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Introduction

Since a real univariate polynomial does not always have real roots, a very
natural algorithmic problem, is to design a method to count the number of real
roots of a given polynomial (and thus decide whether it has any). The “real
root counting problem” plays a key role in nearly all the “algorithms in real
algebraic geometry” studied in this book.

Much of mathematics is algorithmic, since the proofs of many theorems
provide a finite procedure to answer some question or to calculate something.
A classic example of this is the proof that any pair of real univariate poly-
nomials (P, @) have a greatest common divisor by giving a finite procedure
for constructing the greatest common divisor of (P, @), namely the euclidean
remainder sequence. However, different procedures to solve a given problem
differ in how much calculation is required by each to solve that problem.
To understand what is meant by “how much calculation is required”, one
needs a fuller understanding of what an algorithm is and what is meant by
its “complexity”. This will be discussed at the beginning of the second part of
the book, in Chapter 8.

The first part of the book (Chapters 1 through 7) consists primarily of
the mathematical background needed for the second part. Much of this back-
ground is already known and has appeared in various texts. Since these results
come from many areas of mathematics such as geometry, algebra, topology
and logic we thought it convenient to provide a self-contained, coherent expo-
sition of these topics.

In Chapter 1 and Chapter 2, we study algebraically closed fields (such as
the field of complex numbers C) and real closed fields (such as the field of real
numbers R). The concept of a real closed field was first introduced by Artin
and Schreier in the 1920’s and was used for their solution to Hilbert’s 17th
problem [6, 7]. The consideration of abstract real closed fields rather than the
field of real numbers in the study of algorithms in real algebraic geometry is
not only intellectually challenging, it also plays an important role in several
complexity results given in the second part of the book.



2 Introduction

Chapters 1 and 2 describe an interplay between geometry and logic for
algebraically closed fields and real closed fields. In Chapter 1, the basic geo-
metric objects are constructible sets. These are the subsets of C™ which are
defined by a finite number of polynomial equations (P = 0) and inequations
(P +#0). We prove that the projection of a constructible set is constructible.
The proof is very elementary and uses nothing but a parametric version of
the euclidean remainder sequence. In Chapter 2, the basic geometric objects
are the semi-algebraic sets which constitute our main objects of interest in
this book. These are the subsets of R™ that are defined by a finite number
of polynomial equations (P = 0) and inequalities (P > 0). We prove that
the projection of a semi-algebraic set is semi-algebraic. The proof, though
more complicated than that for the algebraically closed case, is still quite
elementary. It is based on a parametric version of real root counting tech-
niques developed in the nineteenth century by Sturm, which uses a clever
modification of euclidean remainder sequence. The geometric statement “the
projection of a semi-algebraic set is semi-algebraic” yields, after introducing
the necessary terminology, the theorem of Tarski that “the theory of real
closed fields admits quantifier elimination.” A consequence of this last result is
the decidability of elementary algebra and geometry, which was Tarski’s initial
motivation. In particular whether there exist real solutions to a finite set of
polynomial equations and inequalities is decidable. This decidability result
is quite striking, given the undecidability result proved by Matijacevi¢ [113]
for a similar question, Hilbert’s 10-th problem: there is no algorithm deciding
whether or not a general system of Diophantine equations has an integer
solution.

In Chapter 3 we develop some elementary properties of semi-algebraic sets.
Since we work over various real closed fields, and not only over the reals, it is
necessary to reexamine several notions whose classical definitions break down
in non-archimedean real closed fields. Examples of these are connectedness
and compactness. Our proofs use non-archimedean real closed field exten-
sions, which contain infinitesimal elements and can be described geometrically
as germs of semi-algebraic functions, and algebraically as algebraic Puiseux
series. The real closed field of algebraic Puiseux series plays a key role in the
complexity results of Chapters 13 to 16.

Chapter 4 describes several algebraic results, relating in various ways
properties of univariate and multivariate polynomials to linear algebra, deter-
minants and quadratic forms. A general theme is to express some properties of
univariate polynomials by the vanishing of specific polynomial expressions in
their coefficients. The discriminant of a univariate polynomial P, for example,
is a polynomial in the coefficients of P which vanishes when P has a mul-
tiple root. The discriminant is intimately related to real root counting, since,
for polynomials of a fixed degree, all of whose roots are distinct, the sign
of the discriminant determines the number of real roots modulo 4. The dis-
criminant is in fact the determinant of a symmetric matrix whose signature
gives an alternative method to Sturm’s for real root counting due to Hermite.
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Similar polynomial expressions in the coefficients of two polynomials are
the classical resultant and its generalization to subresultant coefficients. The
vanishing of these subresultant coefficients expresses the fact that the greatest
common divisor of two polynomials has at least a given degree. The resul-
tant makes possible a constructive proof of a famous theorem of Hilbert,
the Nullstellensatz, which provides a link between algebra and geometry in
the algebraically closed case. Namely, the geometric statement ‘an algebraic
variety (the common zeros of a finite family of polynomials) is empty’ is
equivalent to the algebraic statement ‘1 belongs to the ideal generated by these
polynomials’. An algebraic characterization of those systems of polynomial
equations with a finite number of solutions in an algebraically closed field
follows from Hilbert’s Nullstellensatz: a system of polynomial equations has
a finite number of solutions in an algebraically closed field if and only if the
corresponding quotient ring is a finite dimensional vector space. As seen in
Chapter 1, the projection of an algebraic set in affine space is constructible.
Considering projective space allows an even more satisfactory result: the pro-
jection of an algebraic set in projective space is algebraic. This result appears
here as a consequence of a quantitative version of Hilbert’s Nullstellensatz,
following the analysis of its constructive proof. A weak version of Bezout’s
theorem, bounding the number of simple solutions of polynomials systems is
a consequence of this projection theorem.

Semi-algebraic sets are defined by a finite number of polynomial inequali-
ties. On the real line, semi-algebraic sets consist of a finite number of points
and intervals. It is thus natural to wonder what kind of geometric finite-
ness properties are enjoyed by semi-algebraic sets in higher dimensions. In
Chapter 5 we study various decompositions of a semi-algebraic set into a finite
number of simple pieces. The most basic decomposition is called a cylindrical
decomposition: a semi-algebraic set is decomposed into a finite number of
pieces, each homeomorphic to an open cube. A finer decomposition provides a
stratification, i.e. a decomposition into a finite number of pieces, called strata,
which are smooth manifolds, such that the closure of a stratum is a union
of strata of lower dimension. We also describe how to triangulate a closed
and bounded semi-algebraic set. Various other finiteness results about semi-
algebraic sets follow from these decompositions. Among these are:

— a semi-algebraic set has a finite number of connected components each of
which is semi-algebraic,

— algebraic sets described by polynomials of fixed degree have a finite
number of topological types.

A natural question raised by these results is to find explicit bounds on these
quantities now known to be finite.
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Chapter 6 is devoted to a self contained development of the basics of
elementary algebraic topology. In particular, we define simplicial homology
theory and, using the triangulation theorem, show how to associate to semi-
algebraic sets certain discrete objects (the simplicial homology vector spaces)
which are invariant under semi-algebraic homeomorphisms. The dimensions of
these vector spaces, the Betti numbers, are an important measure of the topo-
logical complexity of semi-algebraic sets, the first of them being the number
of connected components of the set. We also define the Euler-Poincaré char-
acteristic, which is a significant topological invariant of algebraic and semi-
algebraic sets.

Chapter 7 presents basic results of Morse theory and proves the classical
Oleinik-Petrovsky-Thom-Milnor bounds on the sum of the Betti numbers of
an algebraic set of a given degree. The basic technique for these results is
the critical point method, which plays a key role in the complexity results of
the last chapters of the book. According to basic results of Morse theory, the
critical points of a well chosen projection on a line of a smooth hypersurface
are precisely the places where a change in topology occurs in the part of
the hypersurface inside a half space defined by a hyperplane orthogonal to
the line. Counting these critical points using Bezout’s theorem yields the
Oleinik-Petrovsky-Thom-Milnor bound on the sum of the Betti numbers of
an algebraic hypersurface, which is polynomial in the degree and exponential
in the number of variables. More recent results bounding the individual Betti
numbers of sign conditions defined by a family of polynomials on an algebraic
set are described. These results involve a combinatorial part, depending on
the number of polynomials considered, which is polynomial in the number
of polynomials and exponential in the dimension of the algebraic set, and
an algebraic part, given by the Oleinik-Petrovsky-Thom-Milnor bound. The
combinatorial part of these bounds agrees with the number of connected com-
ponents defined by a family of hyperplanes. These quantitative results on
the number of connected components and Betti numbers of semi-algebraic
sets provide an indication about the complexity results to be hoped for when
studying various algorithmic problems related to semi-algebraic sets.

The second part of the book discusses various algorithmic problems in
detail. These are mainly real root counting, deciding the existence of solutions
for systems of equations and inequalities, computing the projection of a semi-
algebraic set, deciding a sentence of the theory of real closed fields, eliminating
quantifiers, and computing topological properties of algebraic and semi-alge-
braic sets.

In Chapter 8 we discuss a few notions of complexity needed to analyze
our algorithms and discuss basic algorithms for linear algebra and remainder
sequences. We perform a study of a useful tool closely related to remainder
sequence, the subresultant sequence. This subresultant sequence plays an
important role in modern methods for real root counting in Chapter 9, and
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also provides a link between the classical methods of Sturm and Hermite
seen earlier. Various methods for performing real root counting, and com-
puting the signature of related quadratic forms, as well as an application to
counting complex roots in a half plane, useful in control theory, are described.

Chapter 10 is devoted to real roots. In the field of the reals, which
is archimedean, root isolation techniques are possible. They are based on
Descartes’s law of signs, presented in Chapter 2 and properties of Bernstein
polynomials, which provide useful constructions in CAD (Computer Aided
Design). For a general real closed field, isolation techniques are no longer
possible. We prove that a root of a polynomial can be uniquely described
by sign conditions on the derivatives of this polynomial, and we describe
a different method for performing sign determination and characterizing real
roots, without approximating the roots.

In Chapter 11, we describe an algorithm for computing the cylindrical
decomposition which had been already studied in Chapter 5. The basic
idea of this algorithm is to successively eliminate variables, using subresul-
tants. Cylindrical decomposition has numerous applications among which
are: deciding the truth of a sentence, eliminating quantifiers, computing a
stratification, and computing topological information of various kinds, an
example of which is computing the topology of an algebraic curve. The huge
degree bounds (doubly exponential in the number of variables) output by
the cylindrical decomposition method give estimates on the number of con-
nected components of semi-algebraic sets which are much worse than those
we obtained using the critical point method in Chapter 7.

The main idea developed in Chapters 12 to 16 is that, using the critical
point method in an algorithmic way yields much better complexity bounds
than those obtained by cylindrical decomposition for deciding the existential
theory of the reals, eliminating quantifiers, deciding connectivity and com-
puting connected components.

Chapter 12 is devoted to polynomial system solving. We give a few results
about Grobner bases, and explain the technique of rational univariate repre-
sentation. Since our techniques in the following chapters involve infinitesimal
deformations, we also indicate how to compute the limit of the bounded solu-
tions of a polynomial system when the deformation parameters tend to zero.
As a consequence, using the ideas of the critical point method described in
Chapter 7, we are able to find a point in every connected components of
an algebraic set. Since we deal with arbitrary algebraic sets which are not
necessarily smooth, we introduce the notion of a pseudo-critical point in order
to adapt the critical point method to this new situation. We compute a point
in every semi-algebraically connected component of a bounded algebraic set
with complexity polynomial in the degree and exponential in the number of
variables. Using a similar technique, we compute the Euler-Poincaré char-
acteristic of an algebraic set, with complexity polynomial in the degree and
exponential in the number of variables.
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In Chapter 13 we present an algorithm for the existential theory of the reals
whose complexity is singly exponential in the number of variables. Using the
pseudo-critical points introduced in Chapter 12 and perturbation methods to
obtain polynomials in general position, we can compute the set of realizable
sign conditions and compute representative points in each of the realizable
sign conditions. Applications to the size of a ball meeting every connected
component and various real and complex decision problems are provided.
Finally we explain how to compute points in realizable sign conditions on an
algebraic set taking advantage of the (possibly low) dimension of the algebraic
set. We also compute the Euler-Poincaré characteristic of sign conditions
defined by a set of polynomials. The complexity results obtained are quite
satisfactory in view of the quantitative bounds proved in Chapter 7.

In Chapter 14 the results on the complexity of the general decision problem
and quantifier elimination obtained in Chapter 11 using cylindrical decom-
position are improved. The main idea is that the complexity of quantifier
elimination should not be doubly exponential in the number of variables but
rather in the number of blocks of variables appearing in the formula where the
blocks of variables are delimited by alternations in the quantifiers 3 and V. The
key notion is the set of realizable sign conditions of a family of polynomials
for a given block structure of the set of variables, which is a generalization
of the set of realizable sign conditions, corresponding to one single block.
Parametrized versions of the methods presented in Chapter 13 give the tech-
nique needed for eliminating a whole block of variables.

In Chapters 15 and 16, we compute roadmaps and connected components
of algebraic and semi-algebraic sets. Roadmaps can be intuitively described
as an one dimensional skeleton of the set, providing a way to count con-
nected components and to decide whether two points belong to the same
connected component. A motivation for studying these problems comes from
robot motion planning where the free space of a robot (the subspace of the
configuration space of the robot consisting of those configurations where the
robot is neither in conflict with its environment nor itself) can be modeled as
a semi-algebraic set. In this context it is important to know whether a robot
can move from one configuration to another. This is equivalent to deciding
whether the two corresponding points in the free space are in the same con-
nected component of the free space. The construction of roadmaps is based
on the critical point method, using properties of pseudo-critical values. The
complexity of the construction is singly exponential in the number of vari-
ables, which is a complexity much better than the one provided by cylindrical
decomposition. Our construction of parametrized paths gives an algorithm
for computing coverings of semi-algebraic sets by contractible sets, which
in turn provides a single exponential time algorithm for computing the first
Betti number of semi-algebraic sets. Moreover, it gives an efficient algorithm
for computing semi-algebraic descriptions of the connected components of a
semi-algebraic set in single exponential time.
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1 Warning This book is intended to be self contained, assuming only that the
reader has a basic knowledge of linear algebra and the rudiments of a basic
course in algebra through the definitions and basic properties of groups, rings
and fields, and in topology through the elementary properties of closed, open,
compact and connected sets.

There are many other aspects of real algebraic geometry that are not con-
sidered in this book. The reader who wants to pursue the many aspects of
real algebraic geometry beyond the introduction to the small part of it that
we provide is encouraged to study other text books [26, 95, 5]. There is also
a great deal of material about algorithms in real algebraic geometry that we
are not covering in this book. To mention but a few: fewnomials, effective
positivstellensatz, semi-definite programming, complexity of quadratic maps
and quadratic sets, ...

2 References We have tried to keep our style as informal as possible. Rather
than giving bibliographic references and footnotes in the body of the text,
we have a section at the end of each chapter giving a brief description of the
history of the results with a few of the relevant bibliographic citations. We
only try to indicate where, to the best of our knowledge, the main ideas and
results appear for the first time, and do not describe the full history and
bibliography. We also list below the references containing the material we
have used directly.

3 Ezisting implementations In terms of existing implementation of the algo-
rithms described in the book, the current situation can be roughly summarized
as follows: algorithms appearing in Chapters 8 to 12, or more efficient versions
based on similar ideas, have been implemented (see a few references below).
For most of the algorithms presented in Chapter 13 to 16, there is no imple-
mentation at all. The reason for that is that the methods developed are well
adapted to complexity results but are not adapted to efficient implementation.

Most algorithms from Chapters 8 to 11 are quite classical and have been
implemented several times. We refer to [40] since it is a recent implemen-
tation based directly on [20]. It uses in part the work presented in [29]. A
very efficient variant of the real root isolation algorithm in the monomial
basis in Chapter 10 is described in [138]. Cylindrical algebraic decomposi-
tion discussed in Chapter 11 has also been implemented many times, see for
example [46, 30, 151]. We refer to [71] for an implementation of an algorithm
computing the topology of real algebraic curves close to the one we present
in Chapter 11. About algorithms discussed in Chapter 12, most computer
algebra systems include Grobner basis computations. Particularly efficient
Grdébner basis computations, based on algorithms not described in the book,
can be found in [59]. A very efficient rational univariate representation can
be found in [135]. Computing a point in every connected component of an
algebraic set based on critical point method techniques is done efficiently in
[143], based on the algorithms developed in [8, 144].
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4 Comments about the second edition An important change in content
between the first edition [20] and the second one is the inversion of the order
of Chapter 12 and Chapter 11. Indeed when teaching courses based on the
book, we felt that the material on polynomial system solving was not nec-
essary to explain cylindrical decomposition and it was better to make these
two chapters independent for teaching purposes. For the same reason, we
also made the real root counting technique based on signed subresultant coef-
ficients independent of the signed subresultant polynomials and included it
in Chapter 4 rather than in Chapter 9 as before. Some other chapters have
been slightly reorganized. Several new topics are included in this second edi-
tion: results about normal polynomials and virtual roots in Chapter 2, about
discriminants of symmetric matrices in Chapter 4, a new section bounding
the Betti numbers of semi-algebraic sets in Chapter 7, an improved complexity
analysis of real root isolation, as well as the real root isolation algorithm
in the monomial basis, in Chapter 10, the notion of parametrized path in
Chapter 15 and the computation of the first Betti number of a semi-alge-
braic set in single exponential time. We also included a table of notation
and completed the bibliography and bibliographical notes at the end of the
chapters. Various mistakes and typos have been corrected, and new ones
introduced, for sure. As a result of the changes, the numbering of Defini-
tions, Theorems etc. are not identical in the first edition [20] and the second
one. Also, Algorithms now have their own numbering.

According to our contract with Springer-Verlag, we have had the right to
post updated versions of the first edition of the book on our websites since
December 2004. Currently an updated version of the first edition is available
online as bpr-postedl.pdf. We are going to update on a regular basis this
posted version. Here are the various url where these files can be obtained
through http:// at
www.math.gatech.edu/ ~ saugata/bpr-postedl.html
www.math.nyu.edu/faculty/pollack/bpr-postedl.html
perso.univ-rennesl.fr/marie-francoise.roy/bpr-postedl.html

An implementation of algorithms from Chapters 8 to 10 and part of
Chapter 11 written in Maxima by Fabrizio Caruso, as well as a version of Jean-
Charles Faugere [59] and Fabrice Rouillier [135] software illustrating part of
Chapter 12, can also be downloaded at bpr-postedl-annex.

Note that the second edition has been prepared inside TEXj;acg- The
TEXyracs files have been initially produced from classical latex files of the
first edition. Even though some manual changes in the latex files have been
necessary to obtain correct TEXyracs files, the translation into TEXyacg Was
made automatically, and it has not been necessary to retype the text and
formulas, besides a few exceptions.
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After eighteen months of the publication of the current edition of the book,
we will post the second edition online and it will be available for downloading
from the same url as above.

5 Interactive version of the book Another possibility is to get the book as
a TEXyracg Project by downloading bpr-postedi-int. In the TEXyacg Pro-
ject version, you are able to travel in the book by clicking on references,
to fold/unfold proofs, descriptions of the algorithms and parts of the text.
You can use the open-source maxima code corresponding to algorithms of
Chapters 8 to 10 and part of Chapter 11 written by Fabrizio Caruso [40]: check
examples, read the source code and make your own computations inside the
book. You can also use the part of [59] and [135] provided by Jean-Charles
Faugére and Fabrice Rouillier to illustrate part of Chapter 12 directly in the
book. These functionalities are still experimental. You are welcome to report
to the authors’ email addresses any problem you might meet in using them.

In the future, TEXy;acg versions of the book will include other interactive
features, such as being able to find all places in the book where a given theorem
is quoted.

6 FErrors If you find remaining errors in the book, we would appreciate it if
you would let us know

email: saugata.basu@math.gatech.edu
pollack@cims.nyu.edu

marie-francoise.roy@univ-rennesl.fr

A list of errors identified in this version will be found at

www.math.gatech.edu/ ~ saugata/bpr_book/bpr-ed2-errata.html.
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[140, 98, 49] for Section 2.2, [47] for Section 2.3 and [164, 109] for Section 2.5.
Our source for Section 3.1, Section 3.2 and Section 3.3 of Chapter 3 is [26]. Our
sources for Chapter 4 are: [63] for Section 4.1, [94] for Theorem 4.47 in Section
4.4, [159, 147] for Section 4.4, [128, 129] for Section 4.6 and [22] for Section 4.7.
Our sources for Chapter 5 are [26, 47, 48]. Our source for Chapter 6 is [150].
Our sources for Chapter 7 are [117, 26, 17|, and for Section 7.5 [62, 21]. Our
sources for Chapter 8 are: [1] for Section 8.2 and [112] for Section 8.3. Our
sources for Chapter 9 are [63] and [66, 69, 70, 140, 2] for part of Section 9.1.
Our sources for Chapter 10 are: [116] for Section 10.1, [138, 149] for Section
10.2, [141] for Sections 10.3 and [129] for Section 10.4. Our source for Section
11.4 is [52], and for Section 11.6 is [67]. Our sources for Chapter 12 are: for
Section 12.1 [51], for Section 12.2 [72], for Section 12.4 [4, 134], for Section
12.5 [13]. The results presented in Section 13.1, Section 13.2 and Section 13.3
of Chapter 13 are based on [13, 15]. Our source for Section 13.4 of Chapter
13 is [18]. Our source for Chapter 14 is [13]. Our sources for Chapter 15 and
Chapter 16 are [16, 21].
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Algebraically Closed Fields

The main purpose of this chapter is the definition of constructible sets and
the statement that, in the context of algebraically closed fields, the projection
of a constructible set is constructible.

Section 1.1 is devoted to definitions. The main technique used for proving
the projection theorem in Section 1.3 is the remainder sequence defined in
Section 1.2 and, for the case where the coefficients have parameters, the tree
of possible pseudo-remainder sequences. Several important applications of
logical nature of the projection theorem are given in Section 1.4.

1.1 Definitions and First Properties

The objects of our interest in this section are sets defined by polynomials with
coefficients in an algebraically closed field C.

A field C is algebraically closed if any non-constant univariate polyno-
mial P(X) with coefficients in C has a root in C, i.e. there exists z € C such
that P(x)=0.

Every field has a minimal extension which is algebraically closed and this
extension is called the algebraic closure of the field (see Section 2, Chapter 5
of [102]). A typical example of an algebraically closed field is the field C of
complex numbers.

We study the sets of points which are the common zeros of a finite family
of polynomials.

If D is a ring, we denote by D[X3, ..., X] the polynomials in k vari-
ables X,..., X§ with coefficients in D.

Notation 1.1. [Zero set] If P is a finite subset of C[X7,..., Xs] we write the
set of zeros of P in C* as
Zer(P,CF) = {z € CF| /\ P(x)=0}.
Pep

These are the algebraic subsets of CF.
The set CF is algebraic since C*¥ = Zer({0}, C¥). O
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Exercise 1.1. Prove that an algebraic subset of C is either a finite set or
empty or equal to C.

It is natural to consider the smallest family of sets which contain the alge-
braic sets and is also closed under the boolean operations (complementation,
finite unions, and finite intersections). These are the constructible sets.
Similarly, the smallest family of sets which contain the algebraic sets, their
complements, and is closed under finite intersections is the family of basic
constructible sets. Such a basic constructible set S can be described as a
conjunction of polynomial equations and inequations, namely

S ={zeCk| /\ P(x)=0A /\ Q(x)#0}

PeP QeQ
with P, Q finite subsets of C[X7,..., X].

Exercise 1.2. Prove that a constructible subset of C is either a finite set or
the complement of a finite set.

Exercise 1.3. Prove that a constructible set in C¥ is a finite union of basic
constructible sets.

The principal goal of this chapter is to prove that the projection from C*+1
to CF that is defined by “forgetting" the last coordinate maps constructible
sets to constructible sets. For this, since projection commutes with union, it
suffices to prove that the projection

{yeCr3zeC A Ply,x)=0n N\ Q(y,z)+#0}
pPecP QeQ
of a basic constructible set,

{(y0)€CH] A\ Ply.a)=0A N\ Q(y,)#0}
PepP QeQ
is constructible, i.e. can be described by a boolean combination of polynomial
equations (P =0) and inequations (P+#0) in Y = (Y1,..., Y).
Some terminology from logic is useful for the study of constructible sets.
We define the language of fields by describing the formulas of this language.
The formulas are built starting with atoms, which are polynomial equations
and inequations. A formula is written using atoms together with the logical
connectives “and", “or", and “negation" (A, V, and —) and the existential and
universal quantifiers (3, V). A formula has free variables, i.e. non-quantified
variables, and bound variables, i.e. quantified variables. More precisely, let
D be a subring of C. We define the language of fields with coefficients
in D as follows. An atom is P = 0 or P # 0, where P is a polynomial
in D[X1,..., Xi]. We define simultaneously the formulas and Free(®), the set
of free variables of a formula ®, as follows

— an atom P =0 or P+ 0, where P is a polynomial in D[X7, ..., X}] is a
formula with free variables {X1,..., Xi},
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— if &1 and P, are formulas, then &1 A P and &V P, are formulas with
Free(®; A ®3) =Free(®; V @) = Free(®1) U Free(P2),
— if ® is a formula, then —(®) is a formula with
Free(—(®)) = Free(®),
— if ® is a formula and X € Free(®), then (3X) ® and (VX) ® are formulas
with
Free((3X) @) =Free((VX) &) =Free(®)\ {X }.

If ® and ¥ are formulas, ® = ¥ is the formula —(®) Vv V.

A quantifier free formula is a formula in which no quantifier appears,
neither 3 nor V. A basic formula is a conjunction of atoms.

The C-realization of a formula ¢ with free variables contained
in {Y1, ..., Y3}, denoted Reali(®, C*), is the set of y € C¥ such that ®(y)
is true. It is defined by induction on the construction of the formula, starting
from atoms:

Reali(P =0,C*
Reali(P # 0, C*
Reali(®; A @y, CF
Reali(®; V &y, CF

= {yeCF| P(y)=0},

— [yeC| P(y)£0),

= Reali(®1, C*) N Reali(Ps, C*),

= Reali(®1, C*) U Reali(®s, C*),
Reali(—=®,C*) = CF\ Reali(®, C*),

Reali((3X) ®,C*) = {yeCk|3z€C (z,y)€Reali(®,CF1)},

Reali((VX) ®,C*) = {yeCk|VzeC (z,y)€Reali(®,C**1)}

~— — — — — —

Two formulas ® and ¥ such that Free(®) = Free(¥) = {Yy, ..., Yi} are
C-equivalent if Reali(®, C*) = Reali(¥, C¥).

If there is no ambiguity, we simply write Reali(®) for Reali(®, C*) and
talk about realization and equivalence.

Ezample 1.2. The formulas ®=((3Y) XY —1=0) and ¥ = (X #0) are two
formulas of the language of fields with coefficients in Z and

Free(®) =Free(¥)={X }.

Note that the formula ¥ is quantifier free. Moreover, ® and ¥ are C-equivalent
since

Reali(®,C) = {z€C|IyeC zy—1=0}

= {zeC|z+#0}
= Reali(?,C).
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It is clear that a set is constructible if and only if it can be represented as the
realization of a quantifier free formula.

It is easy to see that any formula ® with Free(®) = {Y1, ..., Y%} in the
language of fields with coeflicients in D is C-equivalent to a a formula

(Qule)...(Qume) B(Xl, ...,Xm, Yl, Yk)

where each Qu; € {V,3} and B is a quantifier free formula involving polyno-
mials in D[X7, ..., X;,,, Y1,...Yy]. This is called its prenex normal form (see
Section 10, Chapter 1 of [115]). The variables X7, ..., X, are called bound
variables.

If the formula ® has no free variables, i.e. Free(®) =10, then it is called a
sentence, and it is either C-equivalent to true, when Reali(®), {0}) = {0},
or C-equivalent to false, when Reali(®), {0}) = ). For example, 0 =0 is C-
equivalent to true, and 0 =1 is C-equivalent to false.

Remark 1.3. Though many statements of algebra can be expressed by a sen-
tence in the language of fields, it is necessary to be careful in the use of this
notion. Consider for example the fundamental theorem of algebra: any non
constant polynomial with coefficients in C has a root in C, which is expressed
by

Y P €C[X] deg(P)>0, 3X €C P(X)=0.

This expression is not a sentence of the language of fields with coefficients
in C, since quantification over all polynomials is not allowed in the definition
of formulas. However, fixing the degree to be equal to d, it is possible to
express by a sentence ¥, the statement: any monic polynomial of degree d
with coefficients in C has a root in C. We write as an example

o= (VY1) (VY2) (3X) X2+ YiX + Y2 =0).

So the definition of an algebraically closed field can be expressed by an
infinite list of sentences in the language of fields: the field axioms and the
sentences @4, d > 1. O

Exercise 1.4. Write the formulas for the axioms of fields.

1.2 Euclidean Division and Greatest Common Divisor

We study euclidean division, compute greatest common divisors, and show
how to use them to decide whether or not a basic constructible set of C is
empty.

In this section, C is an algebraically closed field, D a subring of C and K
the quotient field of D. One can take as a typical example of this situation the
field C of complex numbers, the ring Z of integers, and the field Q of rational
numbers.
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Let P be a non-zero polynomial
P=qa,X?+--+a1 X +apeD[X]

with a, # 0.

We denote the degree of P, which is p, by deg (P). By convention,
the degree of the zero polynomial is defined to be —oo. If P is non-zero,
we write cof;(P) = a; for the coefficient of X/ in P (which is equal to 0
if j > deg(P)) and Icof(P) for its leading coefficient a, = cofyc, (p)(P). By
convention lcof(0) = 1.

Suppose that P and @ are two polynomials in D[X]. The polynomial @ is
a divisor of P if P=AQ for some A €K[X]. Thus, while every P divides 0,
0 divides 0 and no other polynomial.

If @ # 0, the remainder in the euclidean division of P by @,
denoted Rem(P, @), is the unique polynomial R € K[X] of degree smaller
than the degree of @ such that P = A Q + R with A € K[X]. The quo-
tient in the euclidean division of P by @, denoted Quo(P, @), is A.

Exercise 1.5. Prove that, if @ # 0, there exists a unique pair (R, A) of
polynomials in K[X] such that P=AQ + R, deg(R) < deg(Q).

Remark 1.4. Clearly, Rem(a P,bQ)=aRem(P, Q) for any a,beK with b=£0.
At a root z of @, Rem(P, Q)(z) = P(x). O

Exercise 1.6. Prove that z is a root of P in K if and only if X — z is a divisor
of P in K[X].

Exercise 1.7. Prove that if C is algebraically closed, every P € C[X] can be
written uniquely as

P=a(X —x)" (X —xp)H*,
with 1, ..., 2} distinct elements of C.

A greatest common divisor of P and (), denoted ged (P, @), is a
polynomial G € K[X] such that G is a divisor of both P and @, and any divisor
of both P and @ is a divisor of G. Observe that this definition implies that P
is a greatest common divisor of P and 0. Clearly, any two greatest common
divisors (say G1,G2) of P and @ must divide each other and have equal degree.
Hence G1 = a G5 for some a € K. Thus, any two greatest common divisors
of P and @ are proportional by an element in K\ {0}. Two polynomials are
coprime if their greatest common divisor is an element of K\ {0}.

A least common multiple of P and @, lem(P, @) is a polyno-
mial G € K[X] such that G is a multiple of both P and @, and any multiple
of both P and @ is a multiple of G. Clearly, any two least common mul-
tiples Ly, Ly of P and @ must divide each other and have equal degree.
Hence Ly = a Ly for some a € K. Thus, any two least common multiple
of P and @ are proportional by an element in K\ {0}.
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It follows immediately from the definitions that:

Proposition 1.5. Let P € K[X] and Q € K[X], not both zero. Then PQ/G
s a least common multiple of P and Q).

