contained in gradually smaller σ-algebras (hence, we improve upon

the measurability of the members of C), while at the same time we keep strong

control on the error terms of the “approximations”.

We proceed to the details. For every hypergraph G and every e ∈ G let

∂e = {e′ ⊆ e : |e′| = |e| − 1} (7.11)

and set

∂G = {e′ : e′ ∈ ∂e for some e ∈ G}. (7.12)

Clearly, if G is k-uniform for some k > 1, then ∂G is (k − 1)-uniform. Next, for

every r-uniform hypergraph system H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) we define a

finite sequence H0, . . . ,Hr of hypergraphs on [n] recursively by the rule

Hr = H and Hj = ∂Hj+1. (7.13)
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Notice that Hj is j-uniform for every j ∈ {0, . . . , r}. Moreover, if r > 2, then as in

Example 6.1 for every j ∈ {2, . . . , r} and every e ∈ Hj let

S∂e =
{ ⋂
e′∈∂e

Ae′ : Ae′ ∈ Be′ for every e′ ∈ ∂e
}

(7.14)

and recall that S∂e is a j-semiring on Ω. Note that S∂e ⊆ Be.
We also need to introduce some numerical invariants. Let n be an integer with

n > 2 and let F : N→ R be a growth function. First, for every m ∈ N we define a

function Gm,F : N→ R by setting Gm,F (x) = F (F (m) +x) for every x ∈ N. Notice

that Gm,F is a growth function. Next, for every r ∈ {2, . . . , n} and every 0 < σ 6 1

we define a growth function φn,r,σ,F : N→ R by

φn,r,σ,F (m) = F (m) + RegSz
(
1,m · nr · 2n

r−1

, σ,Gm,F
)

(7.15)

where RegSz(1,m · nr · 2nr−1

, σ,Gm,F ) is as in (6.8). Finally, we define two finite

sequences of growth functions (Fn,r)
n
r=2 and (Φn,r,F )nr=2 recursively by the rule

Fn,2(m) = F (2)(m) and Φn,2,F (m) = φn,2,1/F (m),Fn,2(m),

Fn,r(m) = F (2)
(
Φn,r−1,F (m)

)
,

Φn,r,F (m) = Φn,r−1,F

(
φn,r,1/F (m),Fn,r(m)

)
.

(7.16)

We have the following lemma.

Lemma 7.7. Let n, r ∈ N with n > r > 2 and F : N → R a growth function.

Also let H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform hypergraph system and

let H0, . . . ,Hr be as in (7.13). Finally, let Mr be a positive integer and for every

e ∈ Hr let Pe be a partition of Ω with Pe ⊆ Be and |Pe| 6 Mr. Then there exist:

(i) a finite sequence (Mj)
r−1
j=1 of positive integers with

Mr 6 F (Mr) 6Mr−1 6 F (Mr−1) 6 · · · 6M1 6 Φn,r,F (Mr), (7.17)

(ii) for every j ∈ [r − 1] and every e′ ∈ Hj a partition Pe′ of Ω with Pe′ ⊆ Be′ and

|Pe′ | 6Mj, and (iii) for every j ∈ [r− 1] and every e′ ∈ Hj a finite refinement Qe′
of Pe′ with Qe′ ⊆ Be′ , such that the following hold. Fix j ∈ {2, . . . , r} and e ∈ Hj.
Let S∂e be the j-semiring defined in (7.14) and consider the finite partitions

P∂e =
{ ⋂
e′∈∂e

Ae′ : Ae′ ∈ Pe′ for every e′ ∈ ∂e
}

(7.18)

and

Q∂e =
{ ⋂
e′∈∂e

Ae′ : Ae′ ∈ Qe′ for every e′ ∈ ∂e
}
. (7.19)

Then for every A ∈ Pe, writing 1A = sA + bA + uA with

sA = E(1A | AP∂e), bA = E(1A | AQ∂e)− E(1A | AP∂e)
and uA = 1A − E(1A | AQ∂e), (7.20)

we have the estimates

‖bA‖L2
6

1

F (Mj)
and ‖uA‖S∂e 6

1

F (M0)
(7.21)

where M0 = F (M1).
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Proof. By induction on r. The initial case “r = 2” is identical to the general

one, and so let r > 3 and assume that the result has been proved up to r − 1.

Let n be a positive integer with n > r and fix an r-uniform hypergraph system

H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H). Also let F be a growth function, Mr a positive

integer and for every e ∈ Hr let Pe be a partition of Ω with Pe ⊆ Be and |Pe| 6Mr.

Set F = {1A : A ∈ Pe for some e ∈ Hr} and observe that F is a family in

L2(Ω,Σ,µ) with ‖f‖L2
6 1 for every f ∈ F and |F| 6Mr · |Hr| 6Mr · nr. Next,

let B = 〈Be′ : e′ ∈ Hr−1〉 and notice that B is a collection of 1-semirings on Ω;

moreover, |Hr−1| 6 nr−1. Finally, let Fn,r be as in (7.16) and recall that GMr,Fn,r

stands for the growth function defined by GMr,Fn,r(x) = Fn,r(Fn,r(Mr) + x). We

apply Theorem 7.3 for σ = 1/F (Mr), the growth function GMr,Fn,r , the collection

B and the family F and we obtain: (i) a positive integer M with

M 6 RegSz
(
1,Mr · nr · 2n

r−1

, 1/F (Mr), GMr,Fn,r

)
, (7.22)

(ii) two collections 〈Pe′ : e′ ∈ Hr−1〉 and 〈Qe′ : e′ ∈ Hr−1〉 of finite partitions

of Ω, and (iii) for every f ∈ F and every nonempty I ⊆ Hr−1 a decomposition

f = f Istr + f Ierr + f Iunf as described Theorem 7.3. Note that if e ∈ Hr and A ∈ Pe,
then the family B∂e defined in (7.5) for I = ∂e coincides with the r-semiring S∂e
defined in (7.14) and, moreover, (1A)∂estr = sA, (1A)∂eerr = bA and (1A)∂eunf = uA. Set

Mr−1 = Fn,r(Mr) +M. (7.23)

Since GMr,Fn,r (M) = Fn,r(Mr−1), it follows from the previous discussion and (7.7)

that for every e ∈ Hr and every A ∈ Pe we have

‖bA‖L2
6

1

F (Mr)
and ‖uA‖S∂e 6

1

Fn,r(Mr−1)
. (7.24)

On the other hand, by (7.15), (7.22) and (7.23), we obtain that

Mr 6 F (Mr) 6Mr−1 6 φn,r,1/F (Mr),Fn,r(Mr). (7.25)

Next, we apply our inductive assumptions to the (r − 1)-uniform hypergraph

system Hr−1 = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,Hr−1), the positive integer Mr−1 and

the collection of partitions 〈Pe′ : e′ ∈ Hr−1〉 and we obtain: (iv) a finite sequence

(Mj)
r−2
j=1 of positive integers with

Mr−1 6 F (Mr−1) 6 · · · 6M1 6 Φn,r−1,F (Mr−1), (7.26)

(v) two collections 〈Pe′ : e′ ∈ H1 ∪ · · · ∪ Hr−2〉 and 〈Qe′ : e′ ∈ H1 ∪ · · · ∪ Hr−2〉 of

finite partitions of Ω, and (vi) for every j ∈ {2, . . . , r− 1}, every e′ ∈ Hj and every

A ∈ Pe′ a decomposition 1A = sA + bA + uA where sA, bA, and uA are as in (7.20)

and satisfy the estimates in (7.21). By (7.24) and (7.26), it is enough to show that

F (M0) 6 Fn,r(Mr−1) and M1 6 Φn,r,F (Mr). Indeed, since F is increasing, we have

F (M0) = F (2)(M1)
(7.26)

6 F (2)
(
Φn,r−1,F (Mr−1)

) (7.16)
= Fn,r(Mr−1).

Moreover,

M1

(7.26)

6 Φn,r−1,F (Mr−1)
(7.25)

6 Φn,r−1,F

(
φn,r,1/F (Mr),Fn,r(Mr)

) (7.16)
= Φn,r,F (Mr)

and the proof of Lemma 7.7 is completed. �
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7.3. A counting lemma for hypergraph systems

First we introduce some terminology and some pieces of notation. We say that

a hypergraph G is closed under set inclusion if for every g ∈ G and every g′ ⊆ g we

have g′ ∈ G. Moreover, we define the downwards closure of G by the rule

Ĝ = {g′ : g′ ⊆ g for some g ∈ G}. (7.27)

That is, Ĝ is the smallest hypergraph containing G and closed under set inclusion.

Now let n, r ∈ N with n > r > 2 and H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) an

r-uniform hypergraph system. Write Ĥ = H0 ∪ · · · ∪ Hr where H0, . . . ,Hr are as

in (7.13), and let P∅ = {Ω}. These data will be fixed throughout this section.

Assume that we are given a growth function F , a positive integer Mr and for

every e ∈ Hr a partition Pe of Ω with Pe ⊆ Be and |Pe| 6 Mr. Then, by applying

Lemma 7.7 to F,Mr and 〈Pe : e ∈ Hr〉, we obtain: (i) a finite sequence (Mj)
r−1
j=1

of positive integers, (ii) a collection 〈Pe′ : e′ ∈ H1 ∪ · · · ∪ Hr−1〉 of partitions of Ω,

and (iii) for every j ∈ {2, . . . , r}, every e ∈ Hj and every A ∈ Pe a decomposition

1A = sA + bA + uA as described in Lemma 7.7. We enlarge the collection in (ii) by

attaching the initial partitions 〈Pe : e ∈ Hr〉 and P∅, and we obtain a new collection

〈Pe : e ∈ Ĥ〉 which is indexed by the downwards closure of H. This new collection

in turn generates a finite partition of Ω whose atoms are of the form⋂
e∈Ĥ

Ae (7.28)

where Ae ∈ Pe for every e ∈ Ĥ. Our goal in this section is to estimate the size of

these atoms. Note that this task is particularly easy if the decomposition in Lemma

7.7 was perfect, that is, if bAe = uAe = 0 for every j ∈ {2, . . . , r} and every e ∈ Hj .
Indeed, proceeding by induction and using (7.20), in this case we have

µ
( ⋂
e∈Ĥ

Ae

)
=

r∏
j=1

∏
e∈Hj

E
(
1Ae

∣∣∣ ⋂
e′∈∂e

Ae′
)
. (7.29)

(This identity also follows from the proof of Lemma 7.9 below.) Although the

decomposition in Lemma 7.7 does have error terms, we will see that an approximate

version of (7.29) holds true provided that the atom in (7.28) is not degenerate in

the sense of the following definition.

Definition 7.8. Fix a growth function F , a positive integer Mr and for every

e ∈ Hr a partition Pe of Ω with Pe ⊆ Be and |Pe| 6Mr. Let (Mj)
r−1
j=1, 〈Pe : e ∈ Ĥ〉

and 〈sA,bA,uA : A ∈ Pe for some e ∈ H2 ∪ · · · ∪ Hr〉 be as in Lemma 7.7 when

applied to F,Mr and 〈Pe : e ∈ Hr〉. Also let 〈Ae : e ∈ Ĥ〉 with Ae ∈ Pe for every

e ∈ Ĥ. We say that the family 〈Ae : e ∈ Ĥ〉 is good provided that the following

conditions are satisfied.

(C1) For every j ∈ [r] and every e ∈ Hj we have

E
(
1Ae

∣∣∣ ⋂
e′∈∂e

Ae′
)
>

1

logF (Mj)
. (7.30)
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(C2) For every j ∈ {2, . . . , r} and every e ∈ Hj we have

E
(

b2
Ae

∣∣∣ ⋂
e′ e

Ae′
)
6

1

F (Mj)
. (7.31)

Observe that a good family 〈Ae : e ∈ Ĥ〉 does not necessarily represent an atom

via formula (7.28), since in Definition 7.8 we do not demand that the intersection of

the members of the family is nonempty. Note, however, that condition (C1) implies

that for every j ∈ {2, . . . , r} and every e ∈ Hj the constant value of the function

sAe on
⋂
e′∈∂eAe′ is at least 1/ logF (Mj).

Now let ζ : N → R be defined by ζ(`) = sup{x−1/4(log x)` : x > 1} and notice

that ζ(`) 6 (4`)` for every ` > 1. Moreover, for every pair m, k of positive integers

and every %, ` ∈ N we define c(m, k, %, `) and C(m, k, %, `) recursively by the rules
c(m, k, 0, `) = c(m, k, 1, `) = 0,

c(m, k, %+ 2, 0) = c(m, 2k, %+ 1, 2k%+1), (7.32)

c(m, k, %+ 2, `+ 1) = c(m, k, %+ 2, `) +
(
1 + c(m, k, %+ 2, 0)

)
·m−1/4 · ζ(`+ 1)

and 
C(m, k, 0, `) = C(m, k, 1, `) = 0,

C(m, k, %+ 2, 0) = C(m, 2k, %+ 1, 2k%+1), (7.33)

C(m, k, %+ 2, `+ 1) = C(m, k, %+ 2, `) + C(m, k, %+ 2, 0) ·m2k + 1.

We isolate, for future use, the following basic properties.

(P1) For every k > 1 and every %, ` ∈ N we have c(m, k, %, `)→ 0 as m→ +∞.

(P2) For every m > 1 and every % ∈ N we have c(m, k, %, `) 6 c(m, k′, %, `′) and

C(m, k, %, `) 6 C(m, k′, %, `′) whenever 1 6 k 6 k′ and ` 6 `′.

The following lemma is the second main step of the proof of Theorem 7.2.

Lemma 7.9. Fix a growth function F , a positive integer Mr and for every

e ∈ Hr a partition Pe of Ω with Pe ⊆ Be and |Pe| 6Mr. Let (Mj)
r−1
j=1, 〈Pe : e ∈ Ĥ〉

and 〈sA,bA,uA : A ∈ Pe for some e ∈ H2 ∪ · · · ∪ Hr〉 be as in Lemma 7.7 when

applied to F,Mr and 〈Pe : e ∈ Hr〉. Also let 〈Ae : e ∈ Ĥ〉 with Ae ∈ Pe for every

e ∈ Ĥ and assume that the family 〈Ae : e ∈ Ĥ〉 is good. Set p∅ = 1 and for every

nonempty e ∈ Ĥ let

pe = E
(
1Ae

∣∣∣ ⋂
e′∈∂e

Ae′
)
. (7.34)

Then, setting M0 = F (M1), we have∣∣µ( ⋂
e∈Ĥ

Ae

)
−
∏
e∈Ĥ

pe
∣∣ 6 c(Mr, n, r, n

r) ·
∏
e∈Ĥ

pe +
C(M0, n, r, n

r)

F (M0)
. (7.35)

7.3.1. Proof of Lemma 7.9. As above, let n, r ∈ N with n > r > 2 and

H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) an r-uniform hypergraph system. Also write

Ĥ = H0 ∪ · · · ∪Hr where H0, . . . ,Hr are as in (7.13), and let P∅ = {Ω}. Again we

emphasize that these data will be fixed in what follows.
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Although for the proof of Theorem 7.2 we need precisely the estimate in (7.35),

we will actually prove a slightly stronger estimate which is much more amenable to

an inductive argument. To this end, we introduce the following definition.

Definition 7.10. A hypergraph bundle over H is a triple (k,G, ϕ) where k is

a positive integer, G is a nonempty, closed under set inclusion hypergraph on [k]

and ϕ : [k] → [n] is a homomorphism from G into Ĥ, that is, for every nonempty

g ∈ G the restriction of ϕ on g is an injection and, moreover, ϕ(g) ∈ Ĥ.

With every hypergraph bundle (k,G, ϕ) over H we associate a new hypergraph

system G = (k, 〈(Ω′j ,Σ′j , µ′j) : j ∈ [k]〉,G) where

(Ω′j ,Σ
′
j , µ
′
j) = (Ωϕ(j),Σϕ(j), µϕ(j)) (7.36)

for every j ∈ [k]. Attached to the hypergraph system G , we have the product

(Ω′,Σ′,µ′) of the spaces 〈(Ω′j ,Σ′j , µ′j) : j ∈ [k]〉 as well as the product (Ω′g,Σ
′
g,µ

′
g)

of the spaces 〈(Ω′j ,Σ′j , µ′j) : j ∈ g〉 for every nonempty g ⊆ [k]. Recall that the

σ-algebra Σ′g can be “lifted” to the full product Ω′ via the natural projection

π′g : Ω′ → Ω′g. Specifically, for every nonempty g ⊆ [k] let

B′g =
{

(π′g)
−1(A′) : A′ ∈ Σ′g

}
(7.37)

and note that B′g is a sub-σ-algebra of Σ′. Next, let g ∈ G be nonempty and define

Ig : (Ω′g,Σ
′
g,µ

′
g)→ (Ωϕ(g),Σϕ(g),µϕ(g)) (7.38)

by setting Ig
(
(ω′j)j∈g

)
= (ωi)i∈ϕ(g) where ωi = ω′j if i = ϕ(j). Since the restriction

of ϕ on g is an injection, by (7.36), we see that the map Ig is an isomorphism. That

is, Ig is a bijection, both Ig and I−1
g are measurable and µϕ(g)(A) = µ′g

(
I−1
g (A)

)
for every A ∈ Σϕ(g). These isomorphisms will be used to transfer information from

the hypergraph system H to the hypergraph system G as follows.

Fix a nonempty g ∈ G. Let A ∈ Bϕ(g) be arbitrary and notice that, by (7.2),

we have A = π−1
ϕ(g)

(
πϕ(g)(A)

)
. Thus, setting

A = πϕ(g)(A) ∈ Σϕ(g), A′ = I−1
g (A) ∈ Σ′g and A′ = (π′g)

−1(A′) ∈ B′g, (7.39)

we see that the map Bϕ(g) 3 A 7→ A′ ∈ B′g is a bijection and, moreover,

µ(A) = µϕ(g)(A) = µ′g(A
′) = µ′(A′). (7.40)

More generally, let f ∈ L1(Ω,Bϕ(g),µ). Also let f be the unique random variable

in L1(Ωϕ(g),Σϕ(g),µϕ(g)) such that f = f ◦ πϕ(g) and set

f ′ = f ◦ Ig ∈ L1(Ω′g,Σ
′
g,µ

′
g) and f ′ = f ′ ◦ π′g ∈ L1(Ω′,B′g,µ′). (7.41)

Observe that for every A ∈ Bϕ(g) we have∫
A

f dµ =

∫
A

f dµϕ(g) =

∫
A′

f ′ dµ′g =

∫
A′
f ′ dµ′. (7.42)

Hence, the map f 7→ f ′ is a linear isometry from L1(Ω,Bϕ(g),µ) onto L1(Ω′,B′g,µ′).
We are now in a position to state the aforementioned variant of Lemma 7.9.
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Lemma 7.9′. Fix a growth function F , a positive integer Mr and for every

e ∈ Hr a partition Pe of Ω with Pe ⊆ Be and |Pe| 6Mr. Let (Mj)
r−1
j=1, 〈Pe : e ∈ Ĥ〉

and 〈sA,bA,uA : A ∈ Pe for some e ∈ H2 ∪ · · · ∪ Hr〉 be as in Lemma 7.7 when

applied to F,Mr and 〈Pe : e ∈ Hr〉. Also let 〈Ae : e ∈ Ĥ〉 with Ae ∈ Pe for every

e ∈ Ĥ and assume that the family 〈Ae : e ∈ Ĥ〉 is good. Set p∅ = 1 and for every

nonempty e ∈ Ĥ let pe be as in (7.34).

Finally, let (k,G, ϕ) be a hypergraph bundle over H. Let r′ = max{|g| : g ∈ G}
be the order of G and set ` = |{g ∈ G : |g| = r′}|. Also set A′∅ = Ω′ and for every

nonempty g ∈ G let A′g ∈ B′g be as in (7.39) for the set Aϕ(g) ∈ Pϕ(g) ⊆ Bϕ(g).

Then, setting M0 = F (M1), we have∣∣µ′( ⋂
g∈G

A′g

)
−
∏
g∈G

pϕ(g)

∣∣ 6 c(Mr, k, r
′, `) ·

∏
g∈G

pϕ(g) +
C(M0, k, r

′, `)

F (M0)
. (7.43)

It is clear that Lemma 7.9 follows by applying Lemma 7.9′ to the hypergraph

bundle (n, Ĥ, Id) over H. We proceed to the proof.

Proof of Lemma 7.9′. First observe that the cases “r′ = 0” and “r′ = 1”

are straightforward. Indeed, if r′ = 0, then G consists only of the empty set. On

the other hand, if r′ = 1, then the family 〈A′g : g ∈ G〉 is independent and satisfies

pϕ(g) = µ′(A′g) for every g ∈ G; these facts imply, of course, the estimate in (7.43).

We now enter the main part of the proof which proceeds by double induction.

Specifically, fix r′ ∈ {2, . . . , r} and assume that

(A1) the estimate in (7.43) has been proved for every hypergraph bundle over

H of order at most r′ − 1.

Next, let k, ` be positive integers with r′ 6 k and 1 6 ` 6
(
k
r′

)
and assume that

(A2) the estimate in (7.43) has been proved for every hypergraph bundle

(k,Z, ψ) over H of order at most r′ and with |{z ∈ Z : |z| = r′}| 6 `− 1.

Finally, let (k,G, ϕ) be a hypergraph bundle over H of order r′ and satisfying

|{g ∈ G : |g| = r′}| = `. We need to show that (7.43) is satisfied for (k,G, ϕ).

To this end, fix g0 ∈ G with |g0| = r′. Since Aϕ(g0) ∈ Bϕ(g0), by (7.20), we see

that sAϕ(g0)
,bAϕ(g0)

,uAϕ(g0)
∈ L1(Ω,Bϕ(g0),µ). Let

s′g0 ,b
′
g0 ,u

′
g0 ∈ L1(Ω′,B′g0 ,µ

′) (7.44)

be as in (7.41) for the random variables sAϕ(g0)
, bAϕ(g0)

and uAϕ(g0)
respectively.

Then, by Lemma 7.7, Definition 7.8, (7.41) and (7.42), the following hold.

(P3) We have 1A′g0 = s′g0 + b′g0 + u′g0 .

(P4) The function s′g0 is constant on the set
⋂
g∈∂g0 A

′
g and equals to pϕ(g0).

(P5) The functions b′g0 and u′g0 are B′g0-measurable.

(P6) If ‖ · ‖S′∂g0 is the uniformity norm associated with the r′-semiring

S ′∂g0 =
{ ⋂
g∈∂g0

B′g : B′g ∈ B′g for every g ∈ ∂g0

}
,

then we have ‖b′g0‖L2 6 1/F (Mr′) and ‖u′g0‖S′∂g0 6 1/F (M0).

(P7) We have pϕ(g0) > 1/ logF (Mr′) and E
(
|b′g0 |

2 |
⋂
g g0 A

′
g

)
6 1/F (Mr′).
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We set

D =
∣∣µ′( ⋂

g∈G
A′g

)
−
∏
g∈G

pϕ(g)

∣∣.
By property (P3), we have

1 ⋂
g∈G

A′g
=
( ∏
g∈G\{g0}

1A′g

)
· (s′g0 + b′g0 + u′g0)

and so, setting

D1 =
∣∣ ∫ ( ∏

g∈G\{g0}

1A′g

)
· s′g0 dµ

′ −
∏
g∈G

pϕ(g)

∣∣,
R1 =

∫ ( ∏
g∈G\{g0}

1A′g

)
· |b′g0 | dµ

′ and R2 =
∣∣ ∫ ( ∏

g∈G\{g0}

1A′g

)
· u′g0 dµ

′∣∣,
we see that D 6 D1 + R1 + R2. Thus, it suffices to estimate D1, R1 and R2. We

will first deal with D1 and R2, and then we will concentrate on R1 which requires

some more work.

Before we proceed to the details, we need to introduce some pieces of notation.

For every nonempty g, h ⊆ [k] with g ⊆ h by π′h,g : Ω′h → Ω′g we shall denote the

natural projection map. (Notice, in particular, that π′[k],g = π′g for every nonempty

g ⊆ [k].) Moreover, as in Subsection 6.3.1, we write Ω′ = Ω′[k]\g0 × Ω′g0 and for

every ω′ ∈ Ω′ let ω′ = (x,y) where x = π′[k]\g0(ω′) and y = π′g0(ω′). We will use

the representation of Ω′ as the product Ω′[k]\g0 × Ω′g0 in order to apply Fubini’s

theorem. In these applications, we will follow the convention in Subsection 6.3.1 and

we will ignore issues related to the measurability of sections of sets and functions,

since they can be easily resolved with standard arguments.

Estimation of D1. By Definition 7.10, the hypergraph G is closed under set

inclusion. It follows that ∂g0 ⊆ G \ {g0} which implies, by property (P4), that( ∏
g∈G\{g0}

1A′g

)
· s′g0 =

( ∏
g∈G\{g0}

1A′g

)
· pϕ(g0).

Consequently,

D1 =
∣∣µ′( ⋂

g∈G\{g0}

A′g

)
−

∏
g∈G\{g0}

pϕ(g)

∣∣ · pϕ(g0)

and so, by (A2), property (P2) and the fact that 0 < pϕ(g0) 6 1, we conclude that

D1 6 c(Mr, k, r
′, `− 1) ·

∏
g∈G

pϕ(g) +
C(M0, k, r

′, `− 1)

F (M0)
. (7.45)

Estimation of R2. This step is based on the fact that ‖u′g0‖S′∂g0 6 1/F (M0).

We will assume that [k] \ g0 is nonempty. (If [k] = g0, then the proof is similar.)

By Fubini’s theorem, we have∫ ( ∏
g∈G\{g0}

1A′g

)
· u′g0 dµ

′ =

∫ (∫ ( ∏
g∈G\{g0}

1(A′g)x

)
· (u′g0)x dµ

′
g0

)
dµ′[k]\g0
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where (A′g)x and (u′g0)x are the sections at x of A′g and u′g0 respectively. We will

show that for every x ∈ Ω′[k]\g0 there exists a family 〈B′h : h ∈ ∂g0〉 (possibly

depending on x) with B′h ∈ B′h for every h ∈ ∂g0, and such that∫ ( ∏
g∈G\{g0}

1(A′g)x

)
· (u′g0)x dµ

′
g0 =

∫ ( ∏
h∈∂g0

1B′h

)
· u′g0 dµ

′. (7.46)

Once this is done then, by property (P6) and taking the average over all x ∈ Ω′[k]\g0 ,

we obtain that

R2 6
1

F (M0)
. (7.47)

So, let x ∈ Ω′[k]\g0 be arbitrary. The selection of the family 〈B′h : h ∈ ∂g0〉 relies on

the following claim.

Claim 7.11. For every g ∈ G \ {g0} there exist h ∈ ∂g0 and C′g,h ∈ Σ′h (not

necessarily unique) such that (A′g)x = (π′g0,h)−1(C′g,h).

Proof of Claim 7.11. If g = ∅ or, more generally, if g∩g0 = ∅, then we have

(A′g)x = Ω′g0 . In these cases we select an arbitrary h ∈ ∂g0 and we set C′g,h = Ω′h.

Next, assume that g  g0 is nonempty. By (7.39), there exists A′g ∈ Σ′g such

that A′g = (π′g)
−1(A′g). Notice that (A′g)x = (π′g0,g)

−1(A′g). Fix h ∈ ∂g0 with g ⊆ h
and observe that (π′g0,g)

−1(A′g) = (π′g0,h)−1
(
(π′h,g)

−1(A′g)
)
. Thus, the edge h and

the set C′g,h := (π′h,g)
−1(A′g) ∈ Σ′h satisfy the requirements of the claim.

Finally, assume that g \g0 and g∩g0 are nonempty. Write Ω′g = Ω′g∩g0×Ω′g\g0
and let x′ = π′[k]\g0,g\g0(x) ∈ Ω′g\g0 . Also let (A′g)x′ be the section of A′g at

x′, and note that (A′g)x′ ∈ Σ′g∩g0 and (A′g)x = (π′g0,g∩g0)−1
(
(A′g)x′

)
. On the

other hand, since g 6= g0 and |g0| = max{|g′| : g′ ∈ G}, we see that g ∩ g0 is a

nonempty proper subset of g0. We select h ∈ ∂g0 with g ∩ g0 ⊆ h and we set

C′g,h := (π′h,g∩g0)−1
(
(A′g)x′

)
∈ Σ′h. Clearly, h and C′g,h are as desired. The proof

of Claim 7.11 is completed. �

We are ready to define the family 〈B′h : h ∈ ∂g0〉. Specifically, by Claim 7.11,

for every h ∈ ∂g0 there exists C′′h ∈ Σ′h such that⋂
g∈G\{g0}

(A′g)x =
⋂

h∈∂g0

(π′g0,h)−1(C′′h). (7.48)

Set B′h = (π′h)−1(C′′h) and observe that B′h ∈ B′h and 1(π′g0,h
)−1(C′′h) ◦ π′g0 = 1B′h .

Moreover, by property (P5), let u′g0 be the unique Σ′g0 -measurable function such

that u′g0 = u′g0 ◦ π
′
g0 and notice that (u′g0)x = u′g0 . Then we have∫ ( ∏

g∈G\{g0}

1(A′g)x

)
· (u′g0)x dµ

′
g0

(7.48)
=

∫ ( ∏
h∈∂g0

1(π′g0,h
)−1(C′′h)

)
· u′g0 dµ

′
g0 =

=

∫ (( ∏
h∈∂g0

1(π′g0,h
)−1(C′′h)

)
· u′g0

)
◦ π′g0 dµ

′ =

∫ ( ∏
h∈∂g0

1B′h

)
· u′g0 dµ

′

and the proof of (7.46) is completed.
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Estimation of R1. We set

G<g0 = {g ∈ G : g  g0} and G′ = {g ∈ G \ G<g0 : |g| 6 r′ − 1}.

As before, to simplify the exposition, we will assume that G′ is nonempty. (If G′
is empty, then the proof is simpler since Claim 7.13 below is superfluous.) Let

A′<g0 =
⋂
g∈G<g0

A′g and observe that A′<g0 ∈ B
′
g0 . In particular, there exists a

unique A′<g0 ∈ Σ′g0 with A′<g0 = (π′g0)−1(A′<g0). The set A′<g0 can also be written

as the intersection of a family of events indexed by G<g0 . Indeed, we have

A′<g0 =
⋂

g∈G<g0

π′g0(A′g) =
⋂

g∈G<g0

(π′g0,g)
−1(A′g) (7.49)

where, as above, A′g = π′g(A
′
g) for every nonempty g ∈ G<g0 and, by convention,

A′∅ = Ω′g0 . In the following claim we obtain a first estimate for R1 by eliminating

the contribution of b′g0 .

Claim 7.12. We have

R1 6
(µ′(A′<g0)

F (Mr′)

)1/2

·
(∫

1A′<g0
·
( ∫

(
∏
g∈G′

1A′g )y dµ
′
[k]\g0

)2
dµ′g0

)1/2

(7.50)

where for every y ∈ Ω′g0 by (
∏
g∈G′ 1A′g )y we denote the section of

∏
g∈G′ 1A′g at y.

Proof of Claim 7.12. Since G<g0∪ G′ ⊆ G \ {g0} we have

R1 6
∫ ( ∏

g∈G<g0∪G′
1A′g

)
· |b′g0 | dµ

′

and so, by Fubini’s theorem,

R1 6
∫ (∫

(
∏

g∈G<g0∪G′
1A′g )y · (|b′g0 |)y dµ

′
[k]\g0

)
dµ′g0 . (7.51)

We will write (7.51) in a more manageable form. Fix y ∈ Ω′g0 and, by property (P5),

let b′g0 be the unique Σ′g0-measurable function such that b′g0 = b′g0◦π
′
g0 . Notice that

(b′g0)y(x) = b′g0
(
(x,y)

)
= (b′g0 ◦ π

′
g0)(x,y) = b′g0(y) for every x ∈ Ω′[k]\g0 . Hence,

(b′g0)y is constantly equal to b′g0(y). Moreover, (1A′g )y(x) = 1(π′g0,g
)−1(A′g)(y) for

every nonempty g ∈ G<g0 and every x ∈ Ω′[k]\g0 and so, by (7.49),

(
∏

g∈G<g0

1A′g )y(x) = 1A′<g0
(y).

Thus, if G : Ω′g0 → R is the random variable defined by the rule

G(y) =

∫
(
∏
g∈G′

1A′g )y dµ
′
[k]\g0 ,

then we may write (7.51) as

R1 6
∫

(1A′<g0
· |b′g0 | ·G) dµ′g0 =

∫
(1A′<g0

· |b′g0 |) · (1A′<g0
·G) dµ′g0 .
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Therefore, by the Cauchy–Schwarz inequality, we obtain that1

R1 6
(∫

1A′<g0
· |b′g0 |

2 dµ′g0

)1/2

·
(∫

1A′<g0
·G2 dµ′g0

)1/2

. (7.52)

On the other hand, by (7.42) and property (P7), we have∫
1A′<g0

· |b′g0 |
2 dµ′g0 = E

(
|b′g0 |

2 |A′<g0
)
· µ′(A′<g0) 6

µ′(A′<g0)

F (Mr′)
.

By the choice of G and the previous estimates, we conclude that (7.50) is satisfied

and the proof of Claim 7.12 is completed. �

The second step of this part of the proof is based on an application of assump-

tion (A1). To this end, we will represent the double integral in the right-hand side

of (7.50) as the probability of the intersection of a family of events which correspond

to a hypergraph bundle over H. Specifically, for every g ⊆ [k] let

i(g) = (g ∩ g0) ∪ {j + k : j ∈ g \ g0} (7.53)

and set W = G<g0 ∪ G′ ∪ {i(g) : g ∈ G′}. Clearly, W is a nonempty, closed under

set inclusion hypergraph on [2k] of order r′ − 1. Also let ψ : [2k] → [k] be defined

by ψ(j) = j if j ∈ [k] and ψ(j) = j − k if j ∈ [2k] \ [k]. Notice that for every

nonempty w ∈ W the restriction of ψ on w is an injection and, moreover, for every

g ∈ G<g0 ∪ G′ we have

ψ(g) = ψ
(
i(g)

)
= g. (7.54)

It follows that the triple (2k,W, ϕ ◦ ψ) is a hypergraph bundle over H and so it

defines a new hypergraph system W = (2k, 〈(Ω′′j ,Σ′′j , µ′′j ) : j ∈ [2k]〉,W) where

(Ω′′j ,Σ
′′
j , µ
′′
j ) = (Ω′ψ(j),Σ

′
ψ(j), µ

′
ψ(j)) = (Ωϕ(ψ(j)),Σϕ(ψ(j)), µϕ(ψ(j))) (7.55)

for every j ∈ [2k]. Recall that associated with W we have the product (Ω′′,Σ′′,µ′′)

of the spaces 〈(Ω′′j ,Σ′′j , µ′′j ) : j ∈ [2k]〉 as well as the product (Ω′′w,Σ
′′
w,µ

′′
w) of the

spaces 〈(Ω′′j ,Σ′′j , µ′′j ) : j ∈ w〉 for every nonempty w ⊆ [2k]. Note that, by (7.53)

and (7.55), for every nonempty g ⊆ [k] the following hold.

(P8) We have (Ω′′g ,Σ
′′
g ,µ

′′
g ) = (Ω′g,Σ

′
g,µ

′
g); in particular, Ω′′[k] = Ω′ and

Ω′′g0 = Ω′g0 . Moreover, the spaces (Ω′′i(g),Σ
′′
i(g),µ

′′
i(g)) and (Ω′g,Σ

′
g,µ

′
g)

are isomorphic via the bijection Ω′′i(g) 3 (ω′′l )l∈i(g) 7→ (ω′j)j∈g ∈ Ω′g where

ω′j = ω′′l if l = i(j).

Next, as in (7.2), for every nonempty w ⊆ [2k] let B′′w = {(π′′w)−1(A′′) : A′′ ∈ Σ′′w}
where π′′w : Ω′′ → Ω′′w is the natural projection, and let 〈A′′w : w ∈ W〉 be the

family of events described in the statement of the lemma for the hypergraph bundle

(2k,W, ϕ ◦ ψ). Then observe that for every nonempty g ∈ G<g0 ∪ G′ we have

A′′g = (π′′[k])
−1(A′g) ∈ B′′g (7.56)

and, respectively, for every g ∈ G′

A′′i(g) = (π′′i([k]))
−1(A′g) ∈ B′′i(g) (7.57)

1The doubling of the characteristic function of A′<g0
in (7.52) is needed in order to prevent

some critical losses in (7.65) below. Similar technical maneuvers are present and in other proofs

of the hypergraph removal lemma (see, e.g., [Go5]).
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where, by (P8), we view π′′[k] and π′′i([k]) as projections from Ω′′ onto Ω′. We have

the following claim.

Claim 7.13. We have

µ′′
( ⋂
w∈W

A′′w

)
=

∫
1A′<g0

·
( ∫

(
∏
g∈G′

1A′g )y dµ
′
[k]\g0

)2
dµ′g0 . (7.58)

Proof of Claim 7.13. We set W ′ =W \ G<g0 . Moreover, by (P8), write

Ω′′ = Ω′′[2k]\g0 ×Ω′′g0 = Ω′′[2k]\g0 ×Ω′g0

and for every ω′′ ∈ Ω′′ let ω′′ = (x,y) where x = π′′[2k]\g0(ω′′) and y = π′′g0(ω′′).

By Fubini’s theorem, we have

µ
( ⋂
w∈W

A′′w

)
=

∫ (∫
(
∏
w∈W

1A′′w)y dµ
′′
[2k]\g0

)
dµ′g0

=

∫ (∫
(
∏

g∈G<g0

1A′′g )y · (
∏
w∈W′

1A′′w)y dµ
′′
[2k]\g0

)
dµ′g0 . (7.59)

Since
⋂
g∈G<g0

A′g = (π′g0)−1(A′<g0), by (7.56), we have
⋂
g∈G<g0

A′′g = (π′′g0)−1(A′<g0).

Thus, we may rewrite (7.59) as

µ
( ⋂
w∈W

A′′w

)
=

∫
1A′<g0

·
(∫

(
∏
g∈G′

1A′′g )y · (
∏
g∈G′

1A′′
i(g)

)y dµ
′′
[2k]\g0

)
dµ′g0 . (7.60)

Now fix y ∈ Ω′′g0 . Set I = [k]\g0 and recall that, by (P8), we may view π′′I and π′′i(I)
as projections from Ω′′ onto Ω′I . Also let g ∈ G′ and observe that, by (7.56) and

(7.57), we have (A′′g )y = (π′′I )−1
(
(A′g)y

)
and (A′′i(g))y = (π′′i(I))

−1
(
(A′g)y

)
. Since I

and i(I) are disjoint, it follows that the sets (
⋂
g∈G′ A

′′
g )y and (

⋂
g∈G′ A

′′
i(g))y are

independent in (Ω′′[2k]\g0 ,Σ
′′
[2k]\g0 ,µ

′′
[2k]\g0) and both have measure equal to

µ′[k]\g0

(
(
⋂
g∈G′

A′g)y

)
=

∫
(
∏
g∈G′

1A′g )y dµ
′
[k]\g0 .

Hence, (7.58) is satisfied and the proof of Claim 7.13 is completed. �

We are ready to estimate R1. First, we set

c = c(Mr, k, r
′, 0) and C = C(M0, k, r

′, 0). (7.61)

Next, observe that the triple (k,G<g0 , ϕ) is a hypergraph bundle over H, the order

of G<g0 is r′ − 1 and |{g ∈ G<g0 : |g| = r′ − 1}| = |∂g0| = |g0| = r′. Hence, by

assumption (A1), (7.32), (7.33) and property (P2), we have

µ′
( ⋂
g∈G<g0

A′g

)
6 (1 + c) ·

∏
g∈G<g0

pφ(g) +
C

F (M0)
. (7.62)

On the other hand, as we have already mentioned, the triple (2k,W, ϕ ◦ ψ) is a

hypergraph bundle over H and the order of W is r′ − 1. Note that, by the choice

of W, we have |{w ∈ W : |w| = r′ − 1}| 6 2
(

k
r′−1

)
6 2kr

′−1. Moreover, by (7.54),∏
w∈W

pϕ(ψ(w)) =
∏

g∈G<g0

pφ(g) ·
∏
g∈G′

p2
φ(g).
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Thus, using assumption (A1), (7.32), (7.33) and (P2) once again, we see that

µ′′
( ⋂
w∈W

A′′w

)
6 (1 + c) ·

∏
g∈G<g0

pφ(g) ·
∏
g∈G′

p2
φ(g) +

C

F (M0)
. (7.63)

Now since |ϕ(g)| = |g| > 1 for every g ∈ G′, by (7.17) and (7.30), we have∏
g∈G′

pφ(g) >
∏
g∈G′

1

logF (M|g|)
> (logM0)−2k >M−2k

0 . (7.64)

Combining (7.62)–(7.64), we obtain that

µ′
( ⋂
g∈G<g0

A′g

)
· µ′′

( ⋂
w∈W

A′′w

)
6
(

(1 + c) ·
∏

g∈G<g0∪G′
pφ(g) +

C ·M2k

0

F (M0)

)2

and so, by Claims 7.12 and 7.13,

R1 6 F (Mr′)
−1/2 ·

(
(1 + c) ·

∏
g∈G<g0∪G′

pφ(g) +
C ·M2k

0

F (M0)

)
.

This estimate is already strong enough but we need to write it in a form which is

suitable for the induction. Specifically, by (7.17) and (7.30) once again, we have(
logF (Mr′)

)` · ( ∏
{g∈G:|g|=r′}

pϕ(g)

)
> 1

and, consequently,

R1 6 F (Mr′)
−1/2 ·

(
logF (Mr′)

)` · (1 + c) ·
∏
g∈G

pφ(g) +
C ·M2k

0

F (M0)
. (7.65)

Since ζ(`) = sup{x−1/4(log x)` : x > 1} and Mr 6Mr′ 6 F (Mr′), we get that

F (Mr′)
−1/2 ·

(
logF (Mr′)

)`
= F (Mr′)

−1/4 ·
(

logF (Mr′)
)`

F (Mr′)1/4
6M−1/4

r · ζ(`).

Hence, by (7.61) and (7.65), we conclude that

R1 6
(
1 + c(Mr, k, r

′, 0)
)
·M−1/4

r · ζ(`) ·
∏
g∈G

pφ(g) +
C(M0, k, r

′, 0) ·M2k

0

F (M0)
. (7.66)

Verification of the inductive assumptions. We are ready for the last step of

the argument. Specifically, by (7.45), (7.47) and (7.66), and using the definition of

the numbers c(Mr, k, r
′, `) and C(M0, k, r

′, `) in (7.32) and (7.33) respectively, we

obtain that∣∣µ′( ⋂
g∈G

A′g

)
−
∏
g∈G

pϕ(g)

∣∣ 6 D1 +R1 +R2

6 c(Mr, k, r
′, `) ·

∏
g∈G

pϕ(g) +
C(M0, k, r

′, `)

F (M0)
.

That is, the estimate in (7.43) is satisfied for the hypergraph bundle (k,G, ϕ). This

completes the proof of the general inductive step and so the entire proof of Lemma

7.9′ is completed. �
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7.4. Proof of Theorem 7.2

Fix n, r ∈ N with n > r > 2 and 0 < ε 6 1. For every positive integer m let

c(m,n, r, nr) and C(m,n, r, nr) be as (7.32) and (7.33) respectively, and set

m0(n, r) = min{m > 1 : c(m′, n, r, nr) < 1/4 for every m′ > m}. (7.67)

(Note that, by property (P1), m0(n, r) is well-defined.) Moreover, set

Mr = max{2,m0(n, r), ε−1} and F (m) = 4m2n · C(m,n, r, nr) + em
2 2n+1

(7.68)

and let F (0) = 1. Observe that the map F : N → R is a growth function. Finally,

let Φn,r,F be as in (7.16) and define

δ(n, r, ε) = 2−1 · F (Φn,r,F (Mr))
−2n and K(n, r, ε) = Φn,r,F (Mr). (7.69)

We will show that δ(n, r, ε) and K(n, r, ε) are as desired.

Indeed, let H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H) be an r-uniform hypergraph

system and for every e ∈ H let Ee ∈ Be such that

µ
( ⋂
e∈H

Ee

)
6 δ(n, r, ε). (7.70)

Clearly, we may assume that for every e ∈ H the sets Ee and Ω \Ee are nonempty.

Write Ĥ = H0 ∪ · · · ∪ Hr where H0, . . . ,Hr are as in (7.13), and set P∅ = {Ω}.
Moreover, set Pe = {Ee,Ω \ Ee} for every e ∈ Hr. We apply Lemma 7.7 to F,Mr

and 〈Pe : e ∈ Hr〉 and we obtain: (i) a finite sequence (Mj)
r−1
j=1 of positive integers,

(ii) a collection 〈Pe′ : e′ ∈ H1 ∪ · · · ∪ Hr−1〉 of partitions of Ω, and (iii) for every

j ∈ {2, . . . , r}, every e ∈ Hj and every A ∈ Pe a decomposition 1A = sA + bA + uA
as described in Lemma 7.7. As in Section 7.3, we enlarge the collection in (ii) by

attaching the initial partitions 〈Pe : e ∈ Hr〉 and P∅. Recall that the new collection

〈Pe : e ∈ Ĥ〉 generates a finite partition of Ω whose atoms are of the form
⋂
e∈ĤAe

where Ae ∈ Pe for every e ∈ Ĥ. We have the following estimate for the measure of

the atoms which correspond to good families in the sense of Definition 7.8.

Claim 7.14. For every good family 〈Ae : e ∈ Ĥ〉 we have

µ
( ⋂
e∈Ĥ

Ae

)
> δ(n, r, ε). (7.71)

Proof. Set M0 = F (M1). For every nonempty e ∈ Ĥ let pe be as in (7.34)

and notice that, by (7.17) and (7.30), we have pe > (logF (M1))−1 >M−1
0 . Hence,

by Lemma 7.9, we see that

µ
( ⋂
e∈Ĥ

Ae

)
>
(
1− c(Mr, n, r, n

r)
)
·M−2n

0 − C(M0, n, r, n
r)

F (M0)

which implies, by the choice of Mr and F in (7.68), that

µ
( ⋂
e∈Ĥ

Ae

)
> 2−1 ·M−2n

0 .

Finally, by (7.17), we have M1 6 Φn,r,F (Mr). Therefore, by (7.69), we obtain that

2−1M−2n

0 > δ(n, r, ε) and the proof of Claim 7.14 is completed. �
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Our next goal is to obtain an upper bound for the measure of the union of

all atoms which are not generated by good families. Specifically, for every j ∈ [r],

every e ∈ Hj and every A ∈ Pe let BA,e be the set of all families 〈Ae′ : e′  e〉 with

Ae′ ∈ Pe′ for every e′  e and such that

E
(
1A

∣∣∣ ⋂
e′∈∂e

Ae′
)
6

1

logF (Mj)
or E

(
b2
A

∣∣∣ ⋂
e′ e

Ae′
)
>

1

F (Mj)
. (7.72)

Also set

BA,e =
⋃

〈Ae′ :e′ e〉∈BA,e

⋂
e′ e

Ae′ (7.73)

and notice that if a family 〈Ae : e ∈ Ĥ〉 is not good, then there exists a nonempty

e ∈ Ĥ such that the set
⋂
e′ eAe′ is contained in BAe,e.

Claim 7.15. Let j ∈ [r], e ∈ Hj and A ∈ Pe. Then the following hold.