Corollary 1.6.
deg(lem(P, Q)) = deg(P) + deg(Q) — deg(ged (P, Q)).

We now prove that greatest common divisors and least common multiple exist
by using euclidean division repeatedly.

Definition 1.7. [Signed remainder sequence] Given P, ) € K[X], not
both 0, we define the signed remainder sequence of P and @,

SRemS(P, Q) =SRemSy(P, @), SRemS;(P, Q), ..., SRemS;(P, Q)
by

SRemSy(P,Q) = P,

SRem$: (P, Q) = @,

SRemS3(P, Q) = —Rem(SRemSy(P, Q),SRemS;(P, Q)),

SRemSy(P, Q) : —Rem(SRemSy, _2(P, Q),SRemS;_1(P, Q)) #0,
SRemSk41(P, Q) = —Rem(SRemS;_1(P, @), SRemS,(P,Q))=0.

The signs introduced here are unimportant in the algebraically closed case.

They play an important role when we consider analogous problems over real
closed fields in Chapter 2. d

In the above, each SRemS;(P,Q) is the negative of the remainder in the
euclidean division of SRemS;_o(P,Q) by SRemS,; _1(P, Q) for2<i<k-+1, and
the sequence ends with SRemSy(P, Q)when SRemSy41(P, Q) =0, for k> 0.

Proposition 1.8. The polynomial SRemSk(P, Q) is a greatest common
divisor of P and Q.

Proof: Observe that if a polynomial A divides two polynomials B, C' then it
also divides UB + VC for arbitrary polynomials U, V. Since

SRemSy+1(P, Q) = —Rem(SRemSy_1(P, @), SRemS,(P, Q)) =0,
SRemS (P, Q) divides SRemSy_1(P, Q) and since,
SRemSy, _2(P, Q) = —SRemSy(P, Q) + ASRemS;,_1(P, Q),

SRemSg(P, Q) divides SRemSy, _o(P, Q) using the above observation. Contin-
uing this process one obtains that SRemSy(P, Q) divides SRemS;(P, Q)= Q
and SRemSy(P, Q)= P.
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Also, if any polynomial divides SRemSy(P, @), SRemS;(P, Q) (that
is P, Q) then it divides SRemSa(P, @) and hence SRemSs(P, @) and so
on. Hence, it divides SRemSy(P, Q). O

Note that the signed remainder sequence of P and 0 is P and when (@ is
not 0, the signed remainder sequence of 0 and @ is 0, Q.

Also, note that by unwinding the definitions of the SRemS;(P, @), we can
express SRemSy(P, Q) =gcd(P, Q) as UP + V(Q for some polynomials U,V
in K[X]. We prove bounds on the degrees of U,V by elucidating the preceding
remark.

Proposition 1.9. If G is a greatest common divisor of P and Q, then there
exitst U and V with

UP+VQ=G.

Moreover, if deg(G) = g, U and V can be chosen so that deg(U) < ¢ — g,
deg(V)<p-—y.

The proof uses the extended signed remainder sequence defined as follows.

Definition 1.10. [Extended signed remainder sequence]
Given P, @ € K[X], not both 0, let

SRemUy(P, Q) = 1,
SRemV((P,Q) = 0,
SRemU;(P,Q) = 0,
SRemV,(P,Q) = 1

Aiy1 = Quo(SRemS;_1(P,Q),SRemS;(P, Q)),
P,Q) = —SRemS;_1(P, Q)+ Aiy1SRemS;(P, Q),

SRemU,;1(P,Q) = —SRemU,;_1(P, Q)+ A;+1 SRemU;(P, Q),

SRemV;1(P,Q) = —SRemV,_1(P, Q)+ Ait+1SRemV,(P, Q)

—_ —

for 0 <i <k where k is the least non-negative integer such that SRemSy41=0.
The extended signed remainder sequence Ex(P, Q) of P and Q is
Exo(P,Q),...,Exix(P, Q) with

The proof of Proposition 1.9 uses the following lemma.
Lemma 1.11. For 0<:<k+1,
SRemS;(P, Q) =SRemU; (P, Q)P + SRemV,; (P, Q)Q.

Let d; = deg(SRemS; (P, Q)) For 1 <i<k, deg(SRemU;;+1(P,Q))=q—d;,
and deg(SRemV,;1(P,Q)) =
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Proof: It is easy to verify by induction on ¢ that, for 0<:<k+1,
SRemS;(P, Q) =SRemU, (P, Q)P + SRemV,(P, Q) Q.

Note that d; < d;—1. The proof of the claim on the degrees proceeds by
induction. Clearly, since

SRemUy(P,Q) = —1
SRemUs(P, Q) = —Quo(SRemS;(P, Q),SRemSs(P, Q)),
deg(SRemUs(P, Q)) = ¢ —dx,
deg(SRemUs(P, Q)) = q—ds.
Similarly,
deg(SRemVQ(Pa Q)) = p_db
deg(SRemV3(P,Q)) = p—da.
Using the definitions of SRemU; (P, @),SRemV,;11(P, Q) and the induction
hypothesis, we get
deg(SRemU,; _1(P,Q)) = q—di_a,
deg(SRemU;(P,Q)) = q—di—1
deg(Ai_H SRemUi(P, Q)) = di—l — di +q— di—l
= qg—di>q—di_o.
Hence, deg(SRemU, 1) = ¢ — d;. Similarly,
deg(SRemV;_1(P,Q)) = p—di—o,
deg(SRemV;(P, Q)) p—di—1
deg(AH_l SRemVl(P, Q)) d/i—l —di—f'p_d/i—l
=p—di>p—di—a.
Hence, deg(SRemV;11(P,Q))=p—d;. O

Proof of Proposition 1.9: The claim follows by Lemma 1.11 and Proposi-
tion 1.8 since SRemSy(P, @) is a ged of P and @, taking

U =SRemU(P, @),V =SRemV(P, Q),
and noting that p —dy_1<p—9¢, ¢—dr-1<q—g. O

The extended signed remainder sequence also provides a least common
multiple of P and Q.

Proposition 1.12. The equality
SRemUy1(P, Q) P=—SRemV1(P, Q) Q.

holds and SRemUj 41 (P, Q)P = —SRemVy41 (P, Q)Q is a least common
multiple of P and Q.
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Proof: Since di = deg(ged(P, Q)), deg(SRemUy41(P, Q)) = q¢ — dp,
deg(SRemV (P, Q)) =p — di, and

SRemUy4+1(P, Q) P+ SRemVy4+1 (P, Q)Q =0,
it follows that
SRemUg 41 (P, Q)P =—SRemV41 (P, Q)Q

is a common multiple of P and @ of degree p+ g — dj, hence a least common
multiple of P and Q. O

Definition 1.13. [Greatest common divisor of a family] A greatest
common divisor of a finite family of polynomials is a divisor of all the
polynomials in the family that is also a multiple of any polynomial that divides
every polynomial in the family. A greatest common divisor of a family can be
obtained inductively on the number of elements of the family by

ged(@) = 0,
ged(PU{P}) = gcd(P,ged(P)).

Note that

— x€Cis aroot of every polynomial in P if and only if it is a root of ged(P),

— x€Cis not aroot of any polynomial in Q if and only if it is not a root of
11 0co @ (with the convention that the product of the empty family is 1),

— every root of P in Cis a root of @ if and only if ged(P, Q18 (")) = P (with
the convention that Q°5(*) = ).

With these observations the following lemma is clear:

Lemma 1.14. If P, Q are two finite subsets of D[X], then there is an x € C

such that
(/\ P(x)zO)/\( A Q(x)#O)

PeP QeQ
if and only if

deg(ged(ged(P), [ @)+ deg(ged(P)),
QeQ

where d is any integer greater than deg(ged(P)).

Note that when Q = 0, since HQGV) @ =1, the lemma says that there
is an z € C such that A,_, P(r) = 0 if and only if deg(gcd(P)) # 0.

Note also that when P = (), the lemma says that there is an x € C such
that A\ 5o Q@) #0 if and only if deg([[ .o @) =0, ie. 1¢ Q.

Exercise 1.8. Design an algorithm to decide whether or not a basic con-
structible set in C is empty.
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1.3 Projection Theorem for Constructible Sets

Now that we know how to decide whether or not a basic constructible set
in C is empty, we can show that the projection from C**! to CF of a basic
constructible set is constructible. We shall do this by viewing the multivariate
situation as a univariate situation with parameters. Viewing a univariate
algorithm parametrically to obtain a multivariate algorithm is among the
most important paradigms used throughout this book.

More precisely, the basic constructible set S € Ck¥*! can be described as

S={zeC!| N\ P()=0A N\ Q(2)#0}

PeP Qe

with P, Q finite subsets of C[Y7,..., Yy, X], and its projection 7(S) (forgetting
the last coordinate) is

m(S)={yeC¥3zeC ( \ Ply,2)=0A A\ Q(y,2)#0)}.

PeP QeQ

We can consider the polynomials in P and Q as polynomials in the single
variable X with the variables (Y73, ..., Y%) appearing as parameters. For a
specialization of Y to y=(y1,..., yx) € C*, we write P,(X) for P(y1,..., yx, X).
Hence,

7(S)={yeCHIreC (A Plo)=0A A\ Q,x)#0)}.

PeP QeQ

and, for a particular y € C* we can decide, using Exercise 1.8, whether or not

e (N Pe)=0A N\ Qyx)#0)
is true. rer ee

Defining
Sy={zeC| \ Pyx)=0n N\ Qy(x)#0},

PeP QeQ

what is crucial now is to partition the parameter space C* into finitely many
parts so that the decision algorithm testing whether S, is empty or not is the
same (is uniform) for all y in any given part. Because of this uniformity, it
will turn out that each part of the partition is a constructible set. Since 7(.5)
is the union of those parts where Sy = ), 7(.S) is constructible being the union
of finitely many constructible sets.

We next study the signed remainder sequence of P, and @, for all possible
specialization of Y to y € C*. This cannot be done in a completely uniform
way, since denominators appear in the euclidean division process. Neverthe-
less, fixing the degrees of the polynomials in the signed remainder sequence, it
is possible to partition the parameter space, C*, into a finite number of parts
so that the signed remainder sequence is uniform in each part.
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Example 1.15. We consider a general polynomial of degree 4. Dividing by its
leading coeflicient, it is not a loss of generality to take P to be monic. So let
P=X*+a X3+ 3X?+~X +4. Since the translation X — X — /4 kills the
term of degree 3, we can suppose P=X*+a X?+bX +c.

Consider P=X*+a X%+ b X + c and its derivative P’ =4X3+2a X +b.
Their signed remainder sequence in Q(a, b, ¢)[X] is

P = X*+aX’+bX+c
P = 4X342aX+0

Sy = —Rem(P, P’)
N
= 2aX 4bX c
S3 = —Rem(P’,S)
(8ac—90*—2a*) X b(120—|—a2)
= a2 - a2
S4 = —Rem(Sg,Sg)
_1a%(256¢°—128a%c?+144acb® —16a" c —2Tb* — 4b%a®)
4 (8ac—9b2—2a3)?

Note that when (a, b, ¢) are specialized to values in C? for which a = 0
or 8ac—9b?—2a®=0, the signed remainder sequence of P and P’ for these
special values is not obtained by specializing a, b, ¢ in the signed remainder
sequence in Q(a, b, c)[X]. O

In order to take into account all the possible signed remainder sequences
that can appear when we specialize the parameters, we introduce the following
definitions and notation.

We get rid of denominators appearing in the remainders through the
notion of signed pseudo-remainders. Let

P = apXP+--+apeD[X],
Q = bg X9+ +boeD[X],

where D is a subring of C. Note that the only denominators occurring in
the euclidean division of P by @ are biq, i <p—q+ 1. The signed pseudo-
remainder denoted PRem(P, )), is the remainder in the euclidean division
of b‘; P by @, where d is the smallest even integer greater than or equal
to p— g+ 1. Note that the euclidean division of b‘éP by @ can be performed
in D and that PRem(P, Q) € D[X]. The even exponent is useful in Chapter 2
and later when we deal with signs.

Notation 1.16. [Truncation] Let Q =b, X9+ -+ + bg € D[X]. We define
for 0 <i < g, the truncation of @ at i by

Trui(Q) :lel-i- + bo.
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The set of truncations of a non-zero polynomial @ € D[Yy, ..., Yi][X],
where Y7, ..., Y}, are parameters and X is the main variable, is the finite subset
of D[Y1, ..., Y%|[X] defined by

_[{Q} if lcof(Q) € D or deg(Q) =0,
Tru(Q) = { {Q}UTru(Trugeg (@)—1(Q)) otherwise.

The tree of possible signed pseudo-remainder sequences of two poly-
nomials P, @ € D[Y7, ..., Y3][X], denoted TRems(P, Q) is a tree whose root R
contains P. The children of the root contain the elements of the set of trunca-
tions of Q. Each node N contains a polynomial Pol(N) € D[Y7, ..., Y;][X]. A
node N is a leaf if Pol(N)=0. If N is not a leaf, the children of N contain the
truncations of —PRem(Pol(p(N)), Pol(N)) where p(N) is the parent of N.OJ

Example 1.17. As in Example 1.15, we consider P=X*+a X2 +bX +c and
its derivative P’ =4X?3+2a X +b. Denoting

Sy = —PRem(P, P’)

— _8aX2—12bX — 16,
S; = —PRem(P’,S5)

= 64((8ac—9b2—2a%X —b(12c+a?)),
Si1 = —PRem(S3, 5)

= 16384 a® (25603— 128a’c*+ 144 ab’c+16a*c — 27b4—4a3b2),
u = —PRem(P’,(S2))
= 768b(—27b*+72acb*+ 256 ¢*)

the tree TRems(P, P’) is the following.

P

L,
/ \\

Tl"ul(Sg TI"UQ

\ /\ |

Trup(Ss3) 0 1|L 0 0
b

Ss
/\
Sy 0
(')

Define

s = 8ac—9b%—
t = —b(12¢c+a?)
§ = 256¢®—128a%c?+144ab?c+ 16a*c — 27b* — 4 a3 b2
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The leftmost path in the tree going from the root to a leaf, namely the
path P, P’ S5, S3,54,0 can be understood as follows: if (a, b, ¢) € C3 are
such that the degree of the polynomials in the remainder sequence of P and P’
are 4,3,2,1,0, i.e. when a#0,s#0,0+#0 (getting rid of obviously irrelevant
factors), then the signed remainder sequence of P=X*+a X2?+bX +cand P’
is proportional (up to non-zero squares of elements in C) to P, P’, S5, 53,540

Notation 1.18. [Degree| For a specialization of Y = (Y1, ..., %) to y € CF,
and @ € D[Y1, ..., Yi][X], we denote the polynomial in C[X] obtained by
substituting y for Y by Q,. Given Q@ C D[Y1, ..., Y3][X], we define @, C C[X]
as {Q,| Q€ Q).

Let Q = by X7 + -+ + by € D[V, ..., Y3][X]. We define the basic for-
mula degx(Q) =1 as

bq:0/\.../\bi+1:0/\bi7£0 when 0<i<gq,
bg#0 when i =g,
bg=0A...ANbg=0 when i = —o0,

so that the sets Reali(degx(Q) =1) partition C¥ and y € Reali(degx(Q) = 1)
if and only if deg (Q,) =1.
Note that PRem(Py, Q,) = PRem(P, Tru;(Q)), where degx(Q,) =1.
Given a leaf L of TRems(P, @), we denote by By, the unique path from
the root of TRems(P, @) to the leaf L. If N is a node in By, which is not a
leaf, we denote by ¢(N) the unique child of N in Br. We denote by Cj, the
basic formula

degx(Q) = degx(Pol(c(R)))A
/\ degx(—PRem(Pol(p(N)),Pol(N))) = degx(Pol(¢(N)))
NeBL,N#R
O

It is clear from the definitions, since the remainder and pseudo-remainder of
two polynomials in C[X] are equal up to a square, that

Lemma 1.19. The Reali(Cy) partition Ck. Moreover, y € Reali(Cy) implies
that the signed remainder sequence of P, and Q, is proportional (up to a
square) to the sequence of polynomials Pol(N), in the nodes along the path B,
leading to L. In particular, Pol(p(L))y is ged (Py, Qy).

We will now define the set of possible greatest common divisors of a
family P C D[Y, ..., Y][X], called posgcd(P), which is a finite set con-
taining all the possible greatest common divisors of P, which can occur as
y ranges over CF. We define it as a set of pairs (G,C) where G € D[Y1, ..., Y3[X]
and C is a basic formula with coefficients in D so that for each pair (G,C),
y € Reali(C) implies ged(P,) = G,. More precisely, we shall make the def-
inition so that the following lemma is true:
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Lemma 1.20. For all y € C*, there exists one and only one (G, C) €
posged(P) such that y € Reali(C). Moreover, y € Reali(C) implies that G,
is a greatest common divisors of P,.

The set of possible greatest common divisors of a finite family of
elements of K[Y3,...,Y;][X] is defined recursively on the number of elements
of the family by

posged() = {(0,1#0)}
posged(PU{P}) = {(Pol(p(L)),CACL)|(Q,C) € posged(P)
and L is a leaf of TRems(P, Q)}.

It is clear from the definitions and Lemma 1.19 that Lemma 1.20 holds.

FEzxample 1.21. Returning to Example 1.17, and using the corresponding nota-
tion, the elements of posged(P, P’) are (after removing obviously irrelevant
factors),

S1, a£0As£0AG#0),
3, aF0As#£0AI=0),

(Trup(S3), a£0As=0At+0),
(S2, a£0As=t=0),

(u, a=0Ab+£0AU#0),
(Trui(S2), a=0Ab#0Au=0),

S2), a=b=0Ac#0),

(P, a=b=c¢=0).
The first pair, which corresponds to the leftmost leaf of TRems(P, P’) can be
read as: if a#0, s#0, and § #0 (i.e. if the degrees of the polynomials in the
remainder sequence are 4, 3,2, 1,0), then ged (P, P’) = S4. The second pair,
which corresponds to the next leaf (going left to right) means that if a # 0,
s#0,and §=0 (i.e. if the degrees of the polynomials in the remainder sequence
are 4,3,2,1), then gcd(P, P')=S3.
If P=X*+aX?+bX +c, the projection of

{(a,b,c,x) € C*| P(x)=P'(z) =0}

to C3 is the set of polynomials (where a polynomial is identified with its
coefficients (a, b, ¢)) for which deg(ged(P, P’)) > 1. Therefore, the for-
mula 3z P(z) = P’(z) =0 is equivalent to the formula

(a#£0As+0A6=0)

V (a#£0As=t=0)
V (a=0Ab#+0Au=0)
V (a=b=c=0).
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The proof of the following projection theorem is based on the preceding con-
structions of possible ged.

Theorem 1.22. [Projection theorem for constructible sets] Given a
constructible set in C*t1 defined by polynomials with coefficients in D, its

projection to CF is a constructible set defined by polynomials with coefficients
in D.

Proof: Since every constructible set is a finite union of basic constructible
sets it is sufficient to prove that the projection of a basic constructible set is
constructible. Suppose that the basic constructible set S in CF+1 is

{(g,0)eC*xC| \ Ply.0)=0n \ Qy.2)#0)

PeP QeQ

with P and Q finite subsets of D[Y7,..., Y%, X].
Let

L=posged({P|3C (P,C)eposgcd(P)}U{ H Q)
QeEQ

where d is the least integer greater than the degree in X of any polynomial
in P.

For every (G, C) € L, there exists a unique (G1,C;) € posged(P) with C;
a conjunction of a subset of the atoms appearing in C. Using Lemma 1.14,
the projection of S on C* is the union of the Reali(C A degx(G) # degx(G1))
for (G,C) in £, and this is clearly a constructible set defined by polynomials
with coefficients in D. |

Exercise 1.9.

a) Find the conditions on (a,b,c) for P=a X?+bX +cand P'=2a X +b
to have a common root.

b) Find the conditions on (a,b,c) for P=a X?+b X + ¢ to have a root which
is not a root of P’.

1.4 Quantifier Elimination and the Transfer Principle

Returning to logical terminology, Theorem 1.22 implies that the theory of
algebraically closed fields admits quantifier elimination in the language of
fields, which is the following theorem.

Theorem 1.23. [Quantifier Elimination over Algebraically Closed
Fields] Let ®(Y3, ..., Y2) be a formula in the language of fields with free
variables {Y1,...,Ys}, and coefficients in a subring D of the algebraically closed
field C. Then there is a quantifier free formula (Y1, ...,Ys) with coefficients
in D which is C-equivalent to ®(Y1,...,Yy).
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Notice that an example of quantifier elimination appears in Example 1.2.

The proof of the theorem is by induction on the number of quantifiers,
using as base case the elimination of an existential quantifier which is given
by Theorem 1.22.

Proof of Theorem 1.23: Given a formula O(Y) = (3X) B(X,Y), where B
is a quantifier free formula whose atoms are equations and inequations
involving polynomials in D[X, Y7, ..., Yi], Theorem 1.22 shows that there
is a quantifier free formula Z(Y) with coefficients in D that is equivalent
to O(Y), since Reali(O(Y'), C¥), which is the projection of the constructible
set Reali(B(X,Y),CF*1), is constructible, and constructible sets are realiza-
tions of quantifier free formulas. Since (VX) @ is equivalent to —((3X) —(®)),

the theorem immediately follows by induction on the number of quantifiers. [J

Corollary 1.24. Let ®(Y) be a formula in the language of fields with coeffi-
cients in C. The set {ye€ CF|®(y)} is constructible.

Corollary 1.25. A subset of C defined by a formula in the language of fields
with coefficients in C is a finite set or the complement of a finite set.

Proof: By Corollary 1.24, a subset of C defined by a formula in the language
of fields with coefficients in C is constructible, and this is a finite set or the
complement of a finite set by Exercise 1.2. O

Exercise 1.10. Prove that the sets N and Z are not constructible subsets
of C. Prove that the sets N and Z cannot be defined inside C by a formula of
the language of fields with coefficients in C.

Theorem 1.23 easily implies the following theorem, known as the transfer
principle for algebraically closed fields. It is also called the Lefschetz Principle.

Theorem 1.26. [Lefschetz principle] Suppose that C’ is an algebraically
closed field which contains the algebraically closed field C. If ® is a sentence
in the language of fields with coefficients in C, then it is true in C if and only
if it 1s true in C'.

Proof: By Theorem 1.23, there is a quantifier free formula ¥ which is C-equiv-
alent to ®. It follows from the proof of Theorem 1.22 that ¥ is C’-equivalent
to ® as well. Notice, too, that since ¥ is a sentence, V¥ is a boolean combination
of atoms of the form ¢=0 or ¢+£ 0, where c € C. Clearly, VU is true in C if and
only if it is true in C’. O

The characteristic of a field K is a prime number p if K contains Z/pZ
and 0 if K contains Q. The meaning of Lefschetz principle is essentially that
a sentence is true in an algebraic closed field if and only if it is true in any
other algebraic closed field of the same characteristic.
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Let C denote an algebraically closed field and C’ an algebraically closed
field containing C.

Given a constructible set S in C¥, the extension of S to C’, denoted
Ext(S, C’) is the constructible subset of C’* defined by a quantifier free for-
mula that defines S.

The following proposition is an easy consequence of Theorem 1.26.

Proposition 1.27. Given a constructible set S in CF, the set Ext(S,C’) is
well defined (i.e. it only depends on the set S and not on the quantifier free
formula chosen to describe it).

The operation S — Ext(S, C’) preserves the boolean operations (finite
intersection, finite union and complementation).

If S C T, then Ext(S,C’) CExt(T,C’), where T is a constructible set
in CF.

Exercise 1.11. Prove proposition 1.27.

Exercise 1.12. Show that if S is a finite constructible subset of CF,
then Ext(S,C’) is equal to S. (Hint: write a formula describing S).

1.5 Bibliographical Notes

Lefschetz’s principle (Theorem 1.26) is stated without proof in [105]. Indi-
cations for a proof of quantifier elimination over algebraically closed fields
(Theorem 1.23) are given in [156] (Remark 16).
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Real Closed Fields

Real closed fields are fields which share the algebraic properties of the field
of real numbers. In Section 2.1, we define ordered, real and real closed fields
and state some of their basic properties. Section 2.2 is devoted to real root
counting. In Section 2.3 we define semi-algebraic sets and prove that the
projection of an algebraic set is semi-algebraic. The main technique used is
a parametric version of real root counting algorithm described in the second
section. In Section 2.4, we prove that the projection of a semi-algebraic set is
semi-algebraic, by a similar method. Section 2.5 is devoted to several applica-
tions of the projection theorem, of logical and geometric nature. In Section 2.6,
an important example of a non-archimedean real closed field is described: the
field of Puiseux series.

2.1 Ordered, Real and Real Closed Fields

Before defining ordered fields, we prove a few useful properties of fields of
characteristic zero.
Let K be a field of characteristic zero. The derivative of a polynomial

P=a,XP+.+a; X"+ +ao€K[X]
is denoted P’ with
P'=pa, XP 14 +iag; X' 71+ +ai.
. . . /
The i-th derivative of P, P®), is defined inductively by P = (P(l_l)) It
is immediate to verify that
(P+Q) = P+,
(PQ) = P'Q+PQ"
Taylor’s formula holds:

Proposition 2.1. [Taylor’s formula] Let K be a field of characteristic zero,

P=a,XP+..4+a; X"+ +ageK[X] and z € K.
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Then,

— ).

deg(P)
=2

=0

Proof: We prove Taylor’s formula holds for monomials X? by induction on p.

The claim is clearly true if p=0. Suppose that Taylor’s formula holds for p —1:
p—1

(p=D! 1 :

X — )t

D I

Then, since X =z + (X — z),

XPr = {Ep_l_i(X—;E)i

*M

_1_2 '7/'

P P

S A
2 (p—i)!i!x
since

I V- Y P!
(p—i)tdl (p=i)GE-1! (p—1=-9)!E-1)I

Hence, Taylor’s formula is valid for any polynomial using the linearity of
derivation. 0

Let x € K and P € K[X]. The multiplicity of x as a root of P is the
natural number p such that there exists @ € K[X] with P = (X — z)* Q(X)
and Q(z)#0. Note that if z is not a root of P, the multiplicity of = as a root
of P is equal to 0.

Lemma 2.2. Let K be a field of characteristic zero. The element x €K is a
root of P € K[X] of multiplicity p if and only if

PW(z) 40, PH=Y(z)=...= P(z) = P'(z) =0.
Proof: Suppose that P= (X —x)*Q and Q(x) #0. It is clear that P(z)=0
The proof of the claim is by induction on the degree of P. The claim is obvi-

ously true for deg(P)=1. Suppose that the claim is true for every polynomial
of degree < d. Since

P'=(X-2)" 1 (pQ+(X —2)Q"),
and pQ(x) =0, by induction hypothesis,
P'(z)=--=PrV(z)=0, P (z)+0.
Conversely suppose that

P(z)=P'(z)=--=Pr " V(z)=0, P (x)£0.
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By Proposition 2.1 (Taylor’s formula) at z, P= (X —z)* @, with
Q) = PW)(a)/u 0. O

A polynomial P € K[X] is separable if the greatest common divisor of P
and P’ is an element of K\ {0}. A polynomial P is square-free if there is no
non-constant polynomial A € K[X] such that A% divides P.

Exercise 2.1. Prove that P € K[X] is separable if and only if P has no
multiple root in C, where C is an algebraically closed field containing K. If
the characteristic of K is 0, prove that P € K[X] is separable if and only P is
square-free.

A partially ordered set (A, < ) is a set A, together with a binary
relation =< that satisfies:

— = is transitive, i.e. a=band a ¢ = a=<c,
— = isreflexive, i.e. a <Xa,
— = is anti-symmetric, i.e. a <band b<a = a=0b.

A standard example of a partially ordered set is the power set
24={B|BC A},

the binary relation being the inclusion between subsets of A.

A totally ordered set is a partially ordered set (A, <) with the addi-
tional property that every two elements a, b € A are comparable, i.e. a <b
or b < a. In a totally ordered set, a < b stands for a <b,a # b, and a > b
(resp. a>b) for b<a (resp. b<a).

An ordered ring (A, <) is aring, A, together with a total order, <, that
satisfies:

<y = x+z2<y+z
0<z, 0y = 0<Zzy.

An ordered field (F, <) is a field, F, which is an ordered ring.

An ordered ring (A, <) is contained in an ordered field (F,<)if ACF
and the inclusion is order preserving. Note that the ordered ring (A, <) is
necessarily an ordered integral domain.

Exercise 2.2. Prove that in an ordered field —1 < 0.

Prove that an ordered field has characteristic zero.

Prove the law of trichotomy in an ordered field: for every a in the field,
exactly one of a <0, a=0, a >0 holds.

Notation 2.3. [Sign] The sign of an element a in ordered field (F, <) is
defined by

sign(a)=0 if a=0,

sign(a)=1 if a>0,

sign(a)=—-1 if a<O0.
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When a >0 we say a is positive, and when a <0 we say a is negative.
The absolute value |a| of a is the maximum of ¢ and —a and is non-
negative. 0

The fields Q and R with their natural order are familiar examples of
ordered fields.

Exercise 2.3. Show that it is not possible to order the field of complex
numbers C so that it becomes an ordered field.

In an ordered field, the value at x of a polynomial has the sign of its leading
monomial for x sufficiently large. More precisely,

Proposition 2.4. Let P = a, X? + - + ag, ap # 0, be a polynomial
with coefficients in an ordered field F. If |x| is bigger than 2 20<z<p I‘ZI‘I )
then P(z) and a,xP have the same sign.

Proof: Suppose that

wl>2 S 1%,
0Si<p |
which implies || > 2. Since
P(:C) = 1+ &xi—P
apxP ’

<p1

P(z) |a’1| |z [i~
apa? 0<z<p 1 lay] vl

( - ><|:c|-1+|x| Pt o] )

0<i<p | p|

L= g (L]~ oo a7 )
_ L—|a|7?
- 1) e

We now examine a particular way to order the field of rational functions R(X).

For this purpose, we need a definition: Let F C F/ be two ordered fields.
The element f € F’is infinitesimal over F if it is a positive element smaller
than any positive f € F. The element f €F’is unbounded over F if it is a
positive element greater than any positive f € F.

v

IV vV
— [\D

\]

O

Notation 2.5. [Order 0] Let F be an ordered field and ¢ a variable. There
is one and only one order on F(¢), denoted 04, such that ¢ is infinitesimal
over F. If

Pe)=apeP+ap_1eP 1+ +ampr1e™ T +a,e™
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with a,, # 0, then P(¢) > 0 in this order if and only if a, > 0.
If P(e)/Q(e) €F(e), P(e)/Q(e) >0 if and only if P(e) Q(e) > 0.

Note that the field F(e) with this order contains infinitesimal elements
over F', such as €. The field also contains elements which are unbounded over
F such as 1/e. O

Exercise 2.4. Show that 04 is an order on F(¢) and that it is the only order
in which ¢ is infinitesimal over F.

We define now a cone of a field, which should be thought of as a set of
non-negative elements. A cone of the field F is a subset C of F such that:

zeC,yeC = z+yelC
zeC,yeC = zyel
reF = 2?2€C.

The cone C is proper if in addition —1¢C.
Let (F,<) be an ordered field. The subset C ={z €F|x >0}is a cone, the
positive cone of (F,<).

Proposition 2.6. Let (F, < ) be an ordered field. The positive cone C
of (F,<) is a proper cone that satisfies C U —C = F. Conversely, if C is
a proper cone of a field ¥ that satisfies C U —C = F, then F is ordered
byr<yesy—zelC.

Exercise 2.5. Prove Proposition 2.6.

Let K be a field. We denote by K the set of squares of elements of K and
by > K@ the set of sums of squares of elements of K. Clearly, > K®

is a cone contained in every cone of K.
A field K is a real field if —1¢ 5> K.

Exercise 2.6. Prove that a real field has characteristic 0.
Show that the field C of complex numbers is not a real field.
Show that an ordered field is a real field.

Real fields can be characterized as follows.

Theorem 2.7. Let F be a field. Then the following properties are equivalent

a) F is real.

b) F has a proper cone.

¢) F can be ordered.

d) For every x1,...,xn, in F, 37" | 2?=0=>r=-=x,=0.

The proof of Theorem 2.7 uses the following proposition.

Proposition 2.8. Let C be a proper cone of F, C is contained in the positive
cone for some order on F.
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The proof of Proposition 2.8 relies on the following lemma.

Lemma 2.9. Let C be a proper cone of F. If —agC, then

Cla|={z+ay|z,yeC}

is a proper cone of F.

Proof: Suppose —1 =z +ay with z,y€C. If y=0 we have —1 € C which is
impossible. If y#0 then —a=(1/y*) y (1 +z) €C, which is also impossible. [J

Proof of Proposition 2.8: Since the union of a chain of proper cones is a
proper cone, Zorn’s lemma implies the existence of a maximal proper cone C
which contains C. It is then sufficient to show that C U —C = F, and to
define x <y by y —z €C. Suppose that —aZC. By Lemma 2.9, C[a] is a proper
cone and thus, by the maximality of C, C=_Cla] and thus a €C. 0

Proof of Theorem 2.7:
a) = b) since in a real field F, 3 F®) is a proper cone.
)

b) = ¢) by Proposition 2.8.

¢) = d) since in an ordered field, if x1# 0 then )" | 27> %> 0

d) = a), since in a field 0 # 1, so 4 implies that 1 + 1" | 27 = 0 is
impossible. O

A real closed field R is an ordered field whose positive cone is the set
of squares R(®) and such that every polynomial in R[X] of odd degree has a
root in R.

Note that the condition that the positive cone of a real closed field R is R(?)
means that R has a unique order as an ordered field, since the positive cone
of an order contains necessarily R®.

Ezample 2.10. The field R of real numbers is of course real closed. The real
algebraic numbers, i.e. those real numbers that satisfy an equation with
integer coeflicients, form a real closed field denoted R,j, (see Exercise 2.11) O

A field R has the intermediate value property if R is an ordered
field such that, for any P € R[X], if there exist a € R, b € R, a < b such
that P(a) P(b) <0, there exists = € (a,b) such that P(z)=0.

Real closed fields are characterized as follows.

Theorem 2.11. If R is a field then the following properties are equivalent:

a) R is real closed.

) R[i] =RI[T]/(T?+1) is an algebraically closed field.

¢) R has the intermediate value property.

d) R is a real field that has no non-trivial real algebraic extension, that is
there is no real field Ry that is algebraic over R and different from R.

b
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The following classical definitions and results about symmetric polynomials
are used in the proof of Theorem 2.11.

Let K be a field. A polynomial Q(X1,..., Xx) € K[X1,..., Xi] is symmetric
if for every permutation o of {1,...,k},

Q(Xo(1)s s Xor)) = Q(X1, ..., Xi).

Exercise 2.7. Denote by Sy the group of permutations of {1,...,k}.
If X*=X7" ... X", denote Xg'= X7y X5y and Mo = Yes, Xo- Prove

that every symmetric polynomial can be written as a finite sum Y co M,.

For i=1,..., k, the i-th elementary symmetric function is
E= ) Xy X
1<j1<-<j4i <k

Elementary symmetric functions are related to coefficients of polynomials as
follows.

Lemma 2.12. Let Xy,..., X}, be elements of a field K and
P=(X-X1) (X - Xp)=XF+C  XF 14+ Cy,
then C; = (—1)'E;.
Proof: Identify the coefficient of X* on both sides of
(X =X1) (X =Xp) =X +C1 Xk 14 + O O

Proposition 2.13. Let K be a field and let
Q(Xl7 (Ez) Xk?) € K[X17 ) Xk]
be symmetric. There exists a polynomial
R(Ty,...,Tx) €eK[Th,..., Tk

such that Q(X1, ..., Xi) = R(F, ..., F).

The proof of Proposition 2.13 uses the notion of graded lexicographical
ordering. We define first the lexicographical ordering, which is the order of
the dictionary and will be used at several places in the book.

We denote by M, the set of monomials in k variables. Note that M} can
be identified with N* defining X®= X{"... X*.

Definition 2.14. [Lexicographical ordering] Let (B, <) be a totally or-
dered set. The lexicographical ordering , <. , on finite sequences of k
elements of B is the total order <)oy defined by induction on k by

b<iex ' & bl
(b1, ..y bi) <tex (D15 b)) = (by <V V (by=by A (ba, ..., br) <iex (bh, ..., b))
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We denote by My the set of monomials in k variables X7, ..., X§. Note that
M, can be identified with N* defining X* = X{ ... X{**. Using this identifi-
cation defines the lexicographical ordering <j.x on My. In thelexicographical
ordering, X1 >gilex ... >grlex Xk- LThe smallest monomial with respect to the
lexicographical ordering is 1, and the lexicographical ordering is compatible
with multiplication. Note that the set of monomials less than or equal to a
monomial X in the lexicographical ordering maybe infinite. O

Exercise 2.8. Prove that a strictly decreasing sequence for the lexicograph-
ical ordering is necessarily finite. Hint: by induction on k.

Definition 2.15. [Graded lexicographical ordering] The graded lexi-
cographical ordering , <g1cx, on the set of monomials in £ variables M,
is the total order X <gyiex X P defined by

X <grlex XA & (deg(X®) <deg(XP))Vv (deg(Xo‘) =deg(XP) A a <iex B)

with a = (ay, ..., ), B=(B1,..., Br), X = X1 X2 X=X x P,

In the graded lexicographical ordering above, X1 >griex ... >grlex Xk The
smallest monomial with respect to the graded lexicographical ordering is 1,
and the graded lexicographical ordering is compatible with multiplication.
Note that the set of monomials less than or equal to a monomial X in the
graded lexicographical ordering is finite. g

Proof of Proposition 2.13: Since Q(X7, ..., Xx) is symmetric, its leading
monomial in the graded lexicographical ordering ¢, X* = ¢, X7t -+ X"
satisfies oy > ... > aj. The leading monomial of ¢, Ef* ... E* 7' “* ER* in
the graded lexicographical ordering is also ¢, X*=cq X7 X",

Let Q1= Q(X1,..., X) — co B ™. EYF 1 B2 Tf Q1 =0, the proof is
over. Otherwise, the leading monomial with respect to the graded lexicograph-
ical ordering of @ is strictly smaller than X1 --- X;*, and it is possible to
iterate the construction with (1. Since there is no infinite decreasing sequence
of monomials for the graded lexicographical ordering, the claim follows. [

Proposition 2.16. Let P € K[X], of degree k, and x1,...,x) be the roots of P
(counted with multiplicities) in an algebraically closed field C containing K. If
a polynomial Q(X7,..., Xy) € K[X1,..., Xi| is symmetric, then Q(x1,...,xx) €EK.

Proof: Let e;, for 1 <1i <k, denote the i-th elementary symmetric function
evaluated at x1, ..., xx. Since P € K[X], Lemma 2.12 gives ¢; € K. By
Proposition 2.13, there exists R(Th,...,Tx) € K[T1,..., Tx] such that

Q(X1, ... Xp) = R(En, ..., Ey).
Thus, Q(z1,...,zx) = R(ey,...,ex) €EK. O

With these preliminaries results, it is possible to prove Theorem 2.11.
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Proof of Theorem 2.11: a)=-b) Let P € R[X] a monic separable polynomial
of degree p=2""n with n odd. We show by induction on m that P has a root
in RJ[4].
If m=0, then p is odd and P has a root in R, since R is real closed.
Denote by z1, ..., z, the roots of P in an algebraically closed field C. Let
Z be a new indeterminate and Q(Z,Y’) the monic polynomial having as roots
the x; +x; + Z x;x; where i < j.

QZY)=]] (¥ — (wi+z;+ Zzixy)).
i<j
The coefficients of Q(Z,Y") can be explicitly computed as polynomials of the
coefficients of P, using Proposition 2.16, thus Q(Z,Y) € R[Z,Y]. The degree
of Q(Z,Y)inY and Z is p(p—1)/2.
Ordering lexicographically the couples (i, j), i < j, we define the discrim-
inant of @) as

D(z) = H (zitzj+Z zimj) — (2 + 20+ Z g 20))?

i<j,k<¢
(i,5) <(k,&)

= JI (wjre+ZBi;n50?
i<j, k<t
(i,7)<(k,£)

where o j ke = (z;i + 2 — xp + x0), B j 60 = Tix; — Tpxe. Note that by
Proposition 2.16, D(Z) € R[Z].
Since all the roots of P are distinct, we get the following implication

i<j, k<l (i,j)<(k,0),z;xj=xrxy = ;+x;%#Tk+ T

So every factor «; j k¢ + Z B .k, is nonzero. It follows that D(Z) is not
identically zero.

Taking a value z € N such that D(z)=0, the polynomial Q(z,Y") is a square
free polynomial since all its roots are distinct.

We prove now that it is possible to express, for every 1 <i¢ < j <p, z;+x;
and z; x; rationally in terms of v; j=z;+x;+ 2z z; x;.

Indeed let

F(Z,)Y) = 0Q/oY(Z,Y)
- Z H (Y = (zx + 20+ Z 2170))

< ks
G(Z,)Y) = Z (i + ;) H (Y = (zp+ae+ Zarxy)) |,
7;<j k<2_ )
(k,€)#(i,5)
H(Z,Y) = Z Ti X H (Y—(l‘k+xg+Zl‘kxg)) .
i<j k<t
(k,€)#(i,7)

Note that by Proposition 2.16, f(Z,Y),G(Z,Y) and H(Z,Y) are elements
of R[Z,Y].
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Then, for every 1 <1< j <p,

F(z,viy) = JI  (vs—w0,

k<t

(k. 0)# (i, 5)
G(z,7i5) = (@itz) [ (i =m0,
P
H(z,v) = (@) [ (=m0
(k,e’;;(ei,j)
If follows that
(Z Yir4)
T, +x; = =,
’ ’ (Z Vi, J)
H(z, v, J)
T; x; =
v F(Z ”Yw)

In other words, the roots of the second degree polynomial

F(Z, ’}/iyj)XQ - G(Z, F)/i,j)X + H(Z, 'Yi,j)
are roots of P.

The polynomial Q(z,Y) is of degree p(p —1)/2, i.e. of the form 2™~ 1n’
with n’ odd. By induction hypothesis, it has a root 7 in R[i]. Since the classical
method for solving polynomials of degree 2 works in R[] when R is real closed,
the roots of the second degree polynomial

F(z,7)X?-G(z,7)X +H(z,7)

are roots of P that belong to R[i]. We have proved that the polynomial P
has a root in R[].

For P = ap, X? + - + ag € R[i][X], we write P =
Since PP € R[X], PP has a root z in R[i]. Thus P(z)=0
first case we are done and in the second, P(Z)=0.

b) = ¢) Since C =R][i] is algebraically closed, P factors into linear factors
over C. Since if ¢+ 1id is a root of P, ¢ —id is also a root of P, the irreducible
factors of P are linear or have the form

(X —e)?’+d*=(X —c—id) (X —c+id), d#0.

CTXP—F -+ ap.
or P(z)=0. In the

If P(a) and P(b) have opposite signs, then Q(a) and Q(b) have opposite signs
for some linear factor @ of P. Hence the root of Q is in (a,b).

c) = a) If y is positive, X2 — y takes a negative value at 0 and a positive
value for X big enough, by Proposition 2.4. Thus X2 — 4 has a root, which
is a square root of y. Similarly a polynomial of odd degree with coeflicients
in R takes different signs for a positive and big enough and b negative and
small enough, using Proposition 2.4 again. Thus it has a root in R.
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b) = d) Since R[i] =R[T]/(T?+1) is a field, T? + 1 is irreducible over R.
Hence —1 is not a square in R. Moreover in R, a sum of squares is still a square:
let a,b€R and ¢,d € R such that a+ib=(c+1id)? then a®+ b= (c* +d?)2.
This proves that R is real. Finally, since the only irreducible polynomials of
R[X] of degree >1 are of the form

(X —e)?’+d*>=(X —c—id)(X —c+id), d+0,

and R[X]/((X —¢)?+ d?) =R]i], the only non-trivial algebraic extensions of R
is R[i], which is not real.
d) = a) Suppose that a € R. If a is not a square in R, then

R[v/a] =R[X]/(X?—a)

is a non-trivial algebraic extension of R, and thus R[y/a] is not real. Thus,

n

-1 =) (@it Vay)
i=1
n n

-1 = Zx%—!—czz y? €R.
i=1 i=1

Since R is real, —1# 37" | a7 and thus y=3""_| y7 # 0. Hence,

This shows that R®) U — > R® =R and thus that there is only one possible
order on R with R®) = > R® as positive cone.

It remains to show that if P € R[X] has odd degree then P has a root
in R. If this is not the case, let P be a polynomial of odd degree p > 1 such
that every polynomial of odd degree < p has a root in R. Since a polynomial
of odd degree has at least one odd irreducible factor, we assume without loss
of generality that P is irreducible. The quotient R[X]/(P) is a non-trivial
algebraic extension of R and hence —1=3"" | H?+ PQ with deg (H;) < p.
Since the term of highest degree in the expansion of Z?:l H? has a sum
of squares as coefficient and R is real, 2?21 H? is a polynomial of even
degree <2p —2. Hence, the polynomial @) has odd degree < p — 2 and thus
has a root # in R. But then —1 =" | H;(z)? which contradicts the fact
that R is real. ]

Remark 2.17. When R = R, a) = b) in Theorem 2.11 is nothing but an
algebraic proof of the fundamental theorem of algebra. O
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Notation 2.18. [Modulus] If R is real closed, and R[i| = R[T]/(T? + 1),
we can identify R[i] with R%. For 2 =a+ib € R[i],a € R,b € R, we define
the conjugate of z by z=a — i b. The modulus of z =a + i b € RJi

is |z| =Va® + b?. g

Proposition 2.19. Let R be a real closed field, P € R[X]. The irreducible
factors of P are linear or have the form

(X —e)’+d?=(X —c—id)(X —c+id),d#+0
with ¢, d € R.

Proof: Use the fact that R[¢] is algebraically closed by Theorem 2.11 and that
the conjugate of a root of P is a root of P. O

Exercise 2.9. Prove that, in a real closed field, a second degree polynomial
P=aX?+bX+c, a#0

has a constant non-zero sign if and only if its discriminant b — 4 a ¢ is
negative. Hint: the classical computation over the reals is still valid in a real
closed field.

Closed, open and semi-open intervals in R will be denoted in the usual way:

(a,b) = {reR|a<z<b},

[a, b] {reR|a<z<b},

(a,b] = {zeR|a<z<b},
(a,+00) {reR|a<z},

Proposition 2.20. Let R be a real closed field, P € R[X] such that P does
not vanish in (a,b), then P has constant sign in the interval (a,b).

Proof: Use the fact that R has the intermediate value property by The-
orem 2.11. g

This proposition shows that it makes sense to talk about the sign of a
polynomial to the right (resp. to the left) of any a € R. Namely, the sign
of P to the right (resp. to the left) of a is the sign of P in any interval (a,b)
(resp. (b, a)) in which P does not vanish. We can also speak of the sign
of P(+00) (resp. P(—00)) as the sign of P(M) for M sufficiently large (resp.
small) i.e. greater (resp. smaller) than any root of P. This coincides with the

sign of lcof(P) (resp. (—1)%°& (P)1cof(P)) using Proposition 2.4.

Proposition 2.21. Ifr is a root of P of multiplicity u in a real closed field R
then the sign of P to the right of r is the sign of P(“)(r) and the sign of P to
the left of r is the sign of (—1)*P")(r).



2.1 Ordered, Real and Real Closed Fields 41

Proof: Write P = (X —r)"* Q(x) where Q(r) # 0, and note that

sign(Q(r)) =sign(P*(r)).
]

We next show that univariate polynomials over a real closed field R share
some of the well known basic properties possessed by differentiable functions
over R.

Proposition 2.22. [Rolle’s theorem] Let R be a real closed field, P e R[X],
a,b€R with a<b and P(a)= P(b)=0. Then the derivative polynomial P" has
a root in (a,b).

Proof: One may reduce to the case where a and b are two consecutive roots of
P, i.e. when P never vanishes on (a,b). Then P=(X —a)™ (X —b)"Q, where
@ never vanishes on [a, b]. Thus @ has constant sign on [a, b] by Proposition
2.20. Then P'=(X —a)™ (X —b)"~' Q1, where

Qi=m (X -b0)Q+n(X—a)Q+ (X —a)(X -0 Q.

Thus Q1(a) =m (a —b) Q(a) and Q1(b) =n (b — a) Q(b), and hence Q1(a)
and @Q1(b) have opposite 51gns By the intermediate value property, ()1 has a

root in (a,b), and so does P". O

Corollary 2.23. [Mean Value theorem] Let R be a real closed field,
PeR[X], a,beR with a<b. There exists c€ (a,b) such that

/

P(b) - P(a) = (b—a) P'(c).

Proof: Apply Rolle’s theorem (Proposition 2.22) to
Q(X)=(P(b) — P(a)) (X —a) = (b—a) (P(X) — P(a)). 0

Corollary 2.24. Let R be a real closed field, P € R[X], a,b€R with a <b.
If the derivative polynomial P’ is positive (resp. negative) over (a,b), then P
is increasing (resp. decreasing) over [a,b).

The following Proposition 2.28 (Basic Thom’s Lemma) which will have
important consequences in Chapter 10. We first need a few definitions.

Definition 2.25. Let Q be a finite subset of R[X7,..., X]. A sign condition
on Q is an element of {0, 1, —1}<, i.e. a mapping from Q to {0, 1, —1}.
A strict sign condition on Q is an element of {1, —1}<, i.e. a mapping
from Q to {1, —1}. We say that Q realizes the sign condition o at z € R*

i Ao sign(Qr) =o(Q).
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The realization of the sign condition o is

Reali(o) = {z € R* | /\ sign(Q(z)) =0(Q)}.

QeQ

The sign condition o is realizable if Reali(c) is non-empty. 0

Notation 2.26. [Derivatives| Let P be a univariate polynomial of degree p
in R[X]. We denote by Der(P) the list P, P, ..., P(P). O

Proposition 2.27. [Basic Thom’s Lemma] Let P be a univariate poly-
nomial of degree p and let o be a sign condition on Der(P) Then Reali(o) is
either empty, a point, or an open interval.

Proof: The proof is by induction on the degree p of P. There is nothing
to prove if p = 0. Suppose that the proposition has been proved for p — 1.
Let o € {0, 1, —=1}P"(®) be a sign condition on Der(P), and let o’ be its
restriction to Der(P’). If Reali(o’) is either a point or empty, then

Reali(c) =Reali(c’) N{z € R|sign(P(x)) =0c(P)}

is either a point of empty. If Reali(c’) is an open interval, P’ has a constant
non-zero sign on it. Thus P is strictly monotone on Reali(c’) so that the
claimed properties are satisfied for Reali(o). O

Proposition 2.27 has interesting consequences. One of them is the fact
that a root x € R of a polynomial P of degree d with coefficients in R may be
distinguished from the other roots of P in R by the signs of the derivatives
of P at x.

Proposition 2.28. [Thom encoding] Let P be a non-zero polynomial of
degree d with coefficients in R. Let x and x’ be two elements of R, and denote
by o and o’ the sign conditions on Der(P) realized at x and x'. Then:
— Ifo=0' witho(P)=0¢'(P)=0 then x=x'.
— Ifo#0’, one can decide whether x <z’ or x>z’ as follows. Let k be the
smallest integer such that o(PY~®)) and o’(PY=")) are different. Then
_ O,(P(d—k+1)) _ O,/(P(d—k-i-l)) 7/: 0.
_ If O,(P(d—k-i-l)) — O,/(P(d—k-i-l)) =1,

z>z' & o(PUTR)> /(PR
_ [fO'(P(d_k+1)):O'I(P(d_k+1)):—1,

>z & (PR <o/ (PA-F),

Proof: The first item is a consequence of Proposition 2.27. The first part of
the second item follows from Proposition 2.27 applied to PUE=k+1) The two
last parts follow easily since the set

{zeR|sign(PY(z))=c(PD),i=d—k+1,--,n—1}
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is an interval by Proposition 2.28 applied to P=k+1) "and, on an interval,
the sign of the derivative of a polynomial determines whether it is increasing
or decreasing. O

Definition 2.29. Let P € R[X] and o € {0,1, —1}P*") 4 sign condition on
the set Der(P) of derivatives of P. The sign condition o is a Thom encoding
of xR if o(P)=0 and Reali(c) ={z}, i.e. o is the sign condition taken by
the set Der(P) at x. O

Ezxample 2.30. In any real closed field R, P = X2 — 2 has two roots, charac-
terized by the sign of the derivative 2 X: one root for which 2 X >0 and one
root for which 2 X < 0. Note that no numerical information about the roots
is needed to characterize them this way. O

Any ordered field can be embedded in a real closed field. More precisely,
any ordered field F possesses a unique real closure which is the smallest real
closed field extending it. The elements of the real closure are algebraic over F
(i.e. satisfy an equation with coefficients in F'). We refer the reader to [26] for
these results.

Exercise 2.10. If F is contained in a real closed field R, the real closure of
F counsists of the elements of R which are algebraic over F. (Hint: given «
and (3 roots of P and @ in F[X], find polynomials in F[X] with roots a+ /3
and « 3, using Proposition 2.16).

Exercise 2.11. Prove that R,j, is real closed. Prove that the field R, is the
real closure of Q.

The following theorem proves that any algebraically closed field of char-
acteristic zero is the algebraic closure of a real closed field.

Theorem 2.31. If C is an algebraically closed field of characteristic zero,
there exists a real closed field R C C such that Rli] = C.

Proof: The field C contains a real subfield, the field Q of rational numbers.
Let R be a maximal real subfield of C. The field R is real closed since it has
no nontrivial real algebraic extension contained in C (see Theorem 2.11).
Note that C \ R cannot contain a ¢ which is transcendental over R since
otherwise R(t) would be a real field properly containing R. O

An ordered field F is archimedean if, whenever a, b are positive elements
of F, there exists a natural number n € N so that na > b.

Real closed fields are not necessarily archimedean and may contain
infinitesimal elements. We shall see at the end of this chapter an example of
a non-archimedean real closed field when we study the field of Puiseux series.
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2.2 Real Root Counting

Although we have a very simple criterion for determining whether a polyno-
mial P € C[X] has a root in C (namely, if and only if deg(P)#0), it is much
more difficult to decide whether a polynomial P € R[X] has a root in R. The
first result in this direction was found more than 350 years ago by Descartes.
We begin the section with a generalization of this result.

2.2.1 Descartes’s Law of Signs and the Budan-Fourier Theorem

Notation 2.32. [Sign variations] The number of sign variations,
Var(a), in a sequence, a = ag, -, ap, of elements in R \ {0} is defined by
induction on p by:

Var(ag) = 0
{Var(al,-~~,ap)+1 if apa1 <0

Var(ag, -, ap) = Var(ai, - a,)  if aga;>0

This definition extends to any finite sequence a of elements in R by considering
the finite sequence b obtained by dropping the zeros in a and defining

Var(a) = Var(b), Var()) =0.
For example Var(1,—1,2,0,0,3,4,—5,—2,0,3) =4. |

Let P = ap, XP + -+ 4+ ap be a univariate polynomial in R[X]. We
write Var(P) for the number of sign variations in ay, ..., ap and pos(P) for
the number of positive real roots of P, counted with multiplicity.

Theorem 2.33. [Descartes’ law of signs]|

— Var(P) > pos(P)
— Var(P) —pos(P) is even.

We will prove the following generalization of Theorem 2.33 (Descartes’s law
of signs) due to Budan and Fourier.

Notation 2.34. [Sign variations in a sequence of polynomials at a
Let P =Py, Py, ..., Py be a sequence of polynomials and let a be an element
of R U {—00, +o0}. The number of sign variations of P at a, denoted
by Var(P;a), is Var(Py(a), ..., Ps(a)) (at —oco and +oo the signs to consider
are the signs of the leading monomials according to Proposition 2.4).

For example, if P=X5% X2-1,0,X?—1,X+2,1, Var(P;1)=0.

Given a and b in RU{—o00, 400}, we denote

Var(P; a,b)=Var(P;a) — Var(P; b).
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We denote by num(P; (a, b]) the number of roots of P in (a, b] counted
with multiplicities.

Theorem 2.35. [Budan-Fourier theorem] Let P be a univariate polyno-
mial of degree p in R[X]. Given a and b in RU{—o0,+o0}

— Var(Der(P);a,b) > num(P; (a, b)),
— Var(Der(P);a,b) — num(P; (a, b)) is even.

Theorem 2.33 (Descartes’s law of signs) is a particular case of Theorem 2.35
(Budan-Fourier).

Proof of Theorem 2.33 (Descartes’ law of signs): The coefficient of
degree 7 of P has the same sign as the p —i-th derivative of P evaluated at 0.
Moreover, there are no sign variations in the signs of the derivatives at +oo.
So that Var(P)= Var(Der(P);0,+00). O

The following lemma is the key to the proof of Theorem 2.35 (Budan-
Fourier).

Lemma 2.36. Let ¢ be a root of P of multiplicity ;1> 0. If no P®), 0<k <p,
has a root in [d,c)U (c,d’], then

a) Var(Der(P); d,c) — u is non-negative and even,
b) Var(Der(P);c,d’) =

Proof: We prove the claim by induction on the degree of P. The claim is true
if the degree of P is 1.

Suppose first that P(¢) = 0, and hence p > 0. By induction hypothesis
applied to P/,

a) Var(Der(P’);d,c) — (1 — 1) is non-negative and even,

b) Var(Der(P’);c,d’) =

The sign of P at the left of ¢ is the opposite of the sign of P’ at the left of ¢

and the sign of P at the right of ¢ is the sign of P’ at the right of ¢. Thus
Var(Der(P);d) = Var(Der(P’);d)+1, (2.1)
Var(Der(P);c) = Var(Der(P’);c),
Var(Der(P);d’) = Var(Der(P');d’),

and the claim follows.

Suppose now that P(c)# 0, and hence p1=0. Let v be the multiplicity of ¢
as a root of P’. By induction hypothesis applied to P’

a) Var(Der(P’);d,c) — v is non-negative and even,
b) Var(Der(P');c,d’) =

There are four cases to consider.
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If v is odd, and sign(P®**+V(¢) P(c)) >0,
Var(Der(P);d) = Var(Der(P’);d) +1, (2.2)
Var(Der(P);c) = Var(Der(P’);c),
Var(Der(P); d") Var(Der(P’); d’).

If v is odd, and sign(P“*Y(c) P(c)) <0,
Var(Der(P);d) = Var(Der(P’);d), (2.3)
Var(Der(P);c) = Var(Der(P’);c)+1,
Var(Der(P);d’) = Var(Der(P');d

<

~
+
=

If v is even, and sign(P”*V(c) P(c)) >

Var(Der(P);d) = Var(Der(P');d), (2.4)
Var(Der(P);c) = Var(Der(P’);c),
Var(Der(P);d’) = Var(Der(P');d’).

If v is even, and sign(P*+V(¢) P(c)) <

Var(Der(P);d) = Var(Der(P’);d)+1, (2.5)
Var(Der(P);c) = Var(Der(P');c)+1,
Var(Der(P);d’) = Var(Der(P');d’) +1.

The claim is true in each of these four cases. O

Proof of Theorem 2.35: It is clear that, for every c€ (a,b),

num(P; (a,b]) = num(P;(a,])+num(P;(c,b])
Var(Der(P);a,b) = Var(Der(P);a,c)+ Var(Der(P);c,b).

Let ¢1 <+ < ¢, be the roots of all the polynomials P(j), 0<j<p-—1,in the
interval (a,b) and let a=co,b=c,11, d; € (¢;, ¢i+1) so that

a=co<dop<c1<-<cp<dp<cpy1=>b.

Since,
num(P; (a,b]) = Z num(P; (¢;, d;]) + num(P; (d;, ¢; 1)),
Var(Der(P);a,b) = Z Var(Der(P); ¢;,d;) + Var(Der(P); d;, ¢it1),

the claim follows immediately from Lemma 2.36. ]

In general it is not possible to conclude much about the number of roots
on an interval using only Theorem 2.35 (Descartes’s law of signs).
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Ezample 2.37. The polynomial P = X2 — X 4 1 has no real root,
but Var(Der(P); 0, 1) = 2. It is impossible to find ¢ € (0, 1] such
that Var(Der(P);0,a) =1 and Var(Der(P);a, 1) =1 since otherwise P would
have two real roots. This means that however we refine the interval (0, 1],
we are going to have an interval (the interval (a, b] containing 1/2) giving 2
sign variations. |

However, there are particular cases where Theorem 2.35 (Budan-Fourier)
gives the number of roots on an interval:

Exercise 2.12. Prove that

— If Var(Der(P);a,b) =0, then P has no root in (a,b].

— If Var(Der(P); a, b) = 1, then P has exactly one root in (a, b], which is
simple.

Remark 2.38. Another important instance, used in Chapter 8, where The-
orem 2.35 (Budan-Fourier) permits a sharp conclusion is the following. When
we know in advance that all the roots of a polynomial are real, i.e. when
num(P; (—oo, +00)) = p, the number Var(Der(P);a,b) is exactly the number
of roots counted with multiplicities in (a, b]. Indeed the number Var(Der(P);
—00,400), which is always at most p, is here equal to p, hence

num(P; (—o0,a]) < Var(Der(P); —o0,a)
Var(Der(P);a,b)
Var(Der(P); b, +00)

,b). 0

num(F; (a, b))
num (P; (b, +00))
);a

imply num(P, (a, b]) = Var(Der(P

7

We are going now to describe situations where the number of sign varia-
tions in the coeflicients coincides exactly with the number of real roots.
The first case we consider is obvious.

Proposition 2.39. Let P € R[X] be a monic polynomial. If all the roots of
P have non-positive real part, then Var(P)=0.

Proof: Obvious, using the decomposition of P in products of linear factors
and polynomials of degree 2 with complex conjugate roots, since the product
of two polynomials whose coefficients are all non-negative have coefficients
that are all non-negative. g

The second case we consider is the case of normal polynomials. A polyno-
mial A=a, XP+ -+ ag with non-negative coeflicients is normal if

a) ap>0,
b) ai > ap_1ap+1 for all index k,
¢) ap, >0 and a; >0 for indices j < h implies a;4+1>0,...,an—1 >0

(with the convention that a; =0 if ¢ <0 or i > p).
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Proposition 2.40. Let P € R[X] be a monic polynomial. If all the roots
of P belong to the cone B of the complex plane (see Figure 2.1) defined by

Bz{a+ib||b|<—\/§a}, then P is normal.

v

Fig. 2.1. Cone B
The proof of Proposition 2.40 relies on the following lemmas.
Lemma 2.41. The polynomial X — x is normal if only if  <O0.
Proof: Follows immediately from the definition of a normal polynomial. [

Lemma 2.42. A quadratic monic polynomial A with complex conjugate roots
is normal if and only if its roots belong to the cone B.

Proof:
Let a+7b and a — b be the roots of A. Then

A=X?-2aX + (a®+b?)
is normal if and only if
a) —2a>0,
b) a®+b% >0,
c) (—2a)®>a®+ b
that is if and only if a <0 and 4 a? > a? +b?, or equivalently a+ibcB. O

Lemma 2.43. The product of two normal polynomials is normal.

Proof: Let A =a, X? + .- + ap and B = b,X? + --- 4+ by be two normal
polynomials. We can suppose without loss of generality that 0 is not a root
of A and B, i.e. that all the coefficients of A and B are positive.

Let C=AB=cpt ¢ XPT1+ ... +cp. It is clear that all the coefficients of C
are positive.