(a) The set BA,e belongs to the algebra generated by the family
⋃
e′ e Pe′ .

(b) We have µ(A ∩BA,e) 6 2/ logF (Mj).

Proof. Part (a) is straightforward and so we only need to show part (b). To

this end, let B1 be the set of all families 〈Ae′ : e′ ∈ ∂e〉 with Ae′ ∈ Pe′ for every

e′ ∈ ∂e and such that E
(
1A |

⋂
e′∈∂eAe′

)
6 1/ logF (Mj). Next, let B2 be the

set of all families 〈Ae′ : e′  e〉 with Ae′ ∈ Pe′ for every e′  e and such that

E
(
b2
A |
⋂
e′ eAe′

)
> 1/F (Mj). Finally, set

B1 =
⋃

〈Ae′ :e′∈∂e〉∈B1

⋂
e′∈∂e

Ae′ and B2 =
⋃

〈Ae′ :e′ e〉∈B2

⋂
e′ e

Ae′

and notice that BA,e ⊆ B1 ∪B2. Therefore, it is enough to estimate the quantities

µ(A ∩B1) and µ(A ∩B2). Indeed, let 〈Ae′ : e′ ∈ ∂e〉 ∈ B1 and observe that

µ
(
A ∩

⋂
e′∈∂e

Ae′
)
6

1

logF (Mj)
· µ
( ⋂
e′∈∂e

Ae′
)
.

Note that if 〈Ae′ : e′ ∈ ∂e〉 and 〈Ce′ : e′ ∈ ∂e〉 are two distinct families in B1, then

the sets
⋂
e′∈∂eAe′ and

⋂
e′∈∂e Ce′ are disjoint. It follows that

µ(A ∩B1) 6
1

logF (Mj)
· µ(B1) 6

1

logF (Mj)
. (7.74)

Moreover, for every 〈Ae′ : e′  e〉 ∈ B2 we have

µ
(
A ∩

⋂
e′ e

Ae′
)
6 F (Mj) ·

∫ ( ∏
e′ e

1Ae′

)
· b2
A dµ.

Again observe that for any pair 〈Ae′ : e′  e〉 and 〈Ce′ : e′  e〉 of distinct families

in B2 the sets
⋂
e′ eAe′ and

⋂
e′ e Ce′ are disjoint. Hence, by (7.21),

µ(A ∩B2) 6 F (Mj) ·
∫
B2

b2
A dµ 6 F (Mj) · ‖bA‖2L2

6
1

F (Mj)
(7.75)

and the proof of Claim 7.15 is completed. �
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Now for every e ∈ H we define

Fe = Ω \
(
BEe,e ∪

⋃
∅6=e′ e

⋃
A∈Pe′

(
A ∩BA,e′

))
(7.76)

and we claim that the sets 〈Fe : e ∈ H〉 and the partitions 〈Pe : e ∈ Ĥ〉 satisfy the

requirements of the theorem. First observe that, by Claim 7.15, for every e ∈ H
the set Fe belongs to the algebra generated by the family

⋃
e′ e Pe′ . Moreover, by

Lemma 7.7 and (7.69), we see that Pe ⊆ Be and |Pe| 6 K(n, r, ε) for every e ∈ Ĥ.

(Recall that, by convention, B∅ = {∅,Ω}.) On the other hand, by Lemma 7.7 and

Claim 7.15, for every e ∈ H we have

µ(Ee \ Fe)
(7.76)

6 µ(Ee ∩BEe,e) +

r−1∑
j=1

∑
e′∈Hj

∑
A∈Pe′

µ(A ∩BA,e′)

6
2

logF (Mr)
+

r−1∑
j=1

|Hj | ·Mj · 2
logF (Mj)

(7.68)

6 ε.

Thus, it is enough to show that
⋂
e∈H Fe = ∅. Assume, towards a contradiction,

that this set is nonempty. Then there exists a family 〈Ae′ : e′ ∈ Ĥ \ H〉 with

Ae′ ∈ Pe′ for every e′ ∈ Ĥ \ H and such that

∅ 6=
⋂

e′∈Ĥ\H

Ae′ ⊆
⋂
e∈H

Fe. (7.77)

We enlarge the collection 〈Ae′ : e′ ∈ Ĥ \H〉 by setting Ae = Ee for every e ∈ H. It

follows that ⋂
e∈Ĥ

Ae ⊆
⋂
e∈H

Ee (7.78)

and, consequently, the family 〈Ae : e ∈ Ĥ〉 is not good. (For if not, by Claim 7.14,

we would have

δ(n, r, ε) < µ
( ⋂
e∈Ĥ

Ae

) (7.78)

6 µ
( ⋂
e∈H

Ee

) (7.70)

6 δ(n, r, ε)

which is clearly impossible.) Hence, there exists a nonempty e0 ∈ Ĥ such that⋂
e′ e0

Ae′ ⊆ BAe0 ,e0 . (7.79)

Fix e1 ∈ H with e0 ⊆ e1. If e0 = e1, then Ae0 = Ee1 and so, by (7.77) and (7.79),

∅ 6=
⋂

e′∈Ĥ\H

Ae′ ⊆ Fe1 ∩BEe1 ,e1
(7.76)

= ∅.

On the other hand, if e0  e1, then, invoking (7.77) and (7.79) once again, we have

∅ 6=
⋂

e′∈Ĥ\H

Ae′ ⊆ Fe1 ∩
(
Ae0 ∩

⋂
e′ e0

Ae′
)
⊆ Fe1 ∩ (Ae0 ∩BAe0 ,e0)

(7.76)
= ∅.

Therefore, we have
⋂
e∈H Fe = ∅ and the proof of Theorem 7.2 is completed.
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7.5. Applications

7.5.1. The hypergraph removal lemma. Let X,Y be nonempty finite sets

with |X| 6 |Y |, and letH,G be hypergraphs onX and Y respectively. A hypergraph

(Z,Z) is said to be a copy of H in G if Z = ϕ(X) and Z = {ϕ(e) : e ∈ H} where

ϕ : X → Y is an injection satisfying ϕ(e) ∈ G for every e ∈ H. The hypergraph G
is called H-free if there is no copy of H in G.

The following result is known as the hypergraph removal lemma and is the main

result in this subsection.

Theorem 7.16. For every n, r ∈ N with n > r > 2 and every 0 < ε 6 1 there

exist a strictly positive constant %(n, r, ε) and a positive integer N(n, r, ε) with the

following property. Let H be an r-uniform hypergraph on [n] and G an r-uniform

hypergraph on [N ] with N > N(n, r, ε). If G contains at most %(n, r, ε)Nn copies

of H, then one can delete εNr edges of G to make it H-free.

The first instance of Theorem 7.16 is for H = K3 (that is, when H is the

complete graph on 3 vertices) and can be traced back to the work of Ruzsa and

Szemerédi in [RS]. This particular case is already non-trivial and is known as the

triangle removal lemma. The case of a general graph H appeared in the literature

somewhat later (see [ADLRY, Fu]). On the other hand, the first important con-

tribution in the context of hypergraphs was made by Frankl and Rödl [FR1, FR2].

Theorem 7.16 was finally proved in full generality by Gowers [Go5] and, indepen-

dently, by Nagle, Rödl, Schacht and Skokan [NRS, RSk].

We will give a proof of Theorem 7.16 using Theorem 7.2. To this end, we first

observe that Theorem 7.2 immediately yields the following version of Theorem 7.16

which deals with copies of simplices in uniform partite hypergraphs2. Although less

general, this version is needed in applications in Ramsey theory.

Corollary 7.17. Let r ∈ N with r > 2 and 0 < ε 6 1, and let δ(r+ 1, r, ε) be

as in Theorem 7.2. Also let V1, . . . , Vr+1 be pairwise disjoint nonempty finite sets

and G an (r + 1)-partite r-uniform hypergraph on V1, . . . , Vr+1. If G contains at

most δ(r + 1, r, ε)
∏r+1
i=1 |Vi| copies of the r-simplex K

(r)
r+1 =

(
[r+1]
r

)
, then for every

e ∈
(

[r+1]
r

)
one can delete ε

∏
i∈e |Vi| edges of G ∩

∏
i∈eVi to make it simplex-free.

We proceed to the proof of Theorem 7.16.

Proof of Theorem 7.16. Let δ(n, r, ε/nr) be as in Theorem 7.2 and set

%(n, r, ε) =
δ(n, r, ε/nr)

2n!
and N(n, r, ε) =

⌈ n2

δ(n, r, ε/nr)

⌉
. (7.80)

We will show that with these choices the result follows. Indeed, fix N > N(n, r, ε)

and let H,G be r-uniform hypergraphs on [n] and [N ] respectively. Also let

cop(H,G) be the number of copies of H in G and assume that

cop(H,G) 6 %(n, r, ε)Nn. (7.81)

2Let n, r ∈ N with n > r > 2 and V1, . . . , Vn pairwise disjoint nonempty sets, and recall

that an n-partite r-uniform hypergraph on the vertex sets V1, . . . , Vn is a collection of r-element

subsets F of V1 ∪ · · · ∪ Vn such that |F ∩ Vi| 6 1 for every i ∈ [n].
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We view the set [N ] as a discrete probability space equipped with the uniform

probability measure, and we define an r-uniform hypergraph system

H = (n, 〈(Ωi,Σi, µi) : i ∈ [n]〉,H)

where Ωi = [N ] for every i ∈ [n]. Next, for every e ∈ H let

Ee =
{

(yi)
n
i=1 ∈ [N ]n : {yi : i ∈ e} ∈ G

}
(7.82)

and set

E =
⋂
e∈H

Ee. (7.83)

Observe that

cop(H,G) 6 |E| 6 n! · cop(H,G) +

(
n

2

)
Nn−1. (7.84)

The first inequality is straightforward. On the other hand, denoting by E∗ the set

of all (yi)
n
i=1 ∈ E such that yi 6= yj for every i, j ∈ [n] with i 6= j, we have

|E| −
(
n

2

)
Nn−1 6 |E∗| 6 n! · cop(H,G)

which implies, of course, the second inequality in (7.84).

By (7.81), (7.84) and the choice of %(n, r, ε) and N(n, r, ε) in (7.80), we see that

|E| 6 δ(n, r, ε/nr)Nn. Therefore, by Theorem 7.2, for every e ∈ H there exists a

set Fe ⊆ [N ]e such that, setting Fe = π−1
e (Fe) (where, as usual, πe : [N ]n → [N ]e

is the natural projection), we have

|Ee \ Fe|
Nn

6
ε

nr
and

⋂
e∈H

Fe = ∅. (7.85)

For every e ∈ H let Ee = πe(Ee) =
{

(yi)i∈e ∈ [N ]e : {yi : i ∈ e} ∈ G
}

and define

G′ = G \
⋃
e∈H

{
{yi : i ∈ e} : (yi)i∈e ∈ Ee \ Fe

}
.

We claim that G′ is as desired. First observe that G′ is contained in G. Moreover,

|G \ G′| 6
∣∣ ⋃
e∈H

Ee \ Fe
∣∣ 6∑

e∈H
|Ee \ Fe| = Nr ·

∑
e∈H

|Ee \ Fe|
Nn

(7.85)

6 εNr.

Finally, notice that G′ isH-free. Indeed, assume, towards a contradiction, that there

is a copy (Z,Z) of H in G′. Recall that Z = ϕ([n]) and Z = {ϕ(e) : e ∈ H} where

ϕ : [n]→ [N ] is an injection satisfying ϕ(e) ∈ G′ for every e ∈ H. If (yi)
n
i=1 ∈ [N ]n

is defined by yi = ϕ(i) for every i ∈ [n], then we have

(yi)
n
i=1 ∈

⋂
e∈H

(Ee ∩ Fe) ⊆
⋂
e∈H

Fe

which contradicts, of course, (7.85). The proof of Theorem 7.16 is completed. �
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7.5.2. Ramsey-theoretic consequences. We start with the following “geo-

metric” version of Corollary 7.17. For every integer r > 2 by e1, . . . , er we denote

the standard basis of Rr.

Theorem 7.18. For every integer r > 2 and every 0 < δ 6 1 there exists a

positive integer Smp(r, δ) with the following property. If n > Smp(r, δ), then every

D ⊆ [n]r with |D| > δnr contains a set of the form {e} ∪ {e + λei : 1 6 i 6 r} for

some e ∈ [n]r and some positive integer λ.

The case “r = 2” in Theorem 7.18 is known as the corners theorem and is

due to Ajtai and Szemerédi [ASz]. The general case is due to Furstenberg and

Katznelson [FK1].

Proof of Theorem 7.18. We follow the proof from [So]. Fix an integer

r > 2 and 0 < δ 6 1. Set ε = 2−r−1(1 + r2)−1δ2 and define

Smp(r, δ) = dδ(r + 1, r, ε)−1e (7.86)

where δ(r + 1, r, ε) is as in Theorem 7.2. We will show that with this choice the

result follows. Indeed, let n > Smp(r, δ) and D ⊆ [n]r with |D| > δnr. We have

the following claim.

Claim 7.19. There exist x0 ∈ [2n]r and D′ ⊆ D with |D′| > 2−rδ2nr and such

that D′ = x0 −D′.

Proof of Claim 7.19. Set X = [2n]r and Y = [n]r. Also let µX and µY
be the uniform probability measures on X and Y respectively. Note that for every

y ∈ Y we have y +D ⊆ X, and so µX(y +D) = µX(D) > 2−rδ. Moreover,∫
µY
(
D ∩ (x−D)

)
dµX =

∫ (∫
1D(y) · 1x−D(y) dµY

)
dµX

=

∫ (∫
1D(y) · 1y+D(x) dµY

)
dµX

=

∫
1D(y) ·

(∫
1y+D(x) dµX

)
dµY

> 2−rδ ·
∫

1D(y) dµY > 2−rδ2.

We select x0 ∈ X with µY
(
D ∩ (x0 −D)

)
> 2−rδ2 and we set D′ = D ∩ (x0 −D).

Clearly, x0 and D′ are as desired. The proof of Claim 7.19 is completed. �

Let x0 and D′ be as in Claim 7.19. Since D′ = x0 −D′, it is enough to show

that D′ contains a set of the form {e′} ∪ {e′ + λ′ei : 1 6 i 6 r} for some e′ ∈ [n]r

and some nonzero λ′ ∈ Z.

Assume, towards a contradiction, that no such configuration is contained in D′.

We define an (r + 1)-partite r-uniform hypergraph G with vertex sets V1, . . . , Vr+1

as follows. First, for every i ∈ [r] set

Vi = {Hi
m : m ∈ Ji}
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where Ji = [n] and Hi
m = {(x1, . . . , xr) ∈ Rr : xi = m} for every m ∈ Ji. Also let

Vr+1 = {Hr+1
m : m ∈ Jr+1}

where Jr+1 = {r, . . . , rn} and Hr+1
m = {(x1, . . . , xr) ∈ Rr : x1 + · · · + xr = m}

for every m ∈ Jr+1. Notice that for every 1 6 i1 < · · · < ir 6 r + 1 and every

Hi1
m1
∈ Vi1 , . . . ,H

ir
mr ∈ Vir the hyperplanes Hi1

m1
, . . . ,Hir

mr intersect in a unique

point of [n]r. We define the edges of G to be those sets {Hi1
m1
, . . . ,Hir

mr} for which

the unique common point of Hi1
m1
, . . . ,Hir

mr belongs to D′.

Now observe that our assumption for the set D′ implies that all r-simplices of G
are degenerate in the following sense. Let S = {H1

m1
, . . . ,Hr+1

mr+1
} where Hi

mi ∈ Vi
for every i ∈ [r + 1], and assume that S is an r-simplex of G. By the definition of

G, we see that

{(m1, . . . ,mr)} ∪
{

(m1, . . . ,mr) +
(
mr+1 −

r∑
l=1

ml

)
· ei : 1 6 i 6 r

}
⊆ D′

and so we must have mr+1−(m1+· · ·+mr) = 0. In other words, all the hyperplanes

H1
m1
, . . . ,Hr+1

mr+1
must contain the point (m1, . . . ,mr) ∈ D′.

It follows from the previous discussion that there is a natural bijection between

the set of all r-simplices of G and the set D′. In particular, if s is the number of

r-simplices of G, then we have

s = |D′| 6 nr
(7.86)

6 δ(r + 1, r, ε) · nr+1 6 δ(r + 1, r, ε) ·
r+1∏
i=1

|Vi|.

By Corollary 7.17, Claim 7.19 and the choice of ε, we may remove

ε · nr + r · (ε · r · nr) = 2−r−1δ2 · nr 6 |D′|/2

edges of G to make it simplex-free. On the other hand, note that the r-simplices of

G are pairwise edge-disjoint. Indeed, if S = {H1
m1
, . . . ,Hr+1

mr+1
} is an r-simplex of

G, then every edge of S determines the unique common point of H1
m1
, . . . ,Hr+1

mr+1
.

Thus, we have to remove at least |D′| edges of G in order to make it simplex-free.

This is clearly a contradiction and the proof of Theorem 7.18 is completed. �

The following theorem is due to Szemerédi [Sz1].

Theorem 7.20. For every integer k > 2 and every 0 < δ 6 1 there exists a

positive integer Sz(k, δ) with the following property. If n > Sz(k, δ), then every

D ⊆ [n] with |D| > δn contains an arithmetic progression of length k.

Szemerédi’s theorem is a deep and remarkably influential result. In particular,

there are numerous different proofs of Theorem 7.20 some of which are discussed in

[TV, Chapter 11]. The best known general upper bounds for the numbers Sz(k, δ)

are due to Gowers [Go3]:

Sz(k, δ) 6 22δ
−22

k+9

. (7.87)

We will present a proof of Szemerédi’s theorem using Theorem 7.18. The argument

is amenable to generalizations, but has the drawback that it offers very poor upper

bounds for the numbers Sz(k, δ).
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We will need the following lemma. For every positive integer d and every

u = (u1, . . . , ud) ∈ Rd we set ‖u‖∞ = max{|u1|, . . . , |ud|}.

Lemma 7.21. Let d,m be positive integers and u1, . . . ,um nonzero vectors in

Nd, and set M = max{‖ui‖∞ : 1 6 i 6 m}. Define Φ: Nd+m → Nd by

Φ
(
x, (y1, . . . , ym)

)
= x + y1 · u1 + · · ·+ ym · um (7.88)

for every x ∈ Nd and every (y1, . . . , ym) ∈ Nm. Also let n be a positive integer,

0 < δ 6 1 and D ⊆ [n]d with |D| > δnd. Then there exists z0 ∈ Zd+m such that

|
(
z0 + Φ−1(D)

)
∩ [n]d+m| >

( δ

(1 +Mm)d

)
· nd+m. (7.89)

Proof. It is similar to the proof of Claim 7.19. Set X = {−Mmn+1, . . . , n}d,
Y = [n]m and let µX and µY be the uniform probability measures on X and Y .

Also set Z = X×Y and let µZ be the uniform probability measure on Z. Moreover,

define φ : Nm → Nd by φ
(
(y1, . . . , ym)

)
= y1 · u1 + · · ·+ ym · um. For every y ∈ Y

we have D − φ(y) ⊆ X and so µX
(
D − φ(y)

)
= µX(D) > δ/(1 +Mm)d. Hence,

µZ
(
Φ−1(D)

)
=

∫
1D
(
Φ(x,y)

)
dµZ =

∫
1D
(
x + φ(y)

)
dµZ

=

∫ (∫
1D−φ(y)(x) dµX

)
dµY

=

∫
µX
(
D − φ(y)

)
dµY >

δ

(1 +Mm)d
.

Finally, observe that Z can be partitioned into translates of [n]d+m. Therefore,

there exists z′0 ∈ Zd+m such that |Φ−1(D)∩
(
z′0 + [n]d+m

)
| > δ (1 +Mm)−d nd+m.

The vector z0 = −z′0 is as desired. The proof of Lemma 7.21 is completed. �

We proceed to the proof of Theorem 7.20.

Proof of Theorem 7.20. We will show that

Sz(k, δ) 6 Smp(k − 1, δ/k2) (7.90)

for every integer k > 3 and every 0 < δ 6 1. Indeed, fix k > 3 and 0 < δ 6 1, and

let n > Smp(k − 1, δ/k2) and D ⊆ [n] with |D| > δn. We define Φ: Nk−1 → N by

Φ(x1, x2, . . . , xk−1) = x1 + 2x2 + · · ·+ (k − 1)xk−1.

By Lemma 7.21 applied for “d = 1” and “m = k − 2”, there exists z0 ∈ Zk−1 such

that dens[n]k−1

(
z0 + Φ−1(D)

)
> δ/k2. Next, we apply Theorem 7.18 and we select

e ∈ [n]k−1 and λ > 0 such that {e} ∪ {e + λei : 1 6 i 6 k − 1} ⊆ z0 + Φ−1(D).

Observe that Φ(ei) = i for every i ∈ [k − 1]. Therefore, setting c = Φ(e − z0), we

see that the arithmetic progression {c+ i · λ : 0 6 i 6 k − 1} is contained D. The

proof of Theorem 7.20 is completed. �

Our last application is known as the multidimensional Szemerédi theorem and

is due to Furstenberg and Katznelson [FK1].
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Theorem 7.22. For every pair k, d of positive integers with k > 2 and every

0 < δ 6 1 there exists a positive integer MSz(k, d, δ) with the following property. If

n > MSz(k, d, δ), then every D ⊆ [n]d with |D| > δnd contains a set of the form{
c + λx : x ∈ {0, . . . , k − 1}d

}
for some c ∈ Nd and some positive integer λ.

The first quantitative information for the numbers MSz(k, d, δ) became avail-

able as a consequence of the hypergraph removal lemma, but there are now several

different effective proofs of Theorem 7.22 (we will present an alternative approach

in Section 8.4). Despite this progress, the best known upper bounds for the num-

bers MSz(k, d, δ) have an Ackermann-type dependence with respect to k for each

fixed d > 2 and 0 < δ 6 1. We proceed to the proof.

Proof of Theorem 7.22. It is similar to the proof of Theorem 7.20. The

case “d = 1” is the content of Theorem 7.20, and so we may assume that d > 2.

We claim that

MSz(k, d, δ) 6 Smp(kd − 1, δ/kd+1). (7.91)

To see this, fix n > Smp(kd − 1, δ/kd+1) and let D ⊆ [n]d with |D| > δnd. Set

m = kd−1−d and enumerate the set {0, . . . , k−1}d \{0, e1, . . . , ed} as u1, . . . ,um.

Finally, define Φ: Nd+m → Nd by

Φ
(
x, (y1, . . . , ym)

)
= x + y1u1 + · · ·+ ymum.

By Lemma 7.21, we have

dens
[n]kd−1

(
z0 + Φ−1(D)

)
> δ/kd+1

for some z0 ∈ Zk
d−1. Therefore, by Theorem 7.18 and the choice of n, there exist

e ∈ [n]k
d−1 and λ > 0 such that {e} ∪ {e + λei : 1 6 i 6 kd − 1} ⊆ z0 + Φ−1(D).

Note that Φ(ei) = ei if i ∈ [d], while Φ(ed+i) = ui if i ∈ [kd − 1]. Hence, setting

c = Φ(e − z0), we see that
{
c + λx : x ∈ {0, . . . , k − 1}d

}
⊆ D. The proof of

Theorem 7.22 is completed. �

7.6. Notes and remarks

7.6.1. Theorem 7.2 and its proof are due to Tao [Tao1]. Actually, Tao consid-

ered only those probability spaces which are relevant in the context of graphs and

hypergraphs (namely, nonempty finite sets equipped with their uniform probability

measures), but his approach works in full generality. Theorem 7.3 is new.

7.6.2. Theorem 7.16 was conjectured by Erdős, Frankl and Rödl [EFR] in

the mid-1980s. There is now a variety of different proofs and extensions of this

important result; see, e.g., [AT, ES, RSc1, RSc2, RSc3, Tao3]. Nevertheless,

all effective proofs of Theorem 7.16 follow the same strategy as the proof of Theo-

rem 7.2 and proceed by establishing a version of the regularity lemma for uniform

hypergraphs and a corresponding counting lemma. In particular, the best known

lower bounds for the constant %(n, r, ε) in Theorem 7.16 have an Ackermann-type

dependence with respect to r. The problem of improving upon these estimates is of

fundamental importance and has been asked by several authors (see, e.g., [Tao1]).





CHAPTER 8

The density Hales–Jewett theorem

The following result is known as the density Hales–Jewett theorem and is due

to Furstenberg and Katznelson [FK4].

Theorem 8.1. For every integer k > 2 and every 0 < δ 6 1 there exists a

positive integer N with the following property. If n > N and A is an alphabet with

|A| = k, then every D ⊆ An with |D| > δ|An| contains a combinatorial line of An.

The least positive integer with this property will be denoted by DHJ(k, δ).

The density Hales–Jewett theorem is a fundamental result of Ramsey theory. It

has several strong results as consequences, including Szemerédi’s theorem on arith-

metic progressions [Sz1], its multidimensional version [FK1] and the IPr-Szemerédi

theorem [FK2]. We present these applications, among others, in Section 8.4.

The rest of this chapter is devoted to the proof of Theorem 8.1. The case

“k = 2” follows from a classical result in extremal combinatorics due to Sperner

[Sp]. Sperner’s theorem and its relation with the density Hales–Jewett theorem are

discussed in Section 8.1. In Section 8.2 we present some preliminary tools which

are needed for the proof of Theorem 8.1 but are not directly related to the main

argument. The proof of Theorem 8.1 is completed in Section 8.3.

8.1. Sperner’s theorem

A family A of subsets of a nonempty set X is called an antichain if none of the

sets is contained in any other, that is, if A 6⊂ B for every A,B ∈ A with A 6= B.

Notice that for every positive integer k 6 |X| the family
(
X
k

)
is an antichain of

subsets of X. It follows, in particular, that there exists an antichain of subsets of

[n] of cardinality
(

n
bn/2c

)
for every integer n > 1. The following theorem due to

Sperner [Sp] asserts that this is the largest antichain of subsets of [n].

Theorem 8.2. Let n be a positive integer and A an antichain of subsets of [n].

Then we have |A| 6
(

n
bn/2c

)
.

Proof. We follow the proof from [Lu]. The case “n = 1” is straightforward,

and so we may assume that n > 2. Let C be the set of all finite sequences (Si)
n
i=1 of

subsets of [n] such that |Si| = i for every i ∈ [n] and Si ⊆ Si+1 for every i ∈ [n−1].

Note that |C| = n!. For every nonempty subset S of [n] let C(S) be the set of all

sequences from C which contain S. Observe that if |S| = r, then

|C(S)| = r! (n− r)! > bn/2c! (n− bn/2c)!.

143
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Finally, notice that if A is an antichain of subsets of [n], then C(A) ∩ C(B) = ∅ for

every A,B ∈ A with A 6= B. Therefore,

n! = |C| > |
⋃
A∈A
C(A)| =

∑
A∈A
|C(A)| > |A|

(
bn/2c!

(
n− bn/2c

)
!
)

which yields that |A| 6
(

n
[n/2]

)
. The proof of Theorem 8.2 is completed. �

Now let n be a positive integer and observe that we may identify every subset

of [n] with a word over {0, 1} of length n via its characteristic function. Note that

this particular bijection

P([n]) 3 F 7→ 1F ∈ {0, 1}n

has the following property. It maps pairs of subsets of [n] which are compara-

ble under inclusion, to combinatorial lines of {0, 1}n. Taking into account these

observations and using Sperner’s theorem we obtain the following corollary.

Corollary 8.3. For every 0 < δ 6 1 we have DHJ(2, δ) 6 4/δ2.

Proof. By a standard approximation related to Stirling’s formula, we have

e7/8 <
n!

(n/e)n
√
n
< e

for every n > 2 (see, e.g., [Ru, page 200]). Hence,(
n

bn/2c

)
< 2

1√
n

2n

for every positive integer n. Using this estimate and Theorem 8.2, we see that

|A|/2n < 2/
√
n for every antichain A of subsets of [n]. Therefore, if δ > 2/

√
n,

then every collection of subsets of [n] of cardinality at least δ2n contains two subsets

S and T with S 6= T and S ⊆ T . The proof of Corollary 8.3 is completed. �

8.2. Preliminary tools

The first result in this section asserts that the density Hales–Jewett theorem

implies its multidimensional version.

Proposition 8.4. Let k ∈ N with k > 2 and assume that for every 0 < % 6 1

the number DHJ(k, %) has been estimated. Then for every integer m > 1 and every

0 < δ 6 1 there exists a positive integer MDHJ(k,m, δ) with the following property.

If n > MDHJ(k,m, δ) and A is an alphabet with |A| = k, then every subset of An

with density at least δ contains an m-dimensional combinatorial subspace of An.

Proof. By induction on m. The case “m = 1” follows, of course, from our

assumptions. Let m ∈ N with m > 1 and assume that the result has been proved

up to m. For every 0 < δ 6 1 let M = DHJ(k, δ/2) and set

MDHJ(k,m+ 1, δ) = M + MDHJ(k,m, δ2−1(k + 1)−M ). (8.1)

We will show that the positive integer MDHJ(k,m+1, δ) is as desired. To this end,

let n > MDHJ(k,m+1, δ). Also let A be an alphabet with |A| = k and fix a subset
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D of An with dens(D) > δ. For every w ∈ An−M set Dw = {y ∈ AM : way ∈ D}
and observe that

Ew∈An−Mdens(Dw) = dens(D) > δ.

Therefore, there exists a subset E of An−M with dens(E) > δ/2 such that for

every w ∈ E we have dens(Dw) > δ/2. By the choice of M , for every w ∈ E

there exists a combinatorial line Lw of AM such that Lw ⊆ Dw. The number of

combinatorial lines of AM is (k + 1)M − kM , and so, less than (k + 1)M . Hence,

by the classical pigeonhole principle, there exist a combinatorial line L of AM and

a subset F of E with dens(F ) > δ2−1(k + 1)−M and such that L ⊆ Dw for every

w ∈ F . Since n−M > MDHJ(k,m, δ2−1(k+ 1)−M ) there exists an m-dimensional

combinatorial subspace W of An−M with W ⊆ F . We set V = WaL. Then V

is an (m + 1)-dimensional combinatorial subspace of An and clearly V ⊆ D. The

proof of Proposition 8.4 is completed. �

The next result is a simpler version of Lemma 6.22 and asserts that every dense

subset of a hypercube of sufficiently large dimension, becomes extremely uniformly

distributed when restricted on a suitable combinatorial space.

Lemma 8.5. Let A be a finite alphabet with |A| > 2, m a positive integer and

0 < ε < 1. Also let n > ε−1|A|mm and let D be a subset of An with dens(D) > ε.

Then there exist an integer l with m 6 l < n and an m-dimensional combinatorial

subspace W of Al such that for every w ∈ W we have dens(Dw) > dens(D) − ε
where Dw = {y ∈ An−l : way ∈ D} is the section of D at w.

Proof. We set % = ε(|A|m − 1)−1. Also let W1 = Am and observe that

Ew∈W1dens(Dw) = dens(D). Note that if W1 does not satisfy the requirements of

the lemma, then there exists w1 ∈W1 such that dens(Dw1) > dens(D)+%. Next we

set W2 = wa1 A
m and we observe that Ew∈W2

dens(Dw) = dens(Dw1
) > dens(D)+%.

Again we note that if W2 is not the desired combinatorial subspace, then there exists

w2 ∈ W2 such that dens(Dw2
) > dens(D) + 2%. This process must terminate, of

course, after at most b%−1c iterations. Noticing that (b%−1c + 1)m < n the proof

of Lemma 8.5 is completed. �

By Proposition 8.4 and Lemma 8.5, we obtain the following corollary.

Corollary 8.6. Let k ∈ N with k > 2 and assume that for every 0 < % 6 1

the number DHJ(k, %) has been estimated. Then for every integer m > 1 and

every 0 < δ 6 1 there exists a positive integer MDHJ∗(k,m, δ) with the following

property. If n > MDHJ∗(k,m, δ) and A is an alphabet with |A| = k + 1, then for

every D ⊆ An with density at least δ and every B ⊆ A with |B| = k there exists an

m-dimensional combinatorial subspace V of An such that V � B is contained in D,

where V � B is as in (1.21).

Proof. Let M = MDHJ(k,m, δ/2) and set

MDHJ∗(k,m, δ) = (δ/2)−1(k + 1)MM. (8.2)

We claim that with this choice the result follows. Indeed, let n > MDHJ∗(k,m, δ)

and let A be an alphabet with |A| = k + 1. Also let D be a subset of An with
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dens(D) > δ and fix B ⊆ A with |B| = k. By Lemma 8.5 and (8.2), there exist

some l ∈ N with M 6 l < n and an M -dimensional combinatorial subspace W

of Al such that dens(Dw) > δ/2 for every w ∈ W . We set Z = W � B. On

the one hand, we have |D ∩ (ZaAn−l)| > (δ/2)|ZaAn−l| since dens(Dz) > δ/2

for every z ∈ Z. On the other hand, the family {Zay : y ∈ An−l} forms a

partition of ZaAn−l into sets of equal size. Hence, there exists y0 ∈ An−l such that

|D∩ (Zay0)| > (δ/2)|Zay0|. Let IW be the canonical isomorphism associated with

the combinatorial space W (see Definition 1.2) and define Φ: BM → Zay0 by the

rule Φ(w) = IW (w)ay0. Notice that Φ is a bijection. By the choice of M , there

exists an m-dimensional combinatorial subspace U of BM with U ⊆ Φ−1(D). If

V is the unique m-dimensional combinatorial subspace of An with V � B = Φ(U),

then V is as desired. The proof of Corollary 8.6 is completed. �

We close this section with the following measure-theoretic consequence of the

density Hales–Jewett theorem.

Proposition 8.7. Let k ∈ N with k > 2 and assume that for every 0 < % 6 1

the number DHJ(k, %) has been estimated. Let 0 < δ 6 1 and set

n0 = n0(k, δ) = DHJ(k, δ/2) and ζ(k, δ) =
δ/2

(k + 1)n0 − kn0
. (8.3)

If A is an alphabet with |A| = k, then for every combinatorial space W of A<N of

dimension at least n0 and every family
{
Dw : w ∈ W

}
of measurable events in a

probability space (Ω,Σ, µ) satisfying µ(Dw) > δ for every w ∈ W , there exists a

combinatorial line L of W such that

µ
( ⋂
w∈L

Dw

)
> ζ(k, δ). (8.4)

Proposition 8.7 appears as Proposition 2.1 in [FK4], though the argument in

its proof can be traced in an old paper of Erdős and Hajnal [EH]. In Subsection

8.4.3 we will present an extension of this result.

Proof of Proposition 8.7. Clearly, we may assume that W is of the form

An for some n > n0. Let
{
Dw : w ∈ An

}
be as in the statement of the lemma. We

select y0 ∈ An−n0 and we set

X =
{
ω ∈ Ω : dens

(
{v ∈ An0 : ω ∈ Dvay0}

)
> δ/2

}
.

Notice that µ(X) > δ/2 since µ
(
Dvay0

)
> δ for every v ∈ An0 . Let ω ∈ X be

arbitrary. By the choice of n0 in (8.3), there exists a combinatorial line Lω of An0

such that Lω ⊆
{
v ∈ An0 : ω ∈ Dvay0

}
. In other words, for every ω ∈ X there

exists a combinatorial line Lω of An0 with

ω ∈
⋂
v∈Lω

Dvay0 .

The number of combinatorial lines of An0 is equal to (k + 1)n0 − kn0 and so there

exist a combinatorial line L0 of An0 and a measurable subset X0 of X with

µ(X0) >
δ/2

(k + 1)n0 − kn0
(8.5)
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and such that Lω = L0 for every ω ∈ X0. We set L = {way0 : w ∈ L0} and we

observe that L is a combinatorial line of An. Moreover,

µ
( ⋂
w∈L

Dw

)
= µ

( ⋂
v∈L0

Dvay0

)
> µ(X0)

(8.5)

>
δ/2

(k + 1)n0 − kn0

(8.3)
= ζ(k, δ).

The proof of Proposition 8.7 is completed. �

8.3. Proof of Theorem 8.1

The proof proceeds by induction on k and is based on a density increment

strategy, a method invented by Roth [Ro]. The case “k = 2” is, of course, the

content of Corollary 8.3. Let k ∈ N with k > 2 and assume that for every 0 < % 6 1

the number DHJ(k, %) has been estimated. This assumption permits us to introduce

some numerical invariants. Specifically, for every 0 < δ 6 1 we set

m0 = DHJ(k, δ/4), θ =
δ/4

(k + 1)m0 − km0
, η =

δθ

48
and γ =

η2

2k
. (8.6)

The main step of the proof of Theorem 8.1 is the following dichotomy.

Proposition 8.8. Let k ∈ N with k > 2 and assume that for every 0 < % 6 1

the number DHJ(k, %) has been estimated. Then for every 0 < δ 6 1 and every

integer d > 1 there exists a positive integer N(k, d, δ) with the following property.

If n > N(k, d, δ) and A is an alphabet with |A| = k+ 1, then for every subset D of

An with dens(D) > δ we have that either: (i) D contains a combinatorial line of

An, or (ii) there exists a d-dimensional combinatorial subspace V of An such that

densV (D) > dens(D) + γ where γ is as in (8.6).

Using Proposition 8.8 the numbers DHJ(k+1, δ) can be estimated easily with a

standard iteration. Indeed, fix 0 < δ 6 1 and define a sequence (ni) in N recursively

by the rule {
n0 = 1,

ni+1 = N(k, ni, δ).
(8.7)

Then, by Proposition 8.8, we have

DHJ(k + 1, δ) 6 ndγ−1e.

It remains to prove Proposition 8.8. This is our goal in the next subsection.

8.3.1. Proof of Proposition 8.8. We follow the proof from [DKT2]. First

we introduce some pieces of notation. Specifically, for every integer m > 1 and

every 0 < ε 6 1 we set

n(m, ε) = ε−1(k + 1)mm. (8.8)

Notice that the number n(m, ε) is the threshold appearing in Lemma 8.5 for an

alphabet of cardinality k + 1. We also fix an alphabet A with k + 1 letters and, in

what follows, we will assume that for every 0 < % 6 1 the number DHJ(k, %) has

been estimated.

Our objective in the first part of the proof is to obtain a “probabilistic”

strengthening of our assumptions. This “probabilistic” strengthening refers to the
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natural question whether a dense subset of Γn, where Γ is an alphabet with k

letters and n is sufficiently large, not only will contain a combinatorial line but

actually a non-trivial portion of them. Unfortunately this is not true, as is shown

in the following example.

Example 8.1. Let 0 < ε < 1 be arbitrary. Also let Γ be a finite alphabet with

|Γ| > 2. We will show that for every sufficiently large integer n there exists D ⊆ Γn

with dens(D) > 1− ε and such that |{L ∈ Subsp1(Γn) : L ⊆ D}| 6 ε|Subsp1(Γn)|.
For every g ∈ Γ, every integer n > 1 and every w = (w0, . . . , wn−1) ∈ Γn we

set Ng(w) = |{i ∈ {0, . . . , n− 1} : wi = g}|. Moreover, let

E(Γ, g, n) =
{
w ∈ Γn : |Ng(w)− n

|Γ|
| > n2/3

}
and define

D(Γ, n) = Γn \
( ⋃
g∈Γ

E(Γ, g, n)
)
.

We have the following properties.

(P1) For every g ∈ Γ and every n > 1 we have dens
(
E(Γ, g, n)

)
6 n−1/3.

(P2) For every n > 1 we have dens
(
D(Γ, n)

)
> 1− |Γ|n−1/3.

(P3) For every n > 27(|Γ|+ 1)3 we have

|{L ∈ Subsp1(Γn) : L ⊆ D(Γ, n)}| 6 (n/2)−1/3|Subsp1(Γn)|.

By (P2) and (P3), it is clear that the set D(Γ, n) is as desired as long as n is

sufficiently large depending on |Γ| and ε.

To see that the above properties are satisfied, fix g ∈ Γ and n > 1. For every

i ∈ {0, . . . , n − 1} define Xg,i : Γn → {0, 1} by Xg,i

(
(w0, . . . , wn−1)

)
= 1 if wi = g

and Xg,i

(
(w0, . . . , wn−1)

)
= 0 otherwise. Also let Xg =

∑n−1
i=0 Xg,i. Note that the

sequence (Xg,i)
n−1
i=0 is an independent sequence of random variables. (Here, we view

Γn as a discrete probability space equipped with the uniform probability measure.)

Moreover, E(Xg,i) = 1/|Γ| and Var(Xg,i) = E(X2
g,i)−E(Xg,i)

2 = 1/|Γ|−1/|Γ|2 < 1

for every i ∈ {0, . . . , n − 1}. Therefore, E(Xg) =
∑n−1
i=0 E(Xg,i) = n/|Γ| and,

because of independence, Var(Xg) =
∑n−1
i=0 Var(Xg,i) < n. Finally, observe that

Xg(w) = Ng(w) for every w ∈ Γn and n2/3 = n1/6n1/2 > n1/6
√

Var(Xg). Hence,

E(Γ, g, n) ⊆
{
w ∈ Γn : |Xg(w)− E(Xg)| > n1/6

√
Var(Xg)

}
.

By Chebyshev’s inequality, this inclusion implies property (P1). Property (P2)

follows immediately by (P1) and the definition of D(Γ, n). The last property is

also an easy consequence of (P1). Indeed, fix an integer n > 27(|Γ| + 1)3. Also

fix a letter x not belonging to Γ which we view as a variable, and identify every

combinatorial line of Γn with a word over Γ ∪ {x} of length n. Note that the

cardinality of the wildcard set of every combinatorial line contained in D(Γ, n) is

less than 2n2/3. By the choice of n, we see that 2n2/3 6 n
|Γ|+1 − n

1/3 and so the

set {L ∈ Subsp1(Γn) : L ⊆ D(Γ, n)} is contained in the set E(Γ ∪ {x}, x, n). Thus,

by property (P1) applied for the alphabet “Γ ∪ {x}” and “g = x”, we obtain that

|{L ∈ Subsp1(Γn) : L ⊆ D(Γ, n)}| 6 n−1/3(|Γ|+ 1)n. Taking into account the fact
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that n > 27(|Γ|+ 1)3 we see that |Subsp1(Γn)| = (|Γ|+ 1)n− |Γ|n > 21/3(|Γ|+ 1)n.

Combining the previous estimates we conclude that property (P3) is satisfied.

In spite of the above example, we will show that dense subsets of hypercubes

indeed contain plenty of combinatorial lines, but when restricted on appropriately

chosen combinatorial spaces. The main tools for locating these combinatorial spaces

are Proposition 2.25, Lemma 8.5 and Proposition 8.7.

We start with the following lemma.

Lemma 8.9. Let 0 < δ 6 1 and m > m0. If n > n(GR(k,m, 1, 2), η2/2), then

for every D ⊆ An with dens(D) > δ and every B ⊆ A with |B| = k there exist

some l ∈ N with m 6 l < n and an m-dimensional subspace U of Al such that

(a) for every u ∈ U we have dens(Du) > dens(D)− η2/2, and

(b) for every combinatorial line L of U � B we have dens
(⋂

u∈LDu

)
> θ

where U � B is as in (1.21) and Du = {y ∈ An−l : uay ∈ D} for every u ∈ U .

Proof. By Lemma 8.5, there exist an integer l with GR(k,m, 1, 2) 6 l < n

and a combinatorial subspace W of Al with dim(W ) = GR(k,m, 1, 2) such that

dens(Dw) > dens(D)− η2/2 for every w ∈W . We set

L =
{
L ∈ Subsp1(W � B) : dens

( ⋂
w∈L

Dw

)
> θ
}
.

As in Subsection 1.3.2, using the canonical isomorphism IW associated with W , we

identify W � B with Bdim(W ) and Subsp1(W � B) with Subsp1(Bdim(W )). Hence,

by Proposition 2.25, there is an m-dimensional combinatorial subspace V of W � B
such that either Subsp1(V ) ⊆ L or Subsp1(V )∩L = ∅. If Subsp1(V ) ⊆ L, then let

U be the unique combinatorial subspace of Al with U � B = V . Clearly, U satisfies

the requirements of the lemma.

Therefore, it is enough to show that Subsp1(V ) ∩ L 6= ∅. Indeed, notice that

since V ⊆ W , we have dens(Dv) > dens(D) − η2/2 > δ/2 for every v ∈ V .

Moreover, dim(V ) = m > m0 = DHJ(k, δ/4) and so, by Proposition 8.7, there

exists L ∈ Subsp1(V ) ∩ L. The proof of Lemma 8.9 is completed. �

The next lemma completes the first part of the proof.

Lemma 8.10. Let 0 < δ 6 1 and m > m0. Also let n > n(GR(k,m, 1, 2), η2/2)

and D ⊆ An with dens(D) > δ. Then either: (i) there exists an m-dimensional

combinatorial subspace X of An such that densX(A) > dens(D) + η2/2, or (ii) for

every B ⊆ A with |B| = k there exists an m-dimensional combinatorial subspace

W of An such that densW (D) > dens(D)− 2η and

|{L ∈ Subsp1(W � B) : L ⊆ D}| > (θ/2)|Subsp1(W � B)|. (8.9)

Proof. Assume that part (i) is not satisfied, that is, for every m-dimensional

combinatorial subspace X of An we have densX(D) < dens(D) + η2/2. Fix B ⊆ A
with |B| = k. By Lemma 8.5, there exist l ∈ {m, . . . , n− 1} and an m-dimensional

combinatorial subspace U of Al such that dens(Du) > dens(D) − η2/2 for every



150 8. THE DENSITY HALES–JEWETT THEOREM

u ∈ U and dens
(⋂

u∈LDu

)
> θ for every L ∈ Subsp1(U � B). The first property

implies, in particular, that

Ey∈An−ldensUay(D) > dens(D)− η2/2. (8.10)

Observe that for every y ∈ An−l the set Uay is an m-dimensional combinatorial

subspace of An. Hence, by our assumption, we have densUay(D) < dens(D) +η2/2

for every y ∈ An−l. By Lemma E.3 and (8.10), there exists H1 ⊆ An−l with

dens(H1) > 1− η and such that densUay(D) > dens(D)− 2η for every y ∈ H1.

Now for every y ∈ An−l let Ly = {L ∈ Subsp1(U � B) : y ∈
⋂
u∈LDu}. Since

dens
(⋂

u∈LDu

)
> θ for every L ∈ Subsp1(U � B) we have

Ey∈An−l
|Ly|

|Subsp1(U � B)|
= EL∈Subsp1(U�B)dens

( ⋂
u∈L

Du

)
> θ. (8.11)

Therefore, there exists a subset H2 of An−l with dens(H2) > θ/2 and such that

|Ly| > (θ/2)|Subsp1(U � B)| for every y ∈ H2. By the choice of θ and η in (8.6), we

have η < θ/2. It follows that the set H1 ∩H2 is nonempty. We select y0 ∈ H1 ∩H2

and we set W = Uay0. It is clear that W is as desired. The proof of Lemma 8.10

is completed. �

In the second part of the proof we will show that if a dense subset of An contains

no combinatorial line, then it must correlate more than expected with a “simple”

subset of An. The proper concept of “simplicity” in this context is related to the

notion of an insensitive set introduced by Shelah in [Sh1]. In particular, the reader

is advised to review the material in Subsection 2.1.1.

We also need to introduce some more numerical invariants. Specifically, let

λ =
k + 1

k
and M0 = max

{
m0,

log η−1

log λ

}
. (8.12)

where m0 and η are as in (8.6). We have the following lemma.