It remains to prove that c% > Cl—1Ck+t1-
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Using the partition of {(h,j)€Z*|h>j} in {(j+1,h—1)€Z*|h<j}
and {(h,h—1)|he€Z}.

2
Ch— Ck—1Ckt1 = E ahajb/c—hbk—j—i—g apajby_pbr—;

h<j h>j
- Z anajbr_—h41bp—j—1— Z anajbr_pt1br—j-1
h<j h>j
= Z ahajblc—hbk—j‘f'z ajr1ap-1bg—j 1bg 1
h<j h<j

+§ ahah—lbk—hbk—hﬂ—E apap—1bg—phi1be—n

h I
—g ahajbk—h—&-lblc—j—l_g ajr1ap—1bk— b _n

W< W<
= E (anaj—an—1a;j41) (br—jbr—n —br—j_1bx—ny1)-
h<j

Since A is normal and ay, ..., ap are positive, one has

Ap—1 ap—2 ao

p p

—_—z Z..z—,
ap ap—1 a

and ap a; — ap—1 ajy1>0, for all k& < j. Similar inequalities hold for the
coefficients of B and finally ¢ — cx_1 cr41 is non-negative, being a sum of
non-negative quantities. (|

Proof of Proposition 2.40: Factor P into linear and quadratic polynomials.
By Lemma 2.41 and Lemma 2.42 each of these factors is normal. Now use
Lemma 2.43. |

Finally we obtain the following partial reciprocal to Descartes law of signs.
Proposition 2.44. If A is normal and >0, then Var(A (X —x))=1.

Proof: We can suppose without loss of generality that that 0 is not a root of
A, that it that all the coefficients of A are positive.

Then
Ap—1 Ap—2 ao
p p
2 > 2_7
ap ap—1 a1
and

Ap— Ap— a
Pl _ g2 g >0
ap Qp—1 aq

Since a, >0 and -ag z<0, the coeflicients of the polynomial

(X—x)A:apo“—!—ap(aZ_l —x)Xp+...+a1 (%—x)X—ag .
P 1

have exactly one sign variation. |

A natural question when looking at Budan-Fourier’s Theorem (Theorem
2.35), is to interpret the even difference Var(Der(P); a, b) — num(P; (a, b]).
This can be done through the notion of virtual roots.
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The virtual roots of P will enjoy the following properties:

a) the number of virtual roots of P counted with virtual multiplicities is
equal to the degree p of P,

b) on an open interval defined by virtual roots, the sign of P is fixed,

¢) virtual roots of P and virtual roots of P’ are interlaced: if 21 <... <z, are
the virtual roots of P and y; <... <y,_1 are the virtual roots of P, then

1< <. Sxp_ 1< Yp_1 STy

Given these properties, in the particular case where P is a polynomial of
degree p with all its roots real and simple, virtual roots and real roots clearly
coincide.

Definition 2.45. [Virtual roots] The definition of virtual roots proceeds
by induction on p =deg(P). We prove simultaneously that properties a), b),
¢) hold.

If p=0, P has no virtual root and properties a), b), ¢) hold.

Suppose that properties a), b), ¢) hold for the virtual roots of P’.

By induction hypothesis the virtual roots of P’ are y; <... <y,_1. Let

Il - ( — 00, y1]7 -~'7Ii: [yi—h yl]u -~-7Ip: [yp—17+00)-

By induction hypothesis, the sign of P’ is fixed on the interior of each I;.
Let x; be unique value in I; such that the absolute value of P on I; reaches
its minimum. The virtual roots of P are z1 <... <xp,..

According to this inductive definition, properties a), b) and c¢) are clear for
virtual roots of P. Note that the virtual roots of P are always roots of a
derivative of P.

The virtual multiplicity of x with respect to P, denoted v(P,x) is the
number of times z is repeated in the list z; <..., <z, of virtual roots of P. In
particular, if  is not a virtual root of P, its virtual multiplicity is equal to 0.
Note that if z is a virtual root of P’ with virtual multiplicity v with respect
to P, the virtual multiplicity of z with respect to P’ can only be v, v+ 1 or
v — 1. Moreover, if z is a root of P’, the virtual multiplicity of z with respect
to P’ is necessarily v + 1. O

Example 2.46. The virtual roots of a polynomial P of degree 2 are

— the two roots of P with virtual multiplicity 1 if P has two distinct real

roots,
— the root of P’ with virtual multiplicity 2 if P does not have two distinct
real roots. g

Given a and b, we denote by v(P; (a, b]) the number of virtual roots of P in
(a,b] counted with virtual multiplicities.

Theorem 2.47.
v(P; (a,b]) = Var(Der(P); a,b).
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The following lemma is the key to the proof of Theorem 2.47.

Lemma 2.48. Let ¢ be a root of P of virtual multiplicity v(P,c) > 0. If no
P®) 0<k<p has a root in [d,c), then

v(P,¢) = Var(Der(P);d,c).

Proof: The proof of the claim is by induction on p = deg(P). The claim
obviously holds if p=0.
Let w=v(P,c).

— If cis aroot of P, the virtual multiplicity of ¢ as a root of P’is w— 1. By
induction hypothesis applied to P’, Var(Der(P’);d,c¢) =w — 1. The claim
follows from equation (2.1).

— If cis not a root of P, is a virtual root of P with virtual multiplicity w,
and a virtual root of P’ with multiplicity v and virtual multiplicity u, by
induction hypothesis applied to P’, Var(Der(P’);d, c) =u.

— If the sign of P’ at the left and at the right of ¢ differ, v is odd as well
as u, using Lemma 2.36 a) and the induction hypothesis for P’.
— If ¢ is a local minimum of the absolute value of P, w = u + 1,
sign(P“*1(c) P(c)) >0, , and the claim follows from (2.2).
— If ¢ is a local maximum of the absolute value of P, w = u — 1,
sign(P“*1(c) P(c)) <0, and the claim follows from (2.3).
— If the sign of P’ at the left and at the right of ¢ coincide, w =u, v is
even as well as u using Lemma 2.36 a) and the induction hypothesis
for P’. The claim follows from (2.4) and (2.5).

The claim follows in each of these cases. O
It follows clearly from Proposition 2.48 that:

Corollary 2.49. All the roots of P are virtual roots of P. The virtual multi-
plicity is at least equal to the multiplicity and the difference is even.

Proof of Theorem 2.47: It is clear that, for every c € (a,b),

v(P;(a,b]) = o(P;(a, ) +v(P;(c,b]),
Var(Der(P);a,b) = Var(Der(P);a,c)+ Var(Der(P);c,b).

Let ¢y <--- < ¢, be the roots of all the P, 0<i < p—1, in the interval (a,b) and
let co=00,¢r41 =400, d; € (¢, ci+1) so that co<dp<c1 < < <dp <Cpgi.

Since
I

v(P;(a,b) = > (v(P;(ciydi]) +0(P; (di civ1)),

=0
r

Var(Der(P);a,b) = Z (Var(Der(P); ¢;,d;) + Var(Der(P); d;, ¢i+1)),
i=0
the claim follows immediately from Lemma 2.36 b) and Lemma 2.48. O
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Finally the even number Var(Der(P); a, b) > num(P; (a, b]) appearing in
the statement of Budan-Fourier’s Theorem (Theorem 2.35) is the sum of the

differences between virtual multiplicities and multiplicities of roots of P in
(a,b].

2.2.2 Sturm’s Theorem and the Cauchy Index

Let P be a non-zero polynomial with coefficients in a real closed field R. The
sequence of signed remainders of P and P’, SRemS(P, P’) (see Definition 1.7)
is the Sturm sequence of P.

We will prove that the number of roots of P in (a,b) can be computed from
the Sturm sequence SRemS(P, P’) evaluated at a and b (see Notation 2.34).
More precisely the number of roots of P in (a,b) is the difference in the number
of sign variations in the Sturm’s sequence SRemS(P, P’) evaluated at a and b.

Theorem 2.50. [Sturm’s theorem| Given a and b in RU{—o0, +o0},
Var(SRemS(P, P’); a,b)
is the number of roots of P in the interval (a,b).

Remark 2.51. As a consequence, we can decide whether P has a root in R by
checking whether Var(SRemS(P, P’); —c0, +00) > 0. O

Let us first see how to use Theorem 2.50 (Sturm’s theorem).

Example 2.52. Consider the polynomial P = X* — 5X2 + 4. The Sturm
sequence of P is

SRemSo(P, P!) = P=X*—5X2+4,
SRemS,(P,P') = P'=4X*—10X,
SRemSy(P, P') = gX2—4,
SRemS3(P, P') = ?X,
SRemSy(P,P’) = 4.

The signs of the leading coefficients of the Sturm sequence are + + + + +
and the degrees of the polynomials in the Sturm sequence are 4,3,2,1,0. The
signs of the polynomials in the Sturm sequence at —oo are + —+ — 4+, and
the signs of the polynomials in the Sturm sequence at 400 are + 4+ + + +,
so Var(SRemS(P, P’); —00, +00) = 4. There are indeed 4 real roots: 1, —1, 2,
and —2. ]

We are going to prove a statement more general than Theorem 2.50
(Sturm’s theorem), since it will be useful not only to determine whether P
has a root in R but also to determine whether P has a root at which another
polynomial @ is positive.
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With this goal in mind, it is profitable to look at the jumps (discontinu-
ities) of the rational function P'Q/P. Clearly, these occur only at points ¢
for which P(c) =0, Q(c) # 0. If ¢ occurs as a root of P with multiplicity p
then P’ Q/P = uQ(c)/(X — ¢) + R., where R, is a rational function defined
at c. It is now obvious that if Q(c) >0, then P’ @Q/P jumps from —oo to +00
at ¢, and if Q(c) <0, then P’ Q/P jumps from +oco to —oo at ¢. Thus the
number of jumps of P’ Q/P from —oo to +0o minus the number of jumps
of P’ Q/P from 400 to —oo is equal to the number of roots of P at which @
is positive minus the number of roots of P at which ) is negative. This
observation leads us to the following definition. We need first what we mean
by a jump from —oo to +o0.

Definition 2.53. [Cauchy index]| Let = be a root of P. The function Q/P
jumps from —oco to +oo at z if the multiplicity p of = as a root of P is
bigger than the multiplicity v of x as a root of @, u — v is odd and the sign
of Q/P at the right of x is positive. Similarly, the function Q/P jumps
from +o0o to —co at x if if the multiplicity u of = as a root of P is bigger
than the multiplicity v of z as a root of @, p— v is odd and the sign of Q/P
at the right of = is negative.

Given a < b in RU{—00, +o0} and P, Q € R[X], we define the Cauchy
index of Q/P on (a,b), Ind(Q/P;a,b), to be the number of jumps of the func-
tion @/P from —oo to 400 minus the number of jumps of the function Q/P
from 400 to —oo on the open interval (a,b). The Cauchy index of Q/P on
R is simply called the Cauchy index of /P and it is denoted by Ind(Q/P),
rather than by Ind(Q/P; —o00, +00). O

Fig. 2.2. Graph of the rational function Q/P
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Ezxample 2.54. Let
P = (X-32(X-1)(X4+3),
Q = (X—=5) (X —4) (X —2) (X +1) (X +2) (X +4).

The graph of Q/P is depicted in Figure 2.2.
In this example,

Ind(Q/P) = 0
Ind(Q/P;—00,0) = 1
Ind(Q/P;0,00) = —1

Remark 2.55.

a) Suppose deg(P) = p, deg(Q) = q < p. The Cauchy index Ind(Q/P;a,b) is
equal to p if and only if ¢=p — 1, the signs of the leading coefficients of P
and @ are equal, all the roots of P and @ are simple and belong to (a,b),
and there is exactly one root of @) between two roots of P.

b) If R=Rem(Q, P), it follows clearly from the definition that

Ind(Q/P;a,b)=Ind(R/P;a,b). a

Using the notion of Cauchy index we can reformulate our preceding discussion,
using the following notation.

Notation 2.56. [Tarski-query]| Let P+0 and @ be elements of K[X]. The
Tarski-query of @ for P in (a,b) is the number

TaQ(Q, P;a,b) = > sien(Qx).

z€(a,b),P(x)=0

Note that TaQ(Q, P;a,b) is equal to

#{z€(a,b)| P(x) =0/ Q(x) >0}) — #({z € (a,0)| P(x) =0A Q(z) <0})

where #(S) is the number of elements in the finite set S.
The Tarski-query of @ for P on R is simply called the Tarski-query of @
for P, and is denoted by TaQ(Q, P), rather than by TaQ(Q, P; —co,+00). O

The preceding discussion implies:

Proposition 2.57.
TaQ(Q, P;a,b) =Ind(P’' Q/P;a,b).

In particular the number of roots of P in (a,b) is Ind(P’/P;a,b).
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We now describe how to compute Ind(Q/P; a, b). We will see that the
Cauchy index is the difference in the number of sign variations in the signed
remainder sequence SRemS(P, @) evaluated at a and b (Definition 1.7 and
Notation 2.34).

Theorem 2.58. Let P, P+0, and Q) be two polynomials with coefficients in a
real closed field R, and let a and b (with a <b) be elements of RU{—o0, 400}
that are not roots of P. Then,

Var(SRemS(P, Q);a,b) =Ind(Q/P;a,b).

Let R=Rem(P, Q) and let o(a) be the sign of PQ at a and o(b) be the sign
of P@ at b. The proof of Theorem 2.58 proceeds by induction on the length
of the signed remainder sequence and is based on the following lemmas.

Lemma 2.59. Ifa and b are not roots of a polynomial in the signed remainder
sequence,

Var(SRemS(P, Q);a,b)
_ Var(SRemS(Q, —R);
N Var(SRemS(Q, —R)

0)+0(b) if o(a)o(b) =—1,
,b) if o(a)o(b)=1.

a
;a

Proof: The claim follows from the fact that at any « which is not a root of
P and @ (and in particular at a and b)

Var(SRemS(P, Q); x) = { Var(SRemS(Q, —R);x) +1 if P(x) g(x)

<0,
Var(SRemS(Q, —R); x) it P(z) Q(x) >0,
looking at all possible cases. O

Lemma 2.60. Ifa and b are not roots of a polynomial in the signed remainder
sequence,

' [ Ind(-R/Q;a,b)+0(b) ifo(a)o(b)=-1,
nd(Q/P;a,b) = { Ind(—R/Q;a,b) if o(a) o(b) =1.

Proof: We can suppose without loss of generality that @@ and P are coprime.
Indeed if D is a greatest common divisor of P and @ and

P1 :P/D, Ql = Q/D,Rl zRem(Pl, Q1> :R/D,
then P; and Q1 are coprime,

Ind(Q/P;a,b)=Ind(Q1/Pi1;a,b),Ind(—R/Q; a,b) =Ind(—R1/Q1; a,b),

and the signs of P(x)Q(x) and Pi(z)Q1(z) coincide at any point which is not
a root of PQ.
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Let n_4 (resp. ny_) denote the number of sign variations from —1 to 1
(resp. from 1 to —1) of PQ when x varies from a to b. It is clear that

n—+_"+—:{ o(b) if o(a)o(b) =1
0 i ola)o(b)—1.

It follows from the definition of Cauchy index that

Ind(Q/P;a,b)+Ind(P/Q;a,b)=n_4 —ni_.
Noting that
Ind(R/Q;a,b)=Ind(P/Q;a,b),

the claim of the lemma is now clear. O

Proof of Theorem 2.58: We can assume without loss of generality that a
and b are not roots of a polynomial in the signed remainder sequence. Indeed
if a<a’<b' <b with (a,a’] and [b’,b) containing no root of the polynomials
in the signed remainder sequence, it is clear that

Ind(Q/P;a,b)=Ind(Q/P;a’,b’).
We prove now that

Var(SRemS(P, Q); a,b) = Var(SRemS(P, Q); a’, b’).

We omit (P, @) in the notation in the following lines. First notice that
since a is not a root of P, a is not a root of the greatest common divisor of P
and @, and hence a is not simultaneously a root of SRemS; and SRemS;
(resp. SRemS;_1 and SRemS;). So, if a is a root of SRemS;, j # 0,
SRemS;_1(a) SRemS;1(a) <0, since

SRemS; 1 =—SRemS;_1 + Quo(SRemS;, SRemS,_1) SRemS
(see Remark 1.4) so that

Var(SRemS,_1, SRemS;, SRemS 4 1;a)
= Var(SRemS;_1,SRemS;, SRemS; 1; a’)
= 1.

This implies Var(SRemS(P, Q); a) = Var(SRemS(P, @Q); a’), and similarly
Var(SRemS(P, Q); b) = Var(SRemS(P, Q); b').

The proof of the theorem now proceeds by induction on the number n > 2
of elements in the signed remainder sequence. The base case n =2 corresponds
to R=0 and follows from Lemma 2.59 and Lemma 2.60. Let us suppose that
the Theorem holds for n — 1 and consider P and @ such that their signed
remainder sequence has n elements. The signed remainder sequence of @
and —R has n — 1 elements and, by the induction hypothesis,

Var(SRemS(Q, —R);a,b) =Ind(—R/Q;a,b).
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So, by Lemma 2.59 and Lemma 2.60,
Var(SRemS(P, Q);a,b) =Ind(Q P;a,b). |

As a consequence of the above we derive the following theorem.

Theorem 2.61. [Tarski’s theorem]Ifa <b are elements of RU{—o00, 400}
that are not roots of P, with P, Q € R|X], then

Var(SRemS(P, P’ Q);a,b) =TaQ(Q, P;a,b).

Proof: This is immediate from Theorem 2.58 and Proposition 2.57. 0

Theorem 2.50 (Sturm’s theorem) is a particular case of Theorem 2.61,
taking Q@ =1.

Proof of Theorem 2.50: The proof is immediate by taking ¢ =1 in The-
orem 2.61. ]

2.3 Projection Theorem for Algebraic Sets

Let R be a real closed field. If P is a finite subset of R[ X1, ..., X%], we write
the set of zeros of P in R as

Zer(P,R*)={z€R*| /\ P(x)=0}.
PeP
These are the algebraic sets of R¥ = Zer({0}, R¥).

An important way in which this differs from the algebraically closed
case is that the common zeros of P are also the zeros of a single polyno-
mial Q=3 P

The smallest family of sets of R* that contains the algebraic sets and is
closed under the boolean operations (complementation, finite unions, and
finite intersections) is the constructible sets.

We define the semi-algebraic sets of R* as the smallest family of sets
in R* that contains the algebraic sets as well as sets defined by polynomial
inequalities i.e. sets of the form {z € R*|P(x) > 0} for some polyno-
mial P € R[X7, ..., X, and which is also closed under the boolean operations
(complementation, finite unions, and finite intersections). If the coefficients
of the polynomials defining S lie in a subring D C R, we say that the semi-
algebraic set S is defined over D.

It is obvious that any semi-algebraic set in R* is the finite union of sets
of the form {z € R¥|P(z)=0A Ngeo @(z)>0}. These are the basic semi-
algebraic sets.

Notice that the constructible sets are semi-algebraic as the basic con-
structible set

S={zeRF|P(x)=0A [\ Q(x)#0}

QeQ
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is the basic semi-algebraic set

{reRMP@@)=0n /\ Q*x)>0}

QeQ

The goal of the next pages is to show that the projection of an algebraic set
in R**! is a semi-algebraic set of R* if R is a real closed field.

This is a new example of the paradigm described in Chapter 1 for
extending an algorithm from the univariate case to the multivariate case by
viewing the univariate case parametrically. The algebraic set Z C R¥*! can
be described as

Z={(y.2) €R*1| P(y,2) =0}

with P € R[X}, ..., X, Xk+1], and its projection 7(Z) (forgetting the last
coordinate) is

7(Z)={yeRF|Ix€R P(y,z)=0)}.

For a particular y € R¥ we can decide, using Theorem 2.50 (Sturm’s theorem)
and Remark 2.51, whether or not 3z € R Py(z) =0 is true.

Defining Z, ={z € R| Py(z) =0}, (see Notation 1.18) what is crucial here
is to partition the parameter space R” into finitely many parts so that each
part is either contained in {y € R¥| Z, =0} or in {y € R¥| Z, # 0}. Moreover,
the algorithm used for constructing the partition ensures that the decision
algorithm testing whether Z, is empty or not is the same (is uniform) for all y
in any given part. Because of this uniformity, it turns out that each part of
the partition is a semi-algebraic set. Since 7(Z) is the union of those parts
where Z, #+ 0, m(Z) is semi-algebraic being the union of finitely many semi-
algebraic sets.

We first introduce some terminology from logic which is useful for the
study of semi-algebraic sets.

We define the language of ordered fields by describing the formulas of
this language. The definitions are similar to the corresponding notions in
Chapter 1, the only difference is the use of inequalities in the atoms. The
formulas are built starting with atoms, which are polynomial equations and
inequalities. A formula is written using atoms together with the logical con-
nectives “and", “or", and “negation" (A, V, and —) and the existential and
universal quantifiers (3, V). A formula has free variables, i.e. non-quantified
variables, and bound variables, i.e. quantified variables. More precisely, let D
be a subring of R. We define the language of ordered fields with coeffi-
cients in D as follows. An atom is P=0 or P >0, where P is a polynomial
in D[X7,..., X}]. We define simultaneously the formulas and the set Free(®)
of free variables of a formula ¢ as follows

— an atom P =0 or P > 0, where P is a polynomial in D[X7, ..., Xi] is a
formula with free variables {X1,..., Xj},
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— if ®; and ®5 are formulas, then ®; A 5 and ®; V $5 are formulas with
Free(®; A ®3) =Free(®; V ®2) = Free(®1) U Free(P2),

— if ® is a formula, then —(®) is a formula with Free(—(®)) = Free(®),

— if ® is a formula and X € Free(®), then (3X) ® and (VX) ® are formulas
with Free((3X) ®) =Free((VX) ®) =Free(®)\ {X }.

If ® and ¥ are formulas, ® = ¥ is the formula —(®) Vv V.

A quantifier free formula is a formula in which no quantifier appears,
neither 3 nor V. A basic formula is a conjunction of atoms.

The R-realization of a formula ® with free variables contained
in {Y1, ..., i}, denoted Reali(®, R¥), is the set of y € R¥ such that ®(y)
is true. It is defined by induction on the construction of the formula, starting
from atoms:

Reali(P =0,R*
Reali(P > 0,R*

) = {yeR*| P(y)=0},

) = {y€R¥|[P(y)>0},

Reali(P <0,R*) = {yeR*|P(y) <0},

Reali(®1 A @2, R*) = Reali(®1, R*) N Reali(®o, R¥),

Reali(®; V @5, R*) = Reali(®1, R¥) UReali(®s, RF),

Reali(—®,RF) = RF\Reali(®,R"),

Reali((3X) ®,R*) = {yeR¥|3zeR (z,y) € Reali(®, RF+1)},
Reali((VX) ®,R*) = {yeRF|VzeR (z,y) € Reali(®, RF+1)}

Two formulas ® and ¥ such that Free(®) = Free(¥) = {V37, ..., Yi}
are R-equivalent if Reali(®, R*) = Reali(¥, R¥). If there is no ambiguity,
we simply write Reali(®) for Reali(®, R*) and talk about realization and
equivalence.

It is clear that a set is semi-algebraic if and only if it can be represented
as the realization of a quantifier free formula. It is also easy to see that any
formula in the language of fields with coefficients in D is R-equivalent to a
formula

DY) = (QuX1)..(QumXpm) B(X1, ..., Xon, Y1, ...Y2)

where each Qu; € {V,3} and B is a quantifier free formula involving polyno-
mials in D[X7, ..., X;n, Y1, ...Y%]. This is called its prenex normal form (see
Section 10, Chapter 1 of [115]). The variables X1, ..., X;,, are called bound
variables . If a formula has no free variables, then it is called a sentence,
and is either R-equivalent to true, when Reali(®, {0}) = {0}, or R-equivalent
to false, when Reali(®, {0}) = 0. For example, 1 > 0 is R-equivalent to true,
and 1 <0 is R-equivalent to false.
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We now prove that the projection of an algebraic set is semi-algebraic.

Theorem 2.62. Given an algebraic set of R¥T1 defined over D, its projection
to R¥ is a semi-algebraic set defined over D.

Before proving Theorem 2.62, let us explain the mechanism of its proof on
an example.

Example 2.63. We describe the projection of the algebraic set
{(a,b,c, X)eR X' +aX?+bX +c=0}
to R3, i.e. the set
{(a;b;¢) eR?*|IX €R X'+a X?+bX +c=0},

as a semi-algebraic set.

We look at all leaves of TRems(P, P’) and at all possible signs for leading
coefficients of all possible signed pseudo-remainders (using Example 1.15).
We denote by n the difference between the number of sign variations at —oo
and 400 in the Sturm sequence of P=X*+a X2+ b X + ¢ for each case. We
indicate for each leaf L of TRems(P, P’) the basic formula Cy, and the degrees
occurring in the signed pseudo-remainder sequence of P and P’ along the path
Br.

(a£0As£0AG#0,(4,3,2,1,0))

al- — — — + 4+ + +
s|++ - — + + — —
S|+ — + -+ — + —
n|4 2020 20 2

The first column can be read as follows: for every polynomial
P=X*+aX?>+bX+c

satisfying a < 0, s > 0, 6 > 0, the number of real roots is 4. Indeed the
leading coefficients of the signed pseudo-remainder sequence of P and P’
are 1,4, —a,645,16384 a6 (see Example 1.17) and the degrees of the poly-
nomials in the signed pseudo-remainder sequence of P and P’ are 4,3,2,1,0,
the signs of the signed pseudo-remainder sequence of P and P’ at —oo
are + —+ —+ and at +o00 are 4+ + + + 4+ . We can apply Theorem 2.50
(Sturm’s Theorem).
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The other columns can be read similarly. Notice that n can be negative
(for @ > 0, s > 0, § < 0). Though this looks paradoxical, Sturm’s the-
orem is not violated. It only means that there is no polynomial P € R[X]
with P=X*4+aX?+bX+cand a > 0, s > 0, § < 0. Notice that
even when n is non-negative, there might be no polynomial P € R[X]
with P=X*+a X2+bX +c and (a, s, §) satisfying the corresponding sign
condition.

Similarly, for the other leaves of TRems(P, P’)

(a£0Ns#+0N0=0,(4,3,2,1))
al— — + +

S|+ = + =
n|3 1 -1 1

(a£0As=0At+0,(4,3,2,0))

a
t
n

o|+ +

+
0

o+ |
o |

(a#0As=t=0,(4,3,2))

- +
2 0

(a=0Ab+£0Au+0,(4,3,1,0))

S|
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Finally, the formula 3 X X%+ a X2+ b X + ¢ = 0 is R-equivalent to the
quantifier-free formula ®(a, b, ¢):

(a<0As>0)
(a<0As<0AI<0)
(a>0ANs<0ANI<0)
(a<0As+£0AI=0)
(a>0As<0Ad=0)
(a<0As=0At+£0)
(a<0As=0At=0)
(a=0Ab<0Au<0)
(a=0Ab>0Au>0)
(a=0Ab£0Au=0)
(a=0Ab=0Ac<0)
(a=0Ab=0Ac=0),

<< << <<< << <KL

by collecting all the sign conditions with n > 1. Thus, we have proven that
the projection of the algebraic set

{(z,a,b,c) eR*|z* +az®+bx+c}

into R is the semi-algebraic subset Reali(®, R?). a

The proof of Theorem 2.62 follows closely the method illustrated in the
example.

Proof of Theorem 2.62: Let Z = {z € R*¥*! | P(z) = 0}. Let Z’ be the
intersection of Z with the subset of (y,x) € R**! such that P, is not identically
Zero.

Let L be a leaf of TRems(P, P’), and let A(L) be the set of non-zero poly-
nomials in D[Y7, ..., Y] appearing in the basic formula Cy,, (see Notation 1.18).

Let £ be the set of all leaves of TRems(P, P’), and

A=J A(L)cDY,.... V3],
Lel
If 7€{0,1,—1}*, we define the realization of 7 by
Reali(T) = {y € R¥| /\ sign(A(y)) =7(A4)}.
AcA

Let Z, = {z € R | P(y, ¥) = 0}. Note that Reali(r) C {y € R¥ | Z, # 0}
or Reali(t) C {y € R* | Z, = 0}, by Theorem 2.50 (Sturm’s theorem) and
Remark 2.51. Let

Y={r€{0,1,-1}4|Vy € Reali(r) Z,+0}.



2.4 Projection Theorem for Semi-Algebraic Sets 63

It is clear that the semi-algebraic set |J .y Reali(r) coincides with the
projection of S’.
The fact that the projection of the intersection of Z with the subset
of (y,z) € RF*! such that P, is identically zero is semi-algebraic is obvious.
Thus the whole projection of Z=2'U(Z \ Z’) is semi-algebraic since it is
a union of semi-algebraic sets. ]

2.4 Projection Theorem for Semi-Algebraic Sets

We are going to prove by a similar method that the projection of a semi-
algebraic set is semi-algebraic. We start with a decision algorithm deciding if a
given sign condition has a non-empty realization at the zeroes of a univariate
polynomial.

When P and @ have no common roots, we can find the number of roots
of P at each possible sign of @) in terms of the Tarski-queries of 1 and @ for P.

We denote

Z = Zer(P,R)

{reR| P(x) =0},

Reali(Q =0, 2) {reZ | sign(Q(z))=0}={xeZ | Qx)=0},
Reali(Q >0, 2) {reZ|sign(Qx))=1}={zeZ | Q(z) >0},
Reali(Q <0,Z) = {ze€Z |sign(Qz))=-1}={zeZ | Q(z) <0},

and ¢(Q = 0, Z), ¢(Q > 0, Z), ¢(Q < 0, Z) are the cardinalities of the
corresponding sets.

Proposition 2.64. If P and Q have no common roots in R, then

(Q>0,2) = (TaQ(1, P)+TaQ(Q. P))/2,
((Q<0,2) = (TaQ(1, P)~ TaQ(Q. P))/2.

Proof: We have

TaQ(1,P) = ¢(Q>0,2)+¢(Q<0,2),
TaQ(Q,P) = ¢(Q@>0,2)—c(Q<0,2).

Now solve. O

With a little more effort, we can find the number of roots of P at each
possible sign of @ in terms of the Tarski-queries of 1, Q, and Q2 for P.
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Proposition 2.65. The following holds

c(Q=0,2) = TaQ(1,P)—TaQ(Q? P),
(Q@>0,2) = (TaQ(Q?* P) +TaQ(Q, P))/2,
C(Q<Ov Z) = (TaQ(QQ,P)—TaQ(Q7P))/2

Proof: Indeed, we have

TaQ(1,P) = ¢(Q@=0,2)+c¢(Q>0,Z)+c¢(Q<0,2),
TaQ(Q,P) = ¢(Q@>0,2)—c(Q<0,2),
TaQ(Q%: P) = ¢(Q>0,2)+¢(Q<0,2).

Now solve. O

We want to extend these results to the case of many polynomials.

We consider a P € R[X] with P not identically zero, Q a finite subset
of R[X], and the finite set Z =Zer(P,R)={z €R| P(z)=0}.

We will give an expression for the number of elements of Z at which Q
satisfies a given sign condition o.

Let o be a sign condition on Q i.e. an element of {0,1, —1}<. The real-
ization of the sign condition ¢ over Z is

Reali(o,Z)={z€R | P(x)=0A /\ sign(Q(z)) =0(Q)}.
QeQ
Its cardinality is denoted ¢(o, Z).
Given o €{0,1,2}<, and 0 € {0,1,—1}< we write o for [lgeo o (Q)*(@),
and Q for [[,eo Q*(?). When Reali(o, Z) # 0, the sign of Q is fixed
on Reali(c, Z) and is equal to 0%, with the convention that 0°=1.

We number the elements of Q so that Q@ = {Q, ..., Qs} and use the
lexicographical orderings on {0, 1, 2}< (with 0<1<2) and {0, 1, —1}<
(with 0 <1< —1) (see Definition 2.14).

Given a list of elements A= a, ..., o, of {0,1,2}2 with a1 <jex ... <lex Qm,
we define

QA = QM ..., Qom
TaQ(Q4,P) = TaQ(Q™,P),..., TaQ(Q*m, P).

Given a list of elements ¥ =01, ..., 0y, of {0, 1, —1}2, with 01 <jex ... <lex On,
we define

Reali(%, Z) Reali(o1, Z), ..., Reali(o,, Z)
c(3,7) = c(o01,2),...,c(0n, Z).

Definition 2.66. The matrix of signs of 04 on Y is the m x n
matrix Mat(A, ) whose 7, j-th entry is of". O
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Example 2.67. It Q ={Q1, Q2} and A = {0, 1, 21{@v@=} {0, Q,}4 is the
list 1, Q2, @3, @1, Q1Q2, Q1Q3, QF, Q1Q2, Q1Q3. Taking £ ={0,1, -1} {9192},
i.e. the list
Q1=0NQ2=0,Q1=0NQ2>0,Q:=0AQ2<0,
Ql>O/\Q2=O,Q1>0/\Q2>0,Q1>0/\Q2<0,
Ql<O/\Q2=O,Q1<0/\Q2>0,Q1<0/\Q2<0,

the matrix of signs of these nine polynomials on these nine sign conditions is

11 1 11 1 1 1 1
01-101-10 1 -1
011011 0 1 1
000 11 1 -1 -1 -1
Mat(A, )= 00 0 01 -1 0 -1 1
00001 1 0 -1 -1
000 111 1 1 1
00 001-10 1 -1
(00001 1 0 1 1

For example, the 5-th row of the matrix reads as follows: the signs of the
5-th polynomial of Q4 which is Q1Q> on the 9 sign conditions of ¥ are

[00001-10-11] 0

Proposition 2.68. If (J ., Reali(o,2)=Z then
Mat(A, ) ¢(X, Z) = TaQ(Q4, P).

Proof: It is obvious since the (i, j) — th entry of Mat(A,X) is of". O

Note that when Q = {Q}, A = {0,1,2}{?} and ¥ = {0, 1, —1}{?} the
conclusion of Proposition 2.68 is

11 1 (Q=0,2) TaQ(1, P)
01 -1 || c(@>0,2) |=| TaQ(Q,P) (2.6)
01 1 c(Q<0,2) TaQ(Q?, P)

which was hidden in the proof of Proposition 2.65.

It follows from Proposition 2.68 that when the matrix M(Q4, %) is
invertible, we can express ¢(X, Z) in terms of TaQ(Q*, P). This is the case
when A={0,1,2}€ and £ ={0,1,-1}<, as we will see now.

Notation 2.69. [Tensor product] Let M and M’=[ m/; | be two matrices
with respective dimensions n x m and n’ x m’. The matrix M @ M’ is
the nn’ x mm’ matrix

[ mijM’ ]
The matrix M ® M’ is the tensor product of M and M’. O
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Example 2.70. 1f

11 1 11 1 1 1
01 -101 -1 1 -1
01 1 01 1 1 1
00 o111 -1 -1 -1
Me@M'=l00 0 01 -1 0 -1 1
00 001 1 0 -1 -1
00 o111 1 1 1
00 001 -1 0 1 -1
00 0 01 1 0 1 1 |
Notice that M @ M’ coincides with the matrix of signs of A= {0,1,2}{@1@2}
on ¥ ={0,1, -1}{@n@=}, O
Notation 2.71. Let M, be the 3° x 3° matrix defined inductively by
11 1
M =101 -1
01 1

M1 = M;® M.

Exercise 2.13. Prove that M; is invertible using induction on s.

Proposition 2.72. Let Q be a finite set of polynomials with s elements,
A={0,1,2}2 and £ =1{0,1,—1}<, ordered lexicographically. Then

Mat(A, X) = M.
Proof: The proof is by induction on s. If s=1, the claim is Equation (2.6).

If the claim holds for s, it holds also for s+ 1 given the definitions of M1,
of Mat(A4,3), and the orderings on A={0,1,2}< and £ =1{0,1,-1}<. O

So, Proposition 2.68 and Proposition 2.72 imply
Corollary 2.73. M, c¢(3, Z)=TaQ(Q4, P).

We now have all the ingredients needed to decide whether a subset of R
defined by a sign condition is empty or not, with the following two lemmas.

Lemma 2.74. Let Z =Zer(P,R) be a finite set and let o be a sign condition
on Q. Whether or not Reali(o, Z) = () is determined by the degrees of the
polynomials in the signed pseudo-remainder sequences of P, P'Q% and the
signs of their leading coefficients for all a« € A=1{0,1,2}<.
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Proof: For each a € {0, 1, 2}<, the degrees and the signs of the leading
coefficients of all of the polynomials in the signed pseudo-remainder sequences
SRemS(P, P’'Q%) clearly determine the number of sign variations of
SRemS(P, P'Q%) at —oo and 400, ie. Var(SRemS(P,P’Q%); —o0) and
Var(SRemS(P, P'Q%); +00), and their difference is TaQ(Q®*, P) by The-
orem 2.61. Using Propositions 2.72, Proposition 2.68, and Corollary 2.73

M- TaQ(Q4, P)=¢(%, Z).

Denoting the row of M, * that corresponds to the row of o in ¢(X, Z) by g,
we see that 7, - TaQ(Q?, P) =c(c, Z). Finally,

Reali(o, Z) = {z €R|P(z) =0A /\ sign(Q(x))=0(Q)}
QeQ
is non-empty if and only if ¢(o, Z) > 0. O

Lemma 2.75. Let o be a strict sign condition on Q. Whether or
not Reali(c) =0 is determined by the degrees and the signs of the leading coeffi-
cients of the polynomials in Var(SRemS(C',C")) (with C=]],c o Q) and the

signs of the leading coefficients of the polynomials in Var(SRemS(C’, C" Q%))
for alla € A={0,1,2}<.

Proof: Recall (Theorem 2.50) that the number of roots of C' is determined
by the signs of the leading coefficients of Var(SRemS(C,C")).

— If C has no roots, then each @ € Q has constant sign which is the same as
the sign of its leading coefficient.

— If C has one root, then the possible sign conditions on Q are determined
by the sign conditions on Q at +o0o and at —oo.

— If C has at least two roots, then all intervals between two roots of C
contain a root of C” and thus all sign conditions on Q are determined by
the sign conditions on Q at +o0o and at —oo and by the sign conditions
on Q at the roots of C’. This is covered by Lemma 2.74. O

The goal of the remainder of the section is to show that the semi-algebraic
sets in R**+! are closed under projection if R is a real closed field. The result
is a generalization of Theorem 2.62 and the proof is based on a similar method.

Let us now describe our algorithm for proving that the projection of a
semi-algebraic set is semi-algebraic. Using how to decide whether or not a
basic semi-algebraic set in R is empty (see Lemmas 2.74 and 2.75 ), we can
show that the projection from R**+! to R of a basic semi-algebraic set is semi-
algebraic. This is a new example of our paradigm for extending an algorithm
from the univariate case to the multivariate case by viewing the univariate
case parametrically. The basic semi-algebraic set S C R¥*1 can be described as

S={zeRF1| N\ P@)=0A A\ Q(z)>0}

PeP QeQ
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with P, Q finite subsets of R[X7, ..., X, Xk41], and its projection 7(S)
(forgetting the last coordinate) is

m(9)={yeRF|TzeR( /\ Pyx)=0 A\ Qux)>0

PeP QeQ

For a particular y € R¥ we can decide, using Lemmas 2.74 and 2.75, whether

or not

JreR( N\ Py2)=0 N\ Qyx)>0)
. PeP QeQ
is true.

What is crucial here is to partition the parameter space R* into finitely
many parts so that each part is either contained in {y € R¥ | S, = 0} or
in {y eR*| S, +# 0}, where

={zeR| \ Pyx)=0n \ Qux)>0}.

PeP QeQ

Moreover, the algorithm used for constructing the partition ensures that the
decision algorithm testing whether Sy, is empty or not is the same (is uniform)
for all y in any given part. Because of this uniformity, it turn out that each
part of the partition is a semi-algebraic set. Since 7(S) is the union of those
parts where S, # (), m(S) is semi-algebraic being the union of finitely many
semi-algebraic sets.

Theorem 2.76. [Projection theorem for semi-algebraic sets| Given
a semi-algebraic set of Rt defined over D, its projection to R¥ is a semi-
algebraic set defined over D.

Proof: Since every semi-algebraic set is a finite union of basic semi-algebraic
sets it is sufficient to prove that the projection of a basic semi-algebraic set is
semi-algebraic. Suppose that the basic semi-algebraic set S in RF+! is

Reali(o, Z) = {(y,r) eR* xR| P(y, )= A /\ sign(Q(y,z)) =0(Q)},
QeQ
with Z ={z € R¥+1| P(2) =0}. Let S’ be the intersection of S with the subset
of (y,x) € R*¥*+1 such that P, is not identically zero.

Let L be a function on {0, 1, 2}< associating to each o € {0, 1, 2} a
leaf L, of TRems(P, P'Q%), and let A(L,) be the set of non-zero poly-
nomials in D[Y7, ..., Y] appearing in the quantifier free formula Cp_, (see
Notation 1.18).

Let £ be the set of all functions L on {0, 1, 2}< associating to each a a
leaf L, of TRems(P, P'Q%), and

A=) U ALl cDM,.. v

Lel a€e{0,1,2}°
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Note that since A contains the coefficients of P’ the signs of the coefficients
of P are fixed as soon as the signs of the polynomials in A are fixed.
If 7€{0,1,—1}*, we define the realization of 7 by

Reali(7) = {y € R¥| /\ sign(A(y)) =7(A4)}.
AeA

Let Zy={z€R|P(y,x) =0}, 0,(Qy) =0(Q), and note that either

Reali(7) C {y € R¥ | Reali(o, Z,) # 0}
or
Reali(7) C {y € R¥| Reali(ay, Z,) = 0},
by Lemma 2.74. Let
Y={re€{0,1,-1}4|Vy € Reali(r) Reali(cy, Z,)+ 0}.

It is clear that the semi-algebraic set |J .y Reali(7) coincides with the
projection of S’.

The fact that the projection of the intersection of S with the subset
of (y,z)€R**! such that P, is identically zero is semi-algebraic follows in
a similar way, using Lemma 2.75.

Thus the whole projection S=S5"U (S \ S’) is semi-algebraic as a union of
semi-algebraic sets. |

Exercise 2.14. Find the conditions on a, b such that X3 + a X + b has a
strictly positive real root.

2.5 Applications

2.5.1 Quantifier Elimination and the Transfer Principle

As in Chapter 1, the projection theorem (Theorem 2.76) implies that the
theory of real closed fields admits quantifier elimination in the language of
ordered fields, which is the following theorem.

Theorem 2.77. [Quantifier Elimination over Real Closed Fields]
Let ®(Y) be a formula in the language of ordered fields with coefficients in
an ordered ring D contained in the real closed field R. Then there is a quan-
tifier free formula W(Y) with coefficients in D such that for every y € RF,
the formula ®(y) is true if and only if the formula V(y) is true.

The proof of the theorem is by induction on the number of quantifiers,
using as base case the elimination of an existential quantifier which is given

by Theorem 2.76.
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Proof: Given a formula O(Y) = (3X) B(X, Y), where B is a quantifier
free formula whose atoms are equations and inequalities involving polyno-
mials in D[X, Y3, ..., Yi], Theorem 2.76 shows that there is a quantifier
free formula Z(Y) whose atoms are equations and inequalities involving
polynomials in D[X, Y37, ..., Y¥;] and that is equivalent to ©(Y’). This
is because Reali(©(Y),R¥) which is the projection of the semi-algebraic
set Reali(B(X,Y),RF*1) defined over D is semi-algebraic and defined over D,
and semi-algebraic sets defined over D are realizations of quantifier free for-
mulas with coefficients in D. Since (VX) ® is equivalent to —((3X) —(®)),
the theorem immediately follows by induction on the number of quantifiers. [J

Corollary 2.78. Let ®(Y) be a formula in the language of ordered fields with
coefficients in D. The set {y € R¥|®(y)} is semi-algebraic.

Corollary 2.79. A subset of R defined by a formula in the language of
ordered fields with coefficients in R is a finite union of points and intervals.

Proof: By Theorem 2.77 a subset of R defined by a formula in the language
of ordered fields with coeflicients in R is semi-algebraic and this is clearly a
finite union of points and intervals. O

Exercise 2.15. Show that the set {(x,y) €R?|3neN y=nx} is not a semi-
algebraic set.

Theorem 2.77 immediately implies the following theorem known as the
Tarski-Seidenberg Principle or the Transfer Principle for real closed fields.

Theorem 2.80. [Tarski-Seidenberg principle] Suppose that R’ is a real
closed field that contains the real closed field R. If ® is a sentence in the
language of ordered fields with coefficients in R, then it is true in R if and
only if it is true in R/.

Proof: By Theorem 2.77, there is a quantifier free formula ¥ R-equivalent
to ®. It follows from the proof of Theorem 2.76 that ¥ is R’-equivalent
to ® as well. Notice, too, that ¥ is a boolean combination of atoms of the
form ¢=0,¢>0, or c<0, where ¢ € R. Clearly, ¥ is true in R if and only
if it is true in R’. O

Since any real closed field contains the real closure of QQ, a consequence
of Theorem 2.80 is

Theorem 2.81. Let R be a real closed field. A sentence in the language of
fields with coefficients in Q is true in R if and only if it is true in any real
closed field.

The following application of quantifier elimination will be useful later in
the book.
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Proposition 2.82. Let F be an ordered field and R its real closure. A semi-
algebraic set S CRF can be defined by a quantifier free formula with coefficients
n F.

Proof: Any element a € R is algebraic over F, and is thus a root of a polyno-
mial P,(X)€F[X]. Suppose that a=a; where a1 <--- <ay are the roots of P,
in R.

Let A,(Y) be the formula

(AV)...(3Y)) V1 < Yo < <Yy A (Po(Y1) =+ = Pa(Yy) =0)
ANVX) P(X)=0=(X=Y1V-- VX =Y))AY =Y)].

Then, for y € R, A,(y) is true if and only if y=a.

Let A be the finite set of elements of R \ F appearing in a quantifier
free formula ® with coefficients in R such that S = {z € R* | ®(x)}. For
each a € A, replacing each occurrence of a in ® by new variables Y, gives
a formula U(X,Y), with Y = (Y,, a € A). Denoting n = #(A), it is clear
that S={z e R¥|Vy e R" ( Naca Au(ya) = U(x,y))}.

The conclusions follows from Theorem 2.77 since the formula

vy< N Au(Ya) = T(X, Y))

acA

is equivalent to a quantifier free formula with coefficients in F. O

2.5.2 Semi-Algebraic Functions

Since the main objects of our interest are the semi-algebraic sets we want to
introduce mappings which preserve semi-algebraicity. These are the semi-
algebraic functions. Let S C R* and T C R be semi-algebraic sets. A func-
tion f:S—T is semi-algebraic if its graph Graph(f) is a semi-algebraic
subset of RF*¢.

Proposition 2.83. Let f: S — T be a semi-algebraic function. If S’ C S is
semi-algebraic, then its image f(S’) is semi-algebraic. If T' C T is semi-
algebraic, then its inverse image f~(T") is semi-algebraic.
Proof: The set f(S’) is the image of (S’ x T)) N Graph( f) under the projection
from S x T to T and is semi-algebraic by Theorem 2.76.

The set f~1(T")) is the image of (S x T’) N Graph(f)) under the projec-
tion, S x T'— S and is semi-algebraic, again by Theorem 2.76 |

Proposition 2.84. If A, B, C are semi-algebraic sets in R*, R, and R™,
resp., and f: A — B, g: B — C are semi-algebraic functions, then the
composite function go f: A— C is semi-algebraic.

Proof: Let F C R¥*¢ be the graph of f and G C R‘*™ the graph of g. The

graph of go f is the projection of (F x R™)N (R* x G) to R**™ and hence is
semi-algebraic by Theorem 2.76. (|
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Proposition 2.85. Let A be a semi-algebraic set of R*. The semi-algebraic
functions from A to R form a ring.

Proof: Follows from Proposition 2.84 by noting that f + g is the com-
position of (f, g): A — R? with +:R? = R, and f x g is the composition
of (f,9): A—R? with x:R?>—R. O

Proposition 2.86. Let S CR be a semi-algebraic set, and ¢: S — R a semi-
algebraic function. There exists a non-zero polynomial P € R[X,Y] such that
for every x in S, P(z, p(x))=0.

Proof: The graph I' of ¢ is the finite union of non-empty semi-algebraic sets
of the form

Fi={(z,y) eRxR|Pi(z,y) =0 A Qi 1(z,y) >0 A .. A Qi,m(x,y)>0}

with P; not identically zero, for otherwise, given (z, y) € I';, the graph of ¢
intersected with the line X = x would contain a non-empty interval of this
line. We can then take P as the product of the P;. O

2.5.3 Extension of Semi-Algebraic Sets and Functions

In the following paragraphs, R denotes a real closed field and R’ a real closed
field containing R. Given a semi-algebraic set S in R*, the extension of S
to R/, denoted Ext(S,R’), is the semi-algebraic subset of R’" defined by the
same quantifier free formula that defines S.

The following proposition is an easy consequence of Theorem 2.80.

Proposition 2.87. Let S CR* be a semi-algebraic set. The set Ext(S,R’) is
well defined (i.e. it only depends on the set S and not on the quantifier free
formula chosen to describe it).

The mapping S— Ext(S,R’) preserves the boolean operations (finite inter-
section, finite union, and complementation).

If S C T, with T C R* semi-algebraic, then Ext(S,R’) C Ext(T,R/).

Of course Ext(S, R’) N RF = S. But Ext(S, R’) may not be the only
semi-algebraic set of R’ with this property: if S = [0, 4] C R,y (the real
algebraic numbers), Ext(S,R)=[0,4] CR; but also ([0,7) U (7,4]) NRaiz =5,
where m = 3.14... is the area enclosed by the unit circle.

Exercise 2.16. Show that if S is a finite semi-algebraic subset of R¥, then
Ext(S,R’) is equal to S.

For any real closed field R, we denote by 7 the projection mapping

m: REHL S RE

that “forgets” the last coordinate.
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Proposition 2.88. If R is a real closed field and S C R**1 is a semi-algebraic
set then w(S) is semi-algebraic. Moreover, if R’ is an arbitrary real closed
extension of R, then w(Ext(S,R’)) =Ext(n(S),R/).

Proof: We use Theorem 2.80. Since the projection of the semi-algebraic set
S is the semi-algebraic set B, B = m(S) is true in R. This is expressed by a
formula which is thus also true in R’. |

Let S C R¥ and T C R? be semi-algebraic sets, and let f:S — T be a semi-
algebraic function whose graph is GC S x T

Proposition 2.89. If R’ is a real closed extension of R, then Ext(G,R’) is
the graph of a semi-algebraic function Ext(f,R’): Ext(S,R’) — Ext(T,R’).

Proof: Let &, ¥ and I' be quantifier free formulas such that

S = {zeRF|®(z)}
T = {yeR"|¥(y)}
G = {(z,y) eR" T (x,y)}.

The fact that G is the graph of a function from S to T can be expressed by
the sentence VX A, with

A= (X)) @FYTX, Y))ANVYT(X,Y)=9())
ANVYVY' (T(X,Y) AT(X,Y) =Y =Y"),
with X =(Xy,..., Xg), Y =(Y1,...,Y%) and Y'=(Y{,....Y/).
Applying Theorem 2.80, VX A is therefore true in R/, which expresses the

fact that Ext(G,R’) is the graph of a function from Ext(S,R’) to Ext(T,R’),
since

Ext(S,R’) = {zeR"|®(z)}
Ext(T,R') = {yeR"|¥(y)}
Ext(G,R') = {(z,y) eR"*"|I(z,y)}.
O

The semi-algebraic function Ext(f, R’) of the previous proposition is called
the extension of f to R’.

Proposition 2.90. Let S’ be a semi-algebraic subset of S. Then
Ext(f(S"),R') =Ext(f,R’)(Ext(S",R")).

Proof: The semi-algebraic set f(S’) is the projection of G N (S’ x RY) onto
RY, so the conclusion follows from Proposition 2.88. |
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Exercise 2.17.

a) Show that the semi-algebraic function f is injective (resp. surjective, resp.
bijective) if and only if Ext(f,R’) is injective (resp. surjective, resp. bijec-
tive).

b) Let 77 be a semi-algebraic subset of T. Show that

Ext(f~(T"),R’) =Ext(f,R’) " (Ext(T",R’)) .

2.6 Puiseux Series

The field of Puiseux series provide an important example of a non-
archimedean real closed field.

The collection of Puiseux series in € with coefficients in R will be a real
closed field containing the field R(e) of rational functions in the variable e
ordered by 04 (see Notation 2.5). In order to include in our field roots of
equations such as X2 — & =0, we introduce rational exponents such as ¢'/2.
This partially motivates the following definition of Puiseux series.

Let K be a field and € a variable. The ring of formal power series
in ¢ with coefficients in K, denoted K][¢]], consists of series of the
forma=37,, aie® with i €N, a; € K.

Its field of quotients, denoted K((¢)), is the field of Laurent series
in ¢ with coefficients in K and consists of series of the form =), , a"
with k€Z, i €7Z, a; € K.

Exercise 2.18. Prove that K((¢)) is a field, and is the quotient field of K[[¢]].

A Puiseux series in ¢ with coefficients in K is a series of the
forma=3%". ., a;e? with k€ Z, i € Z, a; € K, q a positive integer. Puiseux
series are formal Laurent series in the indeterminate £!/7 for some positive
integer q. The field of Puiseux series in ¢ with coefficients in K is
denoted K((e)).

These series are formal in the sense that there is no assertion of con-
vergence; ¢ is simply an indeterminate. We assume that the different
symbols €, r € Q, satisfy

eMgrz — 5T1+T27
(Erl)rg — €T1T2
)
d = 1.

Hence any two Puiseux series, a=3_,., a; gil/a = 25k b £9/% can be

written as formal Laurent series in £'/9, where ¢ is the least common multiple
of ¢ and go. Thus, it is clear how to add and multiply two Puiseux series.
Also, any finite number of Puiseux series can be written as formal Laurent
series in £'/9 with a common q.



2.6 Puiseux Series 75

If a=a1e™ +age™+--€K{(e)), (with a1#0 and r1 <rz<...), then the
order of @, denoted o(a@), is 1 and the initial coefficient of @, denoted In(a)
is a1. By convention, the order of 0 is co. The order is a function from K{{e))
to QU {oo} satisfying
— o(@b) =o(a) +o(b),

— o(@+b) >min (o(a),0(b)), with equality if o(@) +# o(b).

Exercise 2.19. Prove that K((e)) is a field.

When K is an ordered field, we make K{(¢)) an ordered field by defining a
Puiseux series @ to be positive if In(@) is positive. It is clear that the field of
rational functions K(¢) equipped with the order 04 is a subfield of the ordered
field of Puiseux series K({(¢)), using Laurent’s expansions about 0.

In the ordered field K({¢)), ¢ is infinitesimal over K (Definition page 32),
since it is positive and smaller than any positive r € K, since r —e > 0. Hence,
the field K((¢)) is non-archimedean. This is the reason why we have chosen
to name the indeterminate ¢ rather than some more neutral X.

The remainder of this section is primarily devoted to a proof of the fol-
lowing theorem.

Theorem 2.91. Let R be a real closed field. Then, the field R{{e)) is real
closed.

As a corollary

Theorem 2.92. Let C be an algebraically closed field of characteristic 0. The
field C({e)) is algebraically closed.

Proof: Apply Theorem 2.31, Theorem 2.11 and Theorem 2.91, noticing that

Rli]((e)) = R{{e))[i]. 0

The first step in the proof of Theorem 2.91 is to show is that positive
elements of R((¢)) are squares in R{(e)).

Lemma 2.93. A positive element of R{(e)) is the square of an element
in R{{e)).
Proof: Suppose that @ =3, a; £/ € R((e)) with aj, > 0. Defining b =
Yisky (@ifak) =R/ e have @= aye® 9(1+b) and o(b) > 0.

The square root of 1+ b is obtained by taking the Taylor series expansion
of (1+56)/2 which is

. 1~ 11/1 1 o

In order to check that & =1+ b, just substitute. Since aj >0 and R is real
closed, v/ay, € R. Hence, \/ar €"/?9¢ is the square root of @ O
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In order to complete the proof of Theorem 2.91, it remains to prove that
an odd degree polynomial in R{{¢))[X] has a root in R{(e)). Given

PX)=am+@m X+ +a, XPeR{(e))[X]

with p odd, we will construct an Z€ R((e)) such that P(Z) =0. We may assume
that @y # 0, since otherwise 0 is a root of P. Furthermore, we may assume
without loss of generality that
of@)="*
m

with the same m for every 0 <7 < p. Our strategy is to consider an unknown

T=mz18 +uoeS T2 g et Foip (2.7)
with & > 0, ..., §& > 0 and determine, one after the other, the unknown
coefficients z; and the unknown exponents &; so that Z € R((¢)) and satis-
fies P(z)=0.

Natural candidates for the choice of & and z; will follow from the geom-
etry of the exponents of P, that we study now. The polynomial P(X) can
be thought of as a formal sum of expressions X" (i € Z, r € Q) with
coefficients in R. The points (i, r) for which X" occurs in P(X) with
non-zero coefficient constitute the Newton diagram of P. Notice that
the points of the Newton diagram are arranged in columns and that the
points M; = (i,0(a;)), i=0,..., p, for which a; # 0 are the lowest points in
each column.

The Newton polygon of P is the sequence of points

My=M,,, ..., M;,= M,
satisfying:

— All points of the Newton diagram of P lie on or above each of the lines
joining M;, _, to M;, for j=1,...,¢.

— The ordered triple of points M;,_,, M;,, M;, , is oriented counter-clock-
wise, for j=1,...,£ — 1. This is saying that the edges joining adjacent points
in the sequence My= M,,, ..., M;,= M, constitute a convex chain.

. O(aij) _O(aij71)

In such a case the slope of [M;, , M; ] is
projection is the interval [i;_1,%;].
Notice that the Newton polygon of P is the lower convex hull of the
Newton diagram of P.
To the segment £ = [M;; _,, M;;] with horizontal projection [i;_1, i ], we
associate its characteristic polynomial

o , and its horizontal
ij— i1

Q(P,E,X)=> " anX"eR[X],
where the sum is over all A for which

My, = (h,o(@,)) = (h, %) € E and a, = In(ay,).
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Note that if —¢ is the slope of E, then o(a@) + h € has a constant value 3 for
all M;, on E.

Ezample 2.94. Let
P(X)=e—-2e2X? - X3+ X4+ X5,

The Newton diagram of P is

Fig. 2.3. Newton diagram

The Newton polygon of P consists of two segments E = [My, Mj]
and F =[Mjs, M5]. The segment F has an horizontal projection of length
3 and the segment F’ has an horizontal projection of length 2

~— 1

Fig. 2.4. Newton polygon

We have

Q(P7EaX) = 1_X3
Q(P,F,X) = X3(X?2-1).
The two slopes are —1/3 and 1/2 and the corresponding values of £ are 1/3

and —1/2. The common value 5 of o(ay) + h€ on the two segments are 1
and —3/2. O

If z is a non-zero root of multiplicity r of the characteristic polynomial of
a segment F of the Newton polygon with slope — £, we construct a root of P
which is a Puiseux series starting with ze¢. In other words we find

f:x55+x255+52+~-~+xi£5+52+“'+5i+-~- (2.8)

with £ >0,...,§; >0 such that P(z)=0.
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The next lemma is a key step in this direction. The result is the following:
if we replace in P X by £%(z + X) and divide the result by e#, where 3 is
the common value of o(a@,) + h€ on E, we obtain a new Newton polygon with
a part having only negative slopes, whose horizontal projection is [0, r]. A
segment of this part of the Newton polygon will be used to find the second
term of the series.

Lemma 2.95. Let

& be the opposite of the slope of a segment E of the Newton polygon of P,
B be the common value of o(ay) + h& for all gn, on E,

— 1z €R be a non-zero root of the characteristic polynomial Q(P, E, X) of
multiplicity r.

a) The polynomial
R(P,E,z,Y)=cPP(Es(x+Y))=by+ b Y +---b,YP

satisfies
( 71) 2 O 07 7p7
o(b ;) >0, =0,...,r—1,
o(b ) =0.

b) For every T€ R{{(e)) such that T=¢% (z + 7) with o(7) >0, o(P(T)) > f3.
We illustrate the construction in our example.

Ezample 2.96. Continuing Example 2.94, we choose the segment FE,
with € =1/3, chose the root =1 of X?— 1, with multiplicity 1, and replace
X by '/3(1 4 X) and get
Pi(X) = e ' PP (14 X))
/3 X5 4 <E4/3+585/3>X4

+ (—1+4£4/3+1055/3)X3
+ (-3+8e%24+62/3) X?
+ (85/3—3+484/3)X—85/3+84/3.

The Newton polygon of p; is

. /]

Fig. 2.5. Newton polygon of p;
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We chose the negative slope with corresponding characteristic polyno-
mial —3X + 1 and make the change of variable X =¢%/3(1/34Y).

We have obtained this way the two first terms e'/® 4+ (1/3) e!/3+4/3 ...
of a Puiseux series T satisfying P(T)=0. O

The proof of Lemma 2.95 uses the next lemma which describes a property
of the characteristic polynomials associated to the segments of the Newton

polygon.

Lemma 2.97. The slope —& of E has the form —c/(m q) with ¢ > 0
and ged (¢, q) = 1. Moreover, Q(P, E, X) = X7 $(X9), where ¢ € R[X],
¢(0)#0, and deg ¢ =(k—j)/q.

Proof: The slope of E=[M;, My] is

o(@ar)—ola;) _mr—m; ¢
k—j m(k—j)  mq

where ¢ >0 and ged (¢, ) = 1. If (h,0(a@,)) = (h, *) is on E then

_c _olaj)—ol@n) _ mj—mn
mgq h—j m (h—j)

Hence, ¢ divides h — j, and there exists a non-negative s such that h=7j+sq.
The claimed form of Q(P, E,X) follows. O

Proof of Lemma 2.95: For a) since z is a root of ¢(X9) of multiplicity r,
we have

B(X7) = (X —2) $(X), (@) 40.

Thus,
R(P,E,z,Y) = e PP(e8(z+Y))
= e Plap+a1e(x+Y) ++aer(z+Y)P)
= AY)+B(Y),
where
AY) = 78 Z ap el ThE (4 y)h
h,qn€E
B(Y) = 7 Z (@h—ahao(ah))ahf(x—i—}/)h—k Z ae’ (z+Y)" ).
h,qn€E Lt E

Since o(an) +h &= 0,
AY) = Q(P,E,z+Y)
(@+Y)7¢((z+Y))
Yz +Y)Ip(x+Y)
= Y+ 1 YT 44, VP,
with ¢, =271 (z) #0 and ¢; € R.
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Since o((a@y, — an (")) e"€) > B and o(ay %) > B,
R(P,E,z,Y)=B(Y)+c¢,Y "+ o1 YT 44, Y7,

where every coefficient of B(Y) € R({¢))[Y] has positive order. The conclusion
follows.

For b), since o(g) >0, o(R(P, E, z, §)) > 0 is an easy consequence of a).
The conclusion follows noting that P(x)=¢°R(P, E,x,y). O

It is now possible to proceed with the proof of Theorem 2.91.

Proof of Theorem 2.91: Consider P with odd degree. Hence, we can choose
a segment F7 of the Newton polygon of P which has a horizontal projection of
odd length. Let the slope of E7 be —&;. It follows from Lemma 2.97 that the
corresponding characteristic polynomial Q(P, E1, X) has a non-zero root x; in
R of odd multiplicity 71, since R is real closed. Define Py (X )= R(P, F1,x1,X)
using this segment and the root z;.