Lemma 8.11. Let 0 < δ 6 1 and m >M0. Also let n > n(GR(k,m, 1, 2), η2/2)

and D ⊆ An with dens(D) > δ. Finally, let a ∈ A and set B = A \ {a}. Assume

that D contains no combinatorial line of An and densX(A) < dens(D) + η2/2

for every m-dimensional combinatorial subspace X of An. Then there exist an

m-dimensional combinatorial subspace W of An and a subset C of W satisfying the

following properties.

(a) We have densW (C) > θ/4 and C =
⋂
b∈B Cb where Cb is (a, b)-insensitive

in W for every b ∈ B.

(b) We have densW
(
D ∩ (W \ C)

)
>
(
dens(D) + 6η

)
densW (W \ C) and,

moreover, densW
(
D ∩ (W \ C)

)
> dens(D)− 3η.

Proof. By Lemma 8.10 and our assumptions, there exists an m-dimensional

combinatorial subspace W of An with densW (D) > dens(D) − 2η and satisfying

(8.9). For every L ∈ Subsp1(W � B) let vL be the unique variable word over A

such that L = {uL(b) : b ∈ B} and define

C =
(
D ∩ (W � B)

)
∪ {uL(a) : L ∈ Subsp1(W � B) and L ⊆ D}. (8.13)
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We will show that W and C are as desired.

First observe that the map Subsp1(W � B) 3 L 7→ vL(a) ∈ W is one-to-one.

Therefore, by (8.9), we have

|{vL(a) : L ∈ Subsp1(W � B) and L ⊆ D}| > (θ/2)|Subsp1(W � B)|. (8.14)

Hence,

|C| > |{vL(a) : L ∈ Subsp1(W � B) and L ⊆ D}|
(8.14)

> (θ/2)|Subsp1(W � B)|

= (θ/2)
(
(k + 1)m − km

) (8.12)

> (θ(1− η)/2)(k + 1)m
(8.6)

> (θ/4)|W |

which is equivalent to saying that densW (C) > θ/4. Next let IW : Am →W be the

canonical isomorphism associated with W . For every b ∈ B and every w ∈ Am let

wa→b be the unique element of Bm obtained by replacing all appearances of the

letter a in w by b. (Notice that wa→b = w if w ∈ Bm.) We set

Cb =
{

IW (w) : w ∈ Am and wa→b ∈ I−1
W (D)

}
.

Then observe that Cb is (a, b)-insensitive in W for every b ∈ B, and C =
⋂
b∈B Cb.

We proceed to the proof of the second part of the lemma. Our assumption that

D contains no combinatorial line of An implies that D∩C ⊆W � B. In particular,

we have densW (D ∩ C) 6 λ−m 6 λ−M0 6 η by the choice of λ and M0 in (8.12).

Since densW (D) > dens(D)−2η, we see that densW
(
D∩ (W \C)

)
> dens(D)−3η.

Therefore,

densW
(
D ∩ (W \ C)

)
densW (W \ C)

>
dens(D)− 3η

1− θ/4
>
(
dens(D)− 3η

)
(1 + θ/4)

(8.6)

> dens(D) + 6η.

The proof of Lemma 8.11 is completed. �

The following corollary completes the second part of the proof.

Corollary 8.12. Let 0 < δ 6 1 and m >M0. Let n > n(GR(k,m, 1, 2), η2/2)

and D ⊆ An with dens(D) > δ. Finally, let a ∈ A and set B = A \ {a}. Assume

that D contains no combinatorial line of An. Then there exist an m-dimensional

combinatorial subspace W of An and a family {Sb : b ∈ B} of subsets of W such that

Sb is (a, b)-insensitive in W for every b ∈ B and, moreover, setting S =
⋂
b∈B Sb

we have densW (S) > γ and densW (D ∩ S) >
(
dens(D) + 2γ

)
densW (S).

Proof. Assume that there exists an m-dimensional combinatorial subspace

X of An such that densX(D) > δ + η2/2. Then we set W = X and Sb = X

for every b ∈ B. Since η2/2 > 2γ, it is clear that with these choices the result

follows. Otherwise, by Lemma 8.11, there exist an m-dimensional combinatorial

subspace W of An and a set C =
⋂
b∈B Cb, where Cb is (a, b)-insensitive in W

for every b ∈ B, such that densW
(
D ∩ (W \ C)

)
> (dens(D) + 6η) densW (W \ C)

and densW
(
D ∩ (W \ C)

)
> δ − 3η. Let {b1, . . . , bk} be an enumeration of B.

We set P1 = W \ Cb1 and Pi = Cb1 ∩ · · · ∩ Cbi−1
∩ (W \ Cbi) if i ∈ {2, . . . , k}.

Notice that the family {P1, . . . , Pk} is a partition of W \ C. Therefore, setting
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λi = densW (Pi)/densW (W \ C) and δi = densW (D ∩ Pi)/densW (Pi) for every

i ∈ [k] (with the convention that δi = 0 if Pi happens to be empty), we see that

k∑
i=1

λiδi =
densW

(
D ∩ (W \ C)

)
densW (W \ C)

> dens(D) + 6η.

Hence, there exists i0 ∈ [k] such that δi0 > dens(D) + 3η > dens(D) + 2γ and

λi0 > 3η/k. We define Sbi = Cbi if i < i0, Sbi0 = W \ Cbi0 and Sbi = W if i > i0.

Clearly Sb is (a, b)-insensitive in W for every b ∈ B. Moreover, setting S =
⋂
b∈B Sb

we see that S = Pi0 , and so, densW (S) = λi0densW (W \ C) > (3η/k)(δ − 3η) > γ

and densW (D ∩ S) = δi0densW (S) >
(
dens(D) + 2γ

)
densW (S). The proof of

Corollary 8.12 is completed. �

In the third, and last, part of the proof our goal is to almost entirely partition

the set S obtained by Corollary 8.12 into combinatorial spaces of sufficiently large

dimension. This is achieved by appropriately modifying an argument of Ajtai and

Szemerédi [ASz].

First we deal with the case of an arbitrary insensitive set. For every 0 < β 6 1

and every integer m > 1 we set

M1 = MDHJ∗(k,m, β) and F (m,β) = dβ−1(k+1+m)M1(k+1)M1−mM1e (8.15)

where MDHJ∗(k,m, β) is as in Corollary 8.6. We have the following lemma.

Lemma 8.13. Let 0 < β 6 1/2 and m > 1. If n > F (m,β), then for every

a, b ∈ A with a 6= b and every (a, b)-insensitive subset S of An with dens(S) > 2β

there exists a family V of pairwise disjoint m-dimensional combinatorial subspaces

of An which are all contained in S and are such that dens(S \ ∪V) < 2β.

Proof. We set Θ = β(k + 1 +m)−M1(k + 1)m−M1 . Notice that Θ < β and

n > F (m,β) = dΘ−1M1e > Θ−1M1. (8.16)

Fix a, b ∈ A with a 6= b and set B = A \ {a}. We will determine a positive

integer r0 6 bΘ−1c and we will select, recursively, a strictly decreasing sequence

S = S0 ! S1 ! · · · ! Sr0 of subsets of S and a sequence V1, . . . ,Vr0 of families of

m-dimensional combinatorial subspaces of An subject to the following conditions.

(C1) For every r ∈ [r0] the family Vr consists of pairwise disjoint m-dimensional

combinatorial subspaces of An which are contained in Sr−1\Sr. Moreover,

we have dens(∪Vr) > Θ.

(C2) For every r ∈ {0, . . . , r0} and every z ∈ ArM1 the set

Szr = {t ∈ An−rM1 : taz ∈ Sr}

is (a, b)-insensitive.

(C3) If r ∈ {0, . . . , r0 − 1}, then we have 2β 6 dens(Sr) 6 dens(S) − rΘ. On

the other hand, we have dens(Sr0) < 2β.

The first step is identical to the general one, and so let r be a positive integer with

r 6 bΘ−1c and assume that the sequences (Sj)
r
j=0 and (Vj)rj=1 have been selected.

If dens(Sr) < 2β, then we set “r0 = r” and we terminate the recursive selection.
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Otherwise, we have dens(Sr) > 2β. Note that this estimate and condition (C1)

yield that rΘ + 2β 6 1. Since Θ < β we see that bΘ−1c > (r + 1) and so

n− (r + 1)M1

(8.16)

> Θ−1M1 − bΘ−1cM1 > 0. (8.17)

It follows, in particular, that we may write An as An−(r+1)M1 ×AM1 ×ArM1 . For

every (t, z) ∈ An−(r+1)M1 × ArM1 let S
(t,z)
r = {y ∈ AM1 : tayaz ∈ Sr}. By our

inductive assumptions, the set Szr is (a, b)-insensitive for every z ∈ ArM1 . Noticing

that S
(t,z)
r is section of Szr at t, we see that S

(t,z)
r is (a, b)-insensitive for every

(t, z) ∈ An−(r+1)M1 ×ArM1 . Also observe that

E(t,z)∈An−(r+1)M1×ArM1 dens
(
S(t,z)
r

)
= dens(Sr) > 2β.

Hence, there exists a subset Γ0 of An−(r+1)M1×ArM1 of density at least β such that

dens(S
(t,z)
r ) > β for every (t, z) ∈ Γ0. Let (t, z) ∈ Γ0 be arbitrary. By Corollary

8.6 and the choice of M1 in (8.15), there exists an m-dimensional combinatorial

subspace V(t,z) of AM1 such that V(t,z) � B ⊆ S
(t,z)
r , and so, V(t,z) ⊆ S

(t,z)
r since

S
(t,z)
r is (a, b)-insensitive. The number of m-dimensional combinatorial subspaces

of AM1 is less than (k+ 1 +m)M1 . Therefore, by the classical pigeonhole principle,

there exists an m-dimensional combinatorial subspace V of AM1 such that, setting

Γ =
{

(t, z) ∈ An−(r+1)M1 ×ArM1 : taV az ⊆ Sr
}
, (8.18)

we have

dens(Γ) >
dens(Γ0)

(k + 1 +m)M1
> β(k + 1 +m)−M1 . (8.19)

We define

Vr+1 = {taV az : (t, z) ∈ Γ} and Sr+1 = Sr \ ∪Vr+1. (8.20)

We will show that Vr+1 and Sr+1 are as desired. Indeed, notice first that

| ∪ Vr+1| = dens(Γ)(k + 1)n−M1(k + 1)m

(8.19)

> β(k + 1 +m)−M1(k + 1)m−M1(k + 1)n = Θ(k + 1)n.

Using this estimate and invoking the definition of Vr+1 and Sr+1 we see that condi-

tion (C1) is satisfied. To see that condition (C2) is also satisfied, fix z1 ∈ A(r+1)M1 .

We need to prove that the set Sz1r+1 = {t ∈ An−(r+1)M1 : taz1 ∈ Sr+1} is

(a, b)-insensitive. By (8.20), it is enough to show that

t0
az1 ∈ Sr ⇔ t1

az1 ∈ Sr (8.21)

and

t0
az1 ∈ ∪Vr+1 ⇔ t1

az1 ∈ ∪Vr+1 (8.22)

for every t0, t1 ∈ An−(r+1)M1 which are (a, b)-equivalent. Fix such a pair t0, t1 and

write z1 = y0
az0 where (y0, z0) ∈ AM1 ×ArM1 . By our inductive assumptions, the

set Sz0r is (a, b)-insensitive. Since t0
ay0 and t1

ay0 are (a, b)-equivalent, we have

t0
az1 ∈ Sr ⇔ t0

ay0 ∈ Sz0r ⇔ t1
ay0 ∈ Sz0r ⇔ t1

az1 ∈ Sr
and so (8.21) is satisfied. Next observe that, by the definition of the set Γ in (8.18),

we have {t ∈ An−(r+1)M1 : (t, z0) ∈ Γ} = {t ∈ An−(r+1)M1 : taV ⊆ Sz0r }. Invoking
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the (a, b)-insensitivity of Sz0r , we obtain that the set {t ∈ An−(r+1)M1 : (t, z0) ∈ Γ}
is also (a, b)-insensitive. Therefore,

t0
az1 ∈ ∪Vr+1 ⇔ t0

ay0
az0 ∈ ∪{taV az : (t, z) ∈ Γ}

⇔ (t0, z0) ∈ Γ and y0 ∈ V ⇔ (t1, z0) ∈ Γ and y0 ∈ V
⇔ t1

ay0
az0 ∈ ∪{taV az : (t, z) ∈ Γ} ⇔ t1

az1 ∈ ∪Vr+1.

It follows that (8.22) is also satisfied, and thus condition (C2) is fulfilled. Since

condition (C3) for the set Sr+1 will be checked in the next iteration, the recursive

selection is completed.

Now, by (8.16) and condition (C1), we see that the above algorithm will even-

tually terminate after at most bΘ−1c iterations. We set V = V1 ∪ · · · ∪ Vr0 . By

conditions (C1) and (C3), the family V is as desired. The proof of Lemma 8.13 is

completed. �

By recursion on r ∈ [k], for every 0 < β 6 1 and every integer m > 1 we define

F (r)(m,β) by the rule

F (1)(m,β) = F (m,β) and F (r+1)(m,β) = F (r)
(
F (m,β), β

)
. (8.23)

We have the following corollary.

Corollary 8.14. Let r ∈ [k], 0 < β 6 1/2r and m > 1. Let n > F (r)(m,β),

a ∈ A and b1, . . . , br distinct elements of A \ {a}. For every i ∈ [r] let Si be an

(a, bi)-insensitive subset of An. We set S = S1 ∩ · · · ∩ Sr. If dens(S) > 2rβ, then

there exists a family V of pairwise disjoint m-dimensional combinatorial subspaces

of An which are all contained in S and are such that dens(S \ ∪V) < 2rβ.

Proof. By induction on r. The case “r = 1” follows from Lemma 8.13. Let

r ∈ [k−1] and assume that the result has been proved up to r. Fix n > F (r+1)(m,β),

a ∈ A and b1, . . . , br+1 distinct elements of A \ {a}. Also let S1, . . . , Sr+1 be as in

the statement of the corollary. By our inductive assumptions, there exists a family

V ′ of pairwise disjoint F (m,β)-dimensional combinatorial subspaces of An which

are all contained in S′ := S1 ∩ · · · ∩ Sr and are such that dens(S′ \ ∪V ′) < 2rβ.

Let V ′′ = {V ∈ V ′ : densV (Sr+1) > 2β}. Notice that for every V ∈ V ′′ the set

V ∩Sr+1 is (a, br+1)-insensitive in V and dim(V ) = F (m,β). Hence, by identifying

each V ∈ V ′′ with AF (m,β) via the canonical isomorphism IV and applying Lemma

8.13, we obtain for every V ∈ V ′′ a collection VV of pairwise disjoint m-dimensional

combinatorial subspaces of V which are all contained in V ∩Sr+1 and are such that

densV (Sr+1 \∪VV ) < 2β. We set V = {W : V ∈ V ′′ and W ∈ VV }. Clearly, V is as

desired. The proof of Corollary 8.14 is completed. �

We are now ready to give the proof of Proposition 8.8.

Proof of Proposition 8.8. For every d ∈ N with d > 1 and every 0 < δ 6 1

let β = γ2/2k and m(d) = max{M0, F
(k)(d, β)}. We define

N(k, d, δ) = n
(
GR
(
k,m(d), 1, 2

)
, η2/2

)
. (8.24)
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Let n > N(k, d, δ), an alphabet A with |A| = k + 1 and a subset D of An with

dens(D) > δ. Assume that D contains no combinatorial line of An. Fix a ∈ A

and set B = A \ {a}. By Corollary 8.12, there exist a combinatorial subspace W

of An of dimension m(d) and a family {Sb : b ∈ B} of subsets of W such that

Sb is (a, b)-insensitive in W for every b ∈ B and, setting S =
⋂
b∈B Sb, we have

densW (S) > γ and densW (D ∩ S) >
(
dens(D) + 2γ

)
densW (S). By Corollary 8.14,

there exists a family V of pairwise disjoint d-dimensional combinatorial subspaces

of W such that ∪V ⊆ S and densW (S \ ∪V) < 2kβ = γ2. Therefore,

densW (D ∩ ∪V) > densW (D ∩ S)− densW (S \ ∪V)

>
(
dens(D) + 2γ

)
densW (S)− γ2

>
(
dens(D) + γ

)
densW (S) >

(
dens(D) + γ

)
densW (∪V).

Hence, there exists V ∈ V such that densW (D∩V ) >
(
dens(D)+γ

)
densW (V ) which

is equivalent to saying that densV (D) > dens(D) + γ. The proof of Proposition 8.8

is thus completed. �

8.4. Applications

8.4.1. Main applications. We start by presenting a proof of Szemerédi’s

theorem using the density Hales–Jewett theorem. The argument can be traced

in [HJ] and can be easily generalized, but gives very weak upper bounds for the

numbers Sz(k, δ).

Second proof of Theorem 7.20. We fix k > 2 and 0 < δ 6 1, and we set

r = DHJ(k, δ/2). We will show that Sz(k, δ) 6 kr. Let n > kr and D ⊆ [n] with

|D| > δn. Note that there exists an interval I of [n] with |I| = kr and such that

|D ∩ I| > (δ/2)|I|. By translating, simultaneously, the interval I and the set D,

we may assume that I = {0, . . . , kr − 1}. We set A = {0, . . . , k − 1} and we define

φ : Ar → {0, . . . , kr−1} by the rule φ
(
(w0, . . . , wr−1)

)
=
∑r−1
j=0 wjk

j . Observe that

φ is a bijection and has the following property. It maps combinatorial lines of Ar to

arithmetic progressions of {0, . . . , kr−1} of length k. By the choice of r and taking

into account these remarks, the second proof of Theorem 7.20 is completed. �

The above reasoning also applies in higher dimensions. In particular, we have

the following proof of the multidimensional Szemerédi theorem.

Second proof of Theorem 7.22. Let k, d be positive integers with k > 2

and 0 < δ 6 1. We set r = DHJ(kd, δ/2d) and we claim that MSz(k, d, δ) 6 kr.

Indeed, fix n > kr and let D ⊆ [n]d with |D| > δnd. It is easy to see that

there exist subintervals I1, . . . , Id of [n] with |I1| = · · · = |Id| = kr and such

that |D ∩ (I1 × · · · × Id)| > (δ/2d)|I1| · · · |Id|. We may assume, of course, that

Ii = {0, . . . , kr − 1} for every i ∈ [d]. Set A = {0, . . . , k − 1}d and observe that

every w ∈ Ar can be written as (wi,j)
d r−1
i=1,j=0 where wi,j ∈ {0, . . . , k − 1} for every

i ∈ [d] and every j ∈ {0, . . . , r − 1}. We define Φ: Ar → {0, . . . , kr − 1}d by

Φ(w) =
( r−1∑
j=0

w1,jk
j , . . . ,

r−1∑
j=0

wd,jk
j
)
.



156 8. THE DENSITY HALES–JEWETT THEOREM

The map Φ is a bijection and so, by the density Hales–Jewett theorem and the

choice of r, there exists a combinatorial line L of Ar such that Φ(L) ⊆ D. Let F

be the wildcard set of L, S the set of its fixed coordinates and f ∈ AS its constant

part. Write f = (fi,j)
d
i=1,j∈S with fi,j ∈ {0, . . . , k − 1} for every i ∈ [d] and every

j ∈ S, and set c = (c1, . . . , cd) ∈ Nd where ci =
∑
j∈S fi,jk

j for every i ∈ [d]. Also

let λ =
∑
j∈F k

j and observe that Φ(L) =
{
c + λx : x ∈ {0, . . . , k − 1}d

}
. The

second proof of Theorem 7.22 is completed. �

The last result in this subsection is due to Furstenberg and Katznelson [FK2].

To state it we need to introduce some terminology. Let r ∈ N with r > 1 and

denote by Fr the set of all nonempty subsets of {0, . . . , r − 1}. An IPr-system is a

family (Tα)α∈Fr of transformations on a nonempty set X (that is, Tα : X → X for

every α ∈ Fr) such that T{0}, . . . , T{r−1} are pairwise commuting, and

T{i0,...,im} = T{i0} ◦ · · · ◦ T{im} (8.25)

for every 0 6 m 6 r−1 and every 0 6 i0 < · · · < im 6 r−1. Notice that if α, β ∈ Fr
with α ∩ β = ∅, then Tα ◦ Tβ = Tα∪β . Two IPr-systems (Tα)α∈Fr and (Sα)α∈Fr
of transformations on the same set X are called commuting if Sβ ◦ Tα = Tα ◦ Sβ
for every α, β ∈ Fr. Also recall that a measure preserving transformation on a

probability space (X,Σ, µ) is a measurable map T : X → X with the property that

µ
(
T−1(A)

)
= µ(A) for every A ∈ Σ.

Theorem 8.15. For every positive integer k and every 0 < δ 6 1 there exist a

positive integer IP-Sz(k, δ) and a strictly positive constant η(k, δ) with the following

property. Let r > IP-Sz(k, δ) and let (T
(1)
α )α∈Fr , . . . , (T

(k)
α )α∈Fr be commuting

IPr-systems of measure preserving transformations on a probability space (X,Σ, µ).

If D ∈ Σ with µ(D) > δ, then there exists α ∈ Fr such that

µ
(
D ∩ T (1)

α

−1
(D) ∩ · · · ∩ T (k)

α

−1
(D)

)
> η(k, δ). (8.26)

Theorem 8.15 is known as the IPr-Szemerédi theorem and is a far-reaching

extension of the multidimensional Szemerédi theorem. The first effective proof of

Theorem 8.15 became available as a consequence of the quantitative information

on the density Hales–Jewett numbers obtained in [P]. We proceed to the proof.

Proof of Theorem 8.15. We fix a positive integer k and 0 < δ 6 1. Let

n0(k + 1, δ) and ζ(k + 1, δ) be as in (8.3) and set IP-Sz(k, δ) = n0(k + 1, δ) and

η(k, δ) = ζ(k+1, δ). We will show that with these choices the result follows. Indeed,

let r > IP-Sz(k, δ) and let (T
(1)
α )α∈Fr , . . . , (T

(k)
α )α∈Fr be commuting IPr-systems of

measure preserving transformations on a probability space (X,Σ, µ). We enlarge

this family of commuting IPr-systems by adding the IPr-system (T
(0)
α )α∈Fr where

T
(0)
α is the identity on X for every α ∈ Fr. We set A = {0, . . . , k} and for every

w = (w0, . . . , wr−1) ∈ Ar we define Rw = T
(w0)
{0} ◦ T

(w1)
{1} ◦ · · · ◦ T

(wr−1)
{r−1} . Notice that

Rw is a measure preserving transformation on (X,Σ, µ).

Now let D ∈ Σ with µ(D) > δ. The fact that Rw is measure preserving yields

that µ
(
R−1
w (D)

)
> δ for every w ∈ Ar. Hence, by Proposition 8.7 and the choice
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of r and η(k, δ), there exists a combinatorial line L of Ar such that

µ
( ⋂
w∈L

R−1
w (D)

)
> η(k, δ). (8.27)

Let α be the wildcard set of the combinatorial line L, S the set of its fixed coor-

dinates and (fj)j∈S ∈ AS its constant part. We set Q =
∏
j∈S T

(fj)

{j} . Since the

IPr-systems (T
(0)
α )α∈Fr , (T

(1)
α )α∈Fr , . . . , (T

(k)
α )α∈Fr are commuting, we have⋂

w∈L
R−1
w (D) =

k⋂
i=0

(
T (i)
α ◦Q

)−1
(D) = Q−1

( k⋂
i=0

T (i)
α

−1
(D)

)
. (8.28)

Observe that Q is measure preserving. Therefore,

µ
(
D ∩ T (1)

α

−1
(D) ∩ · · · ∩ T (k)

α

−1
(D)

)
= µ

( k⋂
i=0

T (i)
α

−1
(D)

)
= µ

(
Q−1

( k⋂
i=0

T (i)
α

−1
(D)

))
(8.28)

= µ
( ⋂
w∈L

R−1
w (D)

) (8.27)

> η(k, δ)

and the proof of Theorem 8.15 is completed. �

8.4.2. Combinatorial consequences for finite fields and abelian groups.

In this subsection we will present some combinatorial results of geometric and

algebraic nature which are due to Furstenberg and Katznelson [FK2]. They were

originally obtained as consequences of the IPr-Szemerédi theorem, but can also been

proved using the hypergraph removal lemma (see, e.g., [RSTT]). In our exposition

we will rely on the density Hales–Jewett theorem. We start with the following

density version of the affine Ramsey theorem [GLR].

Theorem 8.16. For every pair q, d of positive integers and every 0 < δ 6 1

there exists a positive integer N(q, d, δ) with the following property. If Fq is a finite

field with q elements and V is a vector space over Fq of dimension at least N(q, d, δ),

then every D ⊆ V with |D| > δ|V | contains an affine d-dimensional subspace.

Proof. Let q, d be a pair of positive integers and 0 < δ 6 1, and notice that

we may assume that q = pk for some prime p and some positive integer k. We

will show that the positive integer MDHJ(q, d, δ) is as desired. Let V be a vector

space over Fq of dimension at least MDHJ(q, d, δ). Also let v0, . . . ,vn−1 be a basis

of V and D ⊆ V with |D| > δ|V |. We set A = Fq and we define T : An → V by

T (w) =
∑n−1
j=0 wjvj for every w = (w0, . . . , wn−1) ∈ An. Clearly, T is a bijection.

Hence, by Proposition 8.4, there exists a d-dimensional combinatorial subspace W

of An which contained in T−1(D). Let F0, . . . , Fd−1 be the wildcard sets of W ,

S the set of its fixed coordinates and (fj)j∈S ∈ AS its constant part. Then observe

that T (W ) = c + U where c =
∑
j∈S fj vj and U is the d-dimensional subspace of

V generated by the vectors
∑
j∈F0

vj , . . . ,
∑
j∈Fd−1

vj . The proof of Theorem 8.16

is completed. �
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Now let G be an abelian group (written additively) and r a positive integer.

As is Subsection 8.4.1, we shall denote by Fr the set of all nonempty subsets of

{0, . . . , r − 1}. An IPr-set in G is a family (gα)α∈Fr of elements of G such that

gα∪β = gα + gβ whenever α∩ β = ∅. Notice that (gα)α∈Fr is an IPr-set in G if and

only if gα =
∑
m∈α g{m} for every α ∈ Fr. We have the following theorem.

Theorem 8.17. For every positive integer k and every 0 < δ 6 1 there exist

a positive integer G(k, δ) and a strictly positive constant ε(k, δ) with the following

property. Let G be an abelian group, r > G(k, δ) and (g
(0)
α )α∈Fr , . . . , (g

(k−1)
α )α∈Fr

IPr-sets in G. Also let J be a nonempty finite subset of G such that

max
{
|(g(i)
{m} + J)4 J | : 0 6 i 6 k − 1 and 0 6 m 6 r − 1

}
6 ε(k, δ)|J |. (8.29)

If D ⊆ J with |D| > δ|J |, then D contains a set of the form {g+g
(i)
α : 0 6 i 6 k−1}

for some g ∈ G and some α ∈ Fr.

Of course, if G is a finite abelian group, then we may set “J = G” and apply

Theorem 8.17 directly to dense subsets of G. On the other hand, we note that if

G is countable, then for every finite subset X of G and every ε > 0 there exists a

nonempty finite subset J of G such that |(x+J)4 J | 6 ε|J | for every x ∈ X. This

property follows from—and is in fact equivalent to—the amenability of countable

abelian groups (see, e.g., [Pat]). Thus, Theorem 8.17 is also applicable to all

countable abelian groups.

Proof of Theorem 8.17. We may assume, of course, that k > 2. We fix

0 < δ 6 1 and we set

G(k, δ) = DHJ(k, δ/2) and ε(k, δ) =
δ

2G(k, δ)
. (8.30)

We will show that with these choices the result follows. Indeed, let r > G(k, δ) and

let (g
(0)
α )α∈Fr , . . . , (g

(k−1)
α )α∈Fr be IPr-sets in G. Also let J satisfying (8.29) and

fix D ⊆ J with |D| > δ|J |. We need to find g ∈ G and α ∈ Fr such that the set

{g + g
(i)
α : 0 6 i 6 k − 1} is contained in D. Clearly, we may assume that

r = G(k, δ).

Let A = {0, . . . , k − 1} and for every w = (w0, . . . , wr−1) ∈ Ar set

sw =

r−1∑
m=0

g
(wm)
{m} and Dw = (D − sw) ∩ J.

We need the following simple fact in order to estimate the size of each Dw.

Fact 8.18. Let n be a positive integer. If h0, . . . , hn−1 ∈ G and F is a nonempty

finite subset of G, then we have

∣∣( n−1∑
m=0

hm + F
)
4F

∣∣ 6 n−1∑
m=0

|(hm + F )4F |. (8.31)
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Now let w = (w0, . . . , wr−1) ∈ Ar. By Fact 8.18, we have

|(sw + J)4 J | =
∣∣( r−1∑

m=0

g
(wm)
{m} + J

)
4 J

∣∣
(8.31)

6
r−1∑
m=0

|(g(wm)
{m} + J)4 J |

(8.29),(8.30)

6 (δ/2)|J |.

Therefore,

|Dw| = |(D − sw) ∩ J | = |D ∩ (J + sw)| = |D \
(
(J + sw)4 J

)
|

> |D| − |(J + sw)4 J | > (δ/2)|J |. (8.32)

By the choice of r, there exists a combinatorial line L of Ar such that
⋂
w∈LDw 6= ∅.

We fix g′ ∈
⋂
w∈LDw. Also let α be the wildcard set of L, S the set of its fixed

coordinates and (fm)m∈S ∈ AS its constant part. If g′′ =
∑
m∈S g

(fm)
{m} , then

⋂
w∈L

Dw =
( k−1⋂
i=0

(D − g(i)
α )
)
− g′′.

Therefore, setting g = g′+ g′′, we see that g+ g
(i)
α ∈ D for every i ∈ {0, . . . , k− 1}.

The proof of Theorem 8.17 is completed. �

Theorem 8.17 yields the following beautiful refinement of Szemerédi’s theorem.

Corollary 8.19. For every integer k > 2 and every 0 < δ 6 1 there exist

two positive integers r = r(k, δ) and N0 = N0(k, δ) with the following property. If

(λm)r−1
m=0 is a finite sequence in Z and n > N0 · max{|λm| : 0 6 m < r}, then

every D ⊆ [n] with |D| > δn contains an arithmetic progression of length k whose

common difference is of the form
∑
m∈α λm for some nonempty α ⊆ {0, . . . , r−1}.

Proof. Fix an integer k > 2 and 0 < δ 6 1, and let G(k, δ) and ε(k, δ) be

as in Theorem 8.17. We set r = G(k, δ) and N0 = d2k/ε(k, δ)e. We claim that

with these choices the result follows. Indeed, let (λm)r−1
m=0 be a finite sequence in

Z. For every i ∈ {0, . . . , k− 1} and every α ∈ Fr let λ
(i)
α = i ·

∑
m∈α λm and notice

that (λ
(i)
α )α∈Fr is an IPr-set in Z. Also let n > N0 · max{|λm| : 0 6 m < r} and

observe that, by the choice of N0, the set (λ
(i)
{m}+ [n])4 [n] has cardinality at most

ε(k, δ) · n for every i ∈ {0, . . . , k − 1} and every m ∈ {0, . . . , r − 1}. Therefore,

by Theorem 8.17, every subset D of [n] with |D| > δn contains a set of the form

{a+ λ
(i)
α : 0 6 i 6 k − 1} =

{
a+ i ·

∑
m∈α λm : 0 6 i 6 k − 1

}
for some a ∈ Z and

some α ∈ Fr. The proof of Corollary 8.19 is completed. �

Recall that for every positive integer d and every u = (u1, . . . , ud) ∈ Rd we set

‖u‖∞ = max
{
|u1|, . . . , |ud|

}
.

We have the following multidimensional version of Corollary 8.19. It follows from

Theorem 8.17 arguing precisely as above.
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Corollary 8.20. For every pair k, d of positive integers with k > 2 and every

0 < δ 6 1 there exist two positive integers r = r(k, d, δ) and N0 = N0(k, d, δ) with

the following property. Let {u0, . . . ,uk−1} ⊆ Zd and (λα)α∈Fr an IPr-set in Z.

Also let n > N0 ·max{‖u0‖∞, . . . , ‖uk−1‖∞} ·max{|λ{j}| : 0 6 j < r}. Then every

D ⊆ [n]d with |D| > δnd contains a set of the form {c + λαui : 0 6 i 6 k − 1} for

some c ∈ Zd and some α ∈ Fr.

8.4.3. Measurable events indexed by combinatorial spaces. Our last

application is an extension of Proposition 8.7. Specifically, for every 0 < δ 6 1 set

ζ(1, δ) = δ and let ζ(p, δ) be as in (8.3) if p is an integer with p > 2. We have the

following theorem due to Dodos, Kanellopoulos and Tyros [DKT4].

Theorem 8.21. For every pair k,m of positive integers with k > 2 and every

0 < δ 6 1 there exists a positive integer CorSp(k,m, δ) with the following property.

If A is an alphabet with |A| = k, then for every combinatorial space W of A<N with

dim(W ) > CorSp(k,m, δ) and every family {Dw : w ∈ W} of measurable events

in a probability space (Ω,Σ, µ) satisfying µ(Dw) > δ for every w ∈ W , there exists

an m-dimensional combinatorial subspace V of W such that for every nonempty

F ⊆ V we have

µ
( ⋂
w∈F

Dw

)
> ζ(|F |, δ). (8.33)

The proof of Theorem 8.21 is based on the notion of the type of a nonempty

subset of a combinatorial space, introduced in Subsection 5.1.1. Recall that the def-

inition of this invariant requires the existence of a linear order on the finite alphabet

we are working with. However, in what follows, we will follow the convention in

Subsection 5.1.2 and we will not refer explicitly to the linear order which is used to

define the type.

We start with the following lemma.

Lemma 8.22. Let A be a finite alphabet with |A| > 2, d a positive integer and

G ⊆ Ad with |G| > 2. Let τ(G) be the type of G, and set p = |G| and m = |τ(G)|.
Then there exists an alphabet B ⊆ Am with |B| = p and a map T : B<N → A<N

with the following properties.

(a) For every n ∈ N we have T (Bn) ⊆ Am·n.

(b) For every positive integer n and every combinatorial line L of Bn the

image T (L) = {T (w) : w ∈ L} of L is a subset of Am·n of type τ(G).

Proof. By the definition of the type, we have τ(G) = (τi)
m−1
i=0 where m ∈ [d]

and τi ∈ Ap \ ∆(Ap) for every i ∈ {0, . . . ,m − 1}. (Here, ∆(Ap) is as in (5.1).)

Fix j ∈ {0, . . . , p − 1} and for every i ∈ {0, . . . ,m − 1} let τi,j ∈ A be the j-th

coordinate of τi. We set βj = (τi,j)
m−1
i=0 ∈ Am and we define

B = {β0, . . . , βp−1}. (8.34)

We proceed to define the map T which is a variant of the map T in Definition 2.10.

Specifically, let t ∈ B<N be arbitrary. If t = ∅, then we set T (∅) = ∅. Otherwise,
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write t = (t`)
n−1
`=0 ∈ Bn ⊆ (Am)n. For every i ∈ {0, . . . ,m − 1} let ti,` ∈ A be the

i-th coordinate of t` and set

T (t) = (t0,0, . . . , t0,n−1)a. . .a (tm−1,0, . . . , tm−1,n−1). (8.35)

We claim that B and T are as desired. Indeed, notice first that T (Bn) ⊆ Am·n

for every n ∈ N. To see that the second part of the lemma is also satisfied, fix a

positive integer n and let L be a combinatorial line of Bn. Let v be the variable

word over B of length n such that L = {v(β) : β ∈ B}. Also let X be the wildcard

set of L, S the set of its fixed coordinates and (fs)s∈S ∈ BS its constant part. For

every i ∈ {0, . . . ,m− 1} and every s ∈ S let fi,s ∈ A be the i-th coordinate of fs.

We set Xi = {x+ i · n : x ∈ X} and Si = {s+ i · n : s ∈ S}, and we observe that

Xi ∩ Si = ∅ and Xi ∪ Si = {i · n, . . . , (i+ 1) · n− 1}. (8.36)

It follows, in particular, that for every r ∈ {0, . . . ,m · n− 1} there exists a unique

i(r) ∈ {0, . . . ,m−1} such that r ∈ {i(r)·n, . . . , (i(r)+1)·n−1} = Xi(r)∪Si(r). If, in

addition, r ∈ Si(r), then there exists a unique s(r) ∈ S such that r = s(r) + i(r) ·n.

Now, fix j ∈ {0, . . . , p − 1} and write T
(
v(βj)

)
= (ajr)

m·n−1
r=0 ∈ Am·n. By the

definition of T , for every r ∈ {0, . . . ,m · n− 1} we have

ajr =

{
τi(r),j if r ∈ Xi(r)

fi(r),s(r) if r ∈ Si(r)
and, therefore,

(a0
r, . . . , a

p−1
r ) =

{
(τi(r),0, . . . , τi(r),p−1) = τi(r) if r ∈ Xi(r)

fpi(r),s(r) ∈ ∆(Ap) if r ∈ Si(r).
(8.37)

Finally, by (8.36), we see that max(Xi) < min(Xi+1) for every i ∈ {0, . . . ,m − 2}
provided, of course, that m > 2. Using this fact and (8.37), we conclude that T (L)

and G have the same type. The proof of Lemma 8.22 is completed. �

We proceed with the following lemma.

Lemma 8.23. Let 0 < δ 6 1 and A a finite alphabet with |A| > 2. Also let U

be a combinatorial space of A<N and {Du : u ∈ U} a family of measurable events

in a probability space (Ω,Σ, µ) satisfying µ(Du) > δ for every u ∈ U . Finally, let d

be a positive integer and G ⊆ Ad with |G| > 2. Assume that

dim(U) > |τ(G)| ·DHJ(|G|, δ/2) (8.38)

where τ(G) is the type of G. Then there exists H ⊆ U with τ(H) = τ(G) such that

µ
( ⋂
u∈H

Du

)
> ζ(|G|, δ)

where ζ(|G|, δ) is as in (8.3).

Proof. We set p = |G|, m = |τ(G)|, n0 = DHJ(p, δ/2) and N = dim(U). Also

fix α ∈ A and let B ⊆ Am and T : B<N → A<N be as in Lemma 8.22 when applied

to the set G. We define Φ: Bn0 → U by the rule

Φ(t) = IU
(
T (t)aαN−m·n0

)
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where IU is the canonical isomorphism associated with U (see Definition 1.2) and

αN−m·n0 is as in (2.1). (By Lemma 8.22, we have T (t) ∈ Am·n0 and so the map Φ

is well-defined.) Next, we set D′t = DΦ(t) for every t ∈ Bn0 and we observe that

µ(D′t) > δ. Since |B| = p, by the choice of n0 and Proposition 8.7, there exists a

combinatorial line L of Bn0 such that

µ
( ⋂
t∈L

D′t

)
> ζ(p, δ). (8.39)

We will show that the set H = Φ(L) is as desired. Indeed, by the definition of Φ,

we have H =
{

IU
(
T (t)aαN−m·n0

)
: t ∈ L

}
and so, by Lemma 5.1, we obtain that

τ(H) = τ
(
{T (t)aαN−m·n0 : t ∈ L}

)
. (8.40)

Next observe that

τ
(
{T (t)aαN−m·n0 : t ∈ L}

)
= τ

(
T (L)

)
. (8.41)

On the other hand, by Lemma 8.22, we have

τ
(
T (L)

)
= τ(G). (8.42)

By (8.40)–(8.42), we see that τ(H) = τ(G). Finally, notice that

µ
( ⋂
u∈H

Du

)
= µ

( ⋂
t∈L

D′t

) (8.39)

> ζ(p, δ)

and the proof of Lemma 8.23 is completed. �

The last ingredient of the proof of Theorem 8.21 is the following estimate for

the “density Hales–Jewett numbers” which is of independent interest.

Lemma 8.24. For every k ∈ N with k > 2 and every 0 < δ 6 1 we have

DHJ(k, δ) 6 DHJ(k + 1, δ). (8.43)

Proof. Let k ∈ N with k > 2 and 0 < δ 6 1, and let A be an alphabet with

|A| = k + 1. We select an element α ∈ A and we set B = A \ {α}. For every b ∈ B
we define πb : A→ B by the rule πb(α) = b and πb(β) = β if β ∈ B. More generally,

for every positive integer n and every w = (w0, . . . , wn−1) ∈ Bn we define a map

πw : An → Bn by setting

πw
(
(a0, . . . , an−1)

)
=
(
πw0

(a0), . . . , πwn−1
(an−1)

)
. (8.44)

Notice that πw is a surjection, and so it induces a probability measure µw on Bn

defined by

µw(X) = densAn
(
π−1
w (X)

)
(8.45)

for every X ⊆ Bn. We have the following claim.

Claim 8.25. The following hold.

(a) For every w ∈ Bn and every combinatorial line L of An the set πw(L � B)

is a combinatorial line of Bn where L � B is as in (1.21).

(b) For every X ⊆ Bn we have densBn(X) = Ew∈Bnµw(X).
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Proof of Claim 8.25. Part (a) is an immediate consequence of the relevant

definitions. For part (b) it is enough to show that Ew∈Bnµw({y}) = k−n for every

y = (y0, . . . , yn−1) ∈ Bn. To this end, fix y = (y0, . . . , yn−1) ∈ Bn and for every

w = (w0, . . . , wn−1) ∈ Bn let ∆(w, y) =
{
i ∈ {0, . . . , n− 1} : wi = yi

}
. Note that

µw({y}) =
2|∆(w,y)|

(k + 1)n
. (8.46)

Also observe that for every F ⊆ {0, . . . , n− 1} we have

|{w ∈ Bn : ∆(w, y) = F}| = (k − 1)n−|F |. (8.47)

Therefore,

Ew∈Bnµw({y}) (8.46)
= k−n(k + 1)−n

∑
w∈Bn

2|∆(w,y)|

(8.47)
= k−n(k + 1)−n

n∑
i=0

(
n

i

)
(k − 1)n−i2i = k−n

and the proof of Claim 8.25 is completed. �

Now let n > DHJ(k + 1, δ) and fix a subset D of Bn with densBn(D) > δ.

By Claim 8.25, there exists w ∈ Bn such that µw(D) > densBn(D). This implies

that densAn
(
π−1
w (D)

)
> δ and so, by the choice of n, the set π−1

w (D) contains a

combinatorial line L of An. Invoking Claim 8.25 once again, we conclude that the

set πw(L � B) is a combinatorial line of Bn which is contained in D. This shows that

the estimate in (8.43) is satisfied and the proof of Lemma 8.24 is completed. �

We are now ready to give the proof of Theorem 8.21.

Proof of Theorem 8.21. Fix a pair k,m of positive integers with k > 2 and

0 < δ 6 1, and set d = m ·DHJ(km, δ/2). We will show that

CorSp(k,m, δ) 6 RamSp(k, d, 2) (8.48)

where RamSp(k, d, 2) is as in Theorem 5.5.

Let n > RamSp(k, d, 2) and let A be an alphabet with |A| = k. Also let W

be an n-dimensional combinatorial space of A<N and {Dw : w ∈ W} a family of

measurable events in a probability space (Ω,Σ, µ) satisfying µ(Dw) > δ for every

w ∈W . We define a coloring c : P(W )→ [2] by setting c(F ) = 1 if F is nonempty

and µ
(⋂

w∈F Dw

)
> ζ(|F |, δ). By the choice of n and Theorem 5.5, there exists

a d-dimensional combinatorial subspace U of W such that every pair of nonempty

subsets of U with the same type is monochromatic. We select V ∈ Subspm(U)

and we claim that V is as desired. Indeed, let F be a nonempty subset of V and

observe that, by the definition of the coloring c, it is enough to show that c(F ) = 1.

Set p = |F | and let τ(F ) be the type of F . Clearly, we may assume that p > 2.

Also notice that |τ(F )| 6 m and p 6 km. We set G = I−1
U (F ) where IU is the

canonical isomorphism associated with U . By Lemma 5.1, we see that G ⊆ Ad and

τ(G) = τ(F ). Therefore,

dim(U) = d = m ·DHJ(km, δ/2) > |τ(G)| ·DHJ(p, δ/2)



164 8. THE DENSITY HALES–JEWETT THEOREM

where the last inequality follows from Lemma 8.24. By Lemma 8.23, there exists

H ⊆ U with τ(H) = τ(G) and such that µ
(⋂

u∈H Du

)
> ζ(p, δ). It follows, in

particular, that c(H) = 1 and τ(H) = τ(F ). Since every pair of nonempty subsets

of U with the same type is monochromatic, we conclude that c(F ) = 1 and the

proof of Theorem 8.21 is completed. �

We close this section with the following extension1 of Corollary 8.6.

Corollary 8.26. Let 0 < δ 6 1, A a finite alphabet with |A| > 2, d a positive

integer and G a subset of Ad with |G| > 2. Let τ(G) be the type of G and set

M = d ·DHJ(|G|, δ/4). If W is a combinatorial space of A<N with

dim(W ) > 2δ−1|A|MM, (8.49)

then every D ⊆W with densW (D) > δ contains a set F with τ(F ) = τ(G).

Proof. We may assume that W is of the form An for some n > d2δ−1|A|MMe.
By Lemma 8.5, there exist an integer l with M 6 l < N and an M -dimensional

combinatorial subspace U of Al such that for every u ∈ U we have dens(Du) > δ/2
where Du = {y ∈ An−l : uay ∈ D} is the section of D at u. Since |τ(G)| 6 d, by

the choice of M and Lemma 8.23, there exists H ⊆ U with τ(H) = τ(G) and such

that µ
(⋂

u∈H Du

)
> ζ(|H|, δ/2). In particular, the set

⋂
u∈H Du is nonempty. We

select y ∈
⋂
u∈H Du and we set F = {way : w ∈ H}. Clearly, F is as desired. The

proof of Corollary 8.26 is completed. �

8.5. Notes and remarks

The density Hales–Jewett theorem was, undoubtedly, the culmination of the

ergodic-theoretic methods gradually developed by Furstenberg and Katznelson in

[F, FK1, FK2]. The original proof was also based on several results from coloring

Ramsey theory, including the Carlson–Simpson theorem and Carlson’s theorem. A

different ergodic proof was given in [A].

The first combinatorial proof of the density Hales–Jewett theorem was discov-

ered by Polymath [P]. This proof also yields the best known upper bounds for the

numbers DHJ(k, δ). Another combinatorial proof was outlined by Tao in [Tao4].

Tao’s approach was motivated by the graph-theoretic proofs of Szemerédi’s theorem

and was based on a variant of Corollary 6.13. The proof we presented is due to

Dodos, Kanellopoulos and Tyros [DKT2]. It was found in the course of obtaining

a density version of the Carlson–Simpson theorem—a result that we will discuss in

detail in Chapter 9—and gives essentially the same upper bounds for the numbers

DHJ(k, δ) as in Polymath’s proof. However, these upper bounds are admittedly

weak and have an Ackermann-type dependence with respect to k. It is one of the

central open problems of Ramsey theory to decide whether the numbers DHJ(k, δ)

are upper bounded by a primitive recursive function.

1The main point in Corollary 8.26 is, of course, the estimate in (8.49). Notice, in particular,

that if the cardinality of the set G is fixed, then the lower bound in (8.49) is controlled by a

primitive recursive function of the parameters δ, |A| and d.



CHAPTER 9

The density Carlson–Simpson theorem

The following result is the density version of the Carlson–Simpson theorem and

is due to Dodos, Kanellopoulos and Tyros [DKT3].

Theorem 9.1. Let A be a finite alphabet with |A| > 2. Then for every set D

of words over A satisfying

lim sup
n→∞

|D ∩An|
|An|

> 0

there exist a word w over A and a sequence (un) of left variable words over A such

that the set

{w} ∪
{
wau0(a0)a. . .a un(an) : n ∈ N and a0, . . . , an ∈ A

}
is contained in D.

Although Theorem 9.1 is genuinely infinite-dimensional, it will be reduced to

an appropriate finite version. This finite version is the content of the following

theorem whose proof will occupy the bulk of this chapter. General facts about

Carlson–Simpson spaces can be found in Section 1.5.

Theorem 9.2. For every pair k,m of positive integers with k > 2 and every

0 < δ 6 1 there exists a positive integer N with the following property. If A is an

alphabet with |A| = k, L is a finite subset of N of cardinality at least N and D is a

set of words over A satisfying |D ∩ An| > δ|An| for every n ∈ L, then D contains

an m-dimensional Carlson–Simpson space of A<N. The least positive integer with

this property will be denoted by DCS(k,m, δ).

The main point in Theorem 9.2 is that the result is independent of the position

of the finite set L. Note, in particular, that this structural property does not follow

from Theorem 9.1 with standard arguments based on compactness.

We now briefly describe the contents of this chapter. The first six sections

are devoted to the proof of Theorem 9.2. Sections 9.1 and 9.2 contain, mostly,

supporting material and the main part of the argument is given in Sections 9.3,

9.4 and 9.5. The proof of Theorem 9.2 is completed in Section 9.6. It proceeds

by induction on the cardinality of the finite alphabet A and is based on a density

increment strategy. The argument is effective and yields explicit, albeit weak, upper

bounds for the numbers DCS(k,m, δ). Specific features of the proof are discussed

in Subsections 9.4.1 and 9.5.1. Finally, in Section 9.7 we derive Theorem 9.1 from

Theorem 9.2 while in Section 9.8 we present some applications.

165
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9.1. The convolution operation

9.1.1. Definitions. We are about to introduce a method of “gluing” a pair

of words over a nonempty finite alphabet A. This method can be thought of as

a natural extension of the familiar operation of concatenation, and is particularly

easy to grasp for pairs of words of given length. Specifically, let n,m be two positive

integers and fix a subset L of {0, . . . , n+m− 1} of cardinality n. Given an element

x of An and an element y of Am, the outcome of the “gluing” method for the pair

x, y is the unique element z of An+m which is “equal” to x on L and to y on the

rest of the coordinates. This simple process can be extended to arbitrary pairs of

words over A.

Definition 9.3. Let A be a finite alphabet with |A| > 2 and let L be a nonempty

finite subset of N. We set

nL = max(L)− |L|+ 1 and ΩL = AnL . (9.1)

Also let l0 < · · · < l|L|−1 be the increasing enumeration of the set L and for every

i ∈ {0, . . . , |L| − 1} set

Li = {l ∈ L : l < li}, Ki = {n ∈ N : n < li and n /∈ Li} and κi = |Ki|. (9.2)

We define the convolution operation cL : A<|L| × ΩL → A<N associated with L as

follows. For every i ∈ {0, . . . , |L| − 1}, every t ∈ Ai and every ω ∈ ΩL we set

cL(t, ω) =
(
ILi(t), IKi(ω � κi)

)
∈ Ali (9.3)

where ILi and IKi are the canonical isomorphisms associated with the sets Li and

Ki respectively (see Definition 1.1).

More generally, let V be a finite-dimensional Carlson–Simpson space of A<N

such that L ⊆ {0, . . . ,dim(V )}. The convolution operation cL,V : A<|L| ×ΩL → V

associated with (L, V ) is defined by the rule

cL,V (t, ω) = IV
(
cL(t, ω)

)
(9.4)

where IV is the canonical isomorphism associated with V (see Definition 1.10).

For a specific example, consider the alphabet A = {a, b, c, d, e} and let L be the

set {1, 3, 7, 9}. Notice that nL = 6 and ΩL = A6. In particular, the convolution

operation cL associated with L is defined for pairs in A<4 ×A6. Then for the pair

t = (a, b) and ω = (c, e, d, b, d, a) we have

cL(t, ω) = (c,a, e,b, d, b, d) (9.5)

where in (9.5) we indicated with boldface letters the contribution of t.

We also note the asymmetric role of A<|L| and ΩL in Definition 9.3. Indeed,

while the set A<|L| is the structured part of the domain of cL, the set ΩL will be

regarded merely as a “sample” space. Specifically, we will view ΩL as a discrete

probability space equipped with the uniform probability measure. Because of this

asymmetricity, we may consider the convolution operation as a noncommutative

analogue of concatenation.
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9.1.2. Basic properties. In this subsection we will present some basic prop-

erties of convolution operations. We start with the following fact.

Fact 9.4. Let A be a finite alphabet with |A| > 2, V a finite-dimensional

Carlson–Simpson space of A<N and L = {l0 < · · · < l|L|−1} a nonempty finite

subset of {0, . . . ,dim(V )}. For every t ∈ A<|L| we set

Ct = {cL,V (t, ω) : ω ∈ ΩL}. (9.6)

Then for every t, t′ ∈ A<|L| with t 6= t′ we have Ct ∩ Ct′ = ∅. Moreover, for every

i ∈ {0, . . . , |L| − 1} the family {Ct : t ∈ Ai} forms an equipartition of V (li).

Proof. Let i ∈ {0, . . . , |L| − 1} and t ∈ Ai. By (9.6) and the definition of the

convolution operation, we see that

Ct
(9.4)
= IV

(
{cL(t, ω) : ω ∈ ΩL}

) (9.3)
= IV

(
{z ∈ Ali : z � Li = ILi(t)}

)
(9.7)

and the proof of Fact 9.4 is completed. �

The next fact is the “dual” version of Fact 9.4.

Fact 9.5. Let A, V and L be as in Fact 9.4. For every t ∈ A<|L| and every

s ∈ A<N we set

Ωst = {ω ∈ ΩL : cL,V (t, ω) = s}. (9.8)

Then for every t ∈ A<|L| and every s, s′ ∈ Ct with s 6= s′, where Ct is as in (9.6),

the sets Ωst and Ωs
′

t are nonempty disjoint subsets of ΩL. Moreover, the family

{Ωst : s ∈ Ct} forms an equipartition of ΩL.

Proof. First observe that the set Ωst is a nonempty subset of ΩL for every

t ∈ A<|L| and every s ∈ Ct. Also notice that if s′ ∈ Ct with s′ 6= s, then Ωst∩Ωs
′

t = ∅.
Next, fix t ∈ Ai for some i ∈ {0, . . . , |L| − 1}. By (9.6), it is clear that the

family {Ωst : s ∈ Ct} is a partition of ΩL, and so we only have to show that this

family is actually an equipartition. To this end, recall that l0 < · · · < l|L|−1 is the

increasing enumeration of the set L. Let s ∈ Ct and let z be the unique element of

Ali such that IV (z) = s. Then observe that

Ωst = {ω ∈ ΩL : IKi(ω � κi) = z � Ki} (9.9)

which implies that |Ωst | = |A|nL−κi . The proof of Fact 9.5 is completed. �

Now let A, V and L be as in Fact 9.4. Also let i ∈ {0, . . . , |L|−1} and t, t′ ∈ Ai.
For every s ∈ Ct we select ωs ∈ Ωst (where Ct and Ωts are as in (9.6) and (9.8)

respectively) and we define

rt,t′(s) = cL,V (t′, ωs). (9.10)

Notice, first, that rt,t′(s) is independent of the choice of ωs. Indeed, if z is the

unique element of Ali such that IV (z) = s, then we have

rt,t′(s)
(9.10)

= cL,V (t′, ωs)
(9.4)
= IV

(
cL(t′, ωs)

)
(9.3)
= IV

((
ILi(t

′), IKi(ωs � κi)
))

= IV

((
ILi(t

′), z � Ki

))
. (9.11)
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Next observe that, by (9.6) and (9.10), we have rt,t′(s) ∈ Ct′ . It follows, in partic-

ular, that the assignment Ct 3 s 7→ rt,t′(s) ∈ Ct′ is well-defined. We gather below

some properties of this map. They are all straightforward consequences of (9.6),

(9.8) and (9.11).

Fact 9.6. Let A, V and L be as in Fact 9.4. Also let i ∈ {0, . . . , |L| − 1} and

t, t′ ∈ Ai, and consider the map rt,t′ : Ct → Ct′ . Then the following hold.

(a) The map rt,t′ is a bijection.

(b) For every s ∈ Ct we have Ωst = Ω
rt,t′ (s)

t′ .

(c) Let a, b ∈ A with a 6= b and assume that t and t′ are (a, b)-equivalent

(see Subsection 2.1.1). Then for every s ∈ Ct the words s and rt,t′(s) are

(a, b)-equivalent.

We close this subsection with the following lemma.

Lemma 9.7. Let A, V and L be as in Fact 9.4. Also let D ⊆ A<N and set

D = c−1
L,V (D). Then the following hold.

(a) For every t ∈ A<|L| we have densCt(D) = dens{t}×ΩL(D) where Ct is as

in (9.6).

(b) For every i ∈ {0, . . . , |L| − 1} we have densV (li)(D) = densAi×ΩL(D).

Proof. Fix t ∈ A<|L| and for every s ∈ Ct let Ωst be as in (9.8). By the

definition of D and Ct, we see that

D ∩ ({t} × ΩL) = {(t, ω) : cL,V (t, ω) ∈ D ∩ Ct}

=
⋃

s∈D∩Ct

{(t, ω) : cL,V (t, ω) = s}

=
⋃

s∈D∩Ct

{t} × Ωst . (9.12)

Moreover, by Fact 9.5, for every s ∈ Ct we have |Ωst |/|ΩL| = 1/|Ct|. Therefore,

dens{t}×ΩL(D) =
|D ∩ ({t} × ΩL)|
|{t} × ΩL|

(9.12)
=

∑
s∈D∩Ct

|{t} × Ωst |
|{t} × ΩL|

=
∑

s∈D∩Ct

|Ωst |
|ΩL|

=
|D ∩ Ct|
|Ct|

= densCt(D). (9.13)

To see that the second part of the lemma is satisfied, let i ∈ {0, . . . , |L| − 1} be

arbitrary and observe that, by Fact 9.4, we have

densV (li)(D) = Et∈Ai densCt(D). (9.14)

Hence, by (9.14) and the first part of the lemma, we conclude that

densV (li)(D) = Et∈Ai dens{t}×ΩL(D) = densAi×ΩL(D).

The proof of Lemma 9.7 is completed. �
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9.1.3. Coherence properties. We continue the analysis of convolution op-

erations with the following lemma which asserts that all convolution operations

preserve Carlson–Simpson spaces.

Lemma 9.8. Let A be a finite alphabet with |A| > 2, V a finite-dimensional

Carlson–Simpson space of A<N and L a nonempty finite subset of {0, . . . ,dim(V )}
with |L| > 2. Also let U be a Carlson–Simpson subspace of A<|L| and ω ∈ ΩL.

Then, setting

Uω = {cL,V (u, ω) : u ∈ U}, (9.15)

we have that Uω is a Carlson–Simpson subspace of V of dimension dim(U). More-

over, for every i ∈ {0, . . . ,dim(U)} we have

Uω(i) = {cL,V (u, ω) : u ∈ U(i)}. (9.16)

Proof. We set X = L|L|−1 and Y = K|L|−1 where L|L|−1 and K|L|−1 are as in

(9.2). Notice, in particular, that X = L \ {max(L)}, Y = {0, . . . ,max(L)− 1} \X,

X∪Y = {0, . . . ,max(L)−1} and |Y | = nL. Let x0 < · · · < x|L|−2 be the increasing

enumeration of X and let W be the (|L| − 1)-dimensional combinatorial subspace

of Amax(L) with wildcard sets {x0}, . . . , {x|L|−2} and constant part IY (ω) ∈ AY .

(Here, IY is the canonical isomorphism associated with Y ; see Definition 1.1.) By

Lemma 1.13, there exists a unique Carlson–Simpson subspace Sω of A<max(L)+1

with dim(Sω) = |L| − 1 and whose last level Sω(|L| − 1) is W . Then observe that,

by Definition 9.3, we have cL(t, ω) = ISω (t) for every t ∈ A<|L| where ISω stands

for the canonical isomorphism associated with Sω. Thus, we obtain that

cL,V (t, ω) = IV
(
ISω (t)

)
(9.17)

for every t ∈ A<|L| which implies, of course, that Uω is as desired. The proof of

Lemma 9.8 is completed. �

The next result will enable us to transfer quantitative information from the

space A<N to the space on which the convolution operations are acting.

Lemma 9.9. Let A, V and L be as in Lemma 9.8 and U a Carlson–Simpson

subspace of A<|L|. Also let ω ∈ ΩL and define Uω as in (9.15). Finally, let D be a

subset of A<N and set D = c−1
L,V (D). Then for every i ∈ {0, . . . ,dim(U)} we have

densUω(i)(D) = densU(i)×{ω}(D). (9.18)

Proof. Let i ∈ {0, . . . ,dim(U)} be arbitrary. By Fact 9.4, we have that

cL,V (t, ω) 6= cL,V (t′, ω) for every t, t′ ∈ Uω(i) with t 6= t′. Hence, by (9.16),

|Uω(i)| = |U(i)| = |U(i)× {ω}|. (9.19)

Next observe that for every t ∈ A<|L| we have (t, ω) ∈ D ∩
(
U(i)×{ω}

)
if and only

if cL,V (t, ω) ∈ D ∩ Uω(i). Therefore,

|D ∩ Uω(i)| = |D ∩
(
U(i)× {ω}

)
|. (9.20)

Combining (9.19) and (9.20), we see that (9.18) is satisfied and the proof of Lemma

9.9 is completed. �
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We close this subsection with the following lemma.

Lemma 9.10. Let A, V and L be as in Lemma 9.8 and U a Carlson–Simpson

subspace of A<|L|. Also let D ⊆ A<N. Then for every i ∈ {0, . . . ,dim(U)} we have

denscL,V (U(i)×ΩL)(D) = Eω∈ΩLdensUω(i)(D) (9.21)

where Uω is as in (9.15). In particular, for every i ∈ {0, . . . , |L| − 1} we have

densV (li)(D) = Eω∈ΩLdensRω(i)(D) (9.22)

where Rω = {cL,V (t, ω) : t ∈ A<|L|} for every ω ∈ ΩL.

Proof. Fix i ∈ {0, . . . ,dim(U)}. There exists a unique l ∈ {0, . . . , |L| − 1}
such that U(i) is contained in Al. By Fact 9.4, the family {Ct : t ∈ U(i)} forms an

equipartition of cL,V (U(i)× ΩL). Therefore, setting D = c−1
L,V (D), by Lemma 9.7,

we obtain that

denscL,V (U(i)×ΩL)(D) = Et∈U(i) densCt(D)

= Et∈U(i) dens{t}×ΩL(D)

= densU(i)×ΩL(D)

= Eω∈ΩLdensU(i)×{ω}(D)

(9.18)
= Eω∈ΩLdensUω(i)(D). (9.23)

Finally, notice that V (li) = cL,V (Ai × ΩL) for every i ∈ {0, . . . , |L| − 1}. Hence,

(9.22) follows from (9.21) and the proof of Lemma 9.10 is completed. �

9.1.4. Convolution operations and regularity. The last result of this

section relates the concept of (ε, L)-regularity introduced in Definition 6.23 with

convolution operations. This result is, to a large extent, the main motivation for

the definition of convolution operations and will be used throughout this chapter.

Lemma 9.11. Let A be a finite alphabet with |A| > 2 and F a family of subsets

of A<N. Also let 0 < ε 6 1 and L = {l0 < · · · < l|L|−1} a nonempty finite subset of

N such that the family F is (ε, L)-regular. Finally, let cL : A<|L| × ΩL → A<N be

the convolution operation associated with L and set D = c−1
L (D) for every D ∈ F .

Then for every i ∈ {0, . . . , |L| − 1}, every D ∈ F and every t ∈ Ai we have

|densΩL(Dt)− densAli (D)| 6 ε (9.24)

where Dt = {ω ∈ ΩL : (t, ω) ∈ D} is the section of D at t.

Proof. We fix i ∈ {0, . . . , |L| − 1} and D ∈ F . Let Li and Ki be as in (9.2).

The family F is (ε, L)-regular, and so for every y ∈ ALi we have

|dens
(
{w ∈ AKi : (y, w) ∈ D ∩Ali}

)
− densAli (D)| 6 ε. (9.25)

Now let t ∈ Ai be arbitrary. By the definition of cL, we see that

Ct
(9.6)
= {cL(t, ω) : ω ∈ ΩL} = {z ∈ Ali : z � Li = ILi(t)}
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where ILi stands for the canonical isomorphism associated with the set Li. Thus,

by identifying Ct with {ILi(t)} ×AKi ,

densCt(D) = dens
(
{w ∈ AKi : (ILi(t), w) ∈ D ∩Ali}

)
. (9.26)

On the other hand, by Lemma 9.7, we have

densCt(D) = dens{t}×ΩL(D) = densΩL(Dt). (9.27)

Combining (9.26) and (9.27), we obtain that

dens
(
{w ∈ AKi :

(
ILi(t), w

)
∈ D ∩Ali}

)
= densΩL(Dt). (9.28)

Therefore, by (9.25) applied for “y = ILi(t)” and (9.28), we conclude that the

estimate in (9.24) is satisfied and the proof of Lemma 9.11 is completed. �

9.2. Iterated convolutions

In this section we study iterations of convolution operations. We point out

that this material will be used only in Section 9.5. We start with the following

definition.

Definition 9.12. Let A be a finite alphabet with |A| > 2, let L = (Ln)dn=0 be a

nonempty finite sequence of nonempty finite subsets of N and let V = (Vn)dn=0

be a finite sequence of finite-dimensional Carlson–Simpson spaces of A<N with

the same length as L. We say that the pair (L,V) is A-compatible, or simply

compatible if A is understood, provided that for every n ∈ {0, . . . , d} we have

Ln ⊆ {0, . . . ,dim(Vn)} and, if n < d, then Vn+1 ⊆ A<|Ln|.

Observe that if (L,V) is a compatible pair and L′,V′ are initial subsequences of

L,V with a common length, then the pair (L′,V′) is compatible. Also notice that

for every compatible pair (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and every n ∈ {0, . . . , d} we

can define the convolution operation cLn,Vn : A<|Ln| × ΩLn → Vn associated with

(Ln, Vn). The main point in Definition 9.12 is that for compatible pairs we can

iterate these operations. This is the content of the following definition.

Definition 9.13. Let A be a finite alphabet with |A| > 2. Also let d ∈ N and

(L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
an A-compatible pair. We set

ΩL =

d∏
n=0

ΩLn . (9.29)

By recursion on d, we define the iterated convolution operation

cL,V : A<|Ld| ×ΩL → V0 (9.30)

associated with (L,V) as follows.

If d = 0, then this is the cL0,V0
convolution operation defined in (9.4). Next let

d > 1, set L′ = (Ln)d−1
n=0 and V′ = (Vn)d−1

n=0 and assume that the operation cL′,V′

has been defined. Then we set

cL,V(t, ω0, . . . , ωd) = cL′,V′
(
cLd,Vd(t, ωd), ω0, . . . , ωd−1

)
(9.31)
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for every t ∈ A<|Ld| and every (ω0, . . . , ωd) ∈ ΩL. Moreover, we define the quotient

map

qL,V : A<|Ld| ×ΩL → A<|Ld−1| ×ΩL′ (9.32)

associated with (L,V) by the rule

qL,V(t,ω, ω) =
(
cLd,Vd(t, ω),ω

)
(9.33)

for every t ∈ A<|Ld| and every (ω, ω) ∈ ΩL′ × ΩLd .

In the rest of this section we will present several properties of iterated convo-

lutions. Most of these properties are based on the results in Section 9.1. We begin

with the following elementary fact.

Fact 9.14. Let A be a finite alphabet with |A| > 2. Also let d be a positive

integer and let (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
be an A-compatible pair. Then, setting

(L′,V′) =
(
(Ln)d−1

n=0, (Vn)d−1
n=0

)
, we have cL,V = cL′,V′ ◦ qL,V.

The following lemma is the multidimensional analogue of Lemma 9.8.

Lemma 9.15. Let A be a finite alphabet with |A| > 2. Consider an A-compatible

pair (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and let U be a Carlson–Simpson subspace of

A<|Ld| and ω ∈ ΩL. Then the set

Uω = {cL,V(u,ω) : u ∈ U} (9.34)

is a Carlson–Simpson subspace of V0 with the same dimension as U . Moreover, for

every i ∈ {0, . . . ,dim(U)} we have

Uω(i) = {cL,V(u,ω) : u ∈ U(i)}. (9.35)

Proof. By induction on d. The case “d = 0” is the content of Lemma 9.8. Let

d > 1 and assume that the result has been proved up to d−1. Fix a compatible pair

(L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and let U and ω be as in the statement of the lemma.

Write ω = (ω0, . . . , ωd) and set ω′ = (ω0, . . . , ωd−1). Also let L′ = (Ln)d−1
n=0 and

V′ = (Vn)d−1
n=0 and notice that the pair (L′,V′) is compatible. Therefore, setting

Uωd = {cLd,Vd(u, ωd) : u ∈ U}, we see that

Uω = {cL,V(u,ω) : u ∈ U} (9.31)
=

{
cL′,V′

(
cLd,Vd(u, ωd),ω

′) : u ∈ U
}

= {cL′,V′(s,ω
′) : s ∈ Uωd}. (9.36)

By Lemma 9.8, we have that Uωd is a Carlson–Simpson subspace of Vd with

dim(Uωd) = dim(U). This implies, in particular, that Uωd ⊆ Vd ⊆ A<|Ld−1|.

Therefore, by (9.36) and our inductive assumptions applied for the compatible pair

(L′,V′), the Carlson–Simpson space Uωd and the element ω′ ∈ ΩL′ , we conclude

that Uω is a Carlson–Simpson subspace of V0 of dimension dim(U). The equality

in (9.35) is verified similarly. The proof of Lemma 9.15 is completed. �

The next result is an extension of Lemma 9.9.
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Lemma 9.16. Let A be a finite alphabet with |A| > 2. Consider an A-compatible

pair (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and let U be a Carlson–Simpson subspace of

A<|Ld| and ω ∈ ΩL. Also let D be a subset of A<N and set D = c−1
L,V(D). Then

for every i ∈ {0, . . . ,dim(W )} we have

densUω(i)(D) = densU(i)×{ω}(D). (9.37)

Proof. Let h : A<|Ld| → V0 be defined by the rule h(t) = cL,V(t,ω). By

induction on d, we see that the map h is an injection. Also let i ∈ {0, . . . ,dim(V )}
and notice that, by (9.35), we have Uω(i) = h

(
U(i)

)
. Therefore,

|Uω(i)| = |h
(
U(i)

)
| = |U(i)| = |U(i)× {ω}|. (9.38)

Next observe that

h−1
(
Uω(i) ∩D

)
× {ω} =

(
U(i)× {ω}

)
∩ c−1

L,V(D)

and so

|Uω(i) ∩D| = |h−1
(
Uω(i) ∩D

)
× {ω}| = |

(
U(i)× {ω}

)
∩D |. (9.39)

By (9.38) and (9.39), we conclude that

densUω(i)(D) =
|Uω(i) ∩D|
|Uω(i)|

=
|
(
U(i)× {ω}

)
∩D |

|U(i)× {ω}|
= densU(i)×{ω}(D)

and the proof of Lemma 9.16 is completed. �

We proceed with the following lemma.

Lemma 9.17. Let A be a finite alphabet with |A| > 2. Consider an A-compatible

pair (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
and for every t ∈ A<|Ld| set

Ct = {cLd,Vd(t, ω) : ω ∈ ΩLd}. (9.40)

Assume that d > 1 and set (L′,V′)=
(
(Ln)d−1

n=0, (Vn)d−1
n=0

)
. Then the following hold.

(a) For every t ∈ A<|Ld| we have q−1
L,V(Ct ×ΩL′) = {t} ×ΩL.

(b) For every t ∈ A<|Ld| and every D ⊆ A<|Ld−1| ×ΩL′ we have

densCt×ΩL′ (D) = dens{t}×ΩL

(
q−1

L,V(D)
)
. (9.41)

Proof. Let t ∈ A<|Ld| be arbitrary. By the definition of the quotient map

qL,V in (9.33), we have

q−1
L,V(Ct ×ΩL′) = c−1

Ld,Vd
(Ct)×ΩL′ .

On the other hand, by Fact 9.4, we see that c−1
Ld,Vd

(Ct) = {t} × ΩLd . Therefore,

q−1
L,V(Ct ×ΩL′) =

(
{t} × ΩLd

)
×ΩL′ = {t} ×ΩL

and the proof of the first part of the lemma is completed.

We proceed to the proof of part (b). We fix a subset D of A<|Ld−1| ×ΩL′ and

we set D = q−1
L,V(D). For every ω′ ∈ ΩL′ let Dω′ = {t ∈ A<|Ld| : (t,ω′) ∈ D} and

Dω′ = {(t, ω) ∈ A<|Ld| × ΩLd : (t,ω′, ω) ∈ D} be the sections at ω′ of D and D

respectively. Observe that Dω′ = c−1
Ld,Vd

(Dω′). Hence, by Lemma 9.7, we have

dens{t}×ΩLd
(Dω′) = densCt(Dω′). (9.42)
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Taking the average over all ω′ ∈ ΩL′ we conclude that

dens{t}×ΩL

(
q−1

L,V(D)
)

= dens{t}×ΩL
(D) = Eω′∈ΩL′dens{t}×ΩLd

(Dω′)

(9.42)
= Eω′∈ΩL′densCt(Dω′) = densCt×ΩL′ (D).

The proof of Lemma 9.17 is completed. �

We close this section with the following consequence of Lemma 9.17.

Corollary 9.18. Let A be a finite alphabet with |A| > 2 and let d be a positive

integer. Also let (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
be an A-compatible pair and set

(L′,V′) =
(
(Ln)d−1

n=0, (Vn)d−1
n=0

)
. Finally, let D ⊆ A<N and set D = c−1

L,V(D) and

D = c−1
L′,V′(D). Then for every t ∈ A<|Ld| we have

densΩL
(Dt) = Es∈CtdensΩL′ (Ds) (9.43)

where Dt is the section of D at t, Ct ⊆ Vd ⊆ A<|Ld−1| is as in (9.40) and Ds is the

section of D at s.

Proof. By Fact 9.14, we see that

D = c−1
L,V(D) = q−1

L,V

(
c−1
L′,V′(D)

)
= q−1

L,V(D). (9.44)

Now let t ∈ A<|Ld| be arbitrary and observe that

densΩL
(Dt) = dens{t}×ΩL

(D)
(9.44)

= dens{t}×ΩL

(
q−1

L,V(D)
)

(9.41)
= densCt×ΩL′ (D) = Es∈CtdensΩL′ (Ds).

The proof of Corollary 9.18 is completed. �

9.3. Some basic estimates

In this section we will present three results which are needed for the proof of

Theorem 9.2 and are independent of the rest of the argument. The first of these

results is a measure-theoretic consequence of Theorem 9.2. It is the analogue of

Proposition 8.7 in the context of the density Carlson–Simpson theorem and will be

presented in Subsection 9.3.1 together with some related material of probabilistic

nature. The next two results are part of a general inductive scheme that we will

discuss in Subsection 9.4.1. Specifically, in Subsection 9.3.2 we prove the first

instance of Theorem 9.2 which can be seen as a variant of Sperner’s theorem.

Finally, in Subsection 9.3.3 we estimate the numbers DCS(k,m + 1, δ) assuming

that the numbers DCS(k,m, β) have been estimated for every 0 < β 6 1.

9.3.1. Probabilistic tools. We start by introducing the following classes of

probability measures.

Definition 9.19. Let A be a finite alphabet with |A| > 2, V a finite-dimensional

Carlson–Simpson space of A<N and L a nonempty finite subset of N.

(a) The Furstenberg–Weiss measure dVFW associated with V is the probability

measure on A<N defined by the rule

dVFW(D) = En∈{0,...,dim(V )} densV (n)(D). (9.45)
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(b) The generalized Furstenberg–Weiss measure dL associated with L is the

probability measure on A<N defined by

dL(D) = En∈L densAn(D). (9.46)

We point out that the class of generalized Furstenberg–Weiss measures is closed

under averages. Specifically, if L is a nonempty finite subset of N, then for every

n ∈ {1, . . . , |L|} and every set D of words over A we have

dL(D) = EM∈(Ln) dM (D). (9.47)

However, the Furstenberg–Weiss measures associated with Carlson–Simpson spaces

do not have this important property. Also observe that if ` is an integer with ` > 2

and L = {0, . . . , ` − 1} is the initial interval of N of size `, then the probabil-

ity measure dL coincides with the Furstenberg–Weiss measure associated with the

Carlson–Simpson space A<`. More generally, we have the following lemma which

relates these two classes of measures.

Lemma 9.20. Let A be a finite alphabet with |A| > 2 and L a finite subset of N
with |L| > 2. Then for every subset D of A<N there exists a Carlson–Simpson space

V of A<N of dimension |L| − 1 such that dVFW(D) > dL(D) and with L(V ) = L

where, as in (1.33), L(V ) is the level set V .

Proof. We fix a subset D of A<N. Let l0 < · · · < l|L|−1 be the increasing enu-

meration of the set L and let cL : A<|L| ×ΩL → A<N be the convolution operation

associated with L. Moreover, for every ω ∈ ΩL set

Rω = {cL(t, ω) : t ∈ A<|L|}

and recall that, by Lemma 9.8, the set Rω is a Carlson–Simpson space of A<N of

dimension |L| − 1. Also notice that L(Rω) = L. On the other hand, by Lemma

9.10, for every i ∈ {0, . . . , |L| − 1} we have

densAli (D) = Eω∈ΩLdensRω(i)(D)

and so, by averaging over all i ∈ {0, . . . , |L| − 1}, we obtain that

dL(D) = Eω∈ΩL dRωFW(D).

Therefore, there exists ω0 ∈ ΩL with d
Rω0

FW (D) > dL(D) and the proof of Lemma

9.20 is completed. �

Now let k and m be positive integers with k > 2 and assume that for every

0 < β 6 1 the number DCS(k,m, β) has been estimated. This assumption permits

us to introduce some numerical invariants. Specifically, for every 0 < η 6 1 we set

Λ(k,m, η) = dη−1DCS(k,m, η)e (9.48)

and

Θ(k,m, η) =
2η

|SubCSm
(
[k]<Λ(k,m,η)

)
|
. (9.49)

The following proposition is the main result of this subsection.
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Proposition 9.21. Let k,m be positive integers with k > 2 and assume that

for every 0 < β 6 1 the number DCS(k,m, β) has been estimated.

Let A be an alphabet with |A| = k and 0 < δ, ε 6 1. Also let L be a finite subset

of N with |L| > Λ(k,m, δε/4) where Λ(k,m, δε/4) is as in (9.48). Finally, let E be

a subset of A<N such that dL(E) > ε. If {Dt : t ∈ E} is a family of measurable

events in a probability space (Ω,Σ, µ) satisfying µ(Dt) > δ for every t ∈ E, then

there exists an m-dimensional Carlson–Simpson space S of A<N which is contained

in E and such that

µ
( ⋂
t∈S

Dt

)
> Θ(k,m, δε/4)

where Θ(k,m, δε/4) is as in (9.49).

For the proof of Proposition 9.21 we need the following simple fact.

Fact 9.22. Let k,m be positive integers with k > 2, 0 < η 6 1/2 and as-

sume that the number DCS(k,m, η) has been estimated. Let A be an alphabet

with |A| = k and V a finite-dimensional Carlson–Simpson space of A<N with

dim(V ) > Λ(k,m, η) − 1. Then every D ⊆ A<N with dVFW(D) > 2η contains

an m-dimensional Carlson–Simpson subspace of V .

Proof. Let L = {n ∈ {0, . . . ,dim(V )} : densV (n)(D) > η}. By identifying

V with A<dim(V )+1 via the canonical isomorphism IV (see Definition 1.10), it is

enough to show that |L| > DCS(k,m, η). Indeed, by Markov’s inequality and the

fact that dVFW(D) > 2η, we obtain that

|L| > η(dim(V ) + 1) > ηΛ(k,m, η)
(9.48)

> DCS(k,m, η)

and the proof of Fact 9.22 is completed. �

We proceed to the proof of Proposition 9.21.

Proof of Proposition 9.21. We set Λ = Λ(k,m, δε/4). By (9.47) and by

passing to an appropriate subset of L if necessary, we may assume that |L| = Λ. By

Lemma 9.20, there exists a Carlson–Simpson space V of A<N with dim(V ) = Λ−1,

L(V ) = L and such that dVFW(E) > dL(E) > ε. For every ω ∈ Ω let

Eω = {t ∈ E ∩ V : ω ∈ Dt}

and set

Y = {ω ∈ Ω : dVFW(Eω) > δε/2}.
Since dVFW(E) > ε and µ(Dt) > δ for every t ∈ E, we see that µ(Y ) > δε/2. On

the other hand, by the choice of Λ and Fact 9.22, for every ω ∈ Y there exists an

m-dimensional Carlson–Simpson subspace Sω of V with Sω ⊆ Eω. Noticing that

|SubCSm(V )| = |SubCSm
(
[k]<Λ

)
|, we conclude that there exist S ∈ SubCSm(V )

and G ∈ Σ with Sω = S for every ω ∈ G and such that

µ(G) >
µ(Y )

|SubCSm(V )|
>

δε/2

|SubCSm
(
[k]<Λ

)
|

(9.49)
= Θ(k,m, δε/4).

The proof of Proposition 9.21 is completed. �
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We isolate, for future use, the following consequence of Proposition 9.21.

Corollary 9.23. Let k,m be positive integers with k > 2 and assume that for

every 0 < β 6 1 the number DCS(k,m, β) has been estimated.

Let 0 < δ 6 1 and d ∈ N with d > Λ(k,m, δ/4) − 1 where Λ(k,m, δ/4) is as

in (9.48). Also let A be an alphabet with |A| = k + 1 and V a Carlson–Simpson

space of A<N with dim(V ) > CS(k + 1, d,m, 2). If B is a subset of A with |B| = k

and {Dt : t ∈ V } is a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(Dt) > δ for every t ∈ V , then there exists W ∈ SubCSd(V ) such that

for every U ∈ SubCSm(W ) we have

µ
( ⋂
t∈U�B

Dt

)
> Θ(k,m, δ/4)

where Θ(k,m, δ/4) is as in (9.49) and U � B is as in (1.40).

Proof. We set

U =
{
U ∈ SubCSm(V ) : µ

( ⋂
t∈U�B

Dt

)
> Θ(k,m, δ/4)

}
.

By Theorem 4.21, there exists W ∈ SubCSd(V ) such that either SubCSm(W ) ⊆ U
or SubCSm(W )∩U = ∅. Therefore, it is enough to show that SubCSm(W )∩U 6= ∅.
To this end we argue as follows. Let IW : A<d+1 →W be the canonical isomorphism

associated with W and for every t ∈ B<d+1 set D′t = DIW (t). By Proposition 9.21,

there exists S ∈ SubCSm(B<d+1) such that

µ
( ⋂
t∈S

D′t

)
> Θ(k,m, δ/4). (9.50)

If U is the unique element of SubCSm(W ) such that U � B = IW (S), then, by

(9.50), we see that U ∈ U . The proof of Corollary 9.23 is completed. �

We will also need the following variant of Corollary 9.23.

Corollary 9.24. Let k,m be positive integers with k > 2 and assume that for

every 0 < β 6 1 the number DCS(k,m, β) has been estimated.

Let 0 < δ 6 1 and d ∈ N with d > Λ(k,m, δ/4) − 1 where Λ(k,m, δ/4) is as

in (9.48). Also let A be an alphabet with |A| = k + 1 and V a Carlson–Simpson

space of A<N with dim(V ) > CS(k + 1, d,m, 2). Finally, let {Dt : t ∈ V } be a

family of measurable events in a probability space (Ω,Σ, µ) such that: (i) µ(Dt) > δ
for every t ∈ V , and (ii) there exist a, b ∈ A with a 6= b such that Dt = Dt′ for

every t, t′ ∈ V which are (a, b)-equivalent (see Subsection 2.1.1). Then there exists

W ∈ SubCSd(V ) such that for every U ∈ SubCSm(W ) we have

µ
( ⋂
t∈U

Dt

)
> Θ(k,m, δ/4)

where Θ(k,m, δ/4) is as in (9.49).
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Proof. Set B = A\{a}. Observe that our assumption that Dt = Dt′ for every

t, t′ which are (a, b)-equivalent, implies that for every Carlson–Simpson subspace R

of V we have ⋂
t∈R

Dt =
⋂

t∈R�B

Dt.

Using this observation, the result follows from Corollary 9.23. �

9.3.2. Estimation of the numbers DCS(2, 1, δ). This subsection is devoted

to the proof of the following proposition which deals with the first non-trivial case

of Theorem 9.2.

Proposition 9.25. Let A be an alphabet with |A| = 2 and 0 < δ 6 1. Also let

D be a subset of A<N and L0 a finite subset of N such that

|L0| > RegCS
(
2, 1,CS(2, d17δ−2e, 1, 2) + 1, δ/4

)
. (9.51)

If |D ∩An| > δ2n for every n ∈ L0, then there exists a Carlson–Simpson line R of

A<N which is contained in D. In particular,

DCS(2, 1, δ) 6 RegCS
(
2, 1,CS(2, d17δ−2e, 1, 2) + 1, δ/4

)
. (9.52)

We point out that the estimate for the numbers DCS(2, 1, δ) obtained in (9.52)

is far from being optimal. However, the proof of Proposition 9.25 is conceptually

close to the proof of the general case of Theorem 9.2 and can serve as a motivating

introduction to the main argument.

Proof of Proposition 9.25. Write the alphabet A as {a, b}, and let D and

L0 be as in the statement of the proposition. We start with the following claim.

Claim 9.26. There exists a subset L of L0 with

|L| = CS(2, d17δ−2e, 1, 2) + 1 (9.53)

and satisfying the following property. Let cL : A<|L|×ΩL → A<N be the convolution

operation associated with L and set D = c−1
L (D). Then for every t ∈ A<|L| we have

dens(Dt) > 3δ/4 where Dt = {ω ∈ ΩL : (t, ω) ∈ D} is the section of D at t.

Proof of Claim 9.26. By (9.51) and Lemma 6.24, there exists L ⊆ L0 with

|L| = CS(2, d17δ−2e, 1, 2) + 1 such that the family F := {D} is (δ/4, L)-regular. By

Lemma 9.11, the set L is as desired. The proof of Claim 9.26 is completed. �

We introduce some terminology. Let W be a Carlson–Simpson space of A<N of

finite dimension. Set m = dim(W ) and let 〈c, (wn)m−1
n=0 〉 be the Carlson–Simpson

system over A which generates W . Also let t, t′ ∈W . We say that t′ is a successor

of t in W provided that there exist i, j ∈ {0, . . . ,m−1} with i 6 j and ai, . . . , aj ∈ A
such that t′ = tawi(ai)

a. . .a wj(aj). If, in addition, we have ai = a, then we say

that t′ is an a-successor of t in W .

Claim 9.27. Let L and {Dt : t ∈ A<|L|} be as in Claim 9.26. Then there

exists a Carlson–Simpson subspace W of A<|L| with dim(W ) = d17δ−2e such that

dens(Dt ∩Dt′) > δ2/16 for every t, t′ ∈W with t′ an a-successor of t in W .
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Proof of Claim 9.27. We define a subset L of SubCS1

(
A<|L|

)
by the rule

S ∈ L ⇔ if 〈s, s0〉 is the Carlson–Simpson system generating S,

then dens(Ds ∩Dsas0(a)) > δ
2/16.

By (9.53) and Theorem 4.21, there exists a Carlson–Simpson subspace W of A<|L|

with dim(W ) = d17δ−2e such that either SubCS1(W ) ⊆ L or SubCS1(W )∩L = ∅.
Let t, t′ ∈W and observe that t′ is an a-successor of t in W if and only if there exists

a Carlson–Simpson line S of W such that, denoting by 〈s, s0〉 the system generating

S, we have t = s and t′ = sas0(a). Therefore, the proof will be completed once

we show that SubCS1(W ) ∩ L 6= ∅. To this end, set d = dim(W ) = d17δ−2e
and let 〈w, (wn)d−1

n=0〉 be the Carlson–Simpson system which generates W . We set

t0 = w and ti = waw0(a)a. . .a wi−1(a) for every i ∈ [d]. By our assumptions,

we have dens(Dti) > 3δ/4 for every i ∈ {0, . . . , d}. Hence, by Lemma E.5 applied

for “ε = 3δ/4” and “θ = δ/4”, there exist i, j ∈ {0, . . . , d} with i < j such that

dens(Dti ∩ Dtj ) > δ2/16. If R is the Carlson–Simpson line of W generated by the

system 〈ti, wia. . .a wj−1〉, then the previous discussion implies that R ∈ L. The

proof of Claim 9.27 is completed. �

The following claim is the last step of the proof of Proposition 9.25.

Claim 9.28. Let W be the Carlson–Simpson space obtained by Claim 9.27.

Then W contains a Carlson–Simpson line S such that
⋂
t∈S Dt 6= ∅.

Proof of Claim 9.28. As in Claim 9.27, we set d = dim(W ) = d17δ−2e.
Also let 〈w, (wn)d−1

n=0〉 be the Carlson–Simpson system which generates W . For

every i ∈ {0, . . . , d− 2} set

ti = waw0(b)a. . .awi(b) and si = ti
awi+1(a)a. . .awd−1(a)

and observe that si is an a-successor of ti in W . Therefore, by Claim 9.27, setting

Ci = Dti ∩ Dsi we have dens(Ci) > δ2/16 for every i ∈ {0, . . . , d − 2}. Also let

sd−1 = waw0(b)a . . .a wd−1(b) and Cd−1 = Dsd−1
and notice that, by Claim 9.26,

we have dens(Cd−1) > 3δ/4 > δ2/16. Since d > 16/δ2, there exist 0 6 i < j 6 d−1

such that Ci ∩ Cj 6= ∅. We define

s = ti and s0 = wi+1
a. . .awj

ay

where y = wj+1(a)a. . .a wd−1(a) if j < d − 1 and y = ∅ otherwise. Let S be

the Carlson–Simpson line of W generated by the system 〈s, s0〉 and observe that

S = {ti} ∪ {si, sj}. Hence, ⋂
t∈S

Dt ⊇ Ci ∩ Cj 6= ∅

and the proof of Claim 9.28 is completed. �

We are now in a position to complete the proof of the proposition. Let S be

the Carlson–Simpson line obtained by Claim 9.28. We select ω0 ∈ ΩL such that

ω0 ∈ Dt for every t ∈ S, and we set

R =
{

cL(t, ω0) : t ∈ S
}
.
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By Lemma 9.8, we see that R is a Carlson–Simpson line of A<N. Finally, recall that

D = c−1
L (D). Since (t, ω0) ∈ D for every t ∈ S, we conclude that R is contained in

D and the proof of Proposition 9.25 is completed. �

9.3.3. Estimation of the numbers DCS(k,m + 1, δ). Let k,m be positive

integers with k > 2 and assume that for every 0 < β 6 1 the number DCS(k,m, β)

has been estimated. This assumption implies, of course, that for every ` ∈ [m]

and every 0 < β 6 1 the number DCS(k, `, β) has also been estimated. For every

0 < δ 6 1 we set

Λ0 = Λ0(k, δ) = Λ(k, 1, δ2/16) and Θ0 = Θ0(k, δ) = Θ(k, 1, δ2/16) (9.54)

where Λ(k, 1, δ2/16) and Θ(k, 1, δ2/16) are as in (9.48) and (9.49) respectively. Also

let hk,δ : N→ N be defined by the rule

hk,δ(n) = Λ0 + d2Θ−1
0 ne. (9.55)

Notice that for the definition of Λ0, Θ0 and hk,δ we only need to have the number

DCS(k, 1, δ2/16) at our disposal.

The following theorem is the main result of this subsection.

Theorem 9.29. Let k,m be positive integers with k > 2 and assume that for

every 0 < β 6 1 the number DCS(k,m, β) has been estimated. Then for every

0 < δ 6 1 we have

DCS(k,m+ 1, δ) 6 h(d8δ−2e)
k,δ

(
DCS(k,m,Θ0/2)

)
(9.56)

where Θ0 and hk,δ are as in (9.54) and (9.55) respectively.

The proof of Theorem 9.29 is based on the following dichotomy.

Lemma 9.30. Let k ∈ N with k > 2 and assume that for every 0 < β 6 1 the

number DCS(k, 1, β) has been estimated.

Let 0 < δ 6 1 and let Λ0 and Θ0 be as in (9.54). Also let A be an alphabet with

|A| = k, L a nonempty finite subset of N and D ⊆ A<N such that densA`(D) > δ

for every ` ∈ L. Finally, let n be a positive integer and assume that |L| > hk,δ(n)

where hk,δ is as in (9.55). Then, denoting by L0 the set of the first Λ0 elements of

L, we have that either

(i) there exist a subset L′ of L \ L0 with |L′| > n and a word t0 ∈ A`0 for

some `0 ∈ L0 such that

densA`−`0
(
{s ∈ A<N : t0

as ∈ D}
)
> δ + δ2/8 (9.57)

for every ` ∈ L′, or

(ii) there exist a subset L′′ of L \ L0 with |L′′| > n and a Carlson–Simpson

line S of A<N with S ⊆ D and L(S) ⊆ L0 (as in (1.33), L(S) is the level

set of S) such that if `1 is the unique integer with S(1) ⊆ A`1 , then

densA`−`1
(
{s ∈ A<N : tas ∈ D for every t ∈ S(1)}

)
> Θ0/2 (9.58)

for every ` ∈ L′′.
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Proof. Let M = L \ L0 and set M` = {m − ` : m ∈ M} for every ` ∈ L0.

Moreover, for every t ∈
⋃
`∈L0

A` let

Dt = {s ∈ A<N : tas ∈ D}. (9.59)

Observe that for every ` ∈ L0 we have

Et∈A`dM`
(Dt) = dM (D) (9.60)

while the fact that densA`(D) > δ for every ` ∈ L implies that

dM (D) > δ and dL0
(D) > δ. (9.61)

(Here, dM`
, dM and dL0

are the generalized Furstenberg–Weiss measures on A<N

associated with the sets M`, M and L0 respectively.) On the other hand, since

|L| > hk,δ(n)
(9.55)

= Λ0 + d2Θ−1
0 ne and |L0| = Λ0, we obtain that

|M`| = |M | > 2Θ−1
0 n (9.62)

for every ` ∈ L0. We consider the following cases.

Case 1: there exist `0 ∈ L0 and t0 ∈ A`0 such that dM`0
(Dt0) > δ + δ2/4. By

(9.49) and (9.54), we see that Θ0 6 δ2/8. Hence, in this case we have

|{m ∈M`0 : densAm(Dt0) > δ + δ2/8}| > (δ2/8) |M`0 |
(9.62)

> n.