Note that (r1, 0) is a vertex of the Newton polygon of R(P, Ei, x1,
X), and that all the slopes of segments [M;, My] of the Newton polygon of
R(P,Ey,x1,X) for k <r; are negative: this is an immediate consequence of
Lemma 2.95.

Choose recursively a segment F;,; of the Newton polygon of P; with
negative slope —¢&; 11, and horizontal projection of odd length, so that the cor-
responding characteristic polynomial Q(P;, E;+1, X) has a non-zero root x;11
in R of odd multiplicity r;11, and take P,11(X)=R(P;, Fi+1,2i+1,X). The
only barrier to continuing this process is if we cannot choose a segment with
negative slope over the interval [0, r;] and this is the case only if 0 is a root of
P,(X). But in this exceptional case 1 e84 g efrt T g clearly a root
of P.

Suppose we have constructed x;, & for i € N and let

T=x180 4 poebrtéa ..

Then from the definition of the P;(X), it follows by induction
that o(P(x)) > 1+ -+ G, for all j. To complete the proof, we need to know
that T € R((e)) and that the sums $; + --- + (; are unbounded. Both
these will follow if we know that the ¢ in Lemma 2.97 is eventually 1. Note
that the multiplicities of the chosen roots z; are non-increasing and hence
are eventually constant, at which point they have the value r. This means
that from this point on, the Newton polygon has a single segment with neg-
ative slope, and horizontal projection of length r. Therefore all subsequent
roots chosen also have multiplicity r. It follows (since @;(X) must also have
degree r) that Q;(X)=c(X — ;)" with x; # 0, from which it follows that
the corresponding ¢ is equal to 1, since the coeflicient of degree 1 of ¢;

. -1 . .
is —rcx; , which is not zero. O
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If K is a field, we denote by K(c) the subfield of K((¢)) of algebraic
Puiseux series, which consists of those elements that are algebraic over K(e),
i.e. that satisfy a polynomial equation with coefficients in K(e).

Corollary 2.98. When R is real closed, R(e) is real closed. The field R{e)
is the real closure of R(e) equipped with the order 0.

Proof: Follows immediately from Theorem 2.91 and Exercise 2.10. O

Similarly, if C=R][i], then C(e) =R(e)[7] is an algebraic closure of C(e).

We shall see in Chapter 3 that algebraic Puiseux series with coefficients
in R can be interpreted as of germs semi-algebraic and continuous functions
at the right of the origin.

A valuation ring of a field F is a subring of F such that either x or its
inverse is in the ring for every non-zero x.

Proposition 2.99. The elements of K{e) with non-negative order consti-
tute a valuation ring denoted K(e)y. The elements of R{e)y are exactly the
elements of R{e) bounded over R (i.e. their absolute value is less than a pos-
itive element of R). The elements of C(e)y are exactly the elements of C(e)
bounded over R (i.e. their modulus is less than a positive element of R).

Notation 2.100. [Limit] We denote by lim. the ring homomorphism
from K(e), to K which maps 7, a; £"/% t0 ay. The mapping lim, simply
replaces € by 0 in a bounded Puiseux series. |

2.7 Bibliographical Notes

The theory of real closed fields was developed by Artin and Schreier [7] and
used by Artin [6] in his solution to Hilbert’s 17-th problem. The algebraic
proof of the fundamental theorem of algebra is due to Gauss [65].

Real root counting began with Descartes’s law of sign [53], generalized by
Budan [34] and Fourier [60], and continued with Sturm [152]. The connection
between virtual roots [68] and Budan-Fourier’s theorem comes from [49]. The
notion of Cauchy index appears in [41]. Theorem 2.58 is already proved in
two particular cases (when @Q = P’ and when P is square-free) in [152]. The
partial converse to Descartes’s law of sign presented here appears in [126].

Quantifier elimination for real closed fields is a fundamental result. It
was known to Tarski before 1940 (it is announced without a proof in [154])
and published much later [156]. The version of 1940, ready for publication in
Actualités Scientifiques et Industrielles (Hermann), was finally not published
at that time, “as a result of war activities”, and has appeared in print much
later [155]. The proof presented here follows the original procedure of Tarski.
Theorem 2.61 is explicitely stated in [155, 156], and the sign determination
algorithm is sketched.
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There are many different proofs of quantifier elimination for real closed
fields, in particular by Seidenberg [148], Cohen [43] and Hormander [92].
Puiseux series have been considered for the first time by Newton [123].



3

Semi-Algebraic Sets

In Section 3.1 and Section 3.2, we define the topology of semi-algebraic sets
and study connectedness in a general real closed field. In order to study
the properties of closed and bounded semi-algebraic sets in Section 3.4, we
introduce semi-algebraic germs in Section 3.3. The semi-algebraic germs over
a real closed field constitute a real closed field containing infinitesimal ele-
ments, closely related to the field of Puiseux series seen in Chapter 2, and
play an important role throughout the whole book. We end the chapter with
Section 3.5 on semi-algebraic differentiable functions.

3.1 Topology

Let R be a real closed field. Since R is an ordered field, we can define the
topology on R* in terms of open balls in essentially the same way that we
define the topology on R¥. The euclidean norm, open balls, closed balls,
and spheres are defined as follows:

With 2= (21, ...,71) €ER®, r €R, r >0, we denote

lz|| = Vai+--+at (euclidean norm of z),
By(x,71) {yeR¥| [ly—=|?<7r?}  (open ball),
Bi(z,r) = {yeRF| |ly—=[?<r?}  (closed ball),
S*Ya,r) = {yeR*||ly—=|*=r"}  ((k—1)-sphere).

Note that By(x,7), Bi(x,r), and S¥~1(z,r) are semi-algebraic sets.

We omit both = and r from the notation when z is the origin of RF
and r=1, i.e. for the unit ball and sphere centered at the origin. We also omit
the subscript k£ when it leads to no ambiguity.

We recall the definitions of the basic notions of open, closed, closure,
interior, continuity, etc.
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A set U C R is open if it is the union of open balls, i.e. if every point
of U is contained in an open ball contained in U. A set F C R¥ is closed if
its complement is open. Clearly, the arbitrary union of open sets is open and
the arbitrary intersection of closed sets is closed. The closure of a set .5,
denoted S, is the intersection of all closed sets containing S. The interior
of S, denoted S°, is the union of all open subsets of S and thus is also the
union of all open balls in S. We also have a notion of subsets of S being open
or closed relative to S. A subset of S is called open in S if it is the intersection
of an open set with S. It is closed in S if it is the intersection of a closed set
with S. A function from S to 7" is continuous if the inverse image of any set
open in T is open in S. It is easy to prove that polynomial maps from R* to R¢
are continuous in the Euclidean topology: one proves first that + and x are
continuous, then that the composite of continuous functions is continuous.

These definitions are clearly equivalent to the following formulations:

— Uisopenif and only if Ve €U IreR,r >0 B(z,r)CU.

— S={zeRF|Vr>03ycsS|y—z|?<r?}.

— S°={zeS|Ir>0,Vy |ly—z|*<r*=yeS}

— If SCcRF and T CRY, a function f: S — T is continuous if and only if it is
continuous at every point of S, i.e.

VYeeSVr>036>0,VyeS|ly—z||<do=|f(y)— fx)|<r.

Note that if U, S, T, f are semi-algebraic, these definitions are expressed by
formulas in the language of ordered fields. Indeed, it is possible to replace in
these definitions semi-algebraic sets and semi-algebraic functions by quan-
tifier-free formulas describing them. For example let ¥(X3, ..., Xi) be a
quantifier free formula such that

S= {(Ila (EE) ajk) € Rk | \Ij(ajla ceey iEk)}
Then, if ®(X1,..., Xk, Y1,...,Ys) is a formula, Yz € S ®(z,y) can be replaced by

(Vq)...(Var) (U(z1,y .y i) = (1, oey Thoy Y1, -5 Yi)),s
and 3z € S ®(x, y1, ..., y¢) can be replaced by

(Fz1)...(Fzg) (U(z1,y ., @) ADP(X1, oy Sky s Y1y oeey Y2))-

An immediate consequence of these observations and of Theorem 2.77 (Quan-
tifier elimination) (more precisely Corollary 2.78) is

Proposition 3.1. The closure and the interior of a semi-algebraic set are
semi-algebraic sets.

Remark 3.2. Tt is tempting to think that the closure of a semi-algebraic set
is obtained by relaxing the strict inequalities describing the set, but this
idea is mistaken. Take S = {z € R | 3 — 2% > 0}. The closure of S is
not ’={z€R|2*—2?2>0} butis S={zeR|2*—22>0 A z>1},as 0 is
clearly in T and not in S. O
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We next consider semi-algebraic and continuous functions. The following
proposition is clear, noting that Proposition 2.85 and Proposition 2.84 take
care of the semi-algebraicity:

Proposition 3.3. If A, B, C are semi-algebraic sets and f: A — B
and g: B— C are semi-algebraic continuous functions, then the composite
function go f: A— C is semi-algebraic and continuous.

Let A be a semi-algebraic set of R*. The semi-algebraic continuous func-
tions from A to R form a ring.

Exercise 3.1. Let R’ be a real closed field containing R.

a) Show that the semi-algebraic set S C R¥ is open (resp. closed) if and only
if Ext(S,R’) is open (resp. closed). Show that

Ext(S,R/) = Ext(S,R’).

b) Show that a semi-algebraic function f is continuous if and only if Ext(f,
R’) is continuous.

The intermediate value property is valid for semi-algebraic continuous func-
tions.

Proposition 3.4. Let f be a semi-algebraic and continuous function defined
n [a,b]. If f(a) f(b) <0, then there exists x in (a,b) such that f(x)=0.

Proof: Suppose,without loss of generality, that f(a) > 0, f(b) < O.
Let A={z€[a,b]| f(x)>0}. The set A is semi-algebraic, non-empty, and
open. So, by Corollary 2.79, A is the union of a finite non-zero number of
open subintervals of [a, b]. Let A = [a, b1) U ... U (ag, by). Then f(b)=0
since f is continuous, thus f(b;) <0. O

Proposition 3.5. Let f be a semi-algebraic function defined on the semi-
algebraic set S. Then f is continuous if and only if for every x € S and every
y € Ext(S,R{e))such that lim, (y) =z, lim. (Ext(f,R{e))(v)) = f(z).

Proof: Suppose that f is continuous. Then
Ve e SVa>03b(a)Vye S|z —y|<bla)=]| f(z)— f(y)|<a.

holds in R. Taking y € Ext(S,R{e)) such that lim,. (y) =z, for every positive
a€R, |z —y|<bla), thus | f(z) — Ext(f, R{))(y) | < a, using Tarski-
Seidenberg principle (Theorem 2.80).

In the other direction, suppose that f is not continuous. It means that

JreSIa>0vbIyeS|z—y|<bA|flz)— fly)]|>a
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holds in R. Taking b=e¢, there exists y € Ext(S,R{s)) such that lim,. (y) ==,
while | f(z) — Ext(f,R{e))(y) | > a, using again Tarski-Seidenberg principle
(Theorem 2.80), which implies that f(z) and lim. (Ext(f, R{e))(y))are not

infinitesimally close.
O

A semi-algebraic homeomorphism f from a semi-algebraic set S to a
semi-algebraic set T is a semi-algebraic bijection which is continuous and such
that ! is continuous.

Exercise 3.2. Let R’ be a real closed field containing R. Prove that
if f is a semi-algebraic homeomorphism from a semi-algebraic set S to a
semi-algebraic set T, then Ext(f, R’) is a semi-algebraic homeomorphism
from Ext(S,R’) to Ext(T,R/).

3.2 Semi-algebraically Connected Sets

Recall that a set S C R” is connected if S is not the disjoint union of two non-
empty sets which are both closed in S. Equivalently, S does not contain a
non-empty strict subset which is both open and closed in S.

Unfortunately, this definition is too general to be suitable for R* with R
an arbitrary real closed field, as it allows R to be disconnected.

For example, consider R,j, the field of real algebraic numbers. The
set (—oo,m) NR,e is both open and closed (with 7 =3.14...), and hence R,j,
is not connected. However, the set (—oo, m) N R,y is not a semi-algebraic
set in R,jg, since 7 is not an algebraic number.

Since semi-algebraic sets are the only sets in which we are interested, we
restrict our attention to these sets.

A semi-algebraic set S C R¥ is semi-algebraically connected if S is not
the disjoint union of two non-empty semi-algebraic sets that are both closed
in S. Or, equivalently, S does not contain a non-empty semi-algebraic strict
subset which is both open and closed in S.

A semi-algebraic set S in RF is semi-algebraically path connected
when for every z, y in S, there exists a semi-algebraic path from x to y,
i.e. a continuous semi-algebraic function ¢: [0, 1] — S such that ¢(0) = =
and (1) =y.

We shall see later, in Chapter 5 (Theorem 5.23), that the two notions
of being semi-algebraically connected and semi-algebraically path connected
agree for semi-algebraic sets. We shall see also (Theorem 5.22) that the two
notions of being connected and semi-algebraically connected agree for semi-
algebraic subsets of R.

Exercise 3.3. Prove that if A is semi-algebraically connected, and the semi-
algebraic set B is semi-algebraically homeomorphic to A then B is semi-
algebraically connected.
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Since the semi-algebraic subsets of the real closed field R are the finite
unions of open intervals and points, the following proposition is clear:

Proposition 3.6. A real closed field R (as well as all its intervals) is semi-
algebraically connected.

A subset C of RF is convex if z,y € C implies that the segment
[z, y]={(1 =)z +Ay|A€[0,1]]CR}

is contained in C'.

Proposition 3.7. If C is semi-algebraic and convexr then C is semi-alge-
braically connected.

Proof: Suppose that C is the disjoint union of two non-empty sets F; and F»
which are closed in C. Let z1 € Fy and x2 € F. The segment [x1, 25| is the
disjoint union of FyN[x1,xe] and FoN[x1,z2], which are closed, semi-algebraic,
and non-empty. This contradicts the fact that [z1, x2] is semi-algebraically
connected (Proposition 3.6). O

Since the open cube (0, 1) is convex, the following proposition is clear:
Proposition 3.8. The open cube (0,1)F is semi-algebraically connected.
The following useful property holds for semi-algebraically connected sets.

Proposition 3.9. If S is a semi-algebraically connected semi-algebraic set
and f: S— R is a locally constant semi-algebraic function (i.e. given x € S,
there is an open U C S such that for ally € U, f(y) = f(x)), then f is a

constant.

Proof: Let d € f(S). Since f is locally constant f~1(d) is open. If f
is not constant, f(S) \ {d} is non-empty and f~1(f(S) \ {d}) is open.
Clearly, S= f~Yd)U f~1(f(S)\ {d}). This contradicts the fact that S is
semi-algebraically connected, since f~(d) and f~1(f(S)\{d} are non-empty
open and disjoint semi-algebraic sets. |

3.3 Semi-algebraic Germs

We introduce the field of germs of semi-algebraic continuous functions at the
right of the origin and prove that it provides another description of the real clo-
sure R{e) of R(e) equipped with the order 0. We saw in Chapter 2 that R{e)
is the field of algebraic Puiseux series (Corollary 2.98). The field R(e) is used
in Section 3.4 to prove results in semi-algebraic geometry, and it will also
play an important role in the second part of the book, which is devoted to
algorithms.
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In order to define the field of germs of semi-algebraic continuous functions
at the right of the origin, some preliminary work on semi-algebraic and con-
tinuous functions is necessary.

Proposition 3.10. Let S be a semi-algebraic set and let P be a univariate
polynomial with coefficients semi-algebraic continuous functions defined on S.
Then if y is a simple root of P(x,Y) for a given x € S, there is a semi-
algebraic and continuous function f defined on a neighborhood of x in S such
that f(x) =1y and for every ' € U, f(z') is a simple root of P(z',Y).

Proof: Let m >0 such that for every m’e€ (0,m),
P(z,y—m') P(x,y+m’) <0.

Such an m exists because, y being a simple root of P(z,Y"), P(x,Y) is either
increasing or decreasing on an interval (y — m, y + m). Note that y is the
only root of P(z,Y) in (y — m, y + m). Suppose without loss of generality,
that OP/0Y (z, y) > 0 and let V' be a neighborhood of (z, y) in S x R
where OP/0Y is positive. For every m’, 0 <m'<m, the set

{ueS|P(u,y—m")P(u,y+m') <OA[(u,y —m'), (u,y +m")] CV}

is an open semi-algebraic subset of S containing . This proves that P(u,Y")
has a simple root y(u) on (y —m/', y +m’) and that the function associating
to u € U the value y(u) is continuous. O

The set of germs of semi-algebraic continuous functions at the
right of the origin is the set of semi-algebraic continuous functions with
values in R which are defined on an interval of the form (0,¢), t € Ry, modulo
the equivalence relation

fiz foedt>0 Y 0<t'<t fi(t)) = folt)).

Proposition 3.11. The germs of semi-algebraic continuous functions at the
right of the origin form a real closed field.

Proof: Let ¢ and ¢’ be two germs of semi-algebraic continuous functions at
the right of the origin, and consider semi-algebraic continuous functions f
and f’ representing ¢ and ¢’, defined without loss of generality on a common
interval (0,t¢). The sum (resp. product) of ¢ and ¢’ is defined as the germ at
the right of the origin of the sum (resp. product) of the semi-algebraic and
continuous function f+ f’ (resp. ff’) defined on (0,¢). It is easy to check that
equipped with this addition and multiplication, the germs of semi-algebraic
continuous functions at the right of the origin form a ring. The 0 (resp. 1)
element of this ring is the germ of semi-algebraic continuous function at the
right of the origin with representative the constant function with value 0

(resp. 1).
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Consider a germ ¢ of semi-algebraic continuous function at the
right of the origin and a representative f of ¢ defined on (0, t). The
set A={xe€(0,t)| f(x)=0} is a semi-algebraic set, and thus a finite union
of points and intervals (Corollary 2.79). If A contains an interval (0, t'),
then ¢ = 0. Otherwise, denoting by ¢’ the smallest element of A (defined
as t is A is empty), the restriction of f to (0, t') is everywhere non-zero,
and hence 1/ f is a semi-algebraic and continuous function defined on (0,t")
with associated germ 1/¢. Thus the germs of semi-algebraic continuous func-
tions at the right of the origin form a field.

Consider a germ @ of semi-algebraic continuous function at the right of
the origin and a representative f of ¢ defined on (0,t). The sets

A = {ze(0,0)] f(x) =0},

B = {ze(0,1)] f(z) >0},
C = {ze€(0,t)] f(z)<0}.

are semi-algebraic and partition (0, ¢) into a finite number of points and
intervals. One and only one of these three sets contains an interval of the
form (0,t’). Thus, the sign of a germ ¢ of a semi-algebraic continuous function
at the right of the origin is well defined. It is easy to check that equipped
with this sign function, the germs of semi-algebraic continuous functions at
the right of the origin form an ordered field.

It remains to prove that the germs of semi-algebraic continuous func-
tions at the right of the origin have the intermediate value property, by
Theorem 2.11.

It is sufficient to prove the intermediate value property for P separable,
by Lemma 3.12.

Lemma 3.12. The property (I(P,a,b))
P(a)P(b)<0=3z a<z<b P(x)=0
holds for any P € R[X] if and only if it holds for any P € R[X], with P

separable.

Proof of Lemma 3.12: Tt is clear that if (I(P,a,b)) holds for any P € R[X],
it holds for any P € R[X], with P separable. In the other direction, if P
is separable, there is nothing to prove. So, suppose that P(a) P(b) < 0. If
Py =ged(P(X), P(X))#1, P(X)=Pi(X)Py(X) with

deg(P1(X)) < deg(P(X)),deg(P(X)) < deg(P(X)),

and either Pi(a) P1(b) <0 or Ps(a) P2(b) < 0. This process can be continued
up to the moment where a divisor  of P, with ged(Q(X), Q'(X)) = 1,
Q(a) Q(b) <0 is found. Applying property (I(Q,a,b)) gives a root of P. O
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So, let P(Y)=ay, Y?+ -+ + g, a, # 0, be a separable polynomial, where
the «; are germs of semi-algebraic continuous functions at the right of the
origin, and let o1 and 3 be such that P(p1) P(p2) <O0. Let ayp, ..., ag, f1, f2
be representatives of ..., &, @1, p2 defined on (0, ty). For every t € (0, o),
let P(t,Y)=au(t) YP+ - + ao(t). Shrinking (0, ¢o), if necessary, so that all
the coefficients appearing in the signed remainder sequence of P, P’ have
representatives defined on (0, o), we can suppose that for every ¢ € (0, to),
deg(P(t,Y))=p, P(t, fi(t))P(t, f2(t)) <0, and gcd(P(t,Y), P'(t,Y))=1. It is
clear that, for every t € (0,t0), P(¢,Y) has aroot in ( f1(¢), f2(¢)). Consider, for
every 0 <r <p, the set A, C(0,%p) of those ¢ such that P(¢,Y) has exactly r
distinct roots in R. Since A, can be described by a formula, it is a semi-
algebraic subset of (0,%9). The A, partition (0,%p) into a finite union of points
and intervals, and exactly one of the A, contains an interval of the form (0,¢7).
We are going to prove that for 0 <7 <r, the function g; associating to ¢ € (0,¢1)
the i-th root of P(¢,Y) is semi-algebraic and continuous and that one of them
lies between f; and fo.

Let t € (0, t1) and consider the g;(t). By Proposition 3.10, there exists
an open interval (¢t — m, t + m) and semi-algebraic continuous functions h;
defined on (¢t — m, ¢t + m) such that h;(u) is a simple root of P(u,Y’) for
every u € (t —m,t+m). This root is necessarily ¢;(u) because the number of
roots of P(¢t,Y) on S is fixed. Thus, g; is continuous.

Since for every t € (0,%1), P(t, fi(t)) P(t, f2(t)) <0, the graph of g; does not
intersect the graphs of f1 and fa. So there is at least one g; lying between f;
and fs. O

Proposition 3.13. The germs of semi-algebraic continuous functions at the
right of the origin is the real closure of R(e) equipped with the unique order
making € infinitesimal. The element ¢ is sent to the germ of the identity map
at the right of the origin.

Proof: By Proposition 3.11, the germs of semi-algebraic continuous functions
at the right of the origin form a real closed field. By Proposition 2.86, a germ
of semi-algebraic function at the right of the origin is algebraic over R(e). O

Using Corollary 2.98 and Proposition 3.13,

Theorem 3.14. The real closed field of germs of semi-algebraic continuous
functions at the right of the origin is isomorphic to the field of algebraic
Puiseux series R(e).

Using germs of semi-algebraic continuous functions at the right of the
origin, the extension of a semi-algebraic set from R to R(e) has a particularly
simple meaning. Before explaining this, we need a notation.
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Notation 3.15. [Composition with germs] Consider a germ ¢ of semi-
algebraic continuous functions at the right of the origin and f defined on (0, t)
representing ¢. If ¢ is a continuous semi-algebraic function defined on the
image of f, we denote by go ¢ the germ of semi-algebraic continuous func-
tions at the right of the origin associated to the semi-algebraic continuous
function go f defined on (0,¢). Note that go ¢ is independent of the choice of
the representative f of ¢. Note also that if f represents ¢, foe= ¢, since €
is the germ of the identity map at the right of the origin. |

Proposition 3.16. Let S C R* be a semi-algebraic set and ¢ = (¢, ...,
or) € R(e)¥. Let fi,..., fr be continuous semi-algebraic functions defined on
(0,t) and representing 1, ..., o and let f=(f1,..., fx). Then

peExt(S,R{e)<It>0 V! o<t/ <t f(t')eSs.

Suppose that ¢ € Ext(S,R{e)) and let g be a semi-algebraic function defined
on S. Then Ext(g,R{))(p)=go .
In particular, Ext(f,R(e))(e) = ¢.

Proof: The first part of the proposition is clear since, as we have seen above
in the proof of Proposition 3.11, if P € R[Xq, ..., Xi] and o1, ..., pi are
germs of semi-algebraic continuous functions at the right of the origin with
representatives fi, ..., fi defined on a common (0, t),

— P(p1,...,0k) =0 in R(e) if and only if there is an interval (0,t) C R such
that Vit €(0,t) P(f1(t'),..., fr(t")=0

— P(p1,..., k) >0 in R(e) if and only if there is an interval (0,¢) C R such
that V ¢/ € (0,¢) P(fi(t)), ..., fu(t")) > 0.

The second part is clear as well by definition of the extension. The last part
is a consequence of the second one, taking S=R{e), p=¢, f=Id,g= f and
using the remark at the end of Notation 3.15. (]

An important property of R(e) is that sentences with coeflicients in Rle]
which are true in R{e) are also true on a sufficiently small interval (0,7) C R.
Namely:

Proposition 3.17. If ® is a sentence in the language of ordered fields with
coefficients in Rle] and ®'(t) is the sentence obtained by substituting t € R
for e in ®, then ® is true in Re) if and only if there exists ty in R such
that ®'(t) is true for every t € (0,ty) NR.

Proof: The semi-algebraic set A={t€R|®’(¢)} is a finite union of points and
intervals. If A contains an interval (0,¢o) with ¢ a positive element of R, then
the extension of A to R(e) contains (0, tg) C R{e), so that € € Ext(A,R{e))
and @ =®’(¢) is true in R{e).
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On the other hand, if A contains no interval (0,¢) with ¢ a positive element
of R, there exists g such that (0,%o) N A=0 and thus Ext((0,#9)NA,R{c))=0
and ¢ ¢ Ext(A, R(e)), which means that ® is not true in R{e). O

The subring of germs of semi-algebraic continuous functions at the right
of the origin which are bounded by an element of R coincides with the val-
uation ring R{e); defined in Chapter 2 (Notation 2.100). Indeed, is clear by
Proposition 3.17 that a germ ¢ of semi-algebraic continuous functions at
the right of the origin is bounded by an element of R if and only if ¢ has a
representative f defined on (0,¢) which is bounded. Note that this property
is independent of the representative f chosen for ¢.

The ring homomorphism lim. defined on R(e); in Notation 2.100 has a
useful consequence for semi-algebraic functions.

Proposition 3.18. Let f:(0,a) = R be a continuous bounded semi-algebraic
function. Then f can be continuously extended to a function f on [0,a).

Proof: Let M bound the absolute value of f on (0,a). Thus M bounds the
germ of semi-algebraic continuous function ¢ € R{e) associated to f using
Proposition 3.16 and lim, (¢) is well-defined. Let b=1im, (). Defining

_ booift=0,
f(t)_{f(t) if € (0,a)

we easily see that f is continuous at 0. Indeed for every r > 0 in R,
the extension of the set {¢t € R | |f(¢t) — b] < r} to R{e) contains ¢,
since Ext(f,R(e))(¢) —b= ¢ — b is infinitesimal, and therefore there is a pos-
itive ¢ in R such that it contains the interval (0,J) by Proposition 3.17. O

We can now prove a more geometric result. Note that its statement does
not involve Puiseux series, while the proof we present does.

Theorem 3.19. [Curve selection lemma] Let S C RF be a semi-
algebraic set. Let x € S. Then there exists a continuous semi-algebraic map-
ping v:[0,1) — R* such that 4(0) =2 and v((0,1)) C S.

Proof: Let x € S. For every » > 0 in R, B(z, r) N S is non-empty,
hence B(z,e) NExt(S,R(e)) is non-empty by the Transfer principle (The-
orem 2.80). Let ¢ € B(z, €) N Ext(S, R{e)). By Proposition 3.16 there
exists a representative of ¢ which is a semi-algebraic continuous function f
defined on (0, t) such that for every ¢/, 0 < t' < t, f(t') € B(z, r) N S.
Using Proposition 3.18 and scaling, we get v: [0, 1) — R* such that v(0) =z
and 7((0,1)) C S. It is easy to check that ~ is continuous at 0. O
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3.4 Closed and Bounded Semi-algebraic Sets

In R*, a closed bounded set S is compact, i.e. has the property that when-
ever S is covered by a family of sets open in S, it is also covered by a finite
subfamily of these sets. This is no longer true for a general real closed field R,
as can be seen by the following examples.

a) The interval [0, 1] C R,y is not compact since the family
{[0,M)U (s,1]|0<r<m/d<s<1l,reRug}

(where m=3.14...), is an open cover of [0, 1] which has no finite subcover.
b) The interval [0,1] C R, is not compact since the family

{[0,M)U (s,1]|0<r<m/d<s<1,re€Rug}

(where m=3.14...), is an open cover of [0, 1] which has no finite subcover.
¢) The interval [0,1] C R{e) is not compact since the family

{[0, /YU (r,1]]| f > Oand infinitesimal over R,r e R,0<r <1}

is an open cover with no finite subcover.

However, closed and bounded semi-algebraic sets do enjoy properties of com-
pact subsets, as we see now. We are going to prove the following result.

Theorem 3.20. Let S be a closed, bounded semi-algebraic set and g a semi-
algebraic continuous function defined on S. Then g(S) is closed and bounded.

Though the statement of this theorem is geometric, the proof we present
uses the properties of the real closed extension R(e) of R.
The proof of the theorem uses the following lemma:

Lemma 3.21. Let g be a semi-algebraic continuous function defined on a
closed, bounded semi-algebraic set S C RF. If ¢ € Ext(S,R{e)), then go ¢ is
bounded over R and

g(lim () =lim (g0 ).
Proof: Let f=(f1,..., fr) be a semi-algebraic function defined on (0, t) and
representing o = (1, ..., ¢r) € R{e)¥ and let f its extension to [0, t), using
Proposition 3.18. By definition of lim,,

F(0)=b=lim (¢)

since ¢ — b is infinitesimal. Since S is closed b€ S. Thus g is continuous at b.
Hence, for every r >0 € R, there is an 1 such that if z € .S and ||z —b|| <7
then ||g(z) — g(b)|| <r. Using the Transfer Principle (Theorem 2.80) together
with the fact that ¢ € Ext(S, R{(e)) and ¢ — b is infinitesimal over R we see
that ||go ¢ — g(b)|| is smaller than any r > 0. Thus go ¢ is bounded over R
and infinitesimally close to g(b), and hence g(lim. (¢)) =lim. (go ¢). O
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Proof of Theorem 3.20: We first prove that ¢(S) is closed. Suppose that =
is in the closure of ¢(S). Then B(z,r) N g(S) is not empty, for any r € R.
Hence, by the Transfer principle (Theorem 2.80), B(x, ¢) N Ext(g(S), R{e))
is not empty. Thus, there is a ¢ € Ext(g(S),R(e)) for which lim, (¢)=2z. By
Proposition 2.90, there is a ¢’ € Ext(S,R(e)) such that go ¢’= ¢. Since S is
closed and bounded and ¢’ has a representative f’ defined on (0,t) which can
be extended continuously to f’ at 0, lim. (¢’) = f(0) € S, and we conclude
that g(lim. (¢)) =lim, (¢) = 2. Hence z € g(S).

We now prove that g(.5) is bounded. The set

A={teR|JzcS |g(z)|=t}

is semi-algebraic and so it is a finite union of points and intervals. For
every ¢ € Ext(S, R{e)), g o ¢ is bounded over R by Lemma 3.21.
Thus Ext(A,R{e)) does not contain 1/e. This implies that A contains no
interval of the form (M, +00), and thus A is bounded. O

3.5 Implicit Function Theorem

The usual notions of differentiability over R can be developed over an arbitrary
real closed field R. We do this now.

Let f be a semi-algebraic function from a semi-algebraic open subset U
of R¥ to RP, and let o€ U. We write lim,_,, f(x) = yo for

Vr>030 Ve ||l — x| <d=| f(x) —yol <7

and f(z) =o(|lz — o) for
lim M =0.
w—zo || — 20|
If M is a semi-algebraic subset of U, we write limge p,z—a, f (%) = yo for

Vr>0306Vz €M ||z — a0 <d=|f(x) — yol <.