We set L′ = {m ∈ M : densAm−`0 (Dt0) > δ + δ2/8} and we observe that with this

choice the first alternative of the lemma holds true.

Case 2: for every ` ∈ L0 and every t ∈ A` we have dM`
(Dt) < δ + δ2/4.

Combining (9.60) and (9.61) we see that Et∈A`dM`
(Dt) > δ for every ` ∈ L0. Thus,

by Lemma E.3, in this case we have

|{t ∈ A` : dM`
(Dt) > δ/2}| > (1− δ/2)k`

for every ` ∈ L0. Therefore, setting

E =
⋃
`∈L0

{t ∈ A` : t ∈ D and dM`
(Dt) > δ/2}, (9.63)

we obtain that

dL0
(E) > δ/2. (9.64)

Now let

(Ω,µ) =
∏
`∈L0

(
A<N,dM`

)
be the product of the discrete probability spaces

{
(A<N,dM`

) : ` ∈ L0

}
. For every

t ∈ E we define an event Dt of Ω as follows. We set

Dt =
∏
`∈L0

Xt
` (9.65)

where Xt
` = Dt if ` = |t| and Xt

` = A<N otherwise. Notice that for every ` ∈ L0

and every t ∈ E ∩A` we have

µ(Dt) = dM`
(Dt)

(9.63)

> δ/2. (9.66)
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Also recall that |L0| = Λ0
(9.54)

= Λ(k, 1, δ2/16). Hence, by (9.64), (9.66) and Propo-

sition 9.21, there exists a Carlson–Simpson line S of A<N which is contained in E

and such that

µ
( ⋂
t∈S

Dt

)
> Θ(k, 1, δ2/16)

(9.54)
= Θ0. (9.67)

Notice, in particular, that the level set L(S) of S is contained in L0, and so if `1 is

the unique integer with S(1) ⊆ A`1 , then we have `1 ∈ L0. By the definition of the

events {Dt : t ∈ E} in (9.65), we obtain that

dM`1

( ⋂
t∈S(1)

Dt
)

= µ
( ⋂
t∈S(1)

Dt

) (9.67)

> Θ0. (9.68)

Thus, setting

M ′`1 =
{
m ∈M`1 : densAm

( ⋂
t∈S(1)

Dt
)
> Θ0/2

}
, (9.69)

by (9.68) and Markov’s inequality we have

|M ′`1 | > (Θ0/2)|M`1 |
(9.62)

> n. (9.70)

Finally, let L′′ = {`1 + m : m ∈ M ′`1}. We will show that L′′ and S satisfy the

second alternative of the lemma. Indeed, notice first that L′′ is contained in L \L0

and |L′′| > n. Since `1 ∈ L0 we see, in particular, that `1 < min(L′′). Also observe

that for every ` ∈ L′′ we have ` − `1 ∈ M ′`1 . Hence, by (9.59) and (9.69), we

conclude that

densA`−`1
(
{s ∈ A<N : tas ∈ D for every t ∈ S(1)}

)
> Θ0/2 (9.71)

for every ` ∈ L′′ which implies, of course, that the second alternative is satisfied.

The above cases are exhaustive, and so the proof of Lemma 9.30 is completed. �

We proceed to the proof of Theorem 9.29.

Proof of Theorem 9.29. Fix 0 < δ 6 1 and set N0 = DCS(k,m,Θ0/2).

Let L be an arbitrary finite subset of N with |L| > h
(d8δ−2e)
k,δ (N0) and let D be a

subset of A<N such that densA`(D) > δ for every ` ∈ L. By our assumption for the

size of the set L and repeated applications of Lemma 9.30, there exist a subset L′′

of L with |L′′| > N0 and a Carlson–Simpson line V of A<N with V ⊆ D, such that

if `1 is the unique integer with V (1) ⊆ A`1 , then we have `1 < min(L′′) and

densA`−`1
(
{s ∈ A<N : tas ∈ D for every t ∈ V (1)}

)
> Θ0/2 (9.72)

for every ` ∈ L′′. By the choice of N0 and (9.72), there exists an m-dimensional

Carlson–Simpson space U of A<N such that

U ⊆ {s ∈ A<N : tas ∈ D for every t ∈ V (1)}. (9.73)

Therefore, setting

S = V (0) ∪
⋃

t∈V (1)

{tau : u ∈ U}, (9.74)
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we see that S is a Carlson–Simpson space of A<N of dimension m + 1 which is

contained in D. The proof of Theorem 9.29 is completed. �

9.4. A probabilistic version of Theorem 9.2

9.4.1. Overview. In this subsection we will give an outline of the proof of

Theorem 9.2. As we have already mentioned, it proceeds by induction on the

cardinality of the finite alphabet A and is based on a density increment strategy.

The initial case—that is, the estimation of the numbers DCS(2, 1, δ)—is the content

of Proposition 9.25. The next step is given in Theorem 9.29. Indeed, by Theorem

9.29, the proof of Theorem 9.2 reduces to the task of estimating the numbers

DCS(k, 1, δ). To achieve this goal we follow an inductive scheme which can be

described as follows:

DCS(k,m, β) for every m and every β ⇒ DCS(k + 1, 1, δ). (9.75)

Specifically, fix a positive integer k and 0 < δ 6 1 and assume, as in (9.75),

that the numbers DCS(k,m, β) have been estimated for every choice of admissible

parameters. Also let A be an alphabet with |A| = k + 1 and let D be a subset of

A<N not containing a Carlson–Simpson line such that densAn(D) > δ for sufficiently

many n ∈ N. Our objective is to find a Carlson–Simpson space W of A<N such that

the density of D has been significantly increased in sufficiently many levels of W .

Once this is done the numbers DCS(k + 1, 1, δ) can be estimated with a standard

iteration. This is enough, of course, to complete the proof of Theorem 9.2.

To this end we argue as follows. First, we will select a Carlson–Simpson space

V of A<N and a subset S of V which is the intersection of relatively few insensitive

sets and correlates with the set D more than expected in many levels of V . (As

in Subsection 8.3.1, we view S as a “simple” subset of V .) This is the content

of Corollary 9.37 below. Next, we use this information to achieve the density

increment. We will comment on this part of the proof in Subsection 9.5.1. At this

point we simply mention that the statement of main interest is Corollary 9.55.

Concerning the proof of the first part, we note that it is reduced, essentially,

to a “probabilistic” strengthening of our inductive assumptions. A straightforward

modification of Example 8.1 shows that a global “probabilistic” version of Theorem

9.2 does not hold true, in the sense that there exist highly dense sets of words

containing just a tiny portion of Carlson–Simpson lines. However, this problem

can be effectively resolved locally, that is, by passing to an appropriately chosen

Carlson–Simpson space. The philosophy is identical to that in Subsection 8.3.1 and

the argument proceeds by applying the following three basic steps.

Step 1. By Szemerédi’s regularity method, we show that a given dense set D of

words over A is sufficiently pseudorandom. This enables us to model the set D as

a family of measurable events {Dt : t ∈ V } in a probability space (Ω,Σ, µ) indexed

by a Carlson–Simpson space V of A<N of sufficiently large dimension. The main

tools in this step are Lemmas 6.24 and 9.11.
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Step 2. We use coloring arguments and our inductive assumptions to show that

there exists a Carlson–Simpson subspace V ′ of V of prescribed dimension such that

the events in the subfamily {Dt : t ∈ V ′} are highly correlated. This step is based

on Theorem 4.21 and Proposition 9.21.

Step 3. Let B be a sub-alphabet of A with k letters. We use a double counting

argument to locate a Carlson–Simpson space U of A<N with dim(U) = dim(V ′)

and satisfying one of the following alternatives. Either the density of D in U is

increased (and so, we can directly proceed to the next iteration), or the density of

D in U is preserved and, moreover, the set D contains plenty of Carlson–Simpson

lines of U � B.

Finally, regarding the effectiveness of the proof, we notice that there exist

primitive recursive (and fairly reasonable) upper bounds for all the results used in

the steps described above. However, the argument yields very poor lower bounds

for the correlation of the events {Dt : t ∈ V ′} in the second step. These lower

bounds are partly responsible for the weak estimate of the numbers DCS(k,m, δ).

9.4.2. The main dichotomy. Let k,m be positive integers with k > 2 and

assume that for every 0 < β 6 1 the number DCS(k,m, β) has been estimated.

Hence, for every 0 < δ 6 1 we may set

ϑ = ϑ(k,m, δ) = Θ(k,m, δ/8) and η = η(k,m, δ) =
δϑ

30k
(9.76)

where Θ(k,m, δ/8) is as in (9.49). Moreover, let

Λ′ = Λ(k,m, δ/8)
(9.48)

= d8δ−1DCS(k,m, δ/8)e (9.77)

and for every n ∈ N set

`(n,m) = CS(k + 1, n+ Λ′,m, 2) + 1. (9.78)

Next, define g : N× N× (0, 1]→ N by the rule

g(n,m, ε) = RegCS(k + 1, 1, `(n,m), ε). (9.79)

Finally, if A is a finite alphabet with |A| > 2, then for every finite-dimensional

Carlson–Simpson space V of A<N and every 1 6 m 6 i 6 dim(V ) we set

SubCS0
m(V, i) =

{
U ∈ SubCSm(V ) : U(0) = V (0) and U(m) ⊆ V (i)

}
. (9.80)

As in Subsection 1.5.3, for every sub-alphabet B of A with |B| > 2 and every

finite-dimensional Carlson–Simpson space V of A<N let V � B be the restriction of

V on B. Recall that if IV is the canonical isomorphism associated with V , then the

map IV : B<dim(V )+1 → V � B is a bijection, and so we may identify V � B with

B<dim(V )+1. Taking into account these remarks, we set

SubCS0
m(V � B, i) =

{
IV (U) : U ∈ SubCS0

m(B<dim(V )+1, i)
}
.

We are now ready to state the main result of this section.
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Proposition 9.31. Let k,m be positive integers with k > 2 and assume that

for every 0 < β 6 1 the number DCS(k,m, β) has been estimated.

Let 0 < δ 6 1 and define ϑ, η and Λ′ as in (9.76) and (9.77) respectively. Also

let n ∈ N with n > 1 and L0 a finite subset of N such that

|L0| > g
(
dη−4ne,m, η2/2

)
(9.81)

where g is as in (9.79). If A is an alphabet with |A| = k + 1, B is a subset of

A with |B| = k and D ⊆ A<N satisfies densAl(D) > δ for every l ∈ L0, then

there exist a Carlson–Simpson space W of A<N with dim(W ) = dη−4ne + Λ′ and

I ⊆ {m, . . . ,dim(W )} with |I| > n such that either

(a) for every i ∈ I we have densW (i)(D) > δ + η2/2, or

(b) for every i ∈ I we have densW (i)(D) > δ − 2η and, moreover,

dens
(
{V ∈ SubCS0

m(W � B, i) : V ⊆ D}
)
> ϑ/2.

The following lemma is the first step of the proof of Proposition 9.31.

Lemma 9.32. Let k,m, δ, ϑ, η,Λ′, n and L0 be as in Proposition 9.31. Also let

A be an alphabet with |A| = k + 1, B ⊆ A with |B| = k and D ⊆ A<N such

that densAl(D) > δ for every l ∈ L0. Then there exist a subset L of L0 and a

Carlson–Simpson subspace S of A<|L| of dimension dη−4ne+Λ′ such that, denoting

by cL : A<|L| × ΩL → A<N the convolution operation associated with L and setting

D = c−1
L (D), the following are satisfied.

(a) For every t ∈ A<|L| we have densΩL(Dt) > δ−η2/2 where Dt is the section

of D at t.

(b) For every U ∈ SubCSm(S � B) we have

densΩL

( ⋂
t∈U

Dt

)
> ϑ.

Proof. By (9.81), the definition of the function g in (9.79) and Lemma 6.24,

there exists a subset L of L0 with

|L| = `(dη−4ne,m)
(9.78)

= CS(k + 1, dη−4ne+ Λ′,m, 2) + 1 (9.82)

and such that the family F := {A} is (η2/2, L)-regular. Hence, by Lemma 9.11, we

see that part (a) is satisfied for the set L.

Next, let V = A<|L| and d = dη−4ne+ Λ′. By (9.77) and (9.82), we have

d > Λ(k,m, δ/8)− 1 and dim(V ) = |L| − 1 = CS(k + 1, d,m, 2).

Moreover, by part (a), for every t ∈ V we have

densΩL(Dt) > δ − η2/2
(9.76)

> δ/2.

Therefore, by Corollary 9.23, there exists a d-dimensional Carlson–Simpson sub-

space S of A<|L| such that for every U ∈ SubCSm(S) we have

densΩL

( ⋂
t∈U�B

Dt

)
> Θ(k,m, δ/8)
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where Θ(k,m, δ/8) is as in (9.49). Since

SubCSm(S � B) ⊆ {U � B : U ∈ SubCSm(S)}

and ϑ
(9.76)

= Θ(k,m, δ/8), we conclude that part (b) is also satisfied. The proof of

Lemma 9.32 is completed. �

Now let L be a finite subset of N with |L| > 2 and consider the convolution op-

eration cL : A<|L|×ΩL → A<N associated with L. Also let S be a Carlson–Simpson

subspace of A<|L|. As in Lemma 9.8, for every ω ∈ ΩL we set

Sω = {cL(t, ω) : t ∈ S} (9.83)

and we recall that Sω is a Carlson–Simpson space of A<N with dim(Sω) = dim(S).

We have the following lemma.

Lemma 9.33. Let k ∈ N with k > 2 and A an alphabet with |A| = k + 1. Also

let L be a finite subset of N with |L| > 2 and cL : A<|L|×ΩL → A<N the convolution

operation associated with L. Finally, let S be a Carlson–Simpson subspace of A<|L|

and D ⊆ A<N. For every ω ∈ ΩL let Sω be as in (9.83), set D = c−1
L (D) and for

every t ∈ A<|L| let Dt be the section of D at t. Then the following hold.

(a) For every i ∈ {0, . . . ,dim(S)} we have

Eω∈ΩLdensSω(i)(D) = Et∈S(i)densΩL(Dt).

(b) For every 1 6 m 6 i 6 dim(S) and every B ⊆ A with |B| > 2 we have

Eω∈ΩLdens
(
{V ∈SubCS0

m(Sω � B, i) : V ⊆D}
)

=

EU∈SubCS0
m(S�B,i) densΩL

( ⋂
t∈U

Dt

)
.

Proof. (a) Let i ∈ {0, . . . ,dim(S)} be arbitrary. By Lemma 9.10, we have

Eω∈ΩLdensSω(i)(D) = denscL(S(i)×ΩL)(D). (9.84)

As in (9.6), for every t ∈ A<|L| we set Ct = {cL(t, ω) : ω ∈ ΩL}. Notice that

cL(S(i)× ΩL) =
⋃

t∈S(i)

cL({t} × ΩL) =
⋃

t∈S(i)

Ct. (9.85)

Next observe that S(i) ⊆ Al for some l ∈ {0, . . . , |L| − 1}. Therefore, by Fact 9.4,

we have |Ct| = |Ct′ | for every t, t′ ∈ S(i). It follows that the family {Ct : t ∈ S(i)}
is an equipartition of cL(S(i)× ΩL) and so

denscL(S(i)×ΩL)(D) = Et∈S(i) densCt(D). (9.86)

Finally, by Lemma 9.7, for every t ∈ S(i) we have

densCt(D) = dens{t}×ΩL(D) = densΩL(Dt). (9.87)

Combining (9.84), (9.86) and (9.87), we conclude that part (a) is satisfied.

(b) Fix 1 6 m 6 i 6 dim(S) and B ⊆ A with |B| > 2. We set

P =
{

(U, ω) ∈ SubCS0
m(S � B, i)× ΩL : Uω ⊆ D

}
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where, as in (9.83), we have Uω = {cL(u, ω) : u ∈ U}. Moreover, for every

U ∈ SubCS0
m(S � B, i) and every ω ∈ ΩL let

PU = {ω ∈ ΩL : (U, ω) ∈ P} and Pω =
{
U ∈ SubCS0

m(S � B, i) : (U, ω) ∈ P
}

be the sections of P at U and ω respectively. Notice that

ω ∈ PU ⇔ (U, ω) ∈ P ⇔ Uω ⊆ D ⇔ ω ∈
⋂
t∈U

Dt

which implies that for every U ∈ SubCS0
m(S � B, i) we have

PU =
⋂
t∈U

Dt. (9.88)

Also observe that for every ω ∈ ΩL the map

SubCS0
m(S � B, i) 3 U 7→ Uω ∈ SubCS0

m(Sω � B, i)

is a bijection. Hence, for every ω ∈ ΩL we have

dens
(
{V ∈ SubCS0

m(Sω � B, i) : V ⊆ D}
)

=

=
|{V ∈ SubCS0

m(Sω � B, i) : V ⊆ D}|
|SubCS0

m(Sω � B, i)|

=
|{U ∈ SubCS0

m(S � B, i) : Uω ⊆ D}|
|SubCS0

m(S � B, i)|
= dens(Pω). (9.89)

Therefore, we conclude that

Eω∈ΩLdens
(
{V ∈SubCS0

m(Sω � B, i) : V ⊆D}
)

=

(9.89)
= Eω∈ΩL dens(Pω) = EU∈SubCS0

m(S�B,i) densΩL(PU )

(9.88)
= EU∈SubCS0

m(S�B,i) densΩL

( ⋂
t∈U

Dt

)
.

The proof of Lemma 9.33 is completed. �

We are now ready to give the proof of Proposition 9.31.

Proof of Proposition 9.31. We fix D ⊆ A<N such that densAl(D) > δ for

every l ∈ L0. Set d = dη−4ne + Λ′ and let L and S be as in Lemma 9.32 when

applied to the set D. Notice, in particular, that dim(S) = d. Invoking the first

parts of Lemmas 9.32 and 9.33, for every i ∈ {0, . . . , d} we have

Eω∈ΩLdensSω(i)(D) > δ − η2/2. (9.90)

On the other hand, by the second parts of the aforementioned lemmas, we see that

Eω∈ΩLdens
(
{V ∈ SubCS0

m(Sω � B, i) : V ⊆ D}
)
> ϑ (9.91)

for every i ∈ {m, . . . , d}.
Now set J = {m, . . . , d} and observe that

|J | = d−m+ 1 > dη−4ne. (9.92)

Moreover, for every i ∈ J set



188 9. THE DENSITY CARLSON–SIMPSON THEOREM

(a) Ωi,0 = {ω ∈ ΩL : densSω(i)(D) > δ + η2/2},
(b) Ωi,1 = {ω ∈ ΩL : densSω(i)(D) > δ − 2η}, and

(c) Ωi,2 =
{
ω ∈ ΩL : dens

(
{V ∈ SubCS0

m(Sω � B, i) : V ⊆ D}
)
> ϑ/2

}
.

Finally, let J0 = {i ∈ J : densΩL(Ωi,0) > η3}. We consider the following cases.

Case 1: we have |J0| > |J |/2. By Lemma E.4, there exists ω0 ∈ ΩL such that

|{i ∈ J0 : ω0 ∈ Ωi,0}| > η3|J0| > η3 |J |
2

(9.92)

>
η3dη−4ne

2

(9.76)

> n.

We set I = {i ∈ J : ω0 ∈ Ωi,0} and W = Sω0
. Clearly, with these choices the first

part of the proposition is satisfied.

Case 2: we have |J0| < |J |/2. In this case we set K0 = J \ J0. Let i ∈ K0 be

arbitrary and notice that

densΩL(Ωi,0) = dens
(
{ω ∈ ΩL : densSω(i)(D) > δ + η2/2}

)
< η3. (9.93)

By (9.90), (9.93) and Lemma E.3, we obtain that densΩL(Ωi,1) > 1 − η. On the

other hand, by (9.91), we have densΩL(Ωi,2) > ϑ/2. Therefore, by the choice of η

in (9.76), we conclude that densΩL(Ωi,1 ∩Ωi,2) > ϑ/4 for every i ∈ K0. By another

application of Lemma E.4, we see that there exists ω1 ∈ ΩL such that

|{i ∈ K0 : ω1 ∈ Ωi,1 ∩ Ωi,2}| >
ϑ

4
|K0| >

ϑ|J |
8

(9.92)

>
ϑdη−4ne

8

(9.76)

> n.

We set I = {i ∈ K0 : ω1 ∈ Ωi,1 ∩Ωi,2} and W = Sω1
and we notice that with these

choices part (b) is satisfied. The above cases are exhaustive and so the proof of

Proposition 9.31 is completed. �

9.4.3. Obtaining insensitive sets. Let A be a finite alphabet with |A| > 2

and a, b ∈ A with a 6= b. Recall that, by Definition 2.2, a set S of words over A

is said to (a, b)-insensitive provided that for every z ∈ S and every y ∈ A<N if z

and y are (a, b)-equivalent, then y ∈ S. This concept can be relativized to any

Carlson–Simpson space of A<N as follows.

Definition 9.34. Let A be a finite alphabet with |A| > 2 and a, b ∈ A with

a 6= b. Also let S ⊆ A<N and V a Carlson–Simpson space of A<N. We say that S

is (a, b)-insensitive in V if I−1
V (S ∩ V ) is an (a, b)-insensitive subset of A<N where

IV is the canonical isomorphism associated with V (see Definition 1.10).

Now let k ∈ N with k > 2 and assume that for every 0 < β 6 1 the number

DCS(k, 1, β) has been estimated. For every 0 < δ 6 1 we set

ϑ1 = ϑ1(k, δ) = ϑ(k, 1, δ) and η1 = η1(k, δ) = η(k, 1, δ) (9.94)

where ϑ(k, 1, δ) and η(k, 1, δ) are as in (9.76). Also define g1 : N× (0, 1]→ N by

g1(n, ε) = g(n, 1, ε) (9.95)

where g is as in (9.79). We have the following lemma.
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Lemma 9.35. Let k ∈ N with k > 2 and assume that for every 0 < β 6 1 the

number DCS(k, 1, β) has been estimated.

Let 0 < δ 6 1, n ∈ N with n > 1 and L0 a finite subset of N such that

|L0| > g1

(
dη−4

1 (k + 1)ne, η2
1/2
)

where η1 and g1 are as in (9.94) and (9.95) respectively. Also let A be an alphabet

with |A| = k + 1, a ∈ A and set B = A \ {a}. Finally, let D ⊆ A<N be such that

densAl(D) > δ for every l ∈ L0 and assume that D contains no Carlson–Simpson

line of A<N. Assume, moreover, that for every finite-dimensional Carlson–Simpson

space W of A<N we have

|
{
i ∈ {0, . . . ,dim(W )} : densW (i)(D) > δ + η2

1/2
}
| < n (9.96)

Then there exist a finite-dimensional Carlson–Simpson space V of A<N, a subset

C of V and a subset J of {0, . . . ,dim(V )} with the following properties.

(a) We have |J | > n.

(b) We have C =
⋂
b∈B Cb where Cb is (a, b)-insensitive in V for every b ∈ B.

Moreover, densV (j)(C) > ϑ1/2 for every j ∈ J where ϑ1 is as in (9.94).

(c) The sets D and C are disjoint.

(d) For every j ∈ J we have densV (j)(D) > δ − 5kη1.

The proof of Lemma 9.35 is based on Proposition 9.31. Before we proceed to

the details we need to introduce some pieces of notation and some terminology.

Let A be an alphabet with |A| = k + 1 and fix a ∈ A. Also let d be a positive

integer and let W be a d-dimensional Carlson–Simpson space of A<N. Consider the

canonical isomorphism IW : A<d+1 →W associated with W and set

W [a] =
{

IW (s) : s ∈ A<d+1 with |s| > 1 and s(0) = a
}
. (9.97)

Notice that if dim(W ) > 2, then W [a] is a Carlson–Simpson subspace of W with

dim(W [a]) = dim(W )−1. On the other hand, if W is a Carlson–Simpson line, then

W [a] is the singleton {IW (a)}; we will identify in this case W [a] with IW (a). Next,

set B = A \ {a} and note that, by Fact 1.14, for every Carlson–Simpson subspace1

R of W � B there exists a unique Carlson–Simpson subspace U of W such that

R = U � B. We will call this unique Carlson–Simpson space U as the extension of

R and we will denote it by R. We have the following elementary fact.

Fact 9.36. Let A, a and B be as in Lemma 9.35 and W a finite-dimensional

Carlson–Simpson space of A<N with dim(W ) > 2. We set V = W [a]. Then

for every j ∈ {0, . . . ,dim(V )} and every R ∈ SubCS0
1(W � B, j + 1) we have

R[a] ∈ V (j). Moreover, the map

SubCS0
1(W � B, j + 1) 3 R 7→ R[a] ∈ V (j)

is a bijection.

We are ready to give the proof of Lemma 9.35.

1Recall that, by (1.41), every Carlson–Simpson subspace of W � B is of the form IW (S) for

some (unique) Carlson–Simpson subspace S of B<d+1.
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Proof of Lemma 9.35. By our assumptions and Proposition 9.31 applied to

the set D and “m = 1”, there exist a finite-dimensional Carlson–Simpson space W

of A<N and I ⊆ {1, . . . ,dim(W )} with |I| > (k + 1)n such that

densW (i)(D) > δ − 2η1 and dens
(
{R ∈ SubCS0

1(W � B, i) : R ⊆ D}
)
> ϑ1/2

for every i ∈ I. For every b ∈ B let Vb = W [b]. We set

V = W [a], (9.98)

C =
⋃
i∈I

{
R[a] : R ∈ SubCS0

1(W � B, i) with R ⊆ D
}

(9.99)

and

J =
{
j ∈ {0, . . . ,dim(V )} : densV (j)(D) > δ − 5kη1 and j + 1 ∈ I

}
(9.100)

and we claim that V , C and J are as desired. First we will show that |J | > n. To

this end, set J0 = {j ∈ {0, . . . ,dim(V )} : j + 1 ∈ I} and observe that J ⊆ J0 and

|J0| > (k + 1)n. (9.101)

Let j ∈ J0 \ J be arbitrary. Notice that densV (j)(D) < δ − 5kη1. On the other

hand, we have j + 1 ∈ I and so, by the choice of I,

1

k + 1

(
densV (j)(D) +

∑
b∈B

densVb(j)(D)
)

= densW (j+1)(D) > δ − 2η1.

It follows that there exists bj ∈ B such that densVbj (j)(D) > δ + η1. Since |B| = k,

by the classical pigeonhole principle, there exists b0 ∈ B such that

|{j ∈ J0 \ J : densVb0 (j)(D) > δ + η1}| >
|J0 \ J |
k

(9.101)

> n+
n− |J |
k

. (9.102)

Moreover, by (9.96), we have

|{j ∈ J0 \ J : densVb0 (j)(D) > δ + η1}| < n. (9.103)

Combining (9.102) and (9.103) we conclude that |J | > n.

We continue with the proof of part (b). Let b ∈ B be arbitrary. For every l ∈ N
and every s ∈ Al let sa→b be the unique element of Bl obtained by replacing all

appearances of a in s by b. We set

Cb =
{

IV (s) : s ∈
⋃
i∈I

Ai−1 and sa→b ∈ I−1
Vb

(D)
}

where IV and IVb are the canonical isomorphisms associated with V and Vb respec-

tively (see Definition 1.10). Observe that Cb is (a, b)-insensitive in V . We will show

that C coincides with
⋂
b∈B Cb. Indeed, notice first that C ⊆

⋂
b∈B Cb. To see the

other inclusion, fix t ∈
⋂
b∈B Cb and set s = I−1

V (t). Let i be the unique element of

I such that s ∈ Ai−1 and define

Rt = {W (0)} ∪
{

IVb(s
a→b) : b ∈ B

}
.

Observe that Rt ∈ SubCS0
1(W � B, i). By the choice of W , we have W (0) ∈ D

while the fact that t ∈
⋂
b∈B Cb yields that IVb(s

a→b) ∈ D for every b ∈ B. Thus,
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we see that Rt ⊆ D. Since t = Rt[a] we conclude that t ∈ C. Finally, let j ∈ J .

Recall that j + 1 ∈ I and notice that

densV (j)(C) = densV (j)

({
R[a] : R ∈ SubCS0

1(W � B, j + 1) with R ⊆ D
})
.

Hence, by Fact 9.36 and the choice of I, we obtain that

densV (j)(C) = dens
(
{R ∈ SubCS0

1(W � B, j + 1) : R ⊆ D}
)
> ϑ1/2

as desired.

Now the fact that D and C are disjoint follows from our assumption that the

set D contains no Carlson–Simpson line of A<N and the definition of C in (9.99).

Finally, part (d) is an immediate consequence of (9.100). The proof of Lemma 9.35

is completed. �

9.4.4. Consequences. In this subsection we will summarize what we have

achieved in Proposition 9.31 and Lemma 9.35. The resulting statement is the first

main step of the proof of the inductive scheme described in (9.75).

Corollary 9.37. Let k ∈ N with k > 2 and assume that for every 0 < β 6 1

the number DCS(k, 1, β) has been estimated.

Let 0 < δ 6 1, n ∈ N with n > 1 and L0 a finite subset of N such that

|L0| > g1

(
dη−4

1 (k + 1)kne, η2
1/2
)

(9.104)

where η1 and g1 are as in (9.94) and (9.95) respectively. Also let A be an alphabet

with |A| = k + 1, a ∈ A and set B = A \ {a}. Finally, let D ⊆ A<N be such that

densAl(D) > δ for every l ∈ L0. Assume that D contains no Carlson–Simpson line

of A<N. Then there exist a finite-dimensional Carlson–Simpson space V of A<N, a

subset S of V and a subset I of {0, . . . ,dim(V )} with the following properties.

(a) We have |I| > n.

(b) We have S =
⋂
b∈B Sb where Sb is (a, b)-insensitive in V for every b ∈ B.

(c) For every i ∈ I we have densV (i)(D ∩ S) > (δ + η2
1/2) densV (i)(S) and

densV (i)(S) > η2
1/2.

Proof. Assume, first, that there exists a finite-dimensional Carlson–Simpson

space W of A<N such that

|
{
i ∈ {0, . . . ,dim(W )} : densW (i)(D) > δ + η2

1/2
}
| > kn.

In this case we set V = W , I = {i ∈ {0, . . . ,dim(W )} : densW (i)(D) > δ + η2
1/2}

and Sb = V for every b ∈ B. It is clear that with these choices the result follows.

Otherwise, by Lemma 9.35, there exist a finite-dimensional Carlson–Simpson

space V of A<N, a subset J of {0, . . . ,dim(V )} with |J | > kn and a set C =
⋂
b∈B Cb

such that: (i) D ∩ C = ∅, (ii) Cb is (a, b)-insensitive in V for every b ∈ B and

densV (j)(C) > ϑ1/2 for every j ∈ J , and (iii) densV (j)(D) > δ − 5kη1 for every

j ∈ J . (Here, ϑ1 and η1 are as in (9.94).) In particular, for every j ∈ J we have

densV (j)(D)

densV (j)(V \ C)
>
δ − 5kη1

1− ϑ1/2
> (δ − 5kη1)(1 + ϑ1/2) > δ + 7kη1.
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Let {b1, . . . , bk} be an enumeration of the alphabet B. We set Q1 = V \ Cb1 and

Qr = Cb1 ∩ · · · ∩Cbr−1
∩ (V \Cbr ) for every r ∈ {2, . . . , k}, and we observe that the

family {Q1, . . . , Qr} is a partition of V \C. Let j ∈ J be arbitrary. By Lemma E.6

applied for “ε = kη1”, there exists rj ∈ [k] such that

densV (j)(D ∩Qrj ) > (δ + 6kη1) densV (j)(Qrj ) (9.105)

and

densV (j)(Qrj ) > (δ − 5kη1) η1/4. (9.106)

Hence, by the classical pigeonhole principle, there exist r0 ∈ [k] and I ⊆ J with

|I| > |J |/k > n and such that ri = r0 for every i ∈ I. We set S = Qr0 , Sr = Cr if

r < r0, Sr0 = V \Cr0 and Sr = V if r > r0. Notice, first, that Sr is (a, br)-insensitive

in V for every r ∈ [k]. Also observe that S1 ∩ · · · ∩ Sk = S. Finally, by the choice

of η1 in (9.94), for every i ∈ I we have

densV (i)(D ∩ S)
(9.105)

> (δ + 6kη1) densV (i)(S) > (δ + η2
1/2) densV (i)(S)

and

densV (i)(S)
(9.106)

> (δ − 5kη1) η1/4 > η
2
1/2.

The proof of Corollary 9.37 is completed. �

9.5. An exhaustion procedure: achieving the density increment

9.5.1. Motivation. This section is devoted to the proof of the second part of

the inductive scheme described in (9.75). Recall that the first part of this inductive

scheme is the content of Corollary 9.37. Specifically, by Corollary 9.37, if A is an

alphabet with k + 1 letters and D is a dense set of words over A not containing a

Carlson–Simpson line, then there exist a finite-dimensional Carlson–Simpson space

V of A<N and a “simple” subset S of V (precisely, S is the intersection of few

insensitive sets) which correlates with D more than expected in many levels of V .

Our goal in this section is to use this information to achieve density increment for

the set D. In order to do so, a natural strategy is to produce an “almost tiling” of

S, that is, to construct a collection V of pairwise disjoint Carlson–Simpson spaces

of sufficiently large dimension which are all contained in S and are such that the

set S \ ∪V is essentially negligible2. Once this is done, one then expects to be able

to find a Carlson–Simpson space W which belongs to the family V and is such that

the density of D has been increased in sufficiently many levels of W . However, this

is not possible in general, as is shown in the following example.

Example 9.1. Fix a positive integer m and 0 < ε 6 1. Let A be a finite

alphabet with |A| > 2 and set k = |A|. Also let q, ` be positive integers with q > `
and such that (k` − 1)k`−q 6 ε. With these choices it is possible to select for

every t ∈ A<` an element st ∈ Aq−` such that st 6= st′ for every t, t′ ∈ A<` with

2This method was invented by Ajtai and Szemerédi [ASz]. It was used, for instance, in

Section 8.3 in the proof of the density Hales–Jewett theorem.
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t 6= t′. Next, for every i ∈ {0, . . . , ` − 1}, every t ∈ Ai and every a ∈ A we set

zat = ta(a`−i)ast where a`−i is as in (2.1). Moreover, set

Z = {zat : t ∈ A<` and a ∈ A}.

and notice that Z ⊆ Aq and dens(Z) 6 ε. Also observe that if t 6= t′, then we have

{zat : a ∈ A} ∩ {zat′ : a ∈ A} = ∅. Finally, set

S = A<` ∪
q+m−1⋃
i=q

Ai and D = A<` ∪
⋃

y∈Aq\Z

{yas : s ∈ A<m}.

It is clear that S is a highly structured subset of A<N (it is the union of certain

levels of A<N) and D is a subset of S of relative density at least 1 − ε. Now for

every t ∈ A<` let

Vt = {t} ∪ {zat
as : a ∈ A and s ∈ A<m}

and observe that V := {Vt : t ∈ A<`} is a family of pairwise disjoint m-dimensional

Carlson–Simpson spaces which are all contained in S. Also notice that, regardless

of how large ` is, V is maximal, that is, the set S \∪V contains no Carlson–Simpson

space of dimension m. Nevertheless, Vt ∩D is the singleton {t} for every t ∈ A<`.

The above example shows that, in the context of the density Carlson–Simpson

theorem, one cannot achieve the density increment merely by producing an almost

tiling of the “simple” set S. (In particular, a greedy algorithm will be inefficient.)

To overcome this obstacle, an exhaustion procedure is used which can be roughly

described as follows. At each step of the process, we are given a subset S′ of

S and we produce a collection U of Carlson–Simpson spaces of sufficiently large

dimension which are all contained in S′. These Carlson–Simpson spaces are not

pairwise disjoint since we are not aiming at producing a tiling. Instead, we are

mainly interested in whether a sufficient portion of them behaves as expected, in

the sense that for “many” U ∈ U the density of the set D in U is close enough to

the relative density of D in S. If this is the case, then we can easily achieve the

density increment. Otherwise, using coloring arguments, we show that for “almost

every” Carlson–Simpson space U ∈ U the restriction of D on U is quite “thin”.

We then remove from S′ an appropriately chosen subset of ∪U and we repeat this

process for the resulting set. Finally, it is shown that this algorithm will indeed

terminate, thus completing the proof of this step.

We also note that in order to execute the steps described above, we will rep-

resent any finite subset of A<N as a family of measurable events indexed by an

appropriately chosen finite-dimensional Carlson–Simpson space of A<N. The phi-

losophy is identical to that in Section 9.4, though the details are somewhat different

since we need to work with iterated convolutions. In particular, the reader is ad-

vised to review the material in Section 9.2.

9.5.2. The main result. Let k ∈ N with k > 2 and assume that for every

positive integer l and every 0 < β 6 1 the number DCS(k, l, β) has been estimated.
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This assumption permits us to introduce some numerical invariants. Specifically,

for every positive integer m and every 0 < γ 6 1 we set

m̄ = m̄(m, γ) = d256γ−3me (9.107)

and

M = Λ(k, m̄, γ2/32)
(9.48)

= d32γ−2DCS(k, m̄, γ2/32)e. (9.108)

Also let

α = α(k,m, γ) = Θ(k, m̄, γ2/32) and p0 = p0(k,m, γ) = bα−1c (9.109)

where Θ(k, m̄, γ2/32) is as in (9.49). Finally, we define three sequences (np), (νp)

and (Np) in N—also depending on the parameters k,m and γ—recursively by the

rule n0 = ν0 = N0 = 0 and
np+1 = m̄+ (m̄+ 1)Np,

νp+1 = CS(k + 1, np+1, m̄, m̄+ 1),

Np+1 = CS(k + 1,max{νp+1,M}, m̄, 2).

(9.110)

The following theorem is the main result of this section.

Theorem 9.38. Let k ∈ N with k > 2 and assume that for every positive

integer l and every 0 < β 6 1 the number DCS(k, l, β) has been estimated.

Let 0 < γ, δ 6 1, A an alphabet with |A| = k + 1 and a, b ∈ A with a 6= b. Also

let V be a finite-dimensional Carlson–Simpson space of A<N and I a nonempty

subset of {0, . . . ,dim(V )}. Assume that we are given three subsets S, T and D of

A<N with the following properties.

(a) The set S is (a, b)-insensitive in V .

(b) For every i ∈ I we have densV (i)(S ∩ T ∩D) > (δ + 2γ) densV (i)(S ∩ T )

and densV (i)(S ∩ T ) > 2γ.

Finally, let m be a positive integer and suppose that

|I| > RegCS(k + 1, 2, Np0 + 1, γ2/2)

where p0 and Np0 are defined in (9.109) and (9.110) respectively for the parameters

k,m and γ. Then there exist a finite-dimensional Carlson–Simpson subspace W of

V and a subset I ′ of {0, . . . ,dim(W )} of cardinality m such that

densW (i)(T ∩D) > (δ + γ/2) densW (i)(T )

and

densW (i)(T ) >
γ3

256

for every i ∈ I ′.

The proof of Theorem 9.38 occupies the bulk of the present section and is given

in Subsections 9.5.3 and 9.5.4. Finally, in Subsection 9.5.5 we use Theorem 9.38 to

complete the proof of the second step of the inductive scheme described in (9.75).
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9.5.3. Preliminary lemmas. We are about to present some results which are

part of the proof of Theorem 9.38 but are independent of the rest of the argument.

We start with the following variant of Lemma 9.11.

Lemma 9.39. Let 0 < γ, δ 6 1. Also let A be a finite alphabet with |A| > 2, V a

finite-dimensional Carlson–Simpson space of A<N, N ∈ N and I ⊆ {0, . . . ,dim(V )}
such that

|I| > RegCS(|A|, 2, N + 1, γ2/2). (9.111)

Finally, let E,D be subsets of A<N such that for every i ∈ I we have

densV (i)(E ∩D) > (δ + 2γ) densV (i)(E) and densV (i)(E) > 2γ. (9.112)

Then there exists L ⊆ I with |L| = N + 1 and satisfying the following property. Let

cL,V be the convolution operation associated with (L, V ), and set E = c−1
L,V (E) and

D = c−1
L,V (D). Then for every t ∈ A<|L| we have

densΩL(Et ∩ Dt) > (δ + γ) densΩL(Et) and densΩL(Et) > γ (9.113)

where Et and Dt are the sections at t of E and D respectively.

Proof. We set F =
{

I−1
V (E), I−1

V (E ∩D)
}

where IV is the canonical isomor-

phism associated with V (see Definition 1.10). By Lemma 6.24 and (9.111), there

exists a subset L = {l0 < · · · < l|L|−1} of I with |L| = N + 1 such that the family

F is (γ2/2, L)-regular. We will show that the set L is as desired. Indeed, by (9.4),

we have E ∩ D = c−1
L

(
I−1
V (E ∩D)

)
and E = c−1

L

(
I−1
V (E)

)
. Fix i ∈ {0, . . . , |L| − 1}

and let t ∈ Ai be arbitrary. By Lemma 9.11, we see that

(a) |densΩL(Et ∩ Dt)− densAli
(
I−1
V (E ∩D)

)
| 6 γ2/2 and

(b) |densΩL(Et)− densAli
(
I−1
V (E)

)
| 6 γ2/2.

Since densAli
(
I−1
V (X)

)
= densV (li)(X) for every X ⊆ V (li), we obtain that

|densΩL(Et ∩ Dt)− densV (li)(E ∩D)| 6 γ2/2 (9.114)

and

|densΩL(Et)− densV (li)(E)| 6 γ2/2. (9.115)

Combining (9.112), (9.114) and (9.115), we conclude that the two estimates in

(9.113) are satisfied. The proof of Lemma 9.39 is completed. �

The next lemma asserts that certain metric properties are preserved by iterated

convolutions operations.

Lemma 9.40. Let A be a finite alphabet with |A| > 2, d a positive integer

and (L,V) =
(
(Ln)dn=0, (Vn)dn=0

)
an A-compatible pair. Also let E,D ⊆ A<N.

For every p ∈ {0, . . . , d} set (Lp,Vp) =
(
(Ln)pn=0, (Vn)pn=0

)
, Ep = c−1

Lp,Vp
(E) and

Dp = c−1
Lp,Vp

(D), and for every t ∈ A<|Lp| let Ept and Dpt be the sections at t of Ep
and Dp respectively. Finally, let λ > 0 and 0 < γ 6 1. Then the following hold.

(a) If densΩL0
(E0
s ∩D0

s) > λ ·densΩL0
(E0
s ) for every s ∈ A<|L0|, then for every

p ∈ [d] and every t ∈ A<|Lp| we have densΩLp
(Ept ∩D

p
t ) > λ ·densΩLp

(Ept ).

(b) If densΩL0
(E0
s ) > γ for every s ∈ A<|L0|, then for every p ∈ [d] and every

t ∈ A<|Lp| we have densΩLp
(Ept ) > γ.
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Proof. Let p ∈ [d] and t ∈ A<|Lp| be arbitrary. By Corollary 9.18, we have

densΩLp
(Ept ∩ D

p
t ) = Es∈CtdensΩLp−1

(Ep−1
s ∩ Dp−1

s ) (9.116)

and

densΩLp
(Ept ) = Es∈CtdensΩLp−1

(Ep−1
s ) (9.117)

where, as in (9.40), Ct = {cLp,Vp(t, ω) : ω ∈ ΩLp}. Therefore, the result follows by

induction on p and using (9.116) and (9.117). �

We proceed with the following variant of Lemma 9.17.

Lemma 9.41. Let A, d and (L,V) be as in Lemma 9.40. Let p ∈ {0, . . . , d− 1}
and set (Lp,Vp) =

(
(Ln)pn=0, (Vn)pn=0

)
and (Lp+1,Vp+1) =

(
(Ln)p+1

n=0, (Vn)p+1
n=0

)
.

Denote by qp+1 the quotient map associated with (Lp+1,Vp+1) defined in (9.33).

Let X be a subset of A<|Lp|×ΩLp . Also let t ∈ A<|Lp+1| and Y a nonempty subset

of Ct ×ΩLp where Ct = {cLp+1,Vp+1
(t, ω) : ω ∈ ΩLp+1

}. We set X = q−1
p+1(X ) and

Y = q−1
p+1(Y). Then Y is a subset of {t} ×ΩLp+1

and

densY (X ) = densY(X ). (9.118)

In particular, for every X ⊆ V0 we have

densY

(
c−1
Lp+1,Vp+1

(X)
)

= densY
(
c−1
Lp,Vp

(X)
)
. (9.119)

Proof. Recall that, by Lemma 9.17, we have q−1
p+1(Ct ×ΩLp) = {t} ×ΩLp+1 .

This implies that Y ⊆ {t} ×ΩLp+1 . Moreover, X ∩ Y = q−1
p+1(X ∩ Y) and so

densY (X ) =
|X ∩ Y |
|Y |

=
dens{t}×ΩLp+1

(X ∩ Y )

dens{t}×ΩLp+1
(Y )

(9.41)
=

densCt×ΩLp
(X ∩ Y)

densCt×ΩLp
(Y)

=
|X ∩ Y|
|Y|

= densY(X ).

Finally, by Fact 9.14, we have c−1
Lp+1,Vp+1

(X) = q−1
p+1

(
c−1
Lp,Vp

(X)
)

for every X ⊆ V0,

and so (9.119) follows from (9.118). The proof of Lemma 9.41 is completed. �

The last result of this subsection shows that iterated convolutions operations

are compatible with the notion of (a, b)-equivalence introduced in Subsection 2.1.1.

Lemma 9.42. Let A, d and (L,V) be as in Lemma 9.40. Let p ∈ {0, . . . , d} and

set (Lp,Vp) =
(
(Ln)pn=0, (Vn)pn=0

)
. Also let t, t′ ∈ A<|Lp| and a, b ∈ A with a 6= b.

Then the following hold.

(a) Let ω ∈ ΩLp and set s = cLp,Vp
(t,ω) and s′ = cLp,Vp

(t′,ω). Then t and

t′ are (a, b)-equivalent if and only if s and s′ are (a, b)-equivalent.

(b) Let S be a subset of A<N. Set Sp = c−1
Lp,Vp

(S) and let Spt and Spt′ be the

sections of Sp at t and t′ respectively. If S is (a, b)-insensitive in V0 and

t, t′ are (a, b)-equivalent, then Spt and Spt′ coincide.
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Proof. (a) By induction on p. The initial case “p = 0” follows immediately

by Definition 9.3. Let p ∈ {0, . . . , d−1} and assume that the result has been proved

up to p. Fix ω ∈ ΩLp+1
and write ω as (ω0, ω) where ω0 ∈ ΩLp and ω ∈ ΩLp+1

.

Set y = cLp+1,Vp(t, ω) and y′ = cLp+1,Vp(t′, ω) and notice that

t, t′ are (a, b)-equivalent⇔ y, y′ are (a, b)-equivalent. (9.120)

On the other hand, by (9.31), we have s = cLp,Vp(y,ω0) and s′ = cLp,Vp(y′,ω0).

Thus, invoking our inductive assumptions, we obtain that

y, y′ are (a, b)-equivalent⇔ s, s′ are (a, b)-equivalent. (9.121)

By (9.120) and (9.121), the proof of the first part of the lemma is completed.

(b) Let ω ∈ ΩLp be arbitrary. By part (a) and using the fact that S is

(a, b)-insensitive in V0, we see that cLp,Vp(t,ω) ∈ S if and only if cLp,Vp(t′,ω) ∈ S,

which is equivalent to saying that ω ∈ Spt if and only if ω ∈ Spt′ . It follows that

Spt = Spt′ and the proof of Lemma 9.42 is completed. �

9.5.4. Proof of Theorem 9.38. First we apply Lemma 9.39 and we obtain

L ⊆ I with |L| = Np0 + 1 such that, setting S = c−1
L,V (S), T = c−1

L,V (T ) and

D = c−1
L,V (D), for every s ∈ A<|L| we have

densΩL(Ss ∩ Ts ∩ Ds) > (δ + γ) densΩL(Ss ∩ Ts) (9.122)

and

densΩL(Ss ∩ Ts) > γ (9.123)

where Ss, Ts and Ds are the sections at s of S, T and D respectively.

We now argue by contradiction. Specifically, if Theorem 9.38 is not satisfied,

then we will determine an integer d ∈ [p0] and we will select

(a) an A-compatible pair
(
(Ln)dn=0, (Vn)dn=0

)
with L0 = L and V0 = V , and

(b) for every p ∈ [d], every ` ∈ [p] and every s ∈ A<|Lp| a family Q`,ps of

subsets of ΩLp where Lp = (Ln)pn=0 and Vp = (Vn)pn=0.

The selection is done recursively so that, setting

Sp = c−1
Lp,Vp

(S), T p = c−1
Lp,Vp

(T ) and Dp = c−1
Lp,Vp

(D)

for every p ∈ [d], the following conditions are satisfied.

(C1) The set Lp has cardinality Np0−p + 1.

(C2) For every s ∈ A<|Lp| and every ` ∈ [p] the family Q`,ps consists of pairwise

disjoint subsets of the section Sps of Sp at s.

(C3) If p > 2, then for every s ∈ A<|Lp| the sets ∪Q1,p
s , . . . ,∪Qp,ps are pairwise

disjoint.

(C4) For every s, s′ ∈ A<|Lp| with |s| = |s′|, every ` ∈ [p] and every Q ∈ Q`,ps
and Q′ ∈ Q`,ps′ we have densΩLp

(Q) = densΩLp
(Q′).

(C5) For every s ∈ A<|Lp| and every ` ∈ [p] we say that an element Q of Q`,ps
is good provided that

densQ(Sps ∩ T ps ∩ Dps) > (δ + γ/2) densQ(Sps ∩ T ps )
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and

densQ(Sps ∩ T ps ) > γ3/256.

Then, setting

G`,ps = {Q ∈ Q`,ps : Q is good},

we have
|G`,ps |
|Q`,ps |

<
γ3

256
. (9.124)

(C6) For every s ∈ A<|Lp| and every ` ∈ [p] we have densΩLp
(∪Q`,ps ) > α where

α is as in (9.109).

(C7) For every s, s′ ∈ A<|Lp| if s and s′ are (a, b)-equivalent, then for every

` ∈ [p] we have Q`,ps = Q`,ps′ .

(C8) If p = d, then there exists t0 ∈ A<|Ld| such that

densΩLd

(
Sdt0 \

d⋃
`=1

∪Q`,dt0
)
< γ2/8. (9.125)

Assuming that the above selection has been carried out, the proof of the theorem

is completed as follows. Let t0 be as in condition (C8). Since L0 = L and V0 = V ,

by (9.122), (9.123) and Lemma 9.40, we see that

densΩLd
(Sdt0 ∩ T

d
t0 ∩ D

d
t0) > (δ + γ) densΩLd

(Sdt0 ∩ T
d
t0) (9.126)

and

densΩLd
(Sdt0 ∩ T

d
t0) > γ. (9.127)

For every ` ∈ [d] we set Q` = ∪Q`,dt0 . By (9.125), the family {Q` : ` ∈ [d]} is an

“almost cover” of Sdt0 , and a fortiori an “almost cover” of Sdt0 ∩ T
d
t0 . Therefore, by

(9.126), (9.127) and applying Lemma E.6 for “λ = δ + γ”, “β = γ” and “ε = γ/4”,

there exists `0 ∈ [d] such that

densQ`0
(Sdt0 ∩ T

d
t0 ∩ D

d
t0) > (δ + 3γ/4) densQ`0

(Sdt0 ∩ T
d
t0) (9.128)

and

densQ`0
(Sdt0 ∩ T

d
t0) > γ2/16. (9.129)

Next observe that, by conditions (C2) and (C4), the family Q`0,dt0 is a partition of

Q`0 into sets of equal size. Taking into account this observation and the estimates

in (9.128) and (9.129), by a second application of Lemma E.6 for “λ = δ + 3γ/4”,

“β = γ2/16” and “ε = γ/4”, we conclude that

|G`0,dt0 |
|Q`0,dt0 |

>
γ3

256
.

This contradicts (9.124), as desired.

The rest of the proof is devoted to the description of the recursive selection.

For “p = 0” we set L0 = L and V0 = V . Let p ∈ {0, . . . , p0} and assume that the

selection has been carried out up to p. We consider the following cases.

Case 1: we have p = p0. Notice first that, by condition (C1), the set Lp is a

singleton, and so A<|Lp| consists only of the empty word. We set t0 = ∅ and d = p0.
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With these choices the recursive selection will be completed once we show that the

estimate in (9.125) is satisfied. Indeed, by conditions (C3) and (C6), we have

densΩLd

( d⋃
`=1

∪Q`,dt0
)
> d · α = p0 · α

(9.109)
> 1− γ2/8

which implies, of course, the estimate in (9.125).

Case 2: we have 1 6 p < p0 and there exists t0 ∈ A<|Lp| such that

densΩLp

(
Spt0 \

p⋃
`=1

∪Q`,pt0
)
< γ2/8.

In this case we set d = p and we terminate the construction.

Case 3: either p = 0, or 1 6 p < p0 and

densΩLp

(
Sps \

p⋃
`=1

∪Q`,ps
)
> γ2/8 (9.130)

for every s ∈ A<|Lp|. If p = 0, then for every s ∈ A<|L0| we set

Γs = S0
s . (9.131)

Otherwise, for every s ∈ A<|Lp| let

Γs = Sps \
( p⋃
`=1

∪Q`,ps
)
. (9.132)

We have the following fact.

Fact 9.43. For every s ∈ A<|Lp| we have densΩLp
(Γs) > γ2/8. Moreover, if

s, s′ ∈ A<|Lp| are (a, b)-equivalent, then Γs = Γs′ .

Proof. Let s ∈ A<|Lp|. If p = 0, then we have

densΩLp
(Γs) = densΩL0

(S0
s ) > densΩL0

(S0
s ∩ T 0

s )
(9.123)

> γ > γ2/8.

On the other hand, if p > 1, then the desired estimate follows from (9.130). Finally,

let s, s′ ∈ A<|Lp| be (a, b)-equivalent. By Lemma 9.42 (and condition (C7) if p > 1),

we obtain that Sps = Sps′ . The proof of Fact 9.43 is completed. �

For every Carlson–Simpson subspace U of A<|Lp| we set

ΓU =
⋂
s∈U

Γs. (9.133)

Also let m̄ and M be as in (9.107) and (9.108) respectively and notice that, by

condition (C1), we have

|Lp| = Np0−p + 1
(9.110)

= CS(k + 1,max{νp0−p,M}, m̄, 2) + 1. (9.134)

Therefore, by Fact 9.43 and (9.134), we may apply Corollary 9.24 and we obtain a

Carlson–Simpson subspace X of A<|Lp| with dim(X) = νp0−p such that

densΩLp
(ΓU ) > Θ(k, m̄, γ2/32)

(9.109)
= α (9.135)
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for every m̄-dimensional Carlson–Simpson subspace U of X.

Next, for every i ∈ {0, . . . , m̄} and every Carlson–Simpson subspace U of X

with dim(U) = m̄ let Gi,U be the set of all ω ∈ ΓU satisfying

(P1) densU(i)×{ω}(Sp ∩ T p ∩ Dp) > (δ + γ/2) densU(i)×{ω}(Sp ∩ T p), and

(P2) densU(i)×{ω}(Sp ∩ T p) > γ3/256.

Our assumption that Theorem 9.38 does not hold true, reduces to the following

property of the sets Gi,U .

Fact 9.44. For every m̄-dimensional Carlson–Simpson subspace U of X there

exists i ∈ {0, . . . , m̄} such that densΓU (Gi,U ) < γ3/256.

Proof. Assume, towards a contradiction, that there exists a m̄-dimensional

Carlson–Simpson subspace U of X such that for every i ∈ {0, . . . , m̄} we have

densΓU (Gi,U ) > γ3/256. For every ω ∈ ΓU we set

Iω =
{
i ∈ {0, . . . , m̄} : ω ∈ Gi,U

}
.

By Lemma E.4, there exists ω0 ∈ ΓU such that |Iω0
| > (m̄+1)γ3/256. Hence, by the

choice of m̄ in (9.107), we have |Iω0 | > m. We define Uω0 = {cLp,Vp(s,ω0) : s ∈ U}
and we observe that, by Lemma 9.15, the set Uω0 is a Carlson–Simpson subspace

of V0 = V of dimension m̄. By Lemma 9.16 applied to the sets S∩T ∩D and S∩T ,

for every i ∈ {0, . . . , m̄} we have

densUω0
(i)(S ∩ T ∩D) = densU(i)×{ω0}(S

p ∩ T p ∩ Dp)

and

densUω0
(i)(S ∩ T ) = densU(i)×{ω0}(S

p ∩ T p).
The above equalities and the fact that ω0 ∈ Gi,U for every i ∈ Iω0

yield that

densUω0
(i)(S ∩ T ∩D) > (δ + γ/2) densUω0

(i)(S ∩ T )

and

densUω0
(i)(S ∩ T ) >

γ3

256
for every i ∈ Iω0

. Finally, observe that Uω0
is contained in S since ω0 ∈ ΓU .

Therefore, the Carlson–Simpson space Uω0
and the set Iω0

satisfy the conclusion

of Theorem 9.38, in contradiction with our assumption. The proof of Fact 9.44 is

completed. �

We are now in a position to define the new objects of the recursive selection.

Step 1: selection of Vp+1 and Lp+1. First, we will use a coloring argument to

control the integer i obtained by Fact 9.44. Specifically, by Theorem 4.21 and the

fact that

dim(X) = νp0−p
(9.110)

= CS(k + 1, np0−p, m̄, m̄+ 1),

there exist i0 ∈ {0, . . . , m̄} and a Carlson–Simpson subspace Y of X with

dim(Y ) = np0−p
(9.110)

= m̄+ (m̄+ 1)Np0−(p+1) (9.136)

and such that for every m̄-dimensional Carlson–Simpson subspace U of Y we have

densΓU (Gi0,U ) < γ3/256.
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We define

Vp+1 = Y and Lp+1 = {i0 + (i0 + 1)i : 0 6 i 6 Np0−(p+1)}. (9.137)

Notice that

|Lp+1| = Np0−(p+1) + 1 (9.138)

and so with these choices condition (C1) is satisfied. Also observe that, by (9.136)

and (9.137), we have Lp+1 ⊆ {0, . . . ,dim(Vp+1)} and Vp+1 ⊆ X ⊆ A<|Lp|. Thus,

the pair (Lp+1,Vp+1) =
(
(Ln)p+1

n=0, (Vn)p+1
n=0

)
is A-compatible. In what follows, for

notational simplicity, we shall denote by qp+1 the quotient map associated with the

pair (Lp+1,Vp+1) defined in (9.33).

Step 2: selection of the families Qp+1,p+1
t . This is the most important part of

the recursive selection. The members of the families Qp+1,p+1
t are, essentially, the

sets ΓU where U varies over all m̄-dimensional Carlson–Simpson subspaces of Vp+1.

However, in order to carry out the next steps of the selection, we have to group

them in a canonical way.

We proceed to the details. Let t ∈ A<|Lp+1| and let i ∈ {0, . . . , |Lp+1| − 1} be

the unique integer such that t ∈ Ai. As in (9.6), we set

Ct =
{

cLp+1,Vp+1
(t, ω) : ω ∈ ΩLp+1

}
. (9.139)

By Fact 9.4, we have Ct ⊆ Vp+1

(
i0 + (i0 + 1)i

)
. If i > 1, then let

Zt =
{

cLp+1
(t � (i− 1), ω)at(i− 1) : ω ∈ ΩLp+1

}
(9.140)

and observe that Zt ⊆ A(i0+1)i. On the other hand, if i = 0 (that is, if t is the

empty word), then we set Z∅ = A0 = {∅}. Next, for every z ∈ Zt let

Rz = {zax : x ∈ A<m̄+1}. (9.141)

Notice that the family {Rz : z ∈ Zt} consists of pairwise disjoint m̄-dimensional

Carlson–Simpson spaces and observe that for every z ∈ Zt we have

Rz ⊆ A<m̄+(i0+1)i+1
(9.136)

⊆ A<dim(Vp+1)+1.

We also set

Ut =
{

IVp+1
(Rz) : z ∈ Zt

}
(9.142)

where IVp+1
is the canonical isomorphism associated with Vp+1 (see Definition 1.10).

Before we analyze the above definitions, let us give a specific example. Consider

the alphabet A = {a, b, c, d} and assume for simplicity that Vp+1 = A<n+1 where

the integer n is large enough compared to i0 (hence, the map IVp+1
is the identity).

Let t = (a, b, a) ∈ A3 and observe that t � 2 = (a, b). Also notice that Ct is

the set of all z ∈ A4i0+3 such that z(i0) = t(0) = a, z(2i0 + 1) = t(1) = b and

z(3i0 + 2) = t(2) = a. On the other hand, the set Zt consists of all z ∈ A3i0+3 such

that z(i0) = t(0) = a, z(2i0 + 1) = t(1) = b and z(3i0 + 2) = t(2) = a. It is easy

to see that in this example the family {U(i0) : U ∈ Ut} is a partition of the set Ct.
This is actually a general property as is shown in the following fact.
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Fact 9.45. Let t ∈ A<|Lp+1|. Then we have

{cLp+1
(t, ω) : ω ∈ ΩLp+1

} = {zax : z ∈ Zt and x ∈ Ai0}. (9.143)

Moreover, the set Ut consists of pairwise disjoint m̄-dimensional Carlson–Simpson

subspaces of Vp+1 and

Ct =
⋃
U∈Ut

U(i0). (9.144)

Proof. By Definition 9.3, we see that (9.143) is satisfied. It is also clear that

Ut consists of pairwise disjoint m̄-dimensional Carlson–Simpson subspaces of Vp+1.

Finally, notice that

Ct
(9.139)

= IVp+1

(
{cLp+1

(t, ω) : ω ∈ ΩLp+1
}
)

(9.143)
=

⋃
z∈Zt

IVp+1

(
{zax : x ∈ Ai0}

)
(9.141)

=
⋃
z∈Zt

IVp+1

(
Rz(i0)

) (9.142)
=

⋃
U∈Ut

U(i0)

and the proof of Fact 9.45 is completed. �

We are now ready to define the families Qp+1,p+1
t . Specifically, let t ∈ A<|Lp+1|

and for every U ∈ Ut and every ω ∈ ΓU we define

Qω,U
t = {ω} ×

{
ω ∈ ΩLp+1

: cLp+1,Vp+1
(t, ω) ∈ U(i0)

}
⊆ ΩLp+1

. (9.145)

We isolate, for future use, the following two representations of the sets Qω,U
t .

(R1) Let Ct be as in (9.139). Moreover, as in (9.8), for every s ∈ Ct we set

Ωst = {ω ∈ ΩLp+1
: cLp+1,Vp+1

(t, ω) = s}. Then observe that

Qω,U
t = {ω} ×

⋃
s∈U(i0)

Ωst . (9.146)

(R2) By Fact 9.45, the set U(i0) is contained in Ct. Therefore,

{t} ×Qω,U
t = q−1

p+1

(
U(i0)× {ω}

)
. (9.147)

Finally, we define

Qp+1,p+1
t = {Qω,U

t : U ∈ Ut and ω ∈ ΓU}. (9.148)

The second step of the recursive selection is completed.

Step 3: selection of the families Q`,p+1
t for every ` ∈ [p]. In this step we will

not introduce something new, but only “copy” in the space ΩLp+1
what we have

constructed so far. In particular, this step is meaningful only if p > 1.

So let p > 1. Fix t ∈ A<|Lp+1| and let Ct be as in (9.139). For every s ∈ Ct,
every ` ∈ [p] and every Q ∈ Q`,ps we define

Cs,`,Qt = Q× {ω ∈ ΩLp+1
: cLp+1,Vp+1

(t, ω) = s} ⊆ ΩLp+1
. (9.149)

As in the previous step, we have the following representations of these sets.
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(R3) Since Ωst = {ω ∈ ΩLp+1
: cLp+1,Vp+1

(t, ω) = s}, we see that

Cs,`,Qt = Q× Ωst . (9.150)

(R4) We have

{t} × Cs,`,Qt = q−1
p+1

(
{s} ×Q

)
. (9.151)

Finally, let

Q`,p+1
t = {Cs,`,Qt : s ∈ Ct and Q ∈ Q`,ps }. (9.152)

The recursive selection is completed.

Step 4: verification of the inductive assumptions. Recall that condition (C1)

has already been checked in Step 1. Conditions (C2)–(C7) will be verified in the

following series of claims.

Claim 9.46. Let t ∈ A<|Lp+1|. Then for every ` ∈ [p + 1] the family Q`,p+1
t

consists of pairwise disjoint subsets of Sp+1
t . That is, condition (C2) is satisfied.

Proof. Assume that p > 1 and ` ∈ [p]. First we will show that the family

Q`,p+1
t consists of pairwise disjoint sets. To this end, let s, s′ ∈ Ct, Q ∈ Q`,ps and

Q′ ∈ Q`,ps′ such that (s,Q) 6= (s′, Q′). If s = s′, then we have Q 6= Q′ which

implies, by our inductive assumptions, that Q∩Q′ = ∅. By (9.150), we obtain that

Cs,`,Qt ∩ Cs
′,`,Q′

t = ∅. Otherwise, if s 6= s′, then by Fact 9.5 we have Ωst ∩ Ωs
′

t = ∅.
Invoking (9.150) once again, we conclude that Cs,`,Qt ∩ Cs

′,`,Q′

t = ∅. Next, let

Cs,`,Qt ∈ Q`,p+1
t for some s ∈ Ωt and Q ∈ Q`,ps . By our inductive assumptions, we

have Q ⊆ Sps or equivalently {s} ×Q ⊆ Sp. Hence, by Fact 9.14,

{t} × Cs,`,Qt

(9.151)
= qp+1

(
{s} ×Q

)
⊆ q−1

p+1(Sp) = Sp+1.

We now consider the case “` = p + 1”. Let U,U ′ ∈ Ut, ω ∈ ΓU and ω′ ∈ ΓU ′ ,

and assume that (U,ω) 6= (U ′,ω′). We need to show that the sets Qω,U
t and Qω′,U ′

t

are disjoint. Indeed, if U = U ′, then we have ω 6= ω′ which implies, by (9.146),

that Qω,U
t ∩ Qω′,U ′

t = ∅. Otherwise, by Fact 9.45, the Carlson–Simpson spaces U

and U ′ are disjoint. This implies, in particular, that U(i0) ∩ U ′(i0) = ∅ and so, by

(9.147), we see that Qω,U
t ∩Qω′,U ′

t = ∅. Finally, let U ∈ Ut and ω ∈ ΓU . By (9.132)

and (9.133), we have U(i0)× {ω} ⊆ Sp. Therefore, by Fact 9.14, we conclude that

{t} ×Qω,U
t

(9.147)
= qp+1

(
U(i0)× {ω}

)
⊆ q−1

p+1(Sp) = Sp+1.

The proof of Claim 9.46 is completed. �

Claim 9.47. Let t ∈ A<|Lp+1|. If p > 1, then the sets ∪Q1,p+1
t , . . . ,∪Qp+1,p+1

t

are pairwise disjoint. That is, condition (C3) is satisfied.

Proof. Let ` ∈ [p]. Also let `′ ∈ [p + 1] with `′ 6= `. We need to show that

the sets ∪Q`,p+1
t and ∪Q`

′,p+1
t are disjoint. If `′ 6 p, then this follows immediately

from (9.150) and our inductive assumptions. Next, assume that `′ = p+ 1 and let

U ∈ Ut and ω ∈ ΓU be arbitrary. By (9.132) and (9.133), we see that ω 6∈ ∪Q`,ps for

every s ∈ U . Using this observation, the result follows from (9.147) and (9.151). �
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Claim 9.48. Let t, t′ ∈ A<|Lp+1| with |t| = |t′|. Then for every ` ∈ [p + 1],

every Q ∈ Q`,p+1
t and every Q′ ∈ Q`,p+1

t′ we have densΩLp+1
(Q) = densΩLp+1

(Q′).

That is, condition (C4) is satisfied.

Proof. Fix ` ∈ [p+ 1], Q ∈ Q`,p+1
t and Q′ ∈ Q`,p+1

t′ . Assume that p > 1 and

` ∈ [p]. By (9.150), there exist s ∈ Ct, s′ ∈ Ct′ , Q0 ∈ Q`,ps and Q′0 ∈ Q
`,p
s′ such that

Q = Q0 × Ωst and Q′ = Q′0 × Ωs
′

t′ .

Since |t| = |t′|, by Fact 9.4, we see that |Ct| = |Ct′ | and |s| = |s′|. By our inductive

assumptions, this implies that

densΩLp
(Q0) = densΩLp

(Q′0) (9.153)

and moreover, by Fact 9.5,

densΩLp+1
(Ωst ) =

1

|Ct|
=

1

|Ct′ |
= densΩLp+1

(Ωs
′

t′ ). (9.154)

Therefore, combining (9.153) and (9.154), we obtain that

densΩLp+1
(Q) = densΩLp+1

(Q0 × Ωst )

= densΩLp
(Q0) · densΩLp+1

(Ωst )

= densΩLp
(Q′0) · densΩLp+1

(Ωs
′

t′ ) = densΩLp+1
(Q′).

Next we deal with the case “` = p+1”. By (9.146), there exist U ∈ Ut, U ′ ∈ Ut′ ,
ω ∈ ΓU and ω′ ∈ ΓU ′ such that

Q = {ω} ×
⋃

s∈U(i0)

Ωst and Q′ = {ω′} ×
⋃

s′∈U ′(i0)

Ωs
′

t′ .

By Fact 9.45, we have U(i0) ⊆ Ct, U ′(i0) ⊆ Ct′ and |U(i0)| = |U ′(i0)| = |Ai0 |. On

the other hand, by Fact 9.5, the families {Ωst : s ∈ Ct} and {Ωs′t′ : s′ ∈ Ct′} consist

of pairwise disjoint sets. Also recall that |Ct| = |Ct′ |. Thus, by (9.154),

densΩLp+1

( ⋃
s∈U(i0)

Ωst

)
=
|U(i0)|
|Ct|

=
|U ′(i0)|
|Ct′ |

= densΩLp+1

( ⋃
s′∈U ′(i0)

Ωs
′

t′

)
which implies that

densΩLp+1
(Q) = densΩLp+1

(
{ω} ×

⋃
s∈U(i0)

Ωst

)
= densΩLp

(
{ω}

)
· densΩLp+1

( ⋃
s∈U(i0)

Ωst

)
= densΩLp

(
{ω′}

)
· densΩLp+1

( ⋃
s′∈U ′(i0)

Ωs
′

t′

)
= densΩLp+1

(Q′).

The proof of Claim 9.48 is completed. �

Claim 9.49. Let t ∈ A<|Lp+1|. Then for every ` ∈ [p+ 1] we have

|G`,p+1
t |
|Q`,p+1

t |
<

γ3

256
.

That is, condition (C5) is satisfied.



9.5. AN EXHAUSTION PROCEDURE: ACHIEVING THE DENSITY INCREMENT 205

Proof. First assume that p > 1 and ` ∈ [p]. For every s ∈ Ct let

Qs =
{
Cs,`,Qt : Q ∈ Q`,ps

}
and Gs = G`,p+1

t ∩Qs.

By (9.151), the family {Qs : s ∈ Ct} is a partition of Q`,p+1
t . Also notice that the

family {Gs : s ∈ Ct} is the induced partition of G`,p+1
t . Therefore,

|Q`,p+1
t | =

∑
s∈Ct

|Qs| and |G`,p+1
t | =

∑
s∈Ct

|Gs|. (9.155)

We have the following representation of the family Gs.

Subclaim 9.50. For every s ∈ Ct we have Gs = {Cs,`,Qt : Q ∈ G`,ps }.

Proof of Subclaim 9.50. Fix s ∈ Ct and let C ∈ Qs be arbitrary. By

(9.150), we see that the map Q`,ps 3 Q 7→ Cs,`,Qt ∈ Qs is a bijection. Hence, there

exists a unique Q ∈ Q`,ps such that C = C`,s,Qt . In particular, by (9.151), we have

{t} × C = q−1
p+1

(
{s} ×Q

)
and so, by Fact 9.14 and Lemma 9.41, we obtain that

densC(Sp+1
t ∩ T p+1

t ∩ Dp+1
t ) = dens{t}×C(Sp+1 ∩ T p+1 ∩ Dp+1)

= densq−1
p+1({s}×Q)

(
q−1
p+1(Sp ∩ T p ∩ Dp)

)
= dens{s}×Q(Sp ∩ T p ∩ Dp)
= densQ(Sps ∩ T ps ∩ Dps)

and, similarly,

densC(Sp+1
t ∩ T p+1

t ) = densQ(Sps ∩ T ps ).

By the above equalities and the definition of a good set described in condition (C5),

we conclude that C ∈ Gs if and only if Q ∈ G`,ps which is equivalent to saying that

Gs = {Cs,`,Qt : Q ∈ G`,ps }. The proof of Subclaim 9.50 is completed. �

We are in a position to complete the proof for the case “` ∈ [p]”. As we have

already mentioned, for every s ∈ Ct the map Q`,ps 3 Q 7→ Cs,`,Qt ∈ Qs is a bijection

and so |Qs| = |Q`,ps |. Moreover, by Subclaim 9.50, we have |Gs| = |G`,ps | for every

s ∈ Ct. Hence, by (9.155), we see that

|Q`,p+1
t | =

∑
s∈Ct

|Q`,ps | and |G`,p+1
t | =

∑
s∈Ct

|G`,ps |. (9.156)

On the other hand, by our inductive assumptions, for every s ∈ Ct we have

|G`,ps | < (γ3/256) · |Q`,ps |. (9.157)

Therefore,

|G`,p+1
t |
|Q`,p+1

t |
(9.156)

=

∑
s∈Ct |G

`,p
s |∑

s∈Ct |Q
`,p
s |

(9.157)
<

γ3

256
.

Next we consider the case “` = p + 1”. The argument is similar. Specifically,

for every U ∈ Ut let

QU =
{
Qω,U
t : ω ∈ ΓU} and GU = Gp+1,p+1

t ∩QU .
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By Fact 9.45 and (9.147), the family {QU : U ∈ Ut} is a partition of Qp+1,p+1
t while

the family {GU : U ∈ Ut} is the induced partition of Gp+1,p+1
t . Hence,

|Qp+1,p+1
t | =

∑
U∈Ut

|QU | and |Gp+1,p+1
t | =

∑
U∈Ut

|GU |. (9.158)

Also recall that Gi0,U is the set of all ω ∈ ΓU satisfying properties (P1) and (P2).

We have the following analogue of Subclaim 9.50.

Subclaim 9.51. For every U ∈ Ut we have GU = {Qω,U
t : ω ∈ Gi0,U}.

Proof of Subclaim 9.51. Fix U ∈ Ut and let C ∈ QU be arbitrary. By

(9.146), the map ΓU 3 ω 7→ Qω,U
t ∈ QU is a bijection and so there exists a unique

ω ∈ ΓU such that C = Qω,U
t . By (9.147), we see that {t}×C = q−1

p+1

(
U(i0)×{ω}

)
.

Moreover, by Fact 9.45, we have U(i0) ⊆ Ct. By Fact 9.14, Lemma 9.41 and arguing

precisely as in the proof of Subclaim 9.50, we conclude that C ∈ GU if and only if

ω ∈ Gi0,U . The proof of Subclaim 9.51 is completed. �

We are ready to estimate the size of Gp+1,p+1
t . By Subclaim 9.51 and the fact

that for every U ∈ Ut the map ΓU 3 ω 7→ Qω,U
t ∈ QU is a bijection, we obtain that

|QU | = |ΓU | and |GU | = |Gi0,U | for every U ∈ Ut. Hence, by (9.158),

|Qp+1,p+1
t | =

∑
U∈Ut

|ΓU | and |Gp+1,p+1
t | =

∑
U∈Ut

|Gi0,U |. (9.159)

By the choice of i0 in Step 1, we have |Gi0,U | < (γ3/256) · |ΓU | for every U ∈ Ut.
Therefore,

|Gp+1,p+1
t |
|Qp+1,p+1

t |
(9.159)

=

∑
U∈Ut |Gi0,U |∑
U∈Ut |ΓU |

<
γ3

256

and the proof of Claim 9.49 is completed. �

Claim 9.52. Let t ∈ A<|Lp+1|. Then for every ` ∈ [p+ 1] we have

densΩLp+1
(∪Q`,p+1

t ) > α.

That is, condition (C6) is satisfied.

Proof. First assume that p > 1 and ` ∈ [p]. By our inductive assumptions,

densCt×ΩLp

( ⋃
s∈Ct

{s} × ∪Q`,ps
)
> α. (9.160)

On the other hand,

q−1
p+1

( ⋃
s∈Ct

{s} × ∪Q`,ps
)

= q−1
p+1

( ⋃
s∈Ct

⋃
Q∈Q`,ps

{s} ×Q
)

=
⋃
s∈Ct

⋃
Q∈Q`,ps

q−1
p+1

(
{s} ×Q

)
(9.151)

=
⋃
s∈Ct

⋃
Q∈Q`,ps

{t} × Cs,`,Qt

(9.152)
= {t} × ∪Q`,p+1

t . (9.161)
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By (9.160), (9.161) and Lemma 9.17, we obtain that

densΩLp+1
(∪Q`,p+1

t ) = dens{t}×ΩLp+1

(
{t} × ∪Q`,p+1

t

)
> α.

Next assume that ` = p + 1. By Fact 9.45, the family {U(i0) : U ∈ Ut} is a

partition of Ct and, by (9.135), we have densΩLp
(ΓU ) > α for every U ∈ Ut. Hence,

densCt×ΩLp

( ⋃
U∈Ut

U(i0)× ΓU

)
> α. (9.162)

Notice that

q−1
p+1

( ⋃
U∈Ut

U(i0)× ΓU

)
= q−1

p+1

( ⋃
U∈Ut

⋃
ω∈ΓU

U(i0)× {ω}
)

=
⋃
U∈Ut

⋃
ω∈ΓU

q−1
p+1

(
U(i0)× {ω}

)
(9.147)

=
⋃
U∈Ut

⋃
ω∈ΓU

{t} ×Qω,U
t

(9.148)
= {t} × ∪Qp+1,p+1

t . (9.163)

Combining (9.162) and (9.163) and applying Lemma 9.17, we conclude that

densΩLp+1
(∪Qp+1,p+1

t ) = dens{t}×ΩLp+1

(
{t} × ∪Qp+1,p+1

t

)
> α.

The proof of Claim 9.52 is completed. �

Claim 9.53. Let t, t′ ∈ A<|Lp+1| such that t and t′ are (a, b)-equivalent. Then

for every ` ∈ [p+ 1] we have Q`,p+1
t = Q`,p+1

t′ . That is, condition (C7) is satisfied.

Proof. Assume that p > 1 and ` ∈ [p]. For every s ∈ Ct and every s′ ∈ Ct′ let

Qts = {Cs,`,Qt : Q ∈ Q`,ps } and Qt
′

s′ = {Cs
′,`,Q′

t′ : Q′ ∈ Q`,ps′ }. (9.164)

By (9.151), the families {Qts : s ∈ Ct} and {Qt′s′ : s′ ∈ Ct′} are partitions of Q`,p+1
t

and Q`,p+1
t′ respectively. Let rt,t′ : Ct → Ct′ be the bijection defined in (9.10) and

let s ∈ Ct be arbitrary. By Fact 9.6, we have

Ωst = Ω
rt,t′ (s)

t′ (9.165)

and moreover, since t and t′ are (a, b)-equivalent, the words s and rt,t′(s) are

(a, b)-equivalent. Thus, invoking our inductive assumptions, we obtain that

Q`,ps = Q`,prt,t′ (s). (9.166)

Therefore,

Qts
(9.164)

= {Cs,`,Qt : Q ∈ Q`,ps }
(9.150)

= {Q× Ωst : Q ∈ Q`,ps }
(9.165)

= {Q× Ω
rt,t′ (s)

t′ : Q ∈ Q`,ps }
(9.166)

= {Q× Ω
rt,t′ (s)

t′ : Q ∈ Q`,prt,t′ (s)}
(9.150)

= {Crt,t′ (s),`,Qt′ : Q ∈ Q`,prt,t′ (s)}
(9.164)

= Qt
′

rt,t′ (s)
.

Since the map rt,t′ : Ct → Ct′ is a bijection, we conclude that Q`,p+1
t = Q`,p+1

t′ .

We proceed to the case “` = p+1”. To this end, we need to do some preparatory

work. Specifically, let U and U ′ be two finite-dimensional Carlson–Simpson spaces
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of A<N with dim(U) = dim(U ′) and let IU and IU ′ be the canonical isomorphisms

associated with U and U ′ respectively (see Definition 1.10). Notice that the map

U 3 u 7→ IU ′
(
I−1
U (u)

)
∈ U ′

is a bijection. This bijection will be called the canonical isomorphism associated

with the pair U,U ′ and will be denoted by IU,U ′ . Observe that IU,U ′
(
U(i)

)
= U ′(i)

for every i ∈ {0, . . . ,dim(U)}.

Subclaim 9.54. Let Ut and Ut′ be as in (9.142). Then there exists a map

ft,t′ : ∪ Ut → ∪Ut′ with the following properties.

(a) The map ft,t′ is a bijection. Moreover, for every s ∈ ∪Ut the words s and

ft,t′(s) are (a, b)-equivalent.

(b) For every U ∈ Ut we have ft,t′(U) ∈ Ut′ and the restriction of ft,t′ on U co-

incides with the canonical isomorphism associated with the pair U, ft,t′(U).

(c) For every s ∈ Ct we have ft,t′(s) = rt,t′(s).

Proof of Subclaim 9.54. Let i ∈ {0, . . . , |Lp+1| − 1} be the unique integer

such that t, t′ ∈ Ai. If i = 0 (that is, if t = t′ = ∅), then the desired map is the

identity. So assume that i > 1 and let Zt and Zt′ be as in (9.140). First we define

a map h0
t,t′ : Zt → Zt′ as follows. For every z ∈ Zt we select ωz ∈ ΩLp+1

such that

z = cLp+1
(t � (i− 1), ωz)

at(i− 1) and we set

h0
t,t′(z) = cLp+1

(t′ � (i− 1), ωz)
at′(i− 1).

Note that: (i) h0
t,t′(z) is independent of the choice of ωz, and (ii) the map h0

t,t′ is

a bijection. Also observe that, since t and t′ are (a, b)-equivalent, for every z ∈ Zt
the words z and h0

t,t′(z) are (a, b)-equivalent too.

Next we set

Rt = {Rz : z ∈ Zt} and Rt′ = {Rz
′

: z′ ∈ Zt′}

where, as in (9.141), Rz = {zax : x ∈ A<m̄+1} and Rz
′

= {z′ax : x ∈ A<m̄+1} for

every z ∈ Zt and every z′ ∈ Zt′ respectively. We define ht,t′ : ∪Rt → ∪Rt′ by the

rule ht,t′(z
ax) = h0

t,t′(z)
ax. Using the aforementioned properties of h0

t,t′ , we see

that the following are satisfied.

(H1) The map ht,t′ is a bijection. Moreover, for every r ∈ ∪Rt the words r

and ht,t′(r) are (a, b)-equivalent.

(H2) For every z ∈ Zt the restriction of ht,t′ on Rz is onto Rh
0
t,t′ (z) and coincides

with the canonical isomorphism associated with the pair Rz, Rh
0
t,t′ (z).

(H3) For every ω ∈ ΩLp+1
we have ht,t′

(
cLp+1

(t, ω)
)

= cLp+1
(t′, ω).

We are in a position to define the map ft,t′ . Specifically, let IVp+1
be the

canonical isomorphism associated with Vp+1 and for every s ∈ ∪Ut we set

ft,t′(s) = IVp+1

(
ht,t′

(
I−1
Vp+1

(s)
))
. (9.167)

(Notice that, by (9.142), ft,t′(s) is well-defined.) It follows readily from properties

(H1)–(H3) isolated above that the map ft,t′ is as desired. The proof of Subclaim

9.54 is completed. �
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Now let U ∈ Ut be arbitrary. By Subclaim 9.54, we have ft,t′(U) ∈ Ut′ .
Moreover, for every s ∈ U the words s and ft,t′(s) are (a, b)-equivalent. Thus,

by Fact 9.43 and (9.133), we obtain that

ΓU = Γft,t′ (U). (9.168)

Next recall that, by Fact 9.45, we have U(i0) ⊆ Ct. Hence, invoking Subclaim 9.54

once again, we conclude that

ft,t′(U)(i0) = ft,t′
(
U(i0)

)
= {rt,t′(s) : s ∈ U(i0)}. (9.169)

We are ready for the last step of the argument. For every U ∈ Ut and every U ′ ∈ Ut′
we set

QtU = {Qω,U
t : ω ∈ ΓU} and Qt

′

U ′ = {Qω′,U ′

t′ : ω′ ∈ ΓU ′}. (9.170)

By Fact 9.45 and (9.147), the families {QtU : U ∈ Ut} and {Qt′U ′ : U ′ ∈ Ut′} are

partitions of Qp+1,p+1
t and Qp+1,p+1

t′ respectively. Moreover, for every U ∈ Ut,

QtU
(9.170)

= {Qω,U
t : ω ∈ ΓU}

(9.146)
=

{
{ω} ×

⋃
s∈U(i0)

Ωst : ω ∈ ΓU

}
(9.168)

=
{
{ω′} ×

⋃
s∈U(i0)

Ωst : ω′ ∈ Γft,t′ (U)

}
(9.165)

=
{
{ω′} ×

⋃
s∈U(i0)

Ω
rt,t′ (s)

t′ : ω′ ∈ Γft,t′ (U)

}
(9.169)

=
{
{ω′} ×

⋃
s′∈ft,t′ (U)(i0)

Ωs
′

t′ : ω′ ∈ Γft,t′ (U)

}
= Qt

′

ft,t′ (U). (9.171)

Finally, observe that, by Subclaim 9.54, the map Ut 3 U 7→ ft,t′(U) ∈ Ut′ is a

bijection. Hence, by (9.171), we conclude that Qp+1,p+1
t = Qp+1,p+1

t′ and the proof

of Claim 9.53 is completed. �

By Claims 9.46 up to 9.53, the pair (Vp+1, Lp+1) and the families Q`,p+1
t con-

structed in Steps 1, 2 and 3, satisfy all required conditions. This completes the

recursive selection, and as we have already indicated, the entire proof of Theorem

9.38 is completed.

9.5.5. Consequences. Let k ∈ N with k > 2 and assume that for every

positive integer l and every 0 < β 6 1 the number DCS(k, l, β) has been estimated.

We define H : N× (0, 1]→ N by H(0, γ) = 0 and

H(m, γ) = RegCS(k + 1, 2, Np0 + 1, γ2/2) (9.172)

if m > 1, where p0 and Np0 are as in (9.109) and (9.110) respectively for the

parameters k,m and γ. Next, for every n ∈ {0, . . . , k} we define, recursively,

H(n) : N× (0, 1]→ N by the rule H(0)(m, γ) = m and

H(n+1)(m, γ) = H
(
H(n)(m, γ), γ

)
. (9.173)
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Finally, for every 0 < γ 6 1 let

ξ = ξ(γ) =
γ3k(

21/2 · 32
)3k−1

. (9.174)

We have the following corollary. This result together with Corollary 9.37 form the

basis of the proof of Theorem 9.2.

Corollary 9.55. Let k ∈ N with k > 2 and assume that for every positive

integer l and every 0 < β 6 1 the number DCS(k, l, β) has been estimated.

Let 0 < γ, δ 6 1. Also let A be an alphabet with |A| = k + 1, a ∈ A, V

a finite-dimensional Carlson–Simpson space of A<N and I a nonempty subset of

{0, . . . ,dim(V )}. Set B = A\{a} and assume that we are given a subset D of A<N

and a family {Sb : b ∈ B} of subsets of A<N with the following properties.

(a) For every b ∈ B the set Sb is (a, b)-insensitive in V .

(b) For every i ∈ I we have densV (i)

(⋂
b∈B Sb∩D

)
> (δ+γ)densV (i)

(⋂
b∈B Sb

)
and densV (i)

(⋂
b∈B Sb

)
> γ.

Finally, let m ∈ N with m > 1 and suppose that

|I| > H(k)(m, ξ) (9.175)

where H(k) and ξ are defined in (9.173) and (9.174) respectively for the parameters

k,m and γ. Then there exist a finite-dimensional Carlson–Simpson subspace W of

V and a subset I ′ of {0, . . . ,dim(W )} of cardinality m such that

densW (i)(D) > δ + ξ (9.176)

for every i ∈ I ′.

Proof. We define a sequence (γr) in R recursively by the rule γ0 = γ/2 and

γr+1 = γ3
r/512. Note that for every r ∈ N we have

γr =
γ3r

2 ·
(
21/2 · 32

)3r−1 . (9.177)

In particular, by (9.174) and (9.177), we see that 2γk = ξ.

Next let {b1, . . . , bk} be an enumeration of B and let, for notational simplicity,

Sr = Sbr for every r ∈ [k]. We also set Sk+1 = V . Using Theorem 9.38, we select a

finite sequence V0 ⊇ V1 ⊇ · · · ⊇ Vk of Carlson–Simpson subspaces of V and a finite

sequence I0, I1 . . . , Ik of finite subsets of N with V0 = V and I0 = I, and satisfying

the following conditions for every r ∈ {0, . . . , k}.
(C1) We have Ir ⊆ {0, . . . ,dim(Vr)} and |Ir| = H(k−r)(m, ξ).

(C2) For every i ∈ Ir we have

densVr(i)

( k+1⋂
j=r+1

Sj ∩D
)
> (δ + 2γr) densVr(i)

( k+1⋂
j=r+1

Sj

)
and

densVr(i)

( k+1⋂
j=r+1

Sj

)
> 2γr.
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Finally, we set W = Vk and I ′ = Ik and we claim that with these choices the result

follows. Indeed notice first that, by condition (C3), we have I ′ ⊆ {0, . . . ,dim(W )}
and |I ′| = H(0)(m, ξ) = m. On the other hand, by condition (C2), we see that

densW (i)(V ∩D) > (δ+ 2γk) densW (i)(V ) for every i ∈ I ′. Since W = Vk ⊆ V , this

implies that densW (i)(D) > δ+ 2γk = δ+ ξ for every i ∈ I ′. The proof of Corollary

9.55 is thus completed. �

9.6. Proof of Theorem 9.2

In this section we will complete the proof of Theorem 9.2 following the inductive

scheme outlined in Subsection 9.4.1. First we recall that the numbers DCS(2, 1, δ)

are estimated in Proposition 9.25. By induction on m and using Theorem 9.29, we

may also estimate the numbers DCS(2,m, δ).

Next we argue for the general inductive step. Let k ∈ N with k > 2 and assume

that for every positive integer l and every 0 < β 6 1 the number DCS(k, l, β) has

been estimated. We fix 0 < δ 6 1. Let η1 be as in (9.94). Recall that

η1 =
δ2

120k · |SubCS1

(
[k]<Λ

)
|

where Λ = d8δ−1DCS(k, 1, δ/8)e. We set

% = ξ(η2
1/2)

(9.174)
=

(η2
1/2)3k(

21/2 · 32
)3k−1

(9.178)

and we define Fδ : N→ N by the rule

Fδ(m) = g1

(⌈
η−4

1 (k + 1)k ·H(k)(m, %)
⌉
, η2

1/2
)

(9.179)

where g1 and H(k)(m, %) are as in (9.95) and (9.173) respectively. The following

proposition is the heart of the density increment strategy. It is a straightforward

consequence of Corollaries 9.37 and 9.55.

Proposition 9.56. Let k ∈ N with k > 2 and assume that for every positive

integer l and every 0 < β 6 1 the number DCS(k, l, β) has been estimated.

Let 0 < δ 6 1, A an alphabet with |A| = k + 1 and L a nonempty finite subset

of N. Also let D ⊆ A<N such that densAl(D) > δ for every l ∈ L and assume that

D contains no Carlson–Simpson line of A<N. Finally, let m be a positive integer

and suppose that |L| > Fδ(m) where Fδ is as in (9.179). Then there exist a finite-

dimensional Carlson–Simpson space W of A<N and a subset I of {0, . . . ,dim(W )}
with |I| = m such that densW (i)(D) > δ+% for every i ∈ I where % is as in (9.178).

With Proposition 9.56 at our disposal, the numbers DCS(k + 1, 1, δ) can be

estimated easily. Specifically, we have the following corollary.

Corollary 9.57. Let k ∈ N with k > 2 and assume that for every positive

integer l and every 0 < β 6 1 the number DCS(k, l, β) has been estimated. Then

for every 0 < δ 6 1 we have

DCS(k + 1, 1, δ) 6 F (d%−1e)
δ (1). (9.180)
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Finally, as in the case “k = 2”, the numbers DCS(k+ 1,m, δ) can be estimated

using Theorem 9.29 and Corollary 9.57. This completes the proof of the general

inductive step, and so the entire proof of Theorem 9.2 is completed.

9.7. Proof of Theorem 9.1

As we have already mentioned, the proof is based on Theorem 9.2. Specifically,

for every k ∈ N with k > 2 and every 0 < δ 6 1 let Λ0(k, δ) and Θ0(k, δ) be as in

(9.54). Also let hk,δ(n) : N→ N be as in (9.55). Recall that

Λ0(k, δ) = d16δ−2DCS(k, 1, δ2/16)e and Θ0(k, δ) =
δ2/8

|SubCS1

(
[k]<Λ0(k,δ)

)
|

and

hk,δ(n) = Λ0(k, δ) + d2Θ0(k, δ)−1ne.
We have the following variant of Lemma 9.30.

Lemma 9.58. Let k ∈ N with k > 2 and 0 < δ 6 1. Also let A be an alphabet

with |A| = k, M an infinite subset of N and D ⊆ A<N such that densAm(D) > δ

for every m ∈M . Then there exist a Carlson–Simpson line V of A<N with V ⊆ D
and an infinite subset M ′ of M with the following property. If m1 is the unique

integer with V (1) ⊆ Am1 , then m1 < min(M ′) and for every m ∈M ′ we have

densAm−m1

(
{w ∈ A<N : vaw ∈ D for every v ∈ V (1)}

)
> 2−1Θ0(k, δ/2)

where Θ0(k, δ/2) is as in (9.54).

Proof. For every s ∈ A<N let Ds = {w ∈ A<N : saw ∈ D} and define

δs = lim sup
m∈M

densAm−|s|(Ds).