The function f: (a, b)) — R is differentiable at zy € (a, b) with deriva-
tive f/(xo) if
@)= fwo) _ 4

lim —~f = = .

A )
We consider only semi-algebraic functions. Theorem 3.20 implies that a semi-
algebraic function continuous on a closed and bounded interval is bounded
and attains its bounds.

Exercise 3.4. Prove that Rolle’s Theorem and the Mean Value Theorem
hold for semi-algebraic differentiable functions.

Proposition 3.22. Let f: (a,b) — R be a semi-algebraic function differen-
tiable on the interval (a,b). Then its derivative f’ is a semi-algebraic function.
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Proof: Describe the graph of f’ by a formula in the language of ordered fields
with parameters in R, and use Corollary 2.78. O

Exercise 3.5. Provide the details of the proof of Proposition 3.22.

Partial derivatives of multivariate semi-algebraic functions are defined in
the usual way and have the usual properties. In particular let U C R* be
a semi-algebraic open set and f: U — RP, and suppose that the partial
derivatives of the coordinate functions of f with respect to Xi, ..., X} exist
on U and are continuous. These partial derivatives are clearly semi-algebraic
functions.

For every xg € U, let df(xo) denote the derivative of f at xg, i.e. the
linear mapping from R¥ to R? sending (hq, ..., hi) to

( Z %(xO)hﬁ'"v Z g%p].(z())hj)'

j=1,...k j=1,...k

The matrix of d f () is the Jacobian matrix of f at z and its determinant
is the Jacobian of f at xg. Following the usual arguments from a calculus
course, It is clear that

f(@) = f(z0) — df(x0)(z — 20) = o(||2 — w0]]).

As in the univariate case, one can iterate the above definition to define higher
derivatives.

Let U C RF be a semi-algebraic open set and B C RP a semi-algebraic
set. The set of semi-algebraic functions from U to B for which all partial
derivatives up to order ¢ exist and are continuous is denoted S*(U, B), and
the class S®(U, B) is the intersection of SY(U, B) for all finite £. The
ring SY(U, R) is abbreviated S*(U), and the ring S®(U, R) is also called
the ring of Nash functions.

We present a semi-algebraic version of the implicit function theorem whose
proof is essentially the same as the classical proofs.

Given a linear mapping F: R* — RP, we define the norm of F
by ||[F||=sup ({||F(x)| | l|x]|=1}). This is a well-defined element of R by
Theorem 3.20, since z +— ||F(z)|| is a continuous semi-algebraic function
and {z| ||z||=1} is a closed and bounded semi-algebraic set.

Proposition 3.23. Let z and y be two points of R, U an open semi-algebraic
set containing the segment [x,y], and f € SY(U,R"). Then

1f (@) = F(yll <M [lz =y,
where M =sup ({||df(2)|||z € [z, y]}) (M is well defined, by Theorem 3.20).

Proof: Define g(t) = f((1 —t)x +ty) for t €[0,1]. Then ||g'(t)|| < M|z — y]|
for t € [0, 1]. For any positive ¢ € R, we define

Ac={t€0,1]][lg(t) —gO)| < M|z —y||t +ct}
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which is a closed semi-algebraic subset of [0, 1] containing 0. Let ¢ be the
largest element in A.. Suppose to# 1. We have

llg(to) = g(O)|| < M|z — y|lto+ cto -
Since ||¢'(to)|| < M ||z — y||, we can find >0 in R such that if tc <t <to+r,
19(t) = g(to)| < M|z — y|[(t —to) + c(t — to) -
So, for tg <t <tp+r, by summing the two displayed inequalities, we have
lg9(t) = g(0)[| < M|z — yllt + ct,

which contradicts the maximality of tg. Thus 1 € A, for every ¢, which gives
the result. ]

Proposition 3.24. [Inverse Function Theorem]| Let U’ be a semi-alge-
braic open neighborhood of the origin 0 of RF, f € SYU’, RF), £ > 1, such
that f(0) =0 and that df(0): R¥ — R* is invertible. Then there exist semi-
algebraic open neighborhoods U,V of 0 in R¥, U C U’, such that f|y is a
homeomorphism onto V and (f|y)~t€SYV,U).

Proof: We can suppose that df(0) is the identity Id of R¥ (by composing
with df(0)~!). Take g = f — Id. Then dg(0) =0, and there is 71 € R such

that ||dg(x)]| Sé if x € By(0,71). By Proposition 3.23, if x,y € Bx(0,71), then:

1)~ 1)~ (@ = )l < 3z~ ]

and thus

Sle—yl < 5@~ f@l<3le -yl

using the triangle inequalities. This implies that f is injective on B(0,71).
We can find ro < r; with df(z) invertible for = € Bg(0, r2).Now
we prove that f(Bg(0, r2)) D Bg(0, ro/4). For y° with ||y < re/4,
define h(z)=| f(z) — y°||®>. Then h reaches its minimum on By(0, r2) and
does mnot reach it on the boundary S*=1(0, 73) since if ||z|| = r2, one
has | f(z)|| > r2/2 and thus h(x) > (r2/4)? > h(0). Therefore, this minimum
is reached at a point z° € By(0,73). One then has, for i=1,...,n

k
Ban-o. 3= ien-pifion -0

Since d f(zV) is invertible, we have f(2°)=14°. We then define V = B(0,72/4),
U= f~YV)N Bg(0,72). The function f~!is continuous because

If =) =l <2lz -y
for z,y €V, and we easily get d(f~1)(z)=(df(f'(z))) "% O
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Theorem 3.25. [Implicit Function Theorem] Let (2°, y°) € R**+¢, and
let f1,..., fo be semi-algebraic functions of class S™ on an open neighborhood
of (29 y°) such that f;(z° y°) =0 for j =1, ..., ¢ and the Jacobian matriz
of f=1(f1,..., fo) at (2% y°) with respect to the variables yu, ..., y¢ is invert-
ible. Then there exists a semi-algebraic open neighborhood U (resp. V) of z°
(resp. y°) in R¥ (resp. RY) and a function o € S™(U,V) such that ¢(x°)=1°,
and, for every (z,y) €U x V, we have

filz,y) == fulz,y) =0 y=(z).
Proof: Apply Proposition 3.24 to the function (z, y) — (z, f(z,y))- O

We now have all the tools needed to develop “semi-algebraic differential
geometry”.

The notion of an S°-diffeomorphism between semi-algebraic open sets
of R¥ is clear. The semi-algebraic version of C> submanifolds of R¥ is as
follows.

An S*°-diffeomorphism ¢ from a semi-algebraic open U of RF to a
semi-algebraic open 2 of R¥ is a bijection from U to § that is S> and such
that ¢~ is §.

A semi-algebraic subset M of R¥ is an S submanifold of R* of dimen-
sion / if for every point  of M, there exists a semi-algebraic open U of R*
and an $*°-diffeomorphism ¢ from U to a semi-algebraic open neighborhood {2
of  in R¥ such that ¢(0) =z and

e(UNRx{0})=MnQ

(where RY x {0} = {(ay, ..., a,0,...,0)|(a1,...,ar) ER}).

A semi-algebraic map from M to N, where M (resp. N) is an §°° subman-
ifold of R™ (resp. R™), is an S map if it is locally the restriction of an S
map from R™ to R™.

A point = of a semi-algebraic set S C R* is a smooth point of dimen-
sion / if there is a semi-algebraic open subset U of S containing = which is
an S* submanifold of R¥ of dimension /.

Let 2 be a smooth point of dimension ¢ of an S> submanifold M of R¥ and
let 2 be a semi-algebraic open neighborhood of z in R* and ¢: U —  as in the
definition of a submanifold. Let X7, ..., X} be the coordinates of the domain
of p=(¢1,..., px). We call the set T,(M)=x +dp(0)(Rf x {0}) the tangent
space to M at z. Clearly, the tangent space contains x and is a translate of
an ¢ dimensional linear subspace of R¥, i.e. an ¢(-flat. More concretely, note
that the tangent space T, (M) is the translate by x of the linear space spanned
by the first ¢ columns of the Jacobian matrix.

We next prove the usual geometric properties of tangent spaces.

Proposition 3.26. Let x be a point of an S submanifold M of R having

dimension £ and let m denote orthogonal projection onto the ¢-flat T,(M).

Then, limyenr,y—q —Hlﬁy_jgﬁ‘)“ =0.



98 3 Semi-Algebraic Sets

Proof: Let  be a semi-algebraic open neighborhood of x in R* and ¢: U —
as in the definition of a submanifold. Let X1, ..., X be the coordinates of the
domain of ¢ = (1, ..., k). Then,

To(M)=x+dp(0)(Rf x {0}).

From elementary properties of derivatives (see Equation (3.5)), it is clear that
for u € R* x {0}, ¢(u) — dp(0)(u) = o([[u]).
Now, for y € M N €, let u = ¢~ !(y). Then, since 7 is an orthogonal
projection,
ly =7 (W)l < lle(u) = de(0)(u)[| =o([lul]).

Since, =" is an S°° map, for any bounded neighborhood of z there is a
constant C' such that ||~ (y)|| < C|ly — z|| for all y in the neighborhood.
Since [|lull=[l¢~ (y)| < Clly — |,

lp(w) = de(0)(u)l| = oflly — =),

and the conclusion follows. O

1

We next prove that the tangent vector at a point of a curve lying on an S
submanifold M of R¥ is contained in the tangent space to M at that point.

Proposition 3.27. Let x be a point of the S™ submanifold M in R* having
dimension (£, and let v: [-1, 1] — RF be an 8> curve contained in M
with v(0) = x. Then the tangent vector x + ~'(0) is contained in the tan-
gent space Tp(M).

Proof: Let v(t) = (y1(t), ..., 7(t)). Let Q, ¢ be as in the definition of
submanifold, and consider the composite map ¢ ~!o~:[~1,1] — RF. Applying
the chain rule, d(¢~! o 4)(0) = dp~(x)(7'(0)). Since ([-1,1])C M, it
follows that ¢~ 1(y([-1,1])) CRfx {0}, and d(p~'o~)(t)€Rx {0} for
all t € [—1,1]. Thus, dp~Y(z)(7'(0)) € R* x {0}. Since dp~(z) = (dp(0)) 1,
applying d¢(0) to both sides we have ~/(0) € de(0)(R® x {0}), and
finally  + ~'(0) € T,(M). O

The notion of derivatives defined earlier for multivariate functions can now
be extended to S°° submanifolds.

Let f: M — N be an 8> map, where M (resp. N) is a m’ (resp. n’)
dimensional §*° submanifold of R™ (resp. R").

Let 2 € M and let Q (resp. Q') be a neighborhood of z (resp. f(z)) in R™
(resp. R™) and ¢ (resp. @) a semi-algebraic diffeomorphism from U to 2
(resp. U’ to Q') such that ¢(0) ==z (resp. ¥ (0)= f(x)) and

e(R™ x {0})=MNQ (resp. YR x{0})=NNQ").

Clearly, ¥ ' o fo @:R™—R" is an S map, and its restriction to R™ x {0}
is an S*° map to R™ x {0}.
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The derivative d(1» ' o f o ¢)(0) restricted to R™ x {0} maps R™ x {0}
into R x {0}.
The linear map df(z): Tp(M) — Ty, (N) defined by

df(@)(v) = f(@)+dv(0)(d(¥" o fop)(0)(dp~ ! (z)(v —2))),

is called the derivative of f at x.

Proposition 3.28.

a) A semi-algebraic open subset of an S submanifold V of dimension i is an
S submanifold of dimension 1.

b) If V' is an 8 submanifold of dimension j contained in an S submanifold
V of dimension i, then j <1.

Proof: a) is clear. b) follows from the fact that the tangent space to V' at
x € V' is a subspace of the tangent space to V' at x. O

3.6 Bibliographical Notes

Semi-algebraic sets appear first in a logical context in Tarski’s work [154].
They were studied from a geometrical and topological point of view by
Brakhage [28], in his unpublished thesis. The modern study of semi-alge-
braic sets starts with Lojasiewicz, as a particular case of semi-analytic sets
[110, 111].
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Algebra

We start in Section 4.1 with the discriminant, and the related notion of sub-
discriminant. In Section 4.2, we define the resultant and signed subresultant
coeflicients of two univariate polynomials an indicate how to use them for
real root counting. We describe in Section 4.3 an algebraic real root counting
technique based on the signature of a quadratic form. We then give a con-
structive proof of Hilbert’s Nullstellensatz using resultants in Section 4.4. In
Section 4.5, we algebraically characterize systems of polynomials with a finite
number of solutions and prove that the corresponding quotient rings are finite
dimensional vector spaces. In Section 4.6, we give a multivariate generalization
of the real root counting technique based on the signature of a quadratic form
described in Section 4.3. In Section 4.7, we define projective space and prove
a weak version of Bézout’s theorem.

Throughout Chapter 4, K is a field of characteristic zero and C is an
algebraically closed field containing it. We will also denote by R a real closed
field containing K when K is an ordered field.

4.1 Discriminant and Subdiscriminant

Notation 4.1. [Discriminant] Let P € R[X] be a monic polynomial of
degree p,

P=XP+a, 1XP" 1+ +aq,

and let x4, ..., xp be the roots of P in C (repeated according to their multi-
plicities). The discriminant of P, Disc(P), is defined by
Disc(P) = H (z; —x)% O
p>i>j2>1

Remark 4.2. The discriminant played a key role in the algebraic proof of the
fundamental theorem of algebra (proof of a) = b) in Theorem 2.11, see Remark
2.17). O

Proposition 4.3. Disc(P) =0 if and only if deg(ged(P,P’))>0.
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Proof: It is clear from the definition that Disc(P)=0 if and only if P has a
multiple root in C. O

Remark 4.4. When all the roots of P are in R and distinct, Disc(P)>0. O
The sign of the discriminant counts the number of real roots modulo 4.

Proposition 4.5. Let P € R[X] be monic with R real closed, of degree p, and
with p distinct roots in C; Denoting by t the number of roots of P in R,

Disc(P)>0 < t=pmod 4,
Disc(P) <0 < t=p—2mod4.

Proof: Let yi,..., y: be the roots of P in R and 21,771, ..., 25, Z5 the roots of P
in C\R, with C=R][i].

The conclusion is clear since
S

sign( H

=1

(zi—7)%) = (-1)%,
(yi—y;)* > 0,1<i<j<t,
(z-2)) (z—55) (- 2) (7= 73))° > 0,1<i<j<s,
((yi—z) (yi—7))° > 0,1<i<t,1<j<s.
Thus, Disc(P) >0 if and only if s is even, and Disc(P) <0 if and only if s is
odd. |

The p — k-subdiscriminant of P, 1<k <p, is by definition

sDiscp_ (P Z H — xg

IC{l p}r (4,.0)€el
#(D=k >3

Note that sDisc,_1(P)=p. The discriminant is the 0-th subdiscriminant:
sDisco(P) =Disc(P) = H (zj— x0)?.
p=j>£2>1
Remark 4.6. 1t is clear that when all the roots of P are in R
sDisco(P) =... =sDisc;_1(P) =0, sDisc;(P)+0
if and only if P has p — j distinct roots. We shall see later in Proposition 4.29

that this property is true in general.
|

The subdiscriminants are intimately related to the Newton sums of P.

Definition 4.7. The i-th Newton sum of the polynomial P, denoted NV,
is ZweZer(P o) w(x)zt, where p(x) is the multiplicity of . O

The Newton sums can be obtained from the coefficients of P by the famous
Newton identities.
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Proposition 4.8. Let P=a, XP+a,_1 XP '+ +a1 X +ag. For any i
(p—1)ap—i=apN;i+ -+ +aoNi_p, (4.1)
with the convention a;= N;=0 for i <0.

Proof: We have

x€Zer(P,C)
P 3 ()
P x€Zer(P,C) (X —.’E)
Using
1 o
X2 X
we get =0

P’ = N;
e

[e'e] Ni

Equation (4.1) follows by equating the coefficients of X?~*~! on both sides
of the last equality. ]

Consider the square matrix

No N - Np_p |
Ny o N1 Ng
N1 Ng
Neth_k(P)Z
N1 N
N1 N
| Nk—1 Ni o Nog—o |

with entries the Newton sums of the monic polynomial P of degree p.

We denote as usual by det(M) the determinant of a square matrix M.
Proposition 4.9. For every k, 1 <k <p,
sDiscy, i (P) =det(Newt,_,(P)).

The proof of Proposition 4.9 uses the Cauchy-Binet formula.
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Proposition 4.10. [Cauchy-Binet] Let A be a n x m matriz and B be
am xn matriz, m >n. For every I C{1,...,m} of cardinality n, denote by A
the n X n matriz obtained by extracting from A the columns with indices in I.
Similarly let BT be the n x n matriz obtained by extracting from B the rows
with indices in I.

det(AB)= > det(As)det(B).

1C{L,..,m}
#(D=n

Proof:

We introduce an m-dimensional diagonal matrix Dy with diagonal entries
the variables A1, ..., A, and study det(A Dy B). Since the entries of the matrix
A D) B are homogeneous linear forms in the \;, det(A Dy B) is a homogeneous
polynomial of degree n in the A;.

We are going to prove that the only monomials with non-zero coefficients of
det(A Dy B) are of the form Ay =[], ; Ai for asubset I C{1,...,m}, #(I)=n.

Indeed if we consider I C {1, ..., m}, #(I) < n, the specialization of
det(A Dy B) obtained by sending A; to 0 for j ¢ I is identically null. This
implies that the coefficients of all the monomials where a variable is repeated
are 0.

If we choose I C{1,...,m}, #(I) =n, and specialize the variables \;, i € I

to 1 and the variables \;, i ¢ I to 0, we get the coefficient of A\;= Hiel A; in
det(A Dy B), which is det(A;j) det(BY).
Specializing finally all the \; to 1, we get the required identity. O

The proof of Proposition 4.9 makes also use of the classical Vandermonde
determinant. Let zq, ..., z, be elements of a field K. The Vandermonde
determinant of zy,...,z, is det(V(xy, ..., z,)) with

{1---11]

T e XTp_q x
V(@1 oy X1, @) = "

the Vandermonde matrix.

Lemma 4.11.

det(V(z1,...,xy)) = H (x; — xj).

r>i>j52>1

Proof: The claim is true when x4, ..., z,. are not all distinct since both sides
are 0. The proof when z1,...,z, are all distinct is by induction on r. The claim
is obviously true for r =2. Suppose that the claim is true for » — 1 and consider

{1-.-11w

r_ X
V(xl,...,xr_l,X): x.l * . !
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The polynomial det(V (1, ..., x,—1, X)) has degree at most r — 1, with r — 1
distinct roots 1, ..., x,_1 because, replacing X by z; in V(z1,...,z,_1,X), we
get a matrix with two equal columns. So

det(V (z1,...,z,-1, X)) =c H (X — ;).

r—1>j5>1

The coefficient of det(V (z1, ..., »—1, X)) is the Vandermonde determinant
of 21,...,xr_1, det(V(x1,...,2,_1)) is equal to

I  @—=y,

r—1>i>j>1

by the induction hypothesis. So

det(V(z1,...,2p -1, X)) = H (x; —x5) H (X —xj).

r—1>i>35>1 r—1>j5>1

Now substitute x, for X to get the claim. O

Proof of Proposition 4.9: Define

xl ......... :Ep
Vie= : :
I 25

It is clear that V;,V}! =Newt,_x(P). Now apply Binet-Cauchy formula, noting
that, if T C {1, ..., p}, #(I) = k, and Vjs is the k X k matrix obtained by
extracting from Vj, the columns with indices in

det(Vk[)Z H (Ij—xé)7

(5,0l
[

by Lemma 4.11. (|

4.2 Resultant and Subresultant Coefficients

4.2.1 Resultant

Let P and @ be two non-zero polynomials of degree p and ¢ in D[X], where D
is a ring. When D is a domain, its fraction field is denoted by K. Let

P = apX”+ap_1Xp‘1+---+ao,
Q = quq+bq_1Xq_1+---+bo.
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We define the Sylvester matrix associated to P and @ and the resultant of P
and Q.

Notation 4.12. [Sylvester matrix] The Sylvester matrix of P and Q,
denoted by Syl(P, Q), is the matrix

Qp v e e e ap 0 0
0 :
: 0
0 0 ap - - ao
by - e R | 0
0 ’ :
0
0 - ... 0 by o oo e bo

It has p+ ¢ columns and p+ g rows. Note that its rows are
Xatp,.. P, XP71Q,...,Q

considered as vectors in the basis XPT9~1 .. X, 1.
The resultant of P and @, denoted Res(P, @), is the determinant
of Syl(P, Q). O

Remark 4.13. This matrix comes about quite naturally since it is the transpose
of the matrix of the linear mapping U, V — U P + V @, where (U, V) is
identified with

(uq—lv ooy Uy Up—1, --'aUO)v

and U=uq_1 X9+ g, V=0,_1 XP7 4o 4. O
The following lemma is clear from this remark.

Lemma 4.14. Let D be a domain. Then Res(P, Q) = 0 if and only if
there exist non-zero polynomials U € K[X] and V € K[X], with deg(U) < ¢
and deg(V') < p, such that UP+VQ =0.

We can now prove the well-known proposition.

Proposition 4.15. Let D be a domain. Then Res(P, Q) =0 if and only if P
and @ have a common factor in K[X].

Proof: The proposition is an immediate consequence of the preceding lemma
and of Proposition 1.5, since the least common multiple of P and @ has
degree < p+ q if and only if there exist non-zero polynomials U and V with
deg(U) < ¢ and deg(V') < p such that UP +VQ =0. O
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If D is a domain, with fraction field K, a,# 0 and b, 0, the resultant can
be expressed as a function of the roots of P and @ in an algebraically closed
field C containing K.

Theorem 4.16. Let

P
P = apH (X —x;)
’i?l
Q = bQH (X — ;).
j=1
in other words x1, ..., T, are the roots of P (counted with multiplicities)

and Y1, ..., Yq are the roots of Q (counted with multiplicities).

Res(P, Q) abﬁﬁ(x—

1=1 j=1

<.

Proof: Let

=
e

@(P,Q):a bf; (2 —y;).

i=1 j=1

If P and @ have a root in common, Res(P,Q)=0(P,Q)=0, and the theorem
holds. So we suppose now that P and @ are coprime. The theorem is proved
by induction on the length n of the remainder sequence of P and Q.

When n=2, Q is a constant b, and Res(P,Q)=0(P,Q) =

The induction step is based on the following lemma.

Lemma 4.17. Let R be the remainder of the Euclidean division of P by Q)
and let r be the degree of R. Then,
ReS(P7Q> = (_1)qug_rReS(Q7R)7
®(P7 Q) = (_1)qu5 TG(Q7R)
Proof of Lemma 4.17: Let R = ¢, X" + - + ¢o. Replacing the rows of

coefficients of the polynomials X?~! P, ..., P by the rows of coefficients of the
polynomials X?~ 'R, ..., R in the Sylvester matrix of P and () gives the matrix

0O 0 Cp v e Co 0 0
0
0 --- -0 .. 0 Cp wvr ven Co
M = bq ......... bO 0o --- .- 0
0 - :
. 0
L 0 ... ... 0 bq ......... bO ]
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such that
det(M)=Res(P, Q).
Indeed,
p—q ‘
R=P-> d;(X'Q),
i=0

where C'=3""" "d; X" is the quotient of P in the euclidean division of P by Q,
and adding to a row a multiple of other rows does not change the determinant.

Denoting by N the matrix whose rows are
XP1Q,..X"71Q,...,Q, X 'R, ..., R, we note that

by o e e bg 0 - o 0
0 bq bo

0 bq ......... bo :

0

N = 0 bq ......... bo
Cp e e co 0 0

0 :

. 0

00 0 0 ¢p v o o

is obtained from M by exchanging the order of rows, so that
det(N)=(—1)P?det(M).

It is clear, developing the determinant of N by its p — r first columns, that
det(N) =07""Res(Q, R).

On the other hand, since P=CQ + R, P(y;) = R(y;) and

O(P,Q)=al [[ Qi) =(—1)rev? T] P(wy),
i=1

we have

O(P,Q) = (-1l ] P(y))

For any ring D, the following holds:

Proposition 4.18. If P, Q € D[X], then there exist U,V € D[X] such that
deg (U) < q, deg (V) < p, and Res(P,Q)=UP+VQ.



4.2 Resultant and Subresultant Coefficients 109

Proof: Let Syl(P, @Q)* be the matrix whose first p + ¢ — 1 columns are the
first p+ ¢ — 1 first columns of Syl(P, Q) and such that the elements of the last
column are the polynomials X9~ ' P, ..., P, X?~1(Q,..., Q. Using the linearity
of det(Syl(P, Q)*) as a function of its last column it is clear that

ptqg—1

det(Syl(P, Q)*) =Res(P, Q) + Z d;j X7,

where d; is the determinant of the matrix Syl(P, @); whose first p 4+ ¢ — 1
columns are the first p+ ¢ — 1 columns of Syl(P, @) and such that the last
column is the p + ¢ — j-th column of Syl(P, @). Since Syl(P, Q); has two
identical columns, d;=0 for j=1,...,p+¢—1 and

det(Syl(P, @)*) =Res(P, Q).

Expanding the determinant of Syl(P, @)* by its last column, we obtain the
claimed identity. O

The Sylvester matrix and the resultant also have the following useful inter-
pretation. Let C be an algebraically closed field. Identify a monic polynomial

X94by_1 X7 4o + by € C[X]
of degree ¢ with the point (bg—1,...,b9) € C% Let

m:Cl1x CP — (CItP

(@ P) — QP

be the mapping defined by the multiplication of monic polynomials. The map
m sends

(bq—l7"'7b07ap—17-"70’0)
to the vector whose entries are (mp4q—1,..., M), where
m;= Z bg—iap_ifor j=p+q—1,...,0
q—itp—k=j

(with by =a,=1). The following proposition is thus clear:

Proposition 4.19. The Jacobian matriz of m is the Sylvester matrixz of P
and QQ and the Jacobian of m is the resultant.

Finally, the definition of resultants as determinants implies that:

Proposition 4.20. If P is monic, deg(Q) <deg(P), and f:D—D’ is a ring
homomorphism, then f(Res(P, @)) = Res(f(P), f(Q)) (denoting by f the
induced homomorphism from D[X] to D'[X]).
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4.2.2 Subresultant Coefficients

We now define the Sylvester-Habicht matrices and the signed subresultant
coefficients of P and Q when p=deg(P) > q=deg(Q).

Notation 4.21. [Sylvester-Habicht matrix] Let 0 < j < ¢ The j-th
Sylvester-Habicht matrix of P and @, denoted SyHa;(P, @), is the matrix
whose rows are X4 7-1P P, Q,..., XP~771(Q considered as vectors in the
basis XP+ta—i—1 X 1

Ay e e e e apg 0 0
0 0
: ap - o ao
0 bq . bo
: 0
0 . :
bg by 0 0

It has p+ ¢ — j columns and p+ q — 25 rows.

The j-th signed subresultant coefficient denoted sRes;(P, Q) or sRes;
is the determinant of the square matrix SyHa; ;(P, Q)obtained by taking the
first p+ g — 25 columns of SyHa;(P, Q).

By convention, we extend these definitions for ¢ < j < p by

sResp(P, Q) = sign(ap),
sRes;j(P,Q) = 0, ¢<j<p.
]

Remark 4.22. The matrix SyHa (P, @) comes about quite naturally since it is
the transpose of the matrix of the mapping U,V +—UP +VQ, where (U,V)
is identified with

(uq—j—lv -+ U0, Vo, "'7vp—j—1)a

with U:uq_j_l )(q_j_1 + -+ U, V:Up—j—l X;D—j—l + - +vg.
The peculiar order of rows is adapted to the real root counting results
presented later, in Chapter 8. 0

The following lemma is clear from this remark:

Lemma 4.23. Let D be a domain and 0 < j < min (p, q) if p # ¢
(resp. 0<j<p—1 if p=q). Then sRes;(P, Q) = 0 if and only if there
exist non-zero polynomials U € K[X] and V € K[X], with deg(U)<q—j
and deg(V) < p— j, such that deg(UP+VQ) < j.

The following proposition will be useful for the cylindrical decomposition
in Chapter 5.
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Proposition 4.24. Let D be a domain and 0 < j < min (p, q) if p # ¢
(resp. 0<j<p—1if p=gq). Then deg(ged (P,Q))>j if and only if

sReso(P, Q) =--=sRes;_1(P,Q)=0.

Proof: Suppose that deg(ged (P, @)) > j. Then, the least common multiple
of P and (@,
PQ
lem(P, Q)= ——————
Q=m0

(see Proposition 1.5) has degree < p+ ¢ — j. This is clearly equivalent to the
existence of polynomials U and V', with deg(U) < ¢ — j and deg(V) <p — j,
such that U P = =V @Q = lem(P, Q). Or, equivalently, that there exist
polynomials U and V with deg(U) < ¢ — j and deg(V) < p — j such that
UP +VQ =0. This implies that

sResp=---=sRes;_1=0

using Lemma 4.23.

The reverse implication is proved by induction on j. If j =1, sResg=0
implies, using Lemma 4.23, that there exist U and V with deg (U) < ¢
and deg (V) < p satisfying U P + VQ =0. Hence deg (ged (P, Q))>1. If

sReso(P, Q) =---=sRes;_2(P,Q) =0,

the induction hypothesis implies that deg(ged (P, Q)) > j — 1. If in addition
sRes;j_1 =0 then, by Lemma 4.23, there exist U and V with deg(U) <g¢—j
and deg(V) < p — j such that deg(UP+VQ)<j—1. Since the greatest
common divisor of P and @ divides U P + V@ and has degree > j — 1, we
have U P + VQ =0, which implies that deg(lem(P, Q)) < p+ g — j and hence
deg(ged (P, Q)) = J. O

The following consequence is clear, using Lemma 4.23 and Proposi-
tion 4.24.

Proposition 4.25. Let D be a domain and 0 < j < min (p, q) if p # ¢
(resp. 0<j<p—1ifp=gq). Then deg(ged (P, Q)) =7 if and only if

sReso(P, Q) =---=sRes;_1(P, Q) =0,sRes;(P, Q) +£0.
Notation 4.26. [Reversing rows] We denote by ¢; the signature of

the permutation reversing the order of ¢ consecutive rows in a matrix,
ie g= (—1)i(i_1)/2. For every natural number 7 > 1,

egi=1,64i1=—1,€4i_2=—1,645_3=1. (4.2)
In particular, &;_2; = (—1)’e;. O

Thus, it is clear from the definitions that
sReso(P, Q) =¢pRes(P, Q). (4.3)
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Note that, as a consequence Proposition 4.15 is a special case of Proposi-
tion 4.24.

Let us make the connection between subresultant coefficients and subdis-
criminants.

We first define subdiscriminants of non-monic polynomials. Let

P = apo_i_..._FaO’
sDisc,_,(P) = af,k_2sDiscp_k(P/ap)
2k —2
= a, Z H () —x0)?
Ii{l“"’f} (4,0l t>j

Proposition 4.27.
apsDisc,_j, (P) =sRes,_r(P, P’). (4.4)

Proof: Indeed if

1 0 0 0 e e e 0o
0 1 P
. 0 :
1 0 e e 0
Dk: 0 0 NO N]. ...... Nk?—]. ,
0 No Ny Ni—1 Nop_3
L NO N1 Nk:—l e e N2k:—2
and i ]
Qp oo e e e e e Qp—2k42
0 ayp .
0 ap
D= 0 ap ,
: . ap :
(I T T T T 0 ap

it is a easy to see that SyHa,_ ,_x(P,P’)= Dy Dy, using the relations (4.1).

Since det(Dj})=a2* "',

det(SyHay,_g, p—x(P,P’)) = aik_lsDiscp_k(P/ap)
= apsDisc,_k(P).
det(SyHa,_y, (P, P')) = a2F~'sDisc,_x(P/ay)

= apsDisc,_k(P).