Set δ∗ = sup{δs : s ∈ A<N} and note that δ 6 δ∗ 6 1. We fix 0 < δ0 6 1 with

δ/2 < δ0 < δ∗ < δ0 + δ2
0/8 (9.181)

and we select s0 ∈ A<N and an infinite subset N of {m ∈M : m > |s0|} such that

δ0 6 densAm−|s0|(Ds0) (9.182)

for every m ∈ N . Let I0 be the initial segment of N with |I0| = Λ0(k, δ0) where

Λ0(k, δ0) is as in (9.54). By the definition of δ∗ and (9.181), there exists m0 ∈ N
with m0 > max(I0) such that for every t ∈

⋃
m∈I0 A

m−|s0| and every m ∈ N with

m > m0 we have

dens
Am−|s0

at|(Ds0at) < δ0 + δ2
0/8. (9.183)

We also fix a sequence (Jn) of pairwise disjoint subsets of {m ∈ N : m > m0} such

that |Jn| = d2Θ0(k, δ0)−1e for every n ∈ N.

Let n ∈ N be arbitrary. We set Kn = I0 ∪ Jn and we observe that

|Kn| = |I0|+ |Jn| = Λ0(k, δ0) + d2Θ0(k, δ0)−1e = hk,δ0(1). (9.184)

Set D′ = Ds0 , L0 = {m − |s0| : m ∈ I0} and L = {m − |s0| : m ∈ Kn} and notice

that, by (9.182), we have densA`(D
′) > δ0 for every ` ∈ L. Moreover, L0 is the

initial segment of L with |L0| = Λ0(k, δ0) and, by (9.184), we have |L| = hk,δ0(1).
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It follows, in particular, that Lemma 9.30 can be applied to D′, L and L0. The

first alternative of Lemma 9.30 does not hold true since, by (9.183), we have

densA`−|t|
(
{w ∈ A<N : taw ∈ D′}

)
< δ0 + δ2

0/8

for every t ∈
⋃
`∈L0

A` and every ` ∈ L \L0. Therefore, there exist ln ∈ L \L0 and

a Carlson–Simpson line Sn of A<N contained in D′ with L(Sn) ⊆ L0 (where, as

in (1.33), L(Sn) is the level set of Sn) and such that, denoting by `1,n the unique

integer in L0 with Sn(1) ⊆ A`1,n , we have

densAln−`1,n
(
{w ∈ A<N : saw ∈ D′ for every s ∈ Sn(1)}

)
> 2−1Θ0(k, δ0).

Set Vn = {s0
as : s ∈ Sn}, in = `1,n+|s0| and jn = ln+|s0|. Notice that: (i) Vn ⊆ D,

(ii) in ∈ I0, (iii) jn ∈ Jn, (iv) L(Vn) ⊆ I0, (v) Vn(1) ⊆ Ain and (vi) in < jn. On

the other hand, the fact that δ/2 < δ0 yields that Θ0(k, δ0) > Θ0(k, δ/2). Hence,

we obtain that

densAjn−in
(
{w ∈ A<N : vaw ∈ D for every v ∈ Vn(1)}

)
> 2−1Θ0(k, δ/2).

By the classical pigeonhole principle, there exist an infinite subset P of N and a

Carlson–Simpson line V of A<N such that Vn = V for every n ∈ P . Thus, setting

M ′ = {jn : n ∈ P}, we see that V and M ′ are as desired. The proof of Lemma

9.58 is completed. �

We are now in a position to complete the proof of Theorem 9.1. Let A be an

alphabet with |A| > 2. Also let 0 < δ 6 1 and D ⊆ A<N such that

lim sup
n→∞

|D ∩An|
|An|

> δ.

We fix an infinite subset M of N such that densAm(D) > δ for every m ∈M . Also,

we define a sequence (δn) in (0, 1] by the rule

δ0 = δ and δn+1 = 2−1Θ0(|A|, δn/2) (9.185)

where Θ0(|A|, δn/2) is as in (9.54). Using Lemma 9.58 we select, recursively,

(a) a sequence (Dn) of subsets of A<N with D0 = D,

(b) a sequence (Vn) of Carlson–Simpson lines of A<N, and

(c) two sequences (Mn) and (M ′n) of infinite subsets of N with M0 = M ,

such that for every n ∈ N the following conditions are satisfied.

(C1) For every m ∈Mn we have densAm
(
Dn

)
> δn.

(C2) We have Vn ⊆ Dn.

(C3) If mn is the unique integer with Vn(1) ⊆ Amn , then

M ′n ⊆ {m ∈Mn : m > mn} and Mn+1 = {m′ −mn : m′ ∈M ′n}.

(C4) We have Dn+1 =
{
w ∈ A<N : vaw ∈ Dn for every v ∈ Vn(1)

}
.

Next, for every n ∈ N let 〈vn, vn0 〉 be the Carlson–Simpson system generating Vn
and set w = v0 and un = vn0

avn+1. Observe that un is a left variable word over A

for every n ∈ N. We will show that

{w} ∪
{
wau0(a0)a. . .a un(an) : n ∈ N and a0, . . . , an ∈ A

}
⊆ D.
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To this end notice first that, by condition (C2), we have w ∈ D0 = D. Moreover,

by condition (C4), we see that Vn(1)aDn+1 ⊆ Dn for every n ∈ N. By induction,

this inclusion yields that

V0(1)a. . .a Vn(1)aDn+1 ⊆ D. (9.186)

Now let n ∈ N and a0, . . . , an ∈ A be arbitrary. By the choice of w and u0, . . . , un,

we obtain that

wau0(a0)a. . .a un(an) ∈ V0(1)a. . .a Vn(1)aVn+1(0). (9.187)

On the other hand, by condition (C2), we have Vn+1(0) ⊆ Dn+1. Thus, combining

(9.186) and (9.187), we conclude that wau0(a0)a . . .a un(an) ∈ D. The proof of

Theorem 9.1 is completed.

9.8. Applications

9.8.1. Connections with other results. In this section we will present some

applications of Theorems 9.1 and 9.2. We begin with a discussion on the relation

of the density Carlson–Simpson theorem with other results in Ramsey theory. In

this direction, we first observe that the density Hales–Jewett theorem follows from

Theorem 9.1 with a standard compactness argument. In fact, we have the following

finer quantitative information.

Proposition 9.59. For every integer k > 2 and every 0 < δ 6 1 we have

DHJ(k, δ) 6 DCS(k, 1, δ). (9.188)

Proof. Fix an integer k > 2 and 0 < δ 6 1, and let A be an alphabet with

|A| = k. Also let n ∈ N with n > DCS(k, 1, δ) and D ⊆ An with |D| > δ|An|. For

every ` ∈ [n] and every t ∈ An−` let Dt = {s ∈ A` : tas ∈ D} be the section of D

at t and observe that

Et∈An−` dens(Dt) = dens(D) > δ.

Hence, for every ` ∈ [n] we may select t` ∈ An−` such that dens(Dt`) > δ. Let

D′ =
⋃
`∈[n]

Dt`

and notice that densA`(D
′) = densA`(Dt`) > δ for every ` ∈ [n]. By the choice of

n, there exists a Carlson–Simpson line W of A<N which is contained in D′. Let

〈w,w0〉 be the Carlson–Simpson system generating W . Also let ` ∈ [n] be the

unique integer such that W (1) ⊆ A` and set

V = {t`awaw0(a) : a ∈ A}.

Then observe that V is a combinatorial line of An and V ⊆ D. This shows that the

estimate in (9.188) is satisfied and the proof of Proposition 9.59 is completed. �

The next result deals with dense subsets of products of homogeneous trees and

is due to Dodos, Kanellopoulos and Tyros [DKT1].
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Theorem 9.60. For every integer d > 1, every b1, . . . , bd ∈ N with bi > 2 for

all i ∈ [d], every integer ` > 1 and every 0 < δ 6 1 there exists a positive integer

N with the following property. If T = (T1, . . . , Td) is a vector homogeneous tree

with h(T) > N and bTi = bi for all i ∈ [d], L is a subset of {0, . . . , h(T)− 1} with

|L| > N and D is a subset of the level product ⊗T of T satisfying

|D ∩
(
T1(n)× · · · × Td(n)

)
| > δ|T1(n)× · · · × Td(n)|

for every n ∈ L, then there exists S ∈ Str`(T) such that ⊗S ⊆ D. The least positive

integer with this property will be denoted by UDHL(b1, . . . , bd | `, δ).

Of course, the main point in Theorem 9.60 is that the result is independent

of the position of the finite set L. As in Proposition 9.59, we will obtain upper

bounds for the numbers UDHL(b1, . . . , bd | `, δ) which are expressed in terms of the

numbers DCS(k,m, δ).

Proof of Theorem 9.60. It is similar to the proof of Corollary 4.11. Fix

the parameters d, b1, . . . , bd, `, δ. Since UDHL(b1, . . . , bd | 1, δ) = 1, we may assume

that ` > 2. We claim that

UDHL(b1, . . . , bd | `, δ) 6 DCS
( d∏
i=1

bi, `− 1, δ
)
. (9.189)

Indeed, set N = DCS
(∏d

i=1 bi, ` − 1, δ
)

and let T = (T1, . . . , Td) be a vector

homogeneous tree with h(T) > N and bTi = bi for all i ∈ [d]. Clearly, we may

additionally assume that h(T) is finite and Ti = [bi]
<h(T) for every i ∈ [d]. For

every i ∈ [d] let πi : A → [bi] and π̄i : A<h(T) → [bi]
<h(T) be as in Corollary 4.11

and define the map I : A<h(T) → ⊗T by I(w) =
(
π̄1(w), . . . , π̄d(w)

)
. Recall that I

is a bijection and satisfies I(An) = [b1]n×· · ·× [bd]
n for every n ∈ {0, . . . , h(T)−1}.

Now let D ⊆ ⊗T and L ⊆ {0, . . . , h(T) − 1} with |L| > N and assume that

|D ∩ ⊗T(n)| > δ|⊗ T(n)| for every n ∈ L. We set D′ = I−1(D) and we observe

that |D′ ∩ An| > δ|An| for every n ∈ L. Hence, by the choice of N , there exists a

Carlson–Simpson space of A<N of dimension ` − 1 which is contained in D′. For

every i ∈ [d] set Si = π̄i(S) and notice that Si is a Carlson–Simpson subspace of

[bi]
<N having the same level set as S. Therefore, S = (S1, . . . , Sd) is a vector strong

subtree of T with h(S) = `. Since I(S) = ⊗S, we conclude that ⊗S is contained in

D and the proof of Theorem 9.60 is completed. �

By Theorem 9.1 and arguing precisely as above, we obtain the following infinite

version of Theorem 9.60 due to Dodos, Kanellopoulos and Karagiannis [DKK].

Theorem 9.61. For every vector homogeneous tree T = (T1, . . . , Td) of infinite

height and every subset D of the level product ⊗T of T satisfying

lim sup
n→∞

|D ∩
(
T1(n)× · · · × Td(n)

)
|

|T1(n)× · · · × Td(n)|
> 0

there exists a vector strong subtree S of T of infinite height whose level product is

contained in D.
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9.8.2. Homogeneous trees. Let H : [0, 1] → [0, 1] be the binary entropy

function—see (E.21)—and for every integer b > 2 and every 0 < δ 6 1 let c(b, δ)

be the unique3 real in (0, 1/2] such that

c(b, δ) = H−1
(
δ · log2

( b

b− 1

))
. (9.190)

The following theorem is the main result of this subsection. It is a quantitative

refinement of Theorem 9.60 for the case of a single homogeneous tree.

Theorem 9.62. Let b ∈ N with b > 2 and 0 < δ 6 1. Also let T be a nonempty

homogeneous tree of finite height and with branching number b. Then for every

nonempty subset L of {0, . . . , h(T )− 1} and every D ⊆ T satisfying

En∈L densT (n)(D) > δ

there exists a strong subtree S of T which is contained in D and satisfies LT (S) ⊆ L
and |h(S)| > c(b, δ)|L| where c(b, δ) is as in (9.190).

In particular, for every positive integer ` we have

UDHL(b | `, δ) 6 `

c(b, δ)
. (9.191)

For the proof of Theorem 9.62 we need to do some preparatory work. First, we

will introduce two invariants which are associated with subsets of trees and are of

independent interest. Specifically, let T be a nonempty tree of finite height and for

every subset D of T we set

LT (D) = {LT (S) : S is a strong subtree of T with S ⊆ D} (9.192)

and

wT (D) =

h(T )−1∑
n=0

densT (n)(D). (9.193)

(Notice that |LT (D)| > 1 since the empty tree is a strong subtree of any tree T .)

The following lemma is due to Pach, Solymosi and Tardos [PST] and relates the

quantities |LT (D)| and wT (D). It is the main tool for the proof of Theorem 9.62.

Lemma 9.63. Let T be a nonempty homogeneous tree of finite height and let b

be the branching number of T . Then for every D ⊆ T we have

|LT (D)| >
( b

b− 1

)wT (D)

. (9.194)

Proof. By induction on the height of the tree T . The initial case “h(T ) = 1”

is straightforward, and so let n be a positive integer and assume that the result has

been proved for every nonempty homogeneous tree with height less than or equal

to n. Fix a homogeneous tree T with h(T ) = n + 1 and let b be the branching

3Recall that the restriction of H on [0, 1/2] is strictly increasing and onto [0, 1], and so the

constant c(b, δ) is well-defined.
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number of T . Also let {t1, . . . , tb} be an enumeration of the 1-level T (1) of T . For

every i ∈ [b] set Ti = SuccT (ti) and Di = D ∩ Ti, and notice that

LT
( b⋃
i=1

Di

)
=

b⋃
i=1

LT (Di) and wT

( b⋃
i=1

Di

)
=

b∑
i=1

wT (Di). (9.195)

Also observe that for every i ∈ [b] we have: (i) h(Ti) = n, (ii) |LTi(Di)| = |LT (Di)|,
and (iii) wTi(Di) = b · wT (Di). Hence, by our inductive assumptions, we have

|LT (Di)|=|LTi(Di)| >
( b

b− 1

)wTi (Di)
=
( b

b− 1

)b·wT (Di)

(9.196)

for every i ∈ [b]. Let T (0) be the root of T and consider the following cases.

Case 1: we have T (0) /∈ D. In this case we see that D = D1 ∪ · · · ∪Db and

wT (D) = wT (D1) + · · ·+ wT (Db). Therefore,

|LT (D)| (9.195)
= |

b⋃
i=1

LT (Di)| > max
{
|LT (Di)| : 1 6 i 6 b

}
(9.196)

=
( b

b− 1

)b·max{wT (Di):16i6b}

>
( b

b− 1

)∑b
i=1 wT (Di)

=
( b

b− 1

)wT (D)

as desired.

Case 2: we have T (0) ∈ D. Our assumption in this case implies that

|LT (D)| = |
b⋃
i=1

LT (Di)|+ |
d⋂
i=1

LT (Di)| (9.197)

and

wT (D) = 1 +

b∑
i=1

wT (Di) = 1 +
1

b

b∑
i=1

wTi(Di). (9.198)

We will need the following simple fact in order to estimate the size of LT (D).

Fact 9.64. Let b be a positive integer. Also let X be a set and let L1, . . . ,Lb
be subsets of X. Then we have

b∑
i=1

|Li| 6 (b− 1)|
b⋃
i=1

Li|+ |
b⋂
i=1

Li|. (9.199)

Proof of Fact 9.64. We may assume, of course, that b > 2. Notice that

|Lb| − |
b⋂
i=1

Li| 6
b−1∑
i=1

|Lb \ Li| 6
b−1∑
i=1

|
b⋃
j=1

Lj \ Li|

=

b−1∑
i=1

(
|
b⋃
j=1

Lj | − |Li|
)

= (b− 1)|
b⋃
i=1

Li| −
b−1∑
i=1

|Li|

and the proof of Fact 9.64 is completed. �
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Now, using the convexity of the function f(x) =
(

b
b−1

)x
and our inductive

assumptions, we obtain that( b

b− 1

)wT (D) (9.198)
=

( b

b− 1

)
·
( b

b− 1

)b−1·
∑b
i=1 wTi (Di)

6
b

b− 1
· 1

b
·
b∑
i=1

( b

b− 1

)wTi (Di) (9.196)

6
1

b− 1

b∑
i=1

|LT (Di)|

and so, by Fact 9.64, we conclude that( b

b− 1

)wT (D)

6 |
b⋃
i=1

LT (Di)|+
1

b− 1
· |

b⋂
i=1

LT (Di)|

6 |
b⋃
i=1

LT (Di)|+ |
b⋂
i=1

LT (Di)|
(9.197)

= |LT (D)|.

The above cases are exhaustive and the proof of Lemma 9.63 is completed. �

We are ready to give the proof of Theorem 9.62.

Proof of Theorem 9.62. We fix a nonempty subset L of {0, . . . , h(T )− 1}
and a subset D of T such that En∈L densT (n)(D) > δ. Clearly, we may assume that

D is contained in
⋃
n∈L T (n), and in particular, that the set LT (D) is a collection

of subsets of L. Next observe that

wT (D)
(9.193)

=
(
En∈L densT (n)(D)

)
· |L| > δ|L|

and so, by Lemma 9.63,

log2

(
|LT (D)|

) (9.194)

> log2

( b

b− 1

)
· wT (D)

>
(
δ · log2

( b

b− 1

))
· |L| (9.190)

= H
(
c(b, δ)

)
· |L|.

This estimate and Lemma E.7 yield that

|LT (D)| >
bc(b,δ)·|L|c∑

i=0

(
|L|
i

)
.

It follows that the family LT (D) must contain a subset of L of cardinality at least

bc(b, δ) · |L|c+ 1 and the proof of Theorem 9.62 is completed. �

We close this subsection with the following “parameterized” version of Sze-

merédi’s theorem due to Furstenberg and Weiss [FW].

Theorem 9.65. Let b, ` be a pair of integers with b, ` > 2 and 0 < δ 6 1. Also

let T be a homogeneous tree of finite height, with branching number b and such that

h(T ) > Sz
(
`, c(b, δ)

)
where c(b, δ) is as in (9.190). Then every D ⊆ T satisfying

En∈{0,...,h(T )−1} densT (n)(D) > δ (9.200)

contains a strong subtree S of T of height ` whose level set is an arithmetic pro-

gression.
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For the proof of Theorem 9.65 we need the following fact. It follows from basic

properties of strong subtrees.

Fact 9.66. Let T be a nonempty finite tree of finite height. Also let R be a

strong subtree of T and L′ ⊆ LT (R). Then there exists a strong subtree S of R such

that LT (R) = L′. In particular, for every D ⊆ T the family LT (D) is hereditary,

that is, for every L ∈ LT (D) and every L′ ⊆ L we have L′ ∈ LT (D).

We proceed to the proof of Theorem 9.65.

Proof of Theorem 9.65. We follow the proof from [PST]. We fix D ⊆ T

satisfying (9.200). By Theorem 9.62 applied for “L = {0, . . . , h(T ) − 1}”, there

exists a strong subtree R of T with R ⊆ D and such that h(R) > c(b, δ)h(T ). In

particular, we have LT (R) ⊆ {0, . . . , h(T ) − 1} and |LT (R)| > c(b, δ)h(T ). Since

h(T ) > Sz
(
`, c(b, δ)

)
, by Szemerédi’s theorem, the set LT (R) contains an arithmetic

progression P of length `. Noticing that LT (R) ∈ LT (D), by Fact 9.66, we conclude

that there exists S ∈ LT (D) with LT (S) = P . Clearly, S is as desired. The proof

of Theorem 9.65 is completed. �

9.8.3. Patterns. Our goal in this subsection is to prove an extension of

Theorem 9.2 which does not refer to left variable words but to a wider classes of

variable words. Specifically, let A be a finite alphabet with |A| > 2 and let u, p be

two variable words over A. We say that u is of pattern p if p is an initial segment

of u. (Notice that if p = (v), then u is of pattern p if and only if u is a left variable

word.) More generally, given two nonempty finite sequences (un)m−1
n=0 and (pn)m−1

n=0

of variable words over A, we say that (un)m−1
n=0 is of pattern (pn)m−1

n=0 if pn is an

initial segment of un for every n ∈ {0, . . . ,m− 1}. We have the following theorem.

Theorem 9.67. Let m, r be positive integers and 0 < δ 6 1. Also let A be a

finite alphabet with |A| > 2 and L a finite subset of N with

|L| > d2rδ−1DCS(|Ar|,m, δ/2)e. (9.201)

If D is a subset of A<N with |D ∩A`| > δ|A`| for every ` ∈ L, then for every finite

sequence (pn)m−1
n=0 of variable words over A with max{|pn| : 0 6 n < m} 6 r there

exist a word w over A and a finite sequence (un)m−1
n=0 of variable words over A of

pattern (pn)m−1
n=0 such that the set

{w} ∪
{
wau0(a0)a. . .a un(an) : n ∈ {0, . . . ,m− 1} and a0, . . . , an ∈ A

}
is contained in D.

We will give a proof of Theorem 9.67 which is a variant of the second proof of

the multidimensional Hales–Jewett theorem presented in Section 2.2 and relies on

an application of Theorem 9.2 for an appropriately chosen finite Cartesian product

of A. We start with the following definition.

Definition 9.68. Let A be a finite alphabet with |A| > 2 and r a positive

integer. We set B = Ar and we define Φr : B<N → A<N by setting Φr(∅) = ∅ and

Φr
(
(β0, . . . , βn−1)

)
= β0

a. . .a βn−1
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for every n > 1 and every (β0, . . . , βn−1) ∈ Bn. Moreover, for every t ∈ A<N let

Φt,r : B<N → A<N be defined by Φt,r(s) = taΦr(s) for every s ∈ B<N.

In the following fact we collect some basic properties of the maps Φr and Φt,r.

They are all straightforward consequences of the relevant definitions.

Fact 9.69. Let A be a finite alphabet with |A| > 2 and t ∈ A<N. Also let r be

a positive integer and set B = Ar. Then the following hold.

(a) If t = ∅, then Φt,r = Φr.

(b) For every v1, v2 ∈ B<N we have

Φt,r(v
a
1 v2) = Φt,r(v1)aΦr(v2). (9.202)

(c) The map Φt,r is an injection and satisfies Φt,r
(
Bn
)

= {tas : s ∈ Ar·n}
for every n ∈ N. In particular, for every D ⊆ A<N and every n ∈ N

densBn
(
Φ−1
t,r (D)

)
= densAn·r (Dt)

where Dt = {s ∈ A<N : tas ∈ D}.
(d) Let v be a left variable word over B and let p be a variable word over A

with |p| = r. Then there exists a variable word w over A of pattern p such

that w(a) = Φr
(
v(p(a))

)
for every a ∈ A.

We proceed with the following lemma.

Lemma 9.70. Let r be a positive integer and 0 < δ 6 1. Also let A be a finite

alphabet with |A| > 2, L a nonempty finite subset of N and D ⊆ A<N such that

densA`(D) > δ for every ` ∈ L. Then there exist an integer i0 ∈ {0, . . . , r − 1}, a

word t0 ∈ Ai0 and a finite subset M of N with |M | > (2r)−1δ|L| such that, setting

B = Ar, we have densBm
(
Φ−1
t0,r(D)

)
> δ/2 for every m ∈M .

Proof. For every i ∈ {0, . . . , r − 1} we set Li = {` ∈ L : ` = i mod r} and

we select i0 ∈ {0, . . . , r − 1} such that |Li0 | > |L|/r. Next, for every t ∈ Ai0 we

set Lti0 = {` ∈ Li0 : densA`−i0 (Dt) > δ/2} where Dt = {s ∈ A<N : tas ∈ D}. Let

` ∈ Li0 be arbitrary. Notice that Et∈Ai0 densA`−i0 (Dt) = densA`(D) > δ and so,

by Markov’s inequality, we have

dens
(
{t ∈ Ai0 : densA`−i0 (Dt) > δ/2}

)
> δ/2.

Hence, by Lemma E.4, there exists t0 ∈ Ai0 such that |Lt0i0 | > (δ/2)|Li0 |. We set

M = {m ∈ N : mr + i0 ∈ Lt0i0} and we observe that |M | = |Lt0i0 | > (2r)−1δ|L|.
Finally, let m ∈ M and set ` = mr + i0 ∈ Lt0i0 . By Fact 9.69, we see that

densBm
(
Φ−1
t0,r(D)

)
= densAm·r (Dt0) = densA`−i0 (Dt0) > δ/2 and the proof of

Lemma 9.70 is completed. �

We are ready to give the proof of Theorem 9.67.

Proof of Theorem 9.67. Fix a pair m, r of positive integers and 0 < δ 6 1.

Let A be a finite alphabet with |A| > 2 and L a finite subset of N satisfying (9.201).

Also let D ⊆ A<N such that densA`(D) > δ for every ` ∈ L. We set B = Ar. By
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Lemma 9.70 and (9.201), there exist an integer i0 ∈ {0, . . . , r− 1}, a word t0 ∈ Ai0
and a subset M of N with

|M | > (2r)−1δ|L| > DCS(|Ar|,m, δ/2)

and such that densBm
(
Φ−1
t0,r(D)

)
> δ/2 for every m ∈ M . Thus, by Theorem 9.2,

there exists an m-dimensional Carlson–Simpson space V of B<N with V ⊆ Φ−1
t0,r(D).

Let 〈s, (vn)m−1
n=0 〉 be the Carlson–Simpson system generating V . Also let (pn)m−1

n=0

be a finite sequence of variable words over A with max{|pn| : 0 6 n 6 m− 1} 6 r.
Fix α ∈ A and for every n ∈ {0, . . . ,m− 1} set

p′n = pn
aαr−|pn|. (9.203)

(Here, αr−|pn| is as in (2.1).) Notice that each p′n is a variable word over A of

length r and of pattern pn. By Fact 9.69, there exists a finite sequence (un)m−1
n=0 of

variable words over A of pattern (p′n)m−1
n=0 such that

un(a) = Φr
(
vn(p′n(a))

)
(9.204)

for every n ∈ {0, . . . ,m − 1} and every a ∈ A. By (9.203), we see that (un)m−1
n=0

is of pattern (pn)m−1
n=0 . Next, set w = Φt0,r(s) and observe that w = Φt0,r

(
V (0)

)
.

Moreover, for every n ∈ {0, . . . ,m− 1} and every a0, . . . , an ∈ A we have

wau0(a0)a. . .a un(an)
(9.204)

= Φt0,r(s)
aΦr(v0(p′0(a0)))a. . .aΦr

(
vn(p′n(an))

)
(9.202)

= Φt0,r
(
sav0(p′0(a0))a. . .avn(p′n(an))

)
which implies that wau0(a0)a. . .a un(an) ∈ Φt0,r

(
V (n)

)
. Since V ⊆ Φ−1

t0,r(D), we

conclude that the set

{w} ∪
{
wau0(a0)a . . .a un(an) : n ∈ {0, . . . ,m− 1} and a0, . . . , an ∈ A

}
is contained in D and the proof of Theorem 9.67 is completed. �

9.9. Notes and remarks

9.9.1. The material in Sections 9.1 up to 9.7 is taken from [DKT3]. We notice,

however, that the class of Furstenberg–Weiss measures, introduced in Definition

9.19, appeared first in [FW] in a slightly less general form.

9.9.2. As we have already mentioned, Proposition 9.21 is the analogue of

Proposition 8.7. In this direction, we also have the following extension of Proposi-

tion 9.21 in the spirit of Theorem 8.21.

Theorem 9.71. For every positive integer p and every 0 < δ 6 1 there exists

a strictly positive constant Θ(p, δ) with the following property. If k,m are positive

integers with k > 2, then there exists a positive integer CorCS(k,m, δ) such that

for every alphabet A with |A| = k, every Carlson–Simpson space T of A<N with

dim(T ) > CorCS(k,m, δ) and every family {Dt : t ∈ T} of measurable events in

a probability space (Ω,Σ, µ) satisfying µ(Dt) > δ for every t ∈ T , there exists an
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m-dimensional Carlson–Simpson subspace S of T such that for every nonempty

subset F of S we have

µ
( ⋂
t∈F

Dt

)
> Θ(|F |, δ). (9.205)

Theorem 9.71 is based on Theorems 5.11 and 9.2. It follows the same strategy

as the proof of Theorem 8.21, though the argument for the case of Carlson–Simpson

spaces is somewhat more involved (see [DKT4] for details).

9.9.3. Theorem 9.61 is a density version of the Halpern–Läuchli theorem and

was conjectured by Laver in the late 1960s. We also point out that the assumption

in Theorem 9.61 that the trees are homogeneous is essentially optimal (see [BV]).

9.9.4. We remark that Theorem 9.67 has an infinite-dimensional version which

extends Theorem 9.1 to wider classes of sequences of variable words. This extension

can be found in [DKT3].



APPENDIX A

Primitive recursive functions

Throughout this appendix we deal with number theoretic functions, that is,

functions from a nonempty finite Cartesian product of the natural numbers to the

natural numbers. If f : Nk → N is a number theoretic function, then the (unique)

positive integer k is called the arity of f . Two simple examples of number theoretic

functions, which are relevant to our discussion, are the successor function S : N→ N
defined by S(n) = n + 1, and the projection functions P ki : Nk → N (1 6 i 6 k)

defined by P ki (x1, . . . , xk) = xi.

Let g, h and f be number theoretic functions of arities k, k + 2 and k + 1

respectively. Recall that f is said to be defined by primitive recursion from g and

h provided that for every x ∈ Nk and every n ∈ N we have{
f(0, x) = g(x),

f(n+ 1, x) = h(f(n, x), n, x).
(A.1)

There is a simpler kind of primitive recursion appropriate for defining unary func-

tions, namely {
f(0) = m,

f(n+ 1) = h(f(n), n)
(A.2)

where m ∈ N and h : N2 → N. We will include this simpler scheme when we talk of

definition by primitive recursion.

Also recall that if ψ is a number theoretic function of arity k and g1, . . . , gk are

number theoretic functions all of arity m, then the composition of ψ with g1, . . . , gk
is the function φ of arity m defined by φ(y) = ψ

(
g1(y), . . . , gk(y)

)
where y varies

over Nm.

Definition A.1. The class of primitive recursive functions is the smallest set

of number theoretic functions that contains the constant zero function, the successor

function and the projection functions, and is closed under composition and primitive

recursion.

We will not need the fine structure of primitive recursive functions, only their

basic properties. They will be used as effective tools in order to estimate the growth

of number theoretic functions coming from various inductive arguments. This point

of view is very convenient from a Ramsey theoretic perspective, especially when

combined with a natural hierarchy of primitive recursive functions, introduced by

Grzegorczyk [Grz], which we are about to recall.

223



224 A. PRIMITIVE RECURSIVE FUNCTIONS

Let E0 and E1 be the number theoretic functions defined by E0(x, y) = x+ y

and E1(x) = x2 + 2 (thus E0 is binary while E1 is unary). Next, for every n ∈ N
let En+2 be the unary number theoretic function defined recursively by the rule{

En+2(0) = 2,

En+2(x+ 1) = En+1

(
En+2(x)

)
.

(A.3)

Observe that each En is primitive recursive. Also notice that for every n > 1 the

function En is increasing.

Definition A.2. For every n ∈ N the Grzegorczyk’s class En is the smallest

set of number theoretic functions that contains the functions Ek for k < n, the

constant zero function, the successor function and the projection functions, and is

closed under composition and limited primitive recursion (that is, if g, h, j ∈ En
and f is defined by primitive recursion from g and h, has the same arity as j and

is pointwise bounded by j, then f belongs to En).

As we have already indicated, much of our interest in Grzegorczyk’s classes

stems from the fact that they possess strong stability properties. We gather, below,

these properties that are used throughout this book. For a proof, as well as for a

detailed exposition of this material, we refer to [Ros].

Proposition A.3. The following hold.

(a) For every n ∈ N we have En ⊆ En+1. Moreover, a number theoretic

function f is primitive recursive if and only if f ∈ En for some n ∈ N.

(b) If g, h ∈ En for some n ∈ N and f is defined by primitive recursion from

g and h, then f ∈ En+1.

(c) For every integer n > 2 and every f ∈ En there exists m ∈ N such that

f(x1, . . . , xk) 6 E
(m)
n−1(max{x1, . . . , xk}) where k is the arity of f and

x1, . . . , xk vary over N.

One consequence of Proposition A.3 is that every unary function in the class

En (n ∈ N) is majorized by a unary increasing function also belonging to En. More

generally we have the following corollary.

Corollary A.4. For every n ∈ N and every f ∈ En of arity k there exists

F ∈ En of arity k which dominates f pointwise and satisfies

F (x1, . . . , xk) 6 F (y1, . . . , yk) (A.4)

for every x1, . . . , xk, y1, . . . , yk ∈ N with xi 6 yi for all i ∈ [k].

In light of Corollary A.4 we may assume that all primitive recursive functions

we are dealing with satisfy the monotonicity property described in (A.4). We will

follow this assumption throughout this book, sometimes without giving an explicit

reference to Corollary A.4.



APPENDIX B

Ramsey’s theorem

For every triple d,m, r of positive integers with d > m let R(d,m, r) be the

Ramsey number for the parameters d,m, r, that is, the least integer n > d such

that for every n-element set X and every r-coloring of
(
X
m

)
there exists Z ∈

(
X
d

)
such that the set

(
Z
m

)
is monochromatic. The existence of the numbers R(d,m, r)

for every choice of admissible parameters is, of course, the content of Ramsey’s

famous theorem [Ra].

It is obvious that R(d,m, 1) = d for every d > m > 1. The case “m = 1” is a

consequence of the classical pigeonhole principle. Indeed, notice that

R(d, 1, r) = r(d− 1) + 1 (B.1)

for every d > 1 and every r > 1. Our goal in this appendix is to present the proof

of the following general estimate for the Ramsey numbers, essentially due to Erdős

and Rado [ER].

Theorem B.1. For every triple d,m, r of positive integers with d > m+ 1 and

r > 2 we have

R(d,m+ 1, r) 6 m− 1 + r(
R(d,m,r)−1

m ). (B.2)

In particular, the numbers R(d,m, r) are upper bounded by a primitive recursive

functions belonging to the class E4.

The proof of Theorem B.1 follows the scheme we discussed in Section 2.1. It

is based on the following lemma which will enable us to reduce a finite coloring of(
X
m+1

)
to a “simpler” one.

Lemma B.2. Let `,m, r be positive integers with ` > m+ 1 and r > 2. Also let

X be a subset of N and c :
(
X
m+1

)
→ [r], and assume that

|X| = m− 1 + r(
`−1
m ). (B.3)

Then there exists Y ∈
(
X
`

)
such that c(F ) = c(G) for every F,G ∈

(
Y

m+1

)
satisfying

F \ {max(F )} = G \ {max(G)}.

Proof. If m > 2, then let Y0 = {x0, . . . , xm−2} be the subset of X consisting

of the first m − 1 elements of X; otherwise, let Y0 = ∅. Also set Xm−1 = X \ Y0

and xm−1 = min(Xm−1). By (B.3), we have |Xm−1| = r(
`−1
m ). Recursively, we will

select a decreasing sequence Xm ⊇ · · · ⊇ X`−1 of subsets of Xm−1 and an increasing

sequence xm < · · · < x`−1 of elements of X such that the following conditions are

satisfied.
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(C1) For every i ∈ {m, . . . , `− 1} we have |Xi| = r(
`−1
m )−( im) and xi ∈ Xi.

(C2) For every i ∈ {m, . . . , ` − 1} we have Xi ⊆ Xi−1 \ {xi−1}. Moreover, for

every G ⊆ {x0, . . . , xi−2} with |G| = m− 1 and every z1, z2 ∈ Xi we have

c
(
G ∪ {xi−1} ∪ {z1}

)
= c
(
G ∪ {xi−1} ∪ {z2}

)
.

The first step is identical to the general one, and so let i ∈ {m, . . . , ` − 2} and

assume that the sets Xm, . . . , Xi and the elements xm, . . . , xi have been selected so

that the above conditions are satisfied. We set

G =

(
{x0, . . . , xi−1}

m− 1

)
and we define a coloring C : Xi \ {xi} → [r]G by the rule

C(z) =
〈
c
(
G ∪ {xi} ∪ {z}

)
: G ∈ G

〉
.

Since r > 2 and |Xi| = r(
`−1
m )−( im), by the classical pigeonhole principle, there exists

a subset Z of Xi \ {xi} which is monochromatic with respect to C and satisfies

|Z| >
⌈ |Xi| − 1

r(
i

m−1)

⌉
> r(

`−1
m )−( im)−( i

m−1) = r(
`−1
m )−(i+1

m ).

We set Xi+1 = Z and xi+1 = min(Xi+1) and we observe that conditions (C1) and

(C2) are satisfied. The recursive selection is thus completed.

Finally, we set Y = Y0 ∪ {xm−1, . . . , x`−1} = {x0, . . . , x`−1} and we claim that

this set satisfies the requirements of the lemma. Indeed, first observe that |Y | = `.

Also notice that for every F ∈
(
Y

m+1

)
there exists i ∈ {m, . . . , ` − 1} such that F

is written as G ∪ {xi−1} ∪ {z} where G is the set of the first m − 1 elements of F

and z = max(F ) ∈ Xi. Using this remark and condition (C2), we see that Y is as

desired. The proof of lemma B.2 is completed. �

We are ready to give the proof of Theorem B.1.

Proof of Theorem B.1. The estimate in (B.2) is an immediate consequence

of Lemma B.2. On the other hand, the fact that the Ramsey numbers are upper

bounded by a function belonging to the class E4 follows by (B.1), (B.2) and ele-

mentary properties of primitive recursive functions. The proof of Theorem B.1 is

completed. �



APPENDIX C

The Baire property

We recall the following classical topological notions.

Definition C.1. Let (X, τ) be a topological space. A subset N of X is said

to be nowhere dense if its closure has empty interior. A subset M of X is called

meager if it is the countable union of nowhere dense subsets of X. Finally, a subset

A of X is said to have the Baire property if it is equal to an open set modulo a

meager set, that is, if there exists an open subset U of X such that the symmetric

difference

A4U = (A \ U) ∪ (U \A)

of A and U is meager.

Notice that the collection of all subsets of a topological space with the Baire

property is a σ-algebra and contains all open and all meager sets. In fact, we have

the following finer information (see, e.g., [Ke]).

Proposition C.2. The class of sets with the Baire property of a topological

space (X, τ) is the smallest σ-algebra on X containing all open and all meager sets.

We proceed to discuss yet another important closure property of the class of

sets with the Baire property. To this end we recall some definitions.

Let X be a set. A Souslin scheme on X is a collection 〈Fs : s ∈ N<N〉 of subsets

of X indexed by the set N<N of all finite sequences in N. The Souslin operation

applied to such a scheme produces the set

AsFs =
⋃
x∈NN

⋂
n∈N

Fx�n. (C.1)

A family F of subsets of X is said to be closed under the Souslin operation if

AsFs ∈ F for every Souslin scheme 〈Fs : s ∈ N<N〉 with Fs ∈ F for every s ∈ N<N.

The Souslin operation is of fundamental importance in classical descriptive set

theory. Its relation with the Baire property is described in the following theorem

(see, e.g., [Ke]).

Theorem C.3. The class of sets with the Baire property of a topological space

(X, τ) is closed under the Souslin operation.

Note that, as opposed to Proposition C.2, the above result does not characterize

the family of all sets with the Baire property. Precisely, if (X, τ) is a topological

space, then the smallest σ-algebra on X containing all open sets and closed under

the Souslin operation may be strictly smaller than the class of all sets with the

Baire property. This motivates the following definition.
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Definition C.4. Let (X, τ) be a topological space. A subset of X is said to be

a C-set if it belongs to the smallest σ-algebra on X containing all open sets and

closed under the Souslin operation.

The family of C-sets is quite extensive and contains most sets that appear in

mathematical practice. Also it enjoys, by its very definition, all stability properties

of the class of sets with the Baire property. We close this appendix by noting

another important property of the family of C-sets (see, e.g., [Ke]).

Proposition C.5. Let X and Y be topological spaces and f : X → Y a Borel

measurable function. If A ⊆ Y is a C-set, then so is f−1(A).



APPENDIX D

Ultrafilters

D.1. Definitions. We recall the following notion.

Definition D.1. Let X be a nonempty set. An ultrafilter on X is a family U
of subsets of X which satisfies the following properties.

(U1) The empty set does not belong to U .

(U2) If A ∈ U and A ⊆ B ⊆ X, then B ∈ U .

(U3) If A,B ∈ U , then A ∩B ∈ U .

(U4) For every A ⊆ X we have that either A ∈ U or X \A ∈ U .

The set of all ultrafilters on X will be denoted by βX.

A family of subsets of X satisfying (U1)–(U3) is called a filter on X. By (U4),

we see that every ultrafilter on X is, in fact, a maximal filter on X. An ultrafilter

U on X is called principal if there exists x ∈ X such that U = {A ⊆ X : x ∈ A}.
The existence of non-principal ultrafilters on an infinite set X is a straightforward

consequence of Zorn’s lemma. More generally, we have the following fact.

Fact D.2. Let X be an infinite set. Then the following hold.

(a) Every family F of nonempty subsets of X with the finite intersection prop-

erty (that is, every finite subfamily of F has a nonempty intersection) is

extended to an ultrafilter on X.

(b) Let F = {F : X \ F is finite} be the family of all cofinite subsets of X.

Then F is extended to a non-principal ultrafilter on X. Conversely, every

non-principal ultrafilter on X contains the family F .

In the rest of this appendix we review some basic properties of the space βX.

A more complete treatment of this material can be found in [HS, B2, To].

D.2. The topology of βX. Let X be a nonempty set. For every A ⊆ X let

(A)βX = {U ∈ βX : A ∈ U}. (D.1)

Also let eX : X → βX be defined by eX(x) = {A ⊆ X : x ∈ A}. We have the

following proposition.

Proposition D.3. Let X be a nonempty set and set B = {(A)βX : A ⊆ X}.
Then B is a basis for a Hausdorff topology on βX with the following properties.

(a) For every A ⊆ X the set eX(A) is a dense open subset of (A)βX . In

particular, eX(X) is a dense open subset of βX.

(b) The topological space βX is compact.
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Proof. Notice that (X)βX = βX. Moreover, βX \ (A)βX = (X \ A)βX and

(A)βX ∩ (B)βX = (A∩B)βX for every A,B ⊆ X. It follows, in particular, that the

family B is a basis for a topology on βX consisting of clopen sets. To see that this

topology is Hausdorff let U ,W ∈ βX with U 6=W. By the maximality of U , there

exists A ∈ U \W. Hence, U ∈ (A)βX and W ∈ (X \A)βX .

Next observe that for every x ∈ X we have ({x})βX = {eX(x)}. This im-

plies that the singleton {eX(x)} is a basic open set, and as a consequence, the set

eX(A) =
⋃
x∈A{eX(x)} is open for every A ⊆ X. We will show that the set eX(A)

is dense in (A)βX . Indeed, let U ∈ (A)βX be arbitrary. Also let (B)βX be a basic

open neighborhood of U . Then A,B ∈ U and so A∩B ∈ U . In particular, A∩B 6= ∅
which implies that (B)βX ∩ eX(A) = eX(A ∩B) 6= ∅.

It remains to show that the space βX is compact. To this end it is enough to

show that every cover of βX by a family of basic sets has a finite subcover. So let

G be a family of subsets of X such that βX =
⋃
A∈G(A)βX . Assume, towards a

contradiction, that there is no finite subfamilyH of G such that βX =
⋃
A∈H(A)βX .

Taking complements and using the identity βX \ (A)βX = (X \A)βX , we see that

the family F = {X \ A : A ∈ G} has the finite intersection property. By Fact D.2,

there exists an ultrafilter U on X such that F ⊆ U . It follows that U /∈
⋃
A∈G(A)βX ,

a contradiction. The proof of Proposition D.3 is thus completed. �

In what follows all topological properties of the space βX will refer to the

topology described in Proposition D.3. Moreover, we will identify X with the set

of all principal ultrafilters on X via the map X 3 x 7→ eX(x) ∈ βX. Having this

identification in mind, for every A ⊆ X we will write C`βX(A) to denote the closure

of the set eX(A) in βX. Notice that, by Proposition D.3,

C`βX(A) = (A)βX (D.2)

for every A ⊆ X.

It turns out that the space βX is homeomorphic to the Stone–Čech compacti-

fication of the set X equipped with the discrete topology. In particular, the space

βX satisfies the following universal property.

Proposition D.4. Let X be a nonempty set. Also let Y be a nonempty set and

f : X → Y . Then the function f has a unique continuous extension f̃ : βX → βY

which is defined by the rule

f̃(U) = {B ⊆ Y : f−1(B) ∈ U} (D.3)

for every U ∈ βX.

Proof. It is easy to see that for every U ∈ βX the set f̃(U) is an ultrafilter

on Y . Therefore the map f̃ is well defined. Now let B ⊆ Y and observe that

f̃−1
(
(B)βY

)
= {U ∈ βX : f̃(U) ∈ (B)βY } = {U ∈ βX : B ∈ f̃(U)}
= {U ∈ βX : f−1(B) ∈ U} = (f−1(B))βX .

Hence, the map f̃ : βX → βY is continuous. Also notice that

f̃(x) = f̃(eX(x)) = {B ⊆ Y : f(x) ∈ B} = eY (f(x)) = f(x)
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which implies, of course, that f̃ is indeed an extension of f . Finally, observe that

the uniqueness of f̃ follows by the fact that the set X is dense in βX. The proof

of Proposition D.4 is completed. �

For notational simplicity, for every function f : X → Y we will still denote by f

the unique extension obtained by Proposition D.4. We will also write f(U) instead

of f̃(U) for every U ∈ βX.

D.3. Ultrafilters as quantifiers. There is an alternative description of ultra-

filters as quantifiers which is extremely convenient from a combinatorial perspective.

Specifically, with every ultrafilter U on a nonempty set X we associate a quantifier

(Ux) as follows. If P (x) is a property of elements x ∈ X, then we write

(Ux) P (x)⇔ {x ∈ X : P (x)} ∈ U . (D.4)

That is, the formula (Ux) P (x) is satisfied if and only if the set of all x ∈ X which

satisfy P is “large” in the sense that it belongs to the ultrafilter U . For example, if

A is a subset of X and P (x) is the statement “x ∈ A”, then

(Ux) [x ∈ A]⇔ A ∈ U . (D.5)

Using basic properties of ultrafilters it is easy to see the quantifier (Ux) commutes

with conjunction and negation. Namely, if P (x) and Q(x) are properties of elements

of X, then we have(
(Ux) P (x)

)
∧
(
(Ux) Q(x)

)
⇔ (Ux) [P (x) ∧Q(x)] (D.6)

and

¬
(
(Ux) P (x)

)
⇔ (Ux) [¬P (x)]. (D.7)

Notice that if f : X → Y and U ∈ βX, then the quantifier associated with the

ultrafilter f(U) satisfies (
f(U)y

)
P (y)⇔ (Ux) P

(
f(x)

)
(D.8)

for every property P (y) of elements of the set Y . In particular, we have

B ∈ f(U)⇔
(
f(U)y

)
[y ∈ B]⇔ (Ux) [f(x) ∈ B] (D.9)

for every B ⊆ Y .

D.4. Algebraic properties of βX. Let (X, ∗) be a semigroup, that is, a

nonempty set X equipped with an associative binary relation ∗ on X. Our goal is

to extend the semigroup structure of X on βX. To this end, for every V,W ∈ βX
we define

V ∗W =
{
A ⊆ X : (Vx)(Wy) [x ∗ y ∈ A]

}
. (D.10)

Setting

Ax = {y ∈ X : x ∗ y ∈ A} (D.11)

for every A ⊆ X and every x ∈ X, we see that

A ∈ V ∗W ⇔
{
x ∈ X : {y ∈ X : x ∗ y ∈ A} ∈ W

}
∈ V

⇔ {x ∈ X : Ax ∈ W} ∈ V. (D.12)
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Recall that a compact semigroup is a semigroup (S, ∗) together with a topology τ

on S such that: (i) the topological space (S, τ) is compact and Hausdorff, and (ii)

for every s ∈ S the map

S 3 t 7→ t ∗ s ∈ S

is continuous. We have the following proposition.

Proposition D.5. If (X, ∗) is a semigroup, then the space (βX, ∗) is a com-

pact semigroup. Moreover, the binary operation ∗ on βX is an extension of the

semigroup operation ∗ on X.

Proof. The proof is based on a series of claims. First we will show that the

binary operation ∗ on βX is well defined.

Claim D.6. For every V,W ∈ βX we have V ∗W ∈ βX.

Proof of Claim D.6. We fix V,W ∈ βX. It is easy to see that ∅ /∈ V ∗ W.

Hence, property (U1) in Definition D.1 is satisfied. To see that property (U2) is

satisfied, let A ⊆ B ⊆ X. Notice that Ax ⊆ Bx for every x ∈ X. Therefore,

A ∈ V ∗W ⇔ {x ∈ X : Ax ∈ W} ∈ V
⇒ {x ∈ X : Bx ∈ W} ∈ V ⇔ B ∈ V ∗W.

We proceed to show that property (U3) is satisfied. Let A,B ∈ V ∗ W. Observe

that (A ∩B)x = Ax ∩Bx for every x ∈ X, and so,

{x ∈ X : (A ∩B)x ∈ W} = {x ∈ X : Ax ∩Bx ∈ W}
= {x ∈ X : Ax ∈ W} ∩ {x ∈ X : Bx ∈ W}.

Hence,

A,B ∈ V ∗W ⇔ {x ∈ X : Ax ∈ W} ∈ V and {x ∈ X : Bx ∈ W} ∈ V
⇔

(
{x ∈ X : Ax ∈ W} ∩ {x ∈ X : Bx ∈ W}

)
∈ V

⇔ {x ∈ X : (A ∩B)x ∈ W} ∈ V ⇔ A ∩B ∈ V ∗W.

It remains to verify that V ∗ W satisfies property (U4). To this end let A ⊆ X be

arbitrary. Notice that X \Ax = (X \A)x for every x ∈ X. Thus,

A /∈ V ∗W ⇔ {x ∈ X : Ax ∈ W} /∈ V ⇔ {x ∈ X : Ax /∈ W} ∈ V
⇔ {x ∈ X : X \Ax ∈ W} ∈ V
⇔ {x ∈ X : (X \A)x ∈ W} ∈ V ⇔ X \A ∈ V ∗W.

The proof of Claim D.6 is completed. �

Next we will show that the binary operation ∗ on βX is associative.

Claim D.7. For every U ,V,W ∈ βX we have U ∗ (V ∗W) = (U ∗ V) ∗W.
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Proof of Claim D.7. Fix U ,V,W ∈ βX. Let A be an arbitrary subset of

X. Notice that (Ax)y = Ax∗y for every x, y ∈ X. Hence,

A ∈ U ∗ (V ∗W) ⇔ {x ∈ X : Ax ∈ V ∗W} ∈ U
⇔

{
x ∈ X : {y ∈ Y : (Ax)y ∈ W} ∈ V

}
∈ U

⇔
{
x ∈ X : {y ∈ Y : Ax∗y ∈ W} ∈ V

}
∈ U . (D.13)

On the other hand,

A ∈ (U ∗ V) ∗W ⇔ {z ∈ X : Az ∈ W} ∈ U ∗ V
⇔

{
x ∈ X : {z ∈ X : Az ∈ W}x ∈ V

}
∈ U . (D.14)

Notice that for every x ∈ X we have

{z ∈ X : Az ∈ W}x = {y ∈ X : Ax∗y ∈ W}. (D.15)

Indeed,

w ∈ {z ∈ X : Az ∈ W}x ⇔ x ∗ w ∈ {z ∈ X : Az ∈ W}
⇔ Ax∗w ∈ W ⇔ w ∈ {y ∈ X : Ax∗y ∈ W}.

Therefore, by (D.14) and (D.15), we obtain that

A ∈ (U ∗ V) ∗W ⇔
{
x ∈ X : {y ∈ Y : Ax∗y ∈ W} ∈ V

}
∈ U . (D.16)

Summing up, by (D.13) and (D.16), we conclude that A ∈ U ∗ (V ∗W) if and only if

A ∈ (U ∗ V) ∗W. Since A was arbitrary, this shows that U ∗ (V ∗W) = (U ∗ V) ∗W
and the proof of Claim D.7 is completed. �

We proceed with the following claim.

Claim D.8. For every W ∈ βX the map V 7→ V ∗W is continuous.

Proof of Claim D.8. Fix W ∈ βX and let φ : βX → βX be defined by the

rule φ(V) = V ∗W. Also let A ⊆ X be arbitrary and observe that

φ−1
(
(A)βX

)
= {V ∈ βX : φ(V) ∈ (A)βX} = {V ∈ βX : A ∈ φ(V)}
= {V ∈ βX : A ∈ V ∗W} =

{
V ∈ βX : {x ∈ X : Ax ∈ W} ∈ V

}
.

Therefore, setting B = {x ∈ X : Ax ∈ W}, we see that φ−1
(
(A)βX

)
= (B)βX .

This implies, of course, that the map φ is continuous. The proof of Claim D.8 is

completed. �

We are now ready to complete the proof of the proposition. Notice first that,

by Proposition D.3 and Claims D.6, D.7 and D.8, the space (βX, ∗) is a compact

topological semigroup. So, it remains to show that for every y, z ∈ X we have

eX(y) ∗ eX(z) = eX(y ∗ z). Indeed, let A ⊆ X be arbitrary and observe that

A ∈ eX(y) ∗ eX(z) ⇔ y ∈ {x ∈ X : z ∈ Ax}
⇔ z ∈ Ay ⇔ y ∗ z ∈ A⇔ A ∈ eX(y ∗ z).

The proof of Proposition D.5 is thus completed. �

We close this subsection with the following proposition.
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Proposition D.9. Let (X, ∗) be a semigroup. Also let (Y, ·) be a semigroup and

T : (X, ∗)→ (Y, ·) a semigroup homomorphism, that is, T (x1 ∗ x2) = T (x1) · T (x2)

for every x1, x2 ∈ X. Then the unique extension T : βX → βY is also a semigroup

homomorphism.

Proof. Let V,W ∈ βX and fix B ⊆ Y . Since T : X → Y is a semigroup

homomorphism, we see that (T−1(B))x = T−1
(
BT (x)

)
for every x ∈ X. Therefore,

B ∈ T (V ∗W) ⇔ T−1(B) ∈ V ∗W ⇔ {x ∈ X : (T−1(B))x ∈ W} ∈ V
⇔ {x ∈ X : T−1(BT (x)) ∈ W} ∈ V
⇔ {x ∈ X : BT (x) ∈ T (W)} ∈ V
⇔ T−1

(
{y ∈ Y : By ∈ T (W)}

)
∈ V

⇔ {y ∈ Y : By ∈ T (W)} ∈ T (V)⇔ B ∈ T (V) · T (W)

and the proof of Proposition D.9 is completed. �

D.5. Compact semigroups. In this section we present some basic proper-

ties of compact semigroups. This material is somewhat more general and is not

intrinsically related to ultrafilters. However, it is conceptually quite close to the

context of this appendix.

Let (S, ∗) be a compact semigroup. Recall that a subset J of S is said to be a

left ideal (respectively, right ideal) provided that S∗J ⊆ J (respectively, J ∗S ⊆ J).

A minimal left ideal is a left ideal J of S not containing any left ideal of S other

than itself. Finally, a subset I of S is said to be a two-sided ideal if I is both left

and right ideal of S. We gather, below, some basic properties of left ideals (and

related structures) of compact semigroups.

Proposition D.10. Let (S, ∗) be a compact semigroup.

(a) Every left ideal of S contains a minimal left ideal.

(b) Every minimal left ideal is closed.

(c) Let J be a minimal left ideal of S and s ∈ S. Then J ∗ s is a minimal left

ideal. In particular, we have that J ∗ s = J if s ∈ J .

(d) Every minimal left ideal is contained in every two-sided ideal of S.

Proof. (a) Fix a left ideal J of S and set

M = {I ⊆ J : I is closed left ideal of S}.

Since S ∗ s ∈ M for every s ∈ J , we see that M 6= ∅. By Zorn’s lemma, there

exists a minimal (with respect to inclusion) element I0 of M. We claim that I0 is

a minimal left ideal. Indeed, let I ⊆ I0 be a left ideal, and let s ∈ I be arbitrary.

Notice that S ∗ s ⊆ I ⊆ I0. Since S ∗ s is a closed left ideal of S, the minimality of

I0 yields that S ∗ s = I0 which implies, of course, that I = I0.

(b) Let J be a minimal left ideal of S and fix s0 ∈ J . Notice that S ∗ s0 is a

left ideal of S which is contained in J . The minimality of J yields, in particular,

that S ∗ s0 = J . Invoking the continuity of the map t 7→ t ∗ s0, we conclude that J

is compact and hence closed.
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(c) Notice, first, that J ∗s is a left ideal of S since S ∗(J ∗s) = (S ∗J)∗s ⊆ J ∗s.
So we only need to show that the left ideal J ∗ s is actually minimal. To this end,

let I be a minimal left ideal contained in J ∗ s (it exists by part (a) above). Fix

t ∈ I. Then t ∈ J ∗ s and so t = w ∗ s for some w ∈ J . Observe that S ∗ t = I and

S ∗ w = J , since I and J are both minimal left ideals of S. Therefore,

I = S ∗ t = S ∗ (w ∗ s) = (S ∗ w) ∗ s = J ∗ s

which implies that is J ∗ s is a minimal left ideal.

Finally, let s ∈ J and notice that J ∗ s is a left ideal of S with J ∗ s ⊆ J .

Invoking the minimality of J , we see that J ∗ s = J .

(d) Let J be a minimal left ideal of S. Also let I be a two-sided ideal of S.

In particular, I is a left ideal of S and so S ∗ (I ∗ J) ⊆ I ∗ J . Hence, I ∗ J is a

left ideal. On the other hand, J is a left ideal S which implies that I ∗ J ⊆ J .

Summing up, we see that I ∗J is a left ideal of S which is contained in J . Invoking

the minimality of J we get that I ∗J = J . Since I is also a right ideal, we conclude

that J = I ∗ J ⊆ I. The proof of Proposition D.10 is completed. �

An element p of a compact semigroup S is said to be an idempotent if p∗p = p.

The existence of idempotents in arbitrary compact semigroups is a fundamental

result which is known as Ellis’s lemma.

Lemma D.11. Every compact semigroup contains an idempotent.

Proof. Let (S, ∗) be a compact semigroup and let C be the family of all

compact subsemigroups of S ordered by inclusion. By Zorn’s lemma, there exists

a minimal element T0 of C. Let p ∈ T0 be arbitrary. We will show that p is an

idempotent. To this end, notice that T0 ∗ p is a compact subsemigroup of T0. By

the minimality of T0, we see that T0 ∗ p = T0. It follows, in particular, that the

set T = {t ∈ T0 : t ∗ p = p} is nonempty. Next observe that T is a compact

subsemigroup of T0. Invoking the minimality of T0 once again, we get that T = T0.

Therefore, p ∈ T which implies, of course, that p∗p = p. The proof of Lemma D.11

is completed. �

Now let S be a compact semigroup. On the set of all idempotents of S we

define a (partial) binary relation 4 by the rule

p 4 q ⇔ p ∗ q = q ∗ p = p. (D.17)

It is easy to see that the relation 4 is a partial order. An idempotent p of S is said

to be minimal if for every idempotent q ∈ S with q 4 p we have q = p. We have

the following proposition.

Proposition D.12. Let (S, ∗) be a compact semigroup.

(a) For every idempotent q of S there is a minimal idempotent p with p 4 q.
(b) An idempotent of S is minimal if and only if it belongs to some minimal

left ideal of S.

Proof. We start with the following claim.
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Claim D.13. Let J be a closed left ideal of S. Also let q be an idempotent of

S. Then J ∗ q contains an idempotent p with p 4 q.

Proof of Claim D.13. Notice that (J ∗ q) ∗ (J ∗ q) ⊆ J ∗ q and so J ∗ q is a

subsemigroup of S. Moreover, by the continuity of the map t 7→ t ∗ q, we have that

J ∗ q is a compact subsemigroup of S. By Lemma D.11, there exists an idempotent

r contained in J ∗ q. Let t ∈ J be such that r = t∗ q and set p = q ∗ t∗ q = q ∗ r. We

will show that p is as desired. Indeed, p = q∗ t∗q ∈ S ∗J ∗q ⊆ J ∗q and so p ∈ J ∗q.
Moreover, p ∗ p = (q ∗ t ∗ q) ∗ (q ∗ t ∗ q) = q ∗ (t ∗ q) ∗ (t ∗ q) = q ∗ r ∗ r = q ∗ r = p.

Therefore, p is an idempotent. Finally, notice that p ∗ q = q ∗ t ∗ q ∗ q = q ∗ t ∗ q = p

and q ∗ p = q ∗ q ∗ t ∗ q = q ∗ t ∗ q = p. Hence, p 4 q and the proof of Claim D.13 is

completed. �

We proceed with the following claim.

Claim D.14. Every idempotent of a minimal left ideal is minimal.

Proof of Claim D.14. Let J be a minimal left ideal. Also let p ∈ J be an

idempotent and fix an idempotent q ∈ S with q 4 p. Since q = q ∗p ∈ S ∗J ⊆ J we

see that q ∈ J . By Proposition D.10, we have J ∗ q = J and so there exists r ∈ J
such that r ∗ q = p. Therefore, q = p ∗ q = r ∗ q ∗ q = r ∗ q = p. The proof of Claim

D.14 is completed. �

We are now ready to complete the proof of the proposition. To this end, let

q be an idempotent of S. Also let J be an arbitrary minimal left ideal of S. By

part (b) of Proposition D.10 and Claim D.13, there exists an idempotent p ∈ J ∗ q
with p 4 q. By part (c) of Proposition D.10, we have that J ∗ q is also a minimal

left ideal. Hence, by Claim D.14, the idempotent p is minimal. Summing up, we

see that for every idempotent q the idempotent p selected above satisfies p 4 q

and is minimal; in particular, the first part of the proposition is satisfied. If, in

addition, the idempotent q is minimal, then q = p which implies that q belongs to

the minimal left ideal J ∗ q. On the other hand, by Claim D.14, every idempotent

of a minimal left ideal is minimal. This shows that part (b) is also satisfied. The

proof of Proposition D.12 is thus completed. �

We close this appendix with the following result. It is an immediate conse-

quence of Propositions D.10 and D.12.

Corollary D.15. Let (S, ∗) be a compact semigroup. Then every two-sided

ideal contains all minimal idempotents of S. In particular, if I is a two-sided ideal

and q is an idempotent of S, then there is a minimal idempotent p ∈ I with p 4 q.



APPENDIX E

Probabilistic background

Let (Ω,Σ, µ) be a probability space. Also let A ∈ Σ with µ(A) > 0. For every

B ∈ Σ the conditional probability of B given A is the quantity

µ(B |A) =
µ(B ∩A)

µ(A)
. (E.1)

The conditional probability measure of µ relative to A is the probability measure

µA on (Ω,Σ) defined by the rule

µA(B) = µ(B |A) (E.2)

for every B ∈ Σ. More generally, let f : Ω → R be an integrable random variable

and let E(f) denote the expected value of f , that is,

E(f) =

∫
f dµ. (E.3)

The conditional expectation of f with respect to A is defined by

E(f |A) =

∫
A
f dµ

µ(A)
. (E.4)

Notice that the conditional expectation of f with respect to Ω coincides with the

expected value of f and observe that E(f |A) =
∫
f dµA and E(1B |A) = µ(B |A)

for every B ∈ Σ. By convention we set E(f |A) = 0 if µ(A) = 0.

E.1. Main probabilistic inequalities. The following basic inequality relates

the distribution of a non-negative random variable with its expected value.

Markov’s inequality. Let (Ω,Σ, µ) be a probability space. Then for every

non-negative random variable f and every λ > 0 we have

µ
(
{ω ∈ Ω : f(ω) > λ}

)
6
E(f)

λ
. (E.5)

Markov’s inequality can be used to control the order of magnitude of a given

random variable f . Note, however, that this control is insufficient when one needs

to know whether f does not deviate significantly from its expected value. This

information can be obtained from the higher moments of f . Specifically, for every

random variable f let Var(f) denote the variance of f , that is,

Var(f) =

∫
|f − E(f)|2 dµ. (E.6)

We have the following general large deviation inequality.

237
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Chebyshev’s inequality. Let (Ω,Σ, µ) be a probability space. Then for every

random variable f and every λ > 0 we have

µ
(
{ω ∈ Ω : |f(ω)− E(f)| > λ}

)
6

Var(f)

λ2
. (E.7)

E.2. The Lp spaces. Let (Ω,Σ, µ) be a probability space and 1 6 p < +∞.

By Lp(Ω,Σ, µ) we denote the vector space of all random variables f : Ω → R for

which the quantity
∫
|f |p dµ is finite (modulo, of course, µ-a.e. equality). For every

f ∈ Lp(Ω,Σ, µ) the Lp norm of f is the quantity

‖f‖Lp =
(∫
|f |p dµ

)1/p

. (E.8)

(If f /∈ Lp(Ω,Σ, µ), then we set ‖f‖Lp = +∞.) The vector space Lp(Ω,Σ, µ)

equipped with the Lp norm is a Banach space. Of particular importance is the

space L2(Ω,Σ, µ) which is a Hilbert space.

Many structural properties of the spaces Lp(Ω,Σ, µ) follow from the following

fundamental inequality.

Hölder’s inequality. Let 1 < p 6 q < +∞ with 1/p + 1/q = 1. Then for

every pair f, g of random variables on a probability space (Ω,Σ, µ) we have

‖fg‖L1
6 ‖f‖Lp · ‖g‖Lq . (E.9)

Notice that the case “p = q = 2” in (E.9) is the Cauchy–Schwarz inequality.

Another important consequence of Hölder’s inequality is the monotonicity of the Lp
norms. More precisely, observe that for every 1 6 p 6 q < +∞ and every random

variable f we have

‖f‖Lp 6 ‖f‖Lq . (E.10)

This fact also follows from the following powerful inequality.

Jensen’s inequality. Let I be an interval of R and φ : I → R a convex

function. Then for every I-valued integrable random variable f on a probability

space (Ω,Σ, µ) we have

φ
(∫

f dµ
)
6
∫

(φ ◦ f) dµ. (E.11)

E.3. Algebras and conditional expectation. Let Ω be a nonempty set and

let A be an algebra of subsets of Ω. A set A ∈ A is said to be an atom of A if for

every nonempty B ∈ A with B ⊆ A we have that B = A. The set of all nonempty

atoms of A will be denoted by Atoms(A). Although an infinite algebra may be

atomless, note that every finite algebra has plenty of atoms. Specifically, for every

finite algebra A on Ω the set Atoms(A) is a finite partition of Ω. Conversely, let

P be a finite partition of Ω and denote by AP the algebra generated by P. Notice

that the algebra AP is finite and coincides with the set of all finite (possibly empty)

unions of elements of P. Also observe that Atoms(AP) = P.

Now let (Ω,Σ, µ) be a probability space and Σ′ a σ-algebra on Ω with Σ′ ⊆ Σ.

For every f ∈ L1(Ω,Σ, µ) by E(f |Σ′) we shall denote the conditional expectation
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of f relative to Σ′. If A is a finite algebra on Ω with A ⊆ Σ, then the conditional

expectation E(f | A) has a particularly simple description, namely

E(f | A) =
∑

A∈Atoms(A)

E(f |A) · 1A. (E.12)

In the following proposition we recall some basic properties of the conditional ex-

pectation. For a detailed presentation of this material see, e.g., [Bi].

Proposition E.1. Let (Ω,Σ, µ) be a probability space and Σ′ a σ-algebra on

Ω with Σ′ ⊆ Σ. Then the following hold.

(a) Let 1 6 p < +∞. Also let f, g ∈ Lp(Ω,Σ, µ) and a, b ∈ R. Then we have

(i) E(af + bg |Σ′) = aE(f |Σ′) + bE(g |Σ′),
(ii) ‖E(f |Σ′)‖Lp 6 ‖f‖Lp ,

(iii) E(E(f |Σ′) |Σ′) = E(f |Σ′), and

(iv) if f ∈ Lp(Ω,Σ′, µ), then E(f |Σ′) = f .

Hence, the map f 7→ E(f |Σ′) is a linear, norm-one projection from Lp(Ω,Σ, µ)

onto Lp(Ω,Σ
′, µ).

(b) For every f, g ∈ L2(Ω,Σ, µ) we have∫
f · E(g |Σ′) dµ =

∫
E(f |Σ′) · g dµ.

That is, the projection f 7→ E(f |Σ′) is self-adjoint on L2(Ω,Σ, µ). In particular,

we have ‖f‖2L2
= ‖E(f |Σ′)‖2L2

+ ‖f − E(f |Σ′)‖2L2
for every f ∈ L2(Ω,Σ, µ).

(c) If Σ′′ is a σ-algebra on Ω with Σ′ ⊆ Σ′′ ⊆ Σ, then for every f ∈ L1(Ω,Σ, µ)

we have E(E(f |Σ′′) |Σ′) = E(f |Σ′). Therefore, for every 1 6 p < +∞ the projec-

tions f 7→ E(f |Σ′) and f 7→ E(f |Σ′′) in Lp(Ω,Σ, µ) are commuting.

E.4. Products of probability spaces. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be

two probability spaces. We endow the Cartesian product Ω1 × Ω2 with the tensor

product σ-algebra Σ1⊗Σ2 of Σ1 and Σ2, that is, the σ-algebra on Ω1×Ω2 generated

by the sets

{A1 ×A2 : A1 ∈ Σ1 and A2 ∈ Σ2}.

The product measure µ1×µ2 of µ1 and µ2 is the unique probability measure on the

measurable space (Ω1 × Ω2,Σ1 ⊗ Σ2) satisfying

(µ1 × µ2)(A1 ×A2) = µ1(A1) · µ2(A2)

for every A1 ∈ Σ1 and every A2 ∈ Σ2. Finally, the product of the spaces (Ω1,Σ1, µ1)

and (Ω2,Σ2, µ2) is the probability space (Ω1×Ω2,Σ1⊗Σ2, µ1×µ2). The product of

an arbitrary nonempty finite family of probability spaces is constructed by iterating

this basic operation.

Now let f : Ω1 × Ω2 → R be a function. Given x ∈ Ω1 we define fx : Ω2 → R
by the rule fx(y) = f(x, y). Respectively, for every y ∈ Ω2 we define fy : Ω1 → R
by fy(x) = f(x, y). The following result is known as Fubini’s theorem and is a

fundamental property of product spaces (see, e.g., [Bi]).
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Theorem E.2. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two probability spaces and

f ∈ L1(Ω1 × Ω2,Σ1 ⊗ Σ2, µ1 × µ2). Then the following hold.

(a) We have fx ∈ L1(Ω2,Σ2, µ2) for µ1-almost all x ∈ Ω1.

(b) We have fy ∈ L1(Ω1,Σ1, µ1) for µ2-almost all y ∈ Ω2.

(c) The random variables x 7→ E(fx) and y 7→ E(fy) are integrable and∫
f d(µ1 × µ2) =

∫
E(fx) dµ1 =

∫
E(fy) dµ2. (E.13)

E.5. General lemmas. We close this appendix by presenting some basic

facts, of probabilistic nature, which are used throughout this book. We start with

the following variant of Markov’s inequality.

Lemma E.3. Let 0 < ε < δ 6 1 and (δi)
n
i=1 a nonempty finite sequence in [0, 1].

Assume that Ei∈[n] δi > δ and |{i ∈ [n] : δi > δ + ε2
}
| 6 ε3n. Then we have

|{i ∈ [n] : δi > δ − ε}| > (1− ε)n. (E.14)

Proof. We set I = {i ∈ [n] : δi > δ − ε} and J = [n] \ I. Moreover, let

I1 = {i ∈ [n] : δ− ε 6 δi < δ+ ε2} and I2 = {i ∈ [n] : δ+ ε2 6 δi 6 1}. Notice that

I = I1 ∪ I2 and |I2| 6 ε3n. Therefore,

δn 6
n∑
i=1

δi =
∑
i∈I1

δi +
∑
i∈I2

δi +
∑
i∈J

δi

6 (δ + ε2)|I1|+ |I2|+ (δ − ε)(n− |I|)
6 (δ + ε2)|I|+ ε3n+ (δ − ε)(n− |I|)

which implies that |I| > (1− ε)n. �

We proceed with the following lemma.

Lemma E.4. Let (Ω,Σ, µ) be a probability space. Also let 0 < δ 6 1 and (Ai)
n
i=1

a nonempty finite sequence of measurable events in (Ω,Σ, µ) such that µ(Ai) > δ

for every i ∈ [n]. For every ω ∈ Ω we set Lω = {i ∈ [n] : ω ∈ Ai}. Then there

exists ω0 ∈ Ω such that |Lω0 | > δn. Moreover,

µ
(
{ω ∈ Ω : |Lω| > (δ/2)n}

)
> δ/2. (E.15)

Proof. Set f = 1
n

∑n
i=1 1Ai and notice that |Lω| = f(ω) · n for every ω ∈ Ω.

Since E(f) > δ there exists ω0 ∈ Ω with f(ω0) > δ which is equivalent to saying

that |Lω0
| > δn. Moreover, the random variable f takes values in [0, 1] and so

δ 6 E(f) 6 µ
(
{ω ∈ Ω : f(ω) > (δ/2)n}

)
+
δ

2
.

The proof of Lemma E.4 is completed. �

The next result asserts that any sufficiently large family of measurable events

in a probability space contains two events which are at least as correlated as if they

were independent.
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Lemma E.5. Let 0 < θ < ε 6 1 and n ∈ N with n > (ε2 − θ2)−1. If (Ai)
n
i=1

is a finite sequence of measurable events in a probability space (Ω,Σ, µ) satisfying

µ(Ai) > ε for every i ∈ [n], then there exist i, j ∈ [n] with i 6= j and µ(Ai∩Aj) > θ2.

Proof. Let f =
∑n
i=1 1Ai . Then E(f) > εn and so, by Jensen’s inequality,∑

i∈[n]

∑
j∈[n]\{i}

µ(Ai ∩Aj) = E(f2 − f) > ε2n2 − εn.

Therefore, there exist i, j ∈ [n] with i 6= j such that µ(Ai ∩Aj) > θ2. �

The following lemma concerns, essentially, the distribution of a measurable

event in the sets of a partition of the sample space, though the precise statement

is somewhat more general. This more general form will be needed in Chapter 9.

Lemma E.6. Let (Ω,Σ, µ) be a probability space and 0 < λ, β, ε 6 1. Let A and

B be two measurable events in (Ω,Σ, µ) with A ⊆ B and such that µ(A) > λµ(B)

and µ(B) > β. Suppose that Q = {Q1, . . . , Qn} is a nonempty finite family of

pairwise disjoint measurable events in (Ω,Σ, µ) such that µ(B \ ∪Q) 6 εβ/2 and

µ(Qi) > 0 for every i ∈ [n]. Then, setting

I =
{
i ∈ [n] : µQi(A) > (λ− ε)µQi(B) and µQi(B) > βε/4

}
, (E.16)

we have ∑
i∈I

µ(Qi) > βε/4. (E.17)

In particular, if µ(Qi) = µ(Qj) for every i, j ∈ [n], then |I| > (βε/4)n.

Proof. Notice, first, that µ(A \∪Q) 6 εβ/2. This is easily seen to imply that

n∑
i=1

µ(A ∩Qi)
µ(B)

> λ− ε/2. (E.18)

For every i ∈ [n] let ai = µQi(A)/µQi(B), bi = µQi(B) and ci = µ(Qi)/µ(B)

with the convention that ai = 0 if µ(B ∩ Qi) = 0. Then inequality (E.18) can be

reformulated as
n∑
i=1

aibici > λ− ε/2. (E.19)

Notice that
n∑
i=1

bici 6 1 and

n∑
i=1

ci 6
1

β
. (E.20)

Also observe that I = {i ∈ [n] : ai > λ − ε and bi > βε/4}. Since 0 6 ai, bi 6 1

for every i ∈ [n], by (E.19) and (E.20) and the previous remarks, we conclude that∑
i∈I ci > ε/4. The proof of Lemma E.6 is completed. �

The last result is a classical estimate for the tail of the binomial distribution.

Specifically, let H : [0, 1] → R be the binary entropy function (see, e.g., [Re]).

Recall that H(0) = H(1) = 0 and

H(x) = −x log2(x)− (1− x) log2(1− x) (E.21)
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for every 0 < x < 1. Observe that H(1/2 − z) = H(1/2 + z) for all 0 6 z 6 1/2.

Also notice that H is continuous and its restriction on the interval [0, 1/2] is strictly

increasing and onto [0, 1]. We have the following lemma.

Lemma E.7. Let 0 < ε 6 1/2. Then for every positive integer n we have

bε·nc∑
i=0

(
n

i

)
< 2H(ε)·n. (E.22)

Proof. Since 2H(ε)·n = ε−ε·n(1− ε)−(1−ε)·n it is enough to show that

bε·nc∑
i=0

(
n

i

)
εε·n(1− ε)(1−ε)·n < 1.

Using the fact that 0 < ε 6 1/2 we see that εε·n(1 − ε)(1−ε)·n 6 εi(1 − ε)n−i for

every 0 6 i 6 bε · nc. Therefore,

bε·nc∑
i=0

(
n

i

)
εε·n(1− ε)(1−ε)·n 6

bε·nc∑
i=0

(
n

i

)
εi(1− ε)n−i

<

n∑
i=0

(
n

i

)
εi(1− ε)n−i =

(
ε+ (1− ε)

)n
= 1

and the proof of Lemma E.7 is completed. �



APPENDIX F

Open problems

F.1. Hales–Jewett numbers and related problems. We start with the

following classical problem in Ramsey theory.

Problem 1. Which is the asymptotic behavior of the Hales–Jewett numbers?

There is no reasonable conjecture in this direction, partly because it is very

difficult to predict the growth of the numbers HJ(k, r). As we have pointed out in

Section 2.4, any significant improvement on Shelah’s bound would be of fundamen-

tal importance.

The understanding of the growth of the density Hales–Jewett numbers is even

less satisfactory. Indeed, the best known upper bounds for the numbers DHJ(k, δ)

have an Ackermann-type dependence with respect to k.

Problem 2. Which is the asymptotic behavior of the density Hales–Jewett

numbers? In particular, is it true that the numbers DHJ(k, δ) are upper bounded

by a primitive recursive function?

It is quite likely that the second part of Problem 2 has an affirmative answer.

In fact, it is natural to expect stronger results in this direction.

Conjecture 3. The density Carlson–Simpson numbers, DCS(k,m, δ), are up-

per bounded by a primitive recursive function.

Note that, by Proposition 9.59, an affirmative answer to Conjecture 3 also

yields an affirmative answer to the second part of Problem 2.

F.2. Carlson’s theorem. As we have mentioned in Section 4.1, all known

proofs of Carlson’s theorem rely on the use of ultrafilters and/or methods from

topological dynamics. (Note, however, that most of its consequences can be proved

by combinatorial means.)

Problem 4. Find a purely combinatorial proof of Carlson’s theorem.

F.3. Extensions of the Furstenberg–Weiss theorem. The following prob-

lem asks whether a multidimensional version of the Furstenberg–Weiss theorem

(Theorem 9.65) holds true.

Problem 5. Let ` > 3 and 0 < δ 6 1. Also let T = (T1, . . . , Td) be a vector

homogeneous tree of finite height and D a subset of the level product of T satisfying

En∈{0,...,h(T)−1}
|D ∩

(
T1(n)× · · · × Td(n)

)
|

|T1(n)× · · · × Td(n)|
> δ.

243
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If the height h(T) of T is sufficiently large (depending on `, δ, d and the branching

numbers of T1, . . . , Td), then does there exist a vector strong subtree S of T of

height ` with ⊗S ⊆ D and whose level set LT(S) is an arithmetic progression?

There is a stronger (and in a sense more complete) version of Problem 5 which

refers to Carlson–Simpson spaces.

Problem 6. Let m > 3 and 0 < δ 6 1, and let A be a finite alphabet with

|A| > 2. Also let N be a positive integer and D a subset of A<N+1 satisfying

En∈{0,...,N}
|D ∩An|
|An|

> δ.

If N is sufficiently large (depending on m, δ and the cardinality of A), then does

there exist an m-dimensional Carlson–Simpson subspace W of A<N+1 which is

contained in D and whose level set L(W ) is an arithmetic progression?

Not much is known in this direction. In fact, even the following coloring version

of Problem 6 is open, and is already quite interesting.

Problem 6′. Let m > 3 and r > 2, and let A be a finite alphabet with |A| > 2.

Also let N be a positive integer and c : A<N+1 → [r] a coloring. If N is suffi-

ciently large (depending on m, r and the cardinality of A), then does there exist

a monochromatic m-dimensional Carlson–Simpson subspace W of A<N+1 whose

level set L(W ) is an arithmetic progression?

F.4. Bounds for the hypergraph removal lemma. As we have already

pointed out in Section 7.6, all known effective proofs of the hypergraph removal

lemma yield lower bounds for the constant %(n, r, ε) in Theorem 7.16 which have

an Ackermann-type dependence with respect to r.

Problem 7. Which is the asymptotic behavior of the constants %(n, r, ε)? In

particular, is it true that there exist primitive recursive bounds for the hypergraph

removal lemma?

We notice that Problem 7 and instances thereof have been asked by several

authors (see, e.g., [Tao1]).

∗ ∗ ∗

We close this appendix with a brief discussion on three long-standing open

problems in Ramsey theory. Although these problems are somewhat distinct from

the main theme of this book, they are certainly in line with the general context of

this appendix.

F.5. Diagonal Ramsey numbers. For every k ∈ N with k > 2 let R(k) be

the k-th diagonal Ramsey number, that is, the least integer n > k such that for

every n-element set X and every 2-coloring of
(
X
2

)
there exists Z ∈

(
X
k

)
such that

the set
(
Z
2

)
is monochromatic. The existence of these numbers follows, of course,

from the work of Ramsey [Ra], but the standard upper bound, R(k) 6
(

2k−2
k−1

)
, is

due to Erdős and Szekeres [ErdS]. On the other hand, the first non-trivial lower
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bound was obtained by Erdős [Erd1] who showed that 2k/2 6 R(k). Combining

these classical estimates, we see that
√

2 6 R(k)1/k 6 4. (F.1)

Currently, the best known general estimates for the diagonal Ramsey numbers are(
1 + o(1)

)√2

e
k 2k/2 6 R(k) 6 (k − 1)−C

log(k−1)
log log(k−1)

(
2k − 2

k − 1

)
(F.2)

where C > 0 is an absolute constant. The lower bound in (F.2) is due to Spencer

[Spe], while the upper bound is due to Conlon [Co] who improved previous work

of Thomason [Th]. Although (F.2) is an important advance, it has a minor impact

on (F.1) since it yields that
√

2 6 lim inf
k→∞

R(k)1/k 6 lim sup
k→∞

R(k)1/k 6 4.

The question of determining the exact asymptotic behavior of the sequence

〈R(k)1/k : k > 2〉 is of fundamental importance in Ramsey theory and has been

asked by several authors (see, e.g., [Erd2, GRo, GRS]). This is the content of

the following problem due to Erdős.

Problem 8. Is it true that the sequence 〈R(k)1/k : k > 2〉 converges? And if

yes, then what is its limit?

F.6. Bounds for Szemerédi’s theorem. For every pair N, k of positive

integers with N > k > 3 let rk(N) be the cardinality of the largest subset of

[N ] not containing an arithmetic progression of length k. Note that Szemerédi’s

theorem is equivalent to saying that

lim
N→∞

rk(N)

N
= 0

for every integer k > 3.

Problem 9. Which is the asymptotic behavior of rk(N)?

Problem 9 is discussed in detail in [Go6]. The case “k = 3” is among the most

heavily investigated questions in combinatorial number theory. A classical lower

bound for r3(N) is due to Behrend [Beh], while the first upper bound was obtained

by Roth [Ro]. Currently, the best known estimates for r3(N) are1

Ne−
√

8 logN (logN)1/4 � r3(N)� N

(logN)1−o(1)
(F.3)

due to Elkin [Elk] and T. Sanders [Sa2] respectively (see also [Blo]). The estima-

tion of rk(N) becomes harder as k increases, and as such, progress for k > 4 has

been much slower. In particular, the best known general estimates are

Ne−ck(logN)1/dlog2 ke(logN)1/2dlog2 ke � rk(N)� N(log logN)−1/22k+9

. (F.4)

1We write f(N) � g(N) to denote that there exists an absolute constant C > 0 such that

f(N) 6 Cg(N) for all sufficiently large N ∈ N.
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The lower bound in (F.4) is due to O’Bryant [OBr]. The upper bound is due to

Gowers [Go3] and is the only “reasonable” upper bound for rk(N).

Problem 9 is closely related to the following famous conjecture of Erdős.

Conjecture 10 (Erdős’ conjecture on arithmetic progressions). Let A be a

subset of N such that
∑
n∈A n

−1 =∞. Then A contains arbitrarily long arithmetic

progressions.

It is not difficult to see that to prove Erdős’ conjecture it is sufficient to show

that rk(N)� N(logN)−1(log logN)−2 for every k > 3. Also note that an affirma-

tive answer to Erdős’s conjecture would imply the celebrated result of Green and

Tao [GT] that the set of primes contains arbitrarily long arithmetic progressions.

F.7. The density polynomial Hales–Jewett conjecture. Let A be a finite

alphabet with |A| > 2, and fix a letter x not belonging to A which we view as a

variable. For every pair n, d of positive integers let A[n]d be the set of all maps

from the d-fold Cartesian product [n]d to A. A polynomial variable word of A[n]d

is a map v : [n]d → A∪ {x} such that v−1({x}) = Xd for some nonempty subset X

of [n]. If v is a polynomial word of A[n]d and a ∈ A, then v(a) denotes the unique

element of A[n]d obtained by substituting in v all appearances of the variable x

with a. A polynomial line of A[n]d is a set of the form {v(a) : a ∈ A} where v is a

polynomial variable word of A[n]d .

The following result is known as the polynomial Hales–Jewett theorem and is

due to Bergelson and Leibman [BL].

Theorem F.1. For every triple k, d, r of positive integers with k > 2 there

exists a positive integer N with the following property. If n > N , then for every

alphabet A with |A| = k and every r-coloring of A[n]d there exists a polynomial

variable word v of A[n]d such that the set {v(a) : a ∈ A} is monochromatic. The

least positive integer with this property will be denoted by PHJ(k, d, r).

The original proof of Theorem F.1 was based on tools from topological dynam-

ics, but soon after its discovery a combinatorial proof was given in [W]. The best

known upper bounds for the numbers PHJ(k, d, r) were obtained slightly later by

Shelah [Sh2].

The polynomial Hales–Jewett theorem has a number of beautiful consequences

in Ramsey theory, several of which are discussed in detail in [McC1]. However, it

is not known whether there exists a density version of the polynomial Hales–Jewett

theorem. This is the content of the following conjecture of Bergelson [Ber].

Conjecture 11. For every pair k, d of positive integers with k > 2 and every

0 < δ 6 1 there exists a positive integer N with the following property. If n > N

and A is an alphabet with |A| = k, then every subset of A[n]d with cardinality at

least δkn
d

contains a polynomial line of A[n]d .

Note that the case “d = 1” of Conjecture 11 is just the density Hales–Jewett

theorem, but even the simplest higher-dimensional case, “k = d = 2”, is open. This
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particular case is equivalent to a conjectural two-dimensional extension of Sperner’s

theorem and is very interesting on its own.

Problem 12. For every 0 < δ 6 1 there exists a positive integer N with the

following property. If n > N and D is a family of subsets of [n]2 with cardinality

at least δ2n
2

, then there exist A,B ∈ D with A ⊆ B such that B \A is of the form

X ×X for some nonempty subset X of [n].
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[ER] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set,

Proc. London Math. Soc. 2 (1952), 417–439.
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MDHJ(k,m, δ), 144

MDHJ∗(k,m, δ), 145

MHJ(k, d, r), 25

MSz(k, d, δ), 141

MT(d,m, r), 32

Mil(b1, . . . , bd | `, k, r), 55

NU(F), 28

RamCS(k, d, r), 90

RamSp(k, d, r), 84

RegCS(k, `,m, ε), 113

RegSp(k, `,m, ε), 112

RegSz(k, `, σ, F ), 99

R(d,m, r), 225

Sh(k, d, r), 21

Shv(k, d, r), 36

Smp(r, δ), 138

Strk(T ), Str<∞(T ), Str∞(T ), 13

Strk(T), Str<∞(T), Str∞(T), 14

Strm(k,T), Strm(A,T), 45

Str<∞(k,T), Str<∞(A,T), 45

Str∞(k,T), Str∞(A,T), 45

SubCSm(W ), 9

SubCSm(W � B), 10

SubCSmax
m (W ), 10

SubCS∞(W ), 11

Subspm(V ), 5

Subspm(V � B), 6

Subsysm(w), 9

Subwm(v), 4

SuccT (t), ImmSuccT (t), 12

SuccT(t,D), 40

Sz(k, δ), 139

T(d, r), 29

UDHL(b1, . . . , bd | `, δ), 215

Unf(C, f, η), 103

U(k, `, η), 103

Var(f), 237

cs(k, d, r), 69

c(k, d, r), 70

densY (A), dense(A), Ey∈Y f(y), 1A, 1

dV
FW, dL, 174

µ(B | A), µA, 237

⊗T(n), ⊗T, 14

dT(S,R), 47

p 4 q, 235

tSz(ε,m), KSz(ε,m), 105

w <lex u, 3

wau, w ∧ u, XaY , X ∧ Y , 2(X
k

)
, [X]∞, P(X), 1
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a vector tree S

accepts A into F , 48

decides A relative to F , 48

rejects A from F , 48

alphabet, 2

antichain of sets, 143

atom of an algebra, 238

Baire property, 227

binary entropy function, 241

block sequence, 28

block subsequence, 31

C-set, 228

canonical isomorphism associated with

a Carlson–Simpson space, 9, 11

a combinatorial space, 4

a finite set J , 3

a homogeneous tree, 13

Carlson–Simpson space

Carlson–Simpson line, 8

dimension, 8

generating system, 8

infinite-dimensional, 11

level, 8

level set, 8

restriction, 10

subspace, 9

Carlson–Simpson system

dimension, 8

infinite-dimensional, 11

subsystem, 9

coloring, 1

r-coloring, 1

finite coloring, 1

monochromatic set with respect to a

coloring, 1

combinatorial space, 4

combinatorial line, 4

constant part, 5

dimension, 4

restriction, 6

set of fixed coordinates, 5

subspace, 5

wildcard sets, 5

compact semigroup, 232

A-compatible pair, 171

completely Ramsey subset of Str∞(T), 47

conditional expectation with respect to a

σ-algebra, 239

conditional expectation with respect to an

event, 237

conditional probability measure, 237

convolution operation, 166

density increment strategy, 147

disjoint sequence, 28

edge density d(X,Y ), 105

Ellentuck topology on Str∞(T), 47

Ellis’s lemma, 235

envelope Env(F ), 83

equivalent words, 20

expected value of a random variable, 237

extracted subsequence, 7

extracted variable word, 7

extracted word, 7

filter on a set X, 229

Furstenberg–Weiss measures, 174

growth function, 98

hypergraph, 2

closed under set inclusion, 123

downwards closure of a hypergraph, 123

hypergraph bundle, 125

r-uniform, 2

hypergraph removal lemma, 136

partite version, 136

hypergraph system, 117

ideal

left, 234

minimal left, 234

right, 234

two-sided, 234

idempotent, 235

minimal, 235

insensitive

coloring, 20

set in a Carlson–Simpson space, 188

set in a combinatorial space, 20

set of words, 20

iterated convolution operation, 171

located word, 3

martingale, 100

meager set, 227

measure preserving transformation, 156

nowhere dense set, 227

parameter word, 3

primitive recursive function, 223

En, 224

Grzegorczyk’s class En, 224

projection function Pk
i , 223
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successor function S, 223

Ramsey null subset of Str∞(T), 51

Ramsey subset of Str∞(T), 47

reduced subsequence, 6

reduced variable word, 6

reduced word, 6

ε-regular pair, 105

(ε, J)-regular family of sets of words, 113

semigroup, 231

k-semiring, 95

IPr-set in an abelian group, 158

Shelah’s insensitivity lemma, 21

Souslin operation, 227

Souslin scheme, 227

IPr-system of transformations, 156

Szemerédi’s regularity lemma, 105

theorem

Carlson’s theorem, 61

Carlson’s theorem (finite version), 72

Carlson–Simpson theorem, 65

Carlson–Simpson theorem (finite

version), 69

corners theorem, 138

density affine Ramsey theorem, 157

density Carlson–Simpson theorem, 165

density Carlson–Simpson theorem (finite

version), 165

density Hales–Jewett theorem, 143

density Halpern–Läuchli theorem, 215

density Halpern–Läuchli theorem (finite

version), 215

disjoint unions theorem, 29

Furstenberg–Weiss theorem, 218

Hales–Jewett theorem, 19

Halpern–Läuchli theorem (dominating

set version), 40

Halpern–Läuchli theorem (strong subtree

version), 39

Hindman’s theorem, 67

Hindman’s theorem (finite version), 30

Milliken’s tree theorem, 45, 47

Milliken’s tree theorem (finite version),

55

Milliken–Taylor theorem, 67

Milliken–Taylor theorem (finite version),

32

multidimensional Hales–Jewett theorem,

25

multidimensional Szemerédi theorem,

141, 155

Ramsey’s theorem, 225

Sperner’s theorem, 143

Stern’s theorem, 53

Szemerédi’s theorem, 139, 155

IPr-Szemerédi theorem, 156

Szemerédi’s theorem for abelian groups,

158

tree/vector tree, 12, 13

balanced, 12, 13

branch of a tree, 12

branching number of a homogeneous

tree, 13

chain of a tree, 12

depth, 12, 14

dominating vector subset, 39

finitely branching, 12, 13

height, 12, 13

homogeneous tree, 13

immediate successors of a node, 12

initial subtree, 12

length of a node, 12

level compatible vector subset, 14

level of a tree, 12

level product, 14

level set, 12, 14

maximal node, 12

node of a tree, 12

pruned, 12, 13

regular dyadic tree, 53

rooted, 12, 13

strong subtree, 12

successors of a node, 12

vector homogeneous tree, 15

vector strong subtree, 14

vector subset, 14

type τ(F ) of

a subset of a Carlson–Simpson space, 87

a subset of a combinatorial space, 82

ultrafilter, 229

principal, 229

(f,S, η)-uniform set, 103

S-uniformity norm, 95

variable word

left variable word, 3

of pattern p, 219

n-variable subword, 4

n-variable word, 3

variance of a random variable, 237

word over an alphabet, 2

word representation R(F ) of

a subset of a Carlson–Simpson space, 86

a subset of a combinatorial space, 81