On the other hand det(Dy) =sRes,_,(P, P’). The claim follows by Proposi-
tion 4.18. 0
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Remark 4.28. Note that if P € D[X], then sDisc;(P) €D for every i <p. O

Proposition 4.29. Let D be a domain. Then deg(ged (P,P’)=4,0<j<p
if and only if

sDisco(P) =... =sDisc;_1(P) =0, sDisc;(P) #0.
Proof: Follows immediately from Proposition 4.27 and Proposition 4.25 [J

4.2.3 Subresultant Coefficients and Cauchy Index

We indicate how to compute the Cauchy index by using only the signed
subresultant coefficients. We need a definition:

Notation 4.30. [Generalized Permanences minus Variations]

Let s = sp, ..., so be a finite list of elements in an ordered field K such
that s,#0. Let ¢ < p such that s,_1 = --- = s441 = 0, and s, # 0, and
s'=sq,..., s0. (if there exist no such g, s’ is the empty list). We define induc-
tively

0 if s'=10,
PmV(s)=¢ PmV(s’) +e,_gsign(spsq) if p—qis odd,
PmV(s) if p— ¢ is even.

where £, ;= (—1)P~0(P~=4=1/2 ysing Notation 4.26.
Note that when all elements of s are non-zero, PmV(s) is the difference
between the number of sign permanence and the number of sign variations

in sp,...,50. Note also that when s is the sequence of coefficients of polynomials
P=P,,..., Py with deg(P;) =1, then

PmV(s) = Var(P; —oo, +0)
(see Notation 2.32). O
Let P and @ be two polynomials with:

P = apXP+ap, 1 XP 1+ +ag
Q = bp_1XP—1_|_..._|_b0,

deg(P) =p,deg(Q)=q<p—1.
We denote by sRes(P, Q) the sequence of sRes;(P, @), j=p,...,0.

Theorem 4.31. PmV(sRes(P,Q))=Ind(Q/P).
Before proving Theorem 4.31 let us list some of its consequences.

Theorem 4.32. Let P and Q be polynomials in D[X] and R the remainder
of P'Q and P. Then PmV(sRes(P, R)) =TaQ(Q, P).
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Proof: Apply Theorem 4.31 and Proposition 2.57, since
Ind(P'Q/P)=Ind(R/P)
by Remark 2.55. O
Theorem 4.33. Let P be a polynomial in D[X]. Then
PmV (sDisc,—1(P), ..., sDisco(P))
is the number of roots of P in R.

Proof: Apply Theorem 4.31 and Proposition 4.27. g

The proof of Theorem 4.31 uses the following two lemmas.

Lemma 4.34.
_ [ Ind(—R/Q) +sign(apby) if p-q is odd,
nd(Q/P) = { Ind(—R/Q) if p— q is even.
Proof: The claim is an immediate consequence of Lemma 2.60. 0
Lemma 4.35.

| PmV(sRes(Q, —R)) +sign(a,b,) if p— q is odd,
PmV(sRes(P, @) = { PmV(sRes(Q,—R)) o if p— q is even.

The proof of Lemma 4.35 is based on the following proposition.
Proposition 4.36. Let r be the degree of R=Rem(P, Q).
sResj(P,Q) = e, ¢b) "sRes;(Q,—R) if j<r,

where g; = (—1)0—=1/2,
Moreover, sRes;(P, Q) =sRes;(Q,—R)=0if fr<j<g.

Proof: Replacing the polynomials X9=7='P, .. P by the polynomials
X9=3=1R, ..., R in SyHa;(P, Q) does not modify the determinant based
on the p+ g — 275 first columns. Indeed,

P—q
R=P-) ¢;X'Q,
i=0
where C'=>""""¢; X" is the quotient of P in the euclidean division of P by @,
and adding to a polynomial of a sequence a multiple of another polynomial

of the sequence does not change the determinant based on the p+ g — 27 first
columns.



4.2 Resultant and Subresultant Coefficients 115

Reversing the order of the polynomials multiplies the determinant based
on the p+ ¢ — 2j first columns. by €,44-2;. Replacing R by —R multiplies
the determinant based on the p+ ¢ — 2 j first columns by (—1)?~7, and

(=1 Teprg—2;=¢p—q

(see Notation 4.26). Denoting by D, the determinant obtained by taking
the p+ g — 2 j first columns of the matrix the rows corresponding to the coef-
ficients of X?=771Q,...,Q,—R,...,— X9 771 R,

sRes;(P,Q)=¢ep—qD;.
If j <r, it is clear that
Dj=by""sRes;(Q, —R).
If r<j<gq,itis clear that
D;=sRes;(P, Q)=sRes;(Q,—R)=0.

using the convention in Notation 4.20 and noting that the ¢ — j-th row of the
determinant D; is null. O

Proof of Lemma 4.35: Using Proposition 4.36,
PmV(sRes,(P, Q),...,sReso(P, Q)) =PmV(sRes,(Q,—R),...,sReso(Q, —R)).

If ¢ —r is even

PmV (sResq(P, Q), ...,sReso(P, Q))
= PmV(sRes.(P, @),...,sReso(P, Q))
= PmV(sRes.(Q, —R),...,sReso(Q, —R))
= PmV(sResq(Q, —R),...,sReso(Q, —R)).

If ¢ —r is odd, since

q

SRESq(P,Q) = ep—qbg_ )
sResq(Q, —R) = sign(by),
sRes.(P,Q) = €p_qb§_TSReSr(Q,—R):

denoting d, =sRes,(Q, —R),
PmV(sResy(P, Q),...,sReso(P, Q))
= PmV(sRes,;(P, Q),...,sReso(P, Q)) + £q—rsign(byd,)
= PmV(sResq(Q,—R),...,sReso(Q, —R)).

Thus in all cases

PmV(sRes,(P, Q), ...,sReso(P, Q))
= PmV(sResq(@Q,—R),...,sResp(Q, —R)).
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If p—qiseven

PmV(sRes,(P, @), ...,sReso(P, Q))
= PmV(sResy(P, Q),...,sReso(P, Q))
= PmV(sResq(Q, —R),...,sReso(Q, —R)).

If p— ¢ is odd, since

sResp(P, Q) = sign(ap),

sRes (P, Q) = gp_407 7,
PmV(sRes,(P, @), ...,sReso(P, Q))
PmV (sResy(P, Q),...,sReso(P, Q)) + sign(a, bg)
= PmV(sResy(Q, —R),...,sReso(Q, —R)) + sign(ap by)-

O

Proof of Theorem 4.31: The proof proceeds by induction on the number
n of elements with distinct degrees in the signed subresultant sequence.
If n=2, @ divides P. We have

_ | sign(a,bg) if p-q is odd,
Ind(Q/P) = { 0 if p—q is even.
by Lemma 4.34 and

sign(a,b,) if p-q is odd,

PmV(sReS(P, Q)) = { 0 if p— ¢ is even.

by Lemma 4.35.

Let us suppose that the theorem holds for n — 1 and consider P and @
such that their signed subresultant sequence has n elements with distinct
degrees. The signed subresultant sequence of @@ and —R has n — 1 elements
with distinct degrees. By the induction hypothesis,

PmV(sRes(Q, —R)) =Ind(—R/Q).
So, by Lemma 4.34 and Lemma 4.35,
PmV(sRes(P, Q)) =Ind(Q/P). O

Ezample 4.37. Consider again P=X*+aX?+bX +¢,

sDisc3(P) = 4,

sDisco(P) = —8a,

sDisc1(P) = 4(8ac—9b*>—2a?)
(P)

= 256¢3—128a2c2+144ab?c+16a*c — 270 — 44 b2
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As in Example 1.15, let

s = 8ac—9b*—24d5,
§ = 256c¢3—128a%c? 4+ 144ab’c+16a*c —27b* — 4 a® b2
We indicate in the following tables the number of real roots of P (computed

using Theorem 4.31) in the various cases corresponding to all the possible
signs for a, s, d:

L+ + 4+ ++++ + +
40+ ++++++ + +
—al+ + + + + + + + +
s|+++ - =000
S|+ -0+ -0+ -0
n|4 2302122 2
1|+ + + + + + + + +
40+ + + + + + + + +
D
s |+ — =~ 000
S+ = 0 + -0+ -0
n]|0 -2 —10 2 10 00
L+ + 4+ + 4+ + + + +
40+ +++ + + + + +
~al0 00000000
s|+++ - —=—=000
S|+ -0+ -0+ -0
n|2 01021021

Note that when a =s=0, according to the definition of PmV when there
are two consecutive zeroes,

PmV(sRes(P,P'))=0 if 6 >0
PmV(sRes(P,P"))=2 if §<0
PmV(sRes(P, P"))=1 if 6=0.

€S
€S

Notice that the only sign conditions on a, s, § for which all the roots of P
are real is a < 0, s > 0, § > 0, according to Corollary 9.8. Remark that,
according to Corollary 4.3, when § < 0 there are always two distinct real
roots. This looks incompatible with the tables we just gave. In fact, the sign
conditions with é < 0 giving a number of real roots different from 2, and the
sign conditions with § >0 giving a number of real roots equal to 2 have empty
realizations.

We represent in Figure 4.1 the set of polynomials of degree 4 in the
plane a = —1 and the zero sets of s, 4.
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Fig. 4.1. a=—-1,s=§=0

Finally, in Figure 4.2 we represent the set of polynomials of degree 4
in a,b, c space and the zero sets of s, 0.

L

Fig. 4.2. The set defined by § =0 and the different regions labelled by the
number of real roots

Exercise 4.1. Find all sign conditions on a, s,d with non-empty realizations.
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As a consequence, the formula 3 X X%+ a X2+ bX +c=0 is equivalent
to the quantifier-free formula

(a<0As>0A6>0)V
(a<0AI<O)V
(a>0As<0A6<0)V
(a=0As>0A0>0)V
(a=0As<0A0<0).

collecting all sign conditions giving n > 1. It can be checked easily that the
realization of the sign conditions (a=0As>0Ad>0) and (a <OAs=0AI>0)
are empty. So that (3 X) X*+a X2+bX +c=0 is finally equivalent to

(a<0OAs>0AI>0)V
(a<0AI<O)V
(a>0Ns<0ANI<0)V
(a=0As<0A6<0).

It is interesting to compare this result with Example 2.63: the present descrip-
tion is more compact and involves only sign conditions on the principal
subresultants a, s, d. a

4.3 Quadratic Forms and Root Counting

4.3.1 Quadratic Forms

The transpose of an n x m matrix A= [a; ;] is the m x n matrix A*=[b; ;]
defined by b; ;=a; ;. A square matrix A is symmetric if A'=A.
A quadratic form with coefficients in a field K of characteristic 0 is a
homogeneous polynomial of degree 2 in a finite number of variables of the form
n

O(f1,..., fr)= Z my, ifif;

i=1
with M = [m; ;] a symmetric matrix of size n. If f = (fi, ..., fa),
then ® = f- M - ft, where f!is the transpose of f. The rank of ®, denoted

by Rank(®( f1,..., fn)), is the rank of the matrix M.
A diagonal expression of the quadratic form ®( f1,..., f,,) is an identity

O(f1,.0e1 fn) ch (fryeoes fn)?

with ¢; € K,¢;#0 and the L;(f1, ..., fn) are linearly independent linear forms
with coefficients in K. The elements ¢;, i =1,...,7 are the coefficients of the
diagonal expression. Note that r» =Rank(®(f1,..., frn)).
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Theorem 4.38. [Sylvester’s law of inertia]

e A quadratic form ®(f1, ..., fn) of dimension n has always a diagonal
expression.

o If K is ordered, the difference between the number of positive coeffi-
cients and the number of negative coefficients in a diagonal expression
of ®(f1,..., fn) is a well defined quantity.

Proof: Let ®(fy,..., fn)= Zl i1 m; 5 fi fj-

The first claim is proved by induction on n. The result is obviously true
if n=1. It is also true when M =0.

If some diagonal entry m; ; of M is not zero, we can suppose without loss
of generality (reordering the variables) that m,, , is not 0. Take

n

L(f,..., fn) = Z Mie,n [

The quadratic form

D(f1y.eey fn) — L(f1y.ees fn)?

n,n

does not depend on the variable f,, and we can apply the induction hypothesis
to

P1(f1s s fa1) = P(f1, fn) — L(f1y.ey fn)?.
Since L(f1, ..., fn) is a linear form containing f,, it is certainly linearly
independent from the linear forms in the decomposition of ®1( f1,..., fn—1).

If all diagonal entries are equal to 0, but M # 0, we can suppose without
loss of generality (reordering the variables) that m,,_1,, # 0. Performing the
linear change of variable

gi = f171<i<n 2,

nt fn—
gn-1 = f f 1
_ f fn 1

n = a5

we get
n

O(g1, e gn) = > 70,591

i,j=1

with 7y, n,=2my n—17#0, so we are in the situation where some diagonal entry
is not zero, and we can apply the preceding transformation.
So we have decomposed

fla' afn ch fla- -afn)27
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where r is the rank of M, and the L;(fi, ..., fn)’s are linearly independent
linear forms, since the rank of M and the rank of the diagonal matrix with
entries ¢; are equal.

For the second claim, suppose that we have a second diagonal expression

T

q)(f17~-~7 fn) :Z cz{Ll{(flw-w fn)27

i=1

with ¢;#0, and the L;( f1,..., f») are linearly independent forms, and, without
loss of generality, assume that

c1>0,...,cs>0,c541<0,...,¢, <0,
c1>0,...,¢>0,¢k11<0,...,c. <0,

with 0 <s < s’ <r. If ' > s, choose values of f=(f1,..., fn) such that the
values at f of the r — (s’ — s) forms

Ll(.f)? teey Ls(f)7 L./S'+l(f)7 (KE) L;‘(f)
are zero and the value at f of one of the forms

Lo1(f), s Le(f)

is not zero.

To see that this is always possible observe that the vector subspace V;
defined by

Li(f)=-+=Ls(f) =Lss1(f) = =L(f) =0

has dimension >n —r+ s’ —s>mn —r, while the vector subspace V5 defined by

Li(f)=-=Ls(f) = Lss1(f) = =Lo(f) =0

has dimension n — r, since the linear forms L;(f) are linearly independent,
and thus there is a vector f=(f1,..., fn) € V1 \ V2 which satisfies

Ly(f)=-=Ls(f)=0,

and L;(f)#0 for some i, s <i<r.
For this value of f = (f1, ..., fn): Doy_y Ci Li(f)? is strictly negative
while Y7 ¢ Li(f)? is non-negative. So the hypothesis s’ > s leads to a

contradiction. O

If K is ordered, the signature of ®, Sign(®), is the difference between the
numbers of positive ¢; and negative ¢; in its diagonal form.
The preceding theorem immediately implies

Corollary 4.39. There exists a basis B such that, denoting also by B the
matriz of B in the canonical basis,

BDB'=M

where D is a diagonal matriz with ro positive entries, r_ negative entries,
with Rank(®)=ry+r_, Sign(®)=ry —r_.
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Let R be a real closed field. We are going to prove that a symmetric matrix
with coefficients in R can be diagonalized in a basis of orthogonal vectors.
We denote by u-u’ the inner product of vectors of R™

n
u-u' = E URUL,
k=1

where v = (uq, ..., un), v’ = (uf, ..., u;,). The norm of v is ||u|| = v/u.u.Two
vectors w and u’ are orthogonal if u-u’'=0.
A basis vy, ..., v, of vectors of R™ is orthogonal if

n
Vi V5= E ULk’UkJ‘ZO
k=1

foralli=1,...,n, j=1,...,n,j#1.
A basis vy, ..., v, of vectors of R" is orthonormal if is is orthogonal and
morevoer ||u|=1, for all i=1,...,n.

Two linear forms
L= Z uifi, L'= Z uif;
i=1 i=1
are orthogonal if u-u'=0.

We first describe the Gram-Schmidt orthogonalization process.

Proposition 4.40. [Gram-Schmidt orthogonalization] Let vy, ..., v,
be linearly independent vectors with coefficients in R. There is a family of
linearly independent orthogonal vectors wa, ..., w, with coefficients in R such
that for every i=1,...,n, w; —v; belong to the vector space spanned by v, ...,
Vi—1-

Proof: The construction proceeds by induction, starting with w; = v; and

continuing with
i—1

W; =V — E i, jW;,
j=1

where

Let M be a symmetric matrix of dimension n with entries in R.
If f: (f17 veey fn)v g= (gla ) gn)v let

Bu(f,9) = g-M- f',
um(f) = M- f.
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The quadratic form ® is non-negative if for every f€R", 5 (f)>0.

Proposition 4.41. [Cauchy-Schwarz inequality| If ® is non-negative,
Bu(f,9)?<®um(f) ®nlg).

Proof: Fix f and g and consider the second degree polynomial
P(T)=2u(f+Tg)=2m(f) +2TBu(f, 9)+T°Pul(g).

For every t € R, P(t) is non-negative since ®,, is non-negative. So P can be

— of degree 0 if ®5;(g) = Bam(f, g) =0, in this case the inequality claimed
holds

— of degree 2 with negative discriminant if ®57(g) # 0. Since the discriminant
of Pis

4Bu(f, 9)* — 4P n(f) Par(g),

the inequality claimed holds in this case too. |
Our main objective in the end of the section is to prove the following result.

Theorem 4.42. Let M be a symmetric matriz with entries in R. The eigen-
values of M are in R, and there is an orthonormal basis of eigenvectors for
M with coordinates in R.

As a consequence, since positive elements in R are squares, there exists
an orthogonal basis B such that,denoting also by B the matrix of B in the
canonical basis,

BDB'=M
where D is the diagonal matrix with r; entries 1, r_ entries —1, and n — r

entries 0, r =74 +7r_:

Corollary 4.43. A quadratic form ® with coefficients in R can always be
written as

T4 T4+Tr_
o= "I1}- > I}
i=1 i=ri+1

where the L; are independent orthogonal linear forms with coefficients in R,
and r=r4+r_ is the rank of ®.

Corollary 4.44. Let ry, r—, and ro be the number of >0, <0, and =0
eigenvalues of the symmetric matriz associate to the quadratic form &,
counted with multiplicities. Then

Rank(®) = ri+r_,

Sign(®) = ry—r_.



124 4 Algebra

Proof of Theorem 4.42: The proof is by induction on n. The Theorem is
obviously true for n=1.

Let M = [m; jlij=1..n» N = [my jli,j=1..n—1. By induction hypothesis,
there exists an orthonormal matrix B with entries in R such that

BtNBZ D(yl, veey yn—l)
where D(y1,..., yn—1) is a diagonal matrix with entries

Y1< . S Yn—1.

Note that the column vectors of B, wy,...,w,_1, form a basis of eigenvectors of
the quadratic form associated to N. We can suppose without loss of generality
that Nw; =y; w;. Let v; be the vector of R™ whose first coordinates coincide
with w; and whose last coordinate is 0 and let C be an orthonormal basis
completing vj..., v, —1 by Proposition 4.40. We have

[ y1 0 0 0 by ]
0 - 0 0 :
CtMC=|0 0 -, 0 :
0 0 0 Yn—1 bn_,
bl ...... bn—l a
Let ¢ be a variable. Define b; =b; if b;#0, and b} = ¢ otherwise, and if
Yi-1<Yi=... = Y; <Yj+1,

yr=1yi+ (k—1)e, for 0<k < j—i. We define the symmetric matrix M’ with
entries in R{e) by
b

Note that lim, (y;) = v;, lim. (b]) = b;, hence lim. (M’) = M. Developing the
characteristic polynomial P of C* M’ C, which is equal to the characteristic
polynomial of M, on the last column and the last row we get

:1:[ X —y) (X —ad) ZbZH X—y‘;-).

J#i
Evaluating at ¥, we get

sign(P(y])) = 51gn<b2 H ) =sign(—1)"~

Since the sign of P at — oo is ( — 1)", and the sign of P at + oo is 1, the
polynomial P has n real roots satisfiying

<yl <zTh<..<Th_1<yYh_1<Th.
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Taking eigenvectors of norm 1 defines an orthonormal matrix D’ such that
D*M'D'= D(x1,...,z},).
Applying lim. on both sides we obtain an orthonormal matrix such that
D*MD=D(z1,...,x}),

noting that z; and x, are bounded by an element of R by Proposition 2.4.
Note that 1 <... <z, are the eigenvalues of M. O

We now prove that the subdiscriminants of characteristic polynomials of
symmetric matrices are sums of squares. Let M is a symmetric p X p matrix
with coefficients in a field K and Tr(M) its trace. The k-th subdiscriminant
of the characteristic polynomial of M sDisciy(M) is the determinant of the
matrix Newty (M) whose (i, j)-th entry is Tr(M+7=2) 4, j=1,...,pk. Indeed,
the Newton sum N; of CharPol(M) is Tr(M?), the trace of the matrix M®.
If M is a symmetric p X p matrix with coefficients in a ring D, we also
define sDiscy (M) as the determinant of the matrix Newty (M) whose (i, j)-th
entry is Tr(M*+7=2), 4, j=1,..p—k.

We define a linear basis E; ; of the space Sym(p) of symmetric matrices of
size p as follows. First define F; ¢ as the matrix having all zero entries except 1
at (j,¢). Then take E; ;=F; j, Ej o= 1/V2(Fj ¢+ Fy j),£ > j. Define E as
the ordered set E; , p>¢> j >0, indices being taken in the order

(1,1),....,(p,»),(1,2),..., (1, p), ..., (p— 1, p).

For simplicity, we index elements of F pairs (j,¢), £ > j.

Proposition 4.45. The map associating to (A, B) € Sym(p) x Sym(p) the
value Tr(A B) is a scalar product on Sym(p) with orthogonal basis E.

Proof: Simply check. O

Let Ap be the (p — k) x p(p + 1)/2 matrix with (i, (j, £))-th entry
the (j,¢)-th component of M*~! in the basis E.

Proposition 4.46. Newty(M)= Ay A}.

Proof: Immediate since Tr(M*®*7) is the scalar product of M® by M7 in the
basis E. O

We consider a generic symmetric matrix M = [m, ;] whose entries are
p(p+1)/2 independent variables m; ¢, £ > j. We are going to give an explicit
expression of sDisciy(M) as a sum of products of powers of 2 by squares of
elements of the ring Z[m; .

Let Ay be the (p — k) x p(p + 1)/2 matrix with (i, (j, £))-th entry
the (j,£)-th component of M*~! in the basis E.
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Theorem 4.47. sDiscy(M) is the sum of squares of the (p — k) x (p — k)
minors of Ag.

Proof: Use Proposition 4.46 and Proposition 4.10 (Cauchy-Binet formula). O

Noting that the square of a (p — k) x (p — k) minor of Ay, is a power of
2 multiplied by a square of an element of Z[m; ¢, we obtain an explicit
expression of sDisciy(M) as a sum of products of powers of 2 by squares of
elements of the ring Z[m; .

As a consequence the k-th subdiscriminant of the characteristic polynomial
of a symmetric matrix with coefficients in a ring D is a sum of products of
powers of 2 by squares of elements in D.

Let us take a simple example and consider

M:[ mi1 Mmi2 }

mi2 Ma22

The characteristic polynomial of M is X2 — (my; + ma2) X + mi1mas — mis,
and its discriminant is (m11 + ma2)? — 4(m11mas — mis). On the other hand
the sum of the squares of the 2 by 2 minors of

Ap=

1 1 0
mir maa V2mae
is

(Mo —mi1)? + (V2m12)? + (vV2mi2)2

It is easy to check the statement of Proposition 4.46 in this particular case.

Proposition 4.48. Given a symmetric matriz M, there exists k,n —1>k >0
such that the signs of the subdiscriminants of the characteristic polynomial
of M are given by

/\ sDisc;(M)>0A /\ sDisc; (M) =0.
p—1>i>k 0<i<k

Proof: First note that, by Proposition 4.46, sDisc;(M) > 0. Moreover, it
follows from Proposition 4.46 that sDisc;(M) = 0 if only if the rank of A; is
less than n —i. So, sDiscy—1(M) =0 implies sDisc;(M) =0 for every 0 <i <k
and sDisc,(M) > 0 implies sDisc;(M) > 0 for every n — 1 >4 > k. In other
words, for every symmetric matrix M, there exists k,n — 1>k >0 such that
the signs of the subdiscriminants of M are given by

/\  sDisc;(M)>0A /\ sDisc;(M)=0. O
p—1>i>k 0<i<k

As a corollary, we obtain an algebraic proof of a part of Theorem 4.42.
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Proposition 4.49. Let M be a symmetric matrix with entries in R. The
eigenvalues of M are in R.

Proof: The number of roots in R of the characteristic polynomial CharPol(M)
is p — k, using Proposition 4.48, and Theorem 4.33, while the number of
distinct roots of CharPol(M) in Cis p — k using Proposition 4.25. O

Proposition 4.50. Let P be a polynomial in R[X], P = apX? + --- + ay.
All the roots of P are in R if and only if there exists p > k > 0 such that
sDisc;(P) >0 for all i from p to k and sDisc;(P)=0 for alli from k—1 to 0

Proof: Since it is clear that every polynomial having all its roots in R is the
characteristic polynomial of a diagonal symmetric matrix with entries in R,
Proposition 4.49 implies that the set of polynomials having all their roots in R
is contained in the set described

\V ( N sDisci(P)>0A A sDisci(P):O)

k=p—1,..,0 \ p—1>i>k 0<i<k
The other inclusion follows immediately from Theorem 4.31. ]

Remark 4.51. Note that the sign condition
sDisc,—2(P) > 0A... AsDisco(P) >0

does not imply that P has all its roots in R: the polynomials X* 4 1 has no
real root (its four roots are =+ 1/2/2 4 iy/2/2, and it is immediate to check
that is satisfies sDisco(P) =sDiscy(P) =0, sDisco(A4) > 0.

In fact, the set of polynomials having all their roots in R is the closure of
the set defined by

sDiscy,—2(P) >0A... AsDisco(P) >0,
but does not coincide with the set defined by
sDiscy,_2(A) >0 A... AsDisco(A4) > 0. O

This is a new occurrence of the fact that the closure of a semi-algebraic
set is not necessarily obtained by relaxing sign conditions defining it (see
Remark 3.2).

4.3.2 Hermite’s Quadratic Form

We define Hermite’s quadratic form and indicate how its signature is related
to real root counting.

Let R be areal closed field, D an ordered integral domain contained in R, K
the field of fractions of D, and C=R][i] (with i?=—1).
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We consider P and @, two polynomials in D[X], with P monic of degree p
and @ of degree ¢ < p:

P = Xp+ap_1Xp‘1+---+a1X+ao
Q = bgX94by_1 X9 4o 451X + by.

We define the Hermite quadratic form Her(P, Q) depending of the p
variables f1,..., fp in the following way:

Her(P, Q)(fr,s )= D> w(@)Q@)(fi+ fax+-+ fpar™ 1),

z€Zer(P,C)

where p(z) is the multiplicity of z. Note that

Her(P, Q) :Z Z Z w(w) Q(x) ¥ T2 fi f;.

j=1 x€Zer(P,C)
When Q =1, we get:

Her(P,1) = > > > ple)ab =2 f

1 j=1 x&€Zer(P,C)

ke
p p
= > > Newjafuf

k=1 j=1

where N,, is the n-th Newton sum of P (see Definition 4.7). So the matrix
associated to Her(P, @) is Newto(P).

Since the expression of Her(P, @) is symmetric in the z’s, the quadratic
form Her(P, Q) has coefficients in K by Proposition 2.13. In fact, the coeffi-
cients of Her(P, @) can be expressed in terms of the trace map.

We define A = K[X]/(P). The ring A is a K-vector space of dimen-
sion p with basis 1, X, ..., X?~!. Indeed any f € K[X] has a representative
fi+ f2X +-+ fp, XP~! obtained by taking its remainder in the euclidean
division by P, and if f and g are equal modulo P, their remainder in the
euclidean division by P are equal.

We denote by Tr the usual trace of a linear map from a finite dimensional
vector space A to A, which is the sum of the entries on the diagonal of its
associated matrix in any basis of A.

Notation 4.52. [Multiplication map| For f € A, we denote by Ly: A— A
the linear map of multiplication by f, sending any ¢ € A to the remainder
of fg in the euclidean division by P. 0

Proposition 4.53. The quadratic form Her(P, Q) is the quadratic form
associating to

f=h+f2 X+ f XP~ € A=K[X]/(P)
the expression Tr(Lgs2).
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The proof of Proposition 4.53 relies on the following results.

Proposition 4.54.

Tl)= S p@)f@).

xEZer(P,C)

Proof: The proof proceeds by induction on the number of distinct roots of P.
When P = (X —z)"(®), since z is root of f — f(x),

(f — f(2))*®) =0 modulo P

and Ly _ f(,) is nilpotent, with characteristic polynomial X #®) Thus L F—f(a)
has a unique eigenvalue 0 with multiplicity p(z). So Tr(Lj_fu) = 0
and Tr(Ly) = u(a) £(x).

If P= PP, with P, and P> coprime, by Proposition 1.9 there exists U
and U with Uy P+ U Po=1. Let

61:U2P2:1—U1P1, 62:U1P1:1—U2P2.
It is easy to verify that
el=er,e3=ese1e2=0,e1+ex=1

in A. Tt is also easy to check that the mapping from K[X]/(P1) x K[X]/(Fz)
to K[X]/(P) associating to (Q1, Q2) the polynomial Q = Q1 e1 + Q2 ez is
an isomorphism. Moreover, if f; = f modP; and fo = f modPs, K[X]/(F)
and K[X]/(P,) are stable by L; and Ly, and Ly, are the restrictions of Ly
to K[X]/(P1) and K[X]/(P2). Then Tr(Ly)=Tr(Ly,)+ Tr(Ly,). This proves
the proposition by induction, since the number of roots of P, and P, are
smaller than the number of roots of P. |

Proposition 4.55. Let C =Quo(P’Q, P), then

P'Q o~ Tr(Loxn)
P =0+ Z Xn+l -
n=0

Proof: As already seen in the proof of Proposition 4.8
P 3 (@)
P x€Zer(P,C) (X—l‘)
Dividing @ by X —z and letting C, be the quotient,
Q=Q(z) + (X —z)C4,

PJ/DQZ > u(x)<0m+(XL_wl)>.

x€Zer(P,C)

and thus
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Since

1 — "
Y= > X
n=0
the coefficient of 1/X"*1 in the development of P'Q/P in powers of 1/X is
thus,

(@) Q(a)a".

x€Zer(P,C)

Now apply Proposition 4.54 g

Proof of Proposition 4.53: By Proposition 4.55,
Tr(LQX’“+f) = Z () Q(z)x* .
z€Zer(P,C)

In other words, Tr(Lgxk+;) is the j + 1, k + 1-th entry of the sym-

metric matrix associated to Hermite’s quadratic form Her(P, @) in the basis
1L,X, .., XP L 0

Note that Proposition 4.55 implies that the coefficients of Her(P, @)
belong to D, since L expressed in the canonical basis has entries in D.

Remark 4.56. As a consequence of Proposition 4.53, the quadratic form
Her(P,1) is the quadratic form associating to

f=fi+fo X+ f,XP e A=K[X]/(P)

the expression Tr(L¢2). So the j+ 1,k + 1-th entry of the symmetric matrix
associated to Hermite’s quadratic form Her(P, 1) in the basis 1, X, ..., X?~1
is Tr(L xi++) = N+ ;. Note that Proposition 4.55 is a generalization of Propo-
sition 4.8. g

The main result about Hermite’s quadratic form is the following theorem.
We use again the notation

TaQ(Q, P) = Z sign(Q(z)).
z€R,P(x)=0
Theorem 4.57. [Hermite]

Rank(Her(P, Q)) = #{z€C|P(x)=0AQ(x)#0},
Sign(Her(P, Q)) TaQ(@Q, P).

As an immediate consequence

Theorem 4.58. The rank of Her(P,1) is equal to the number of roots of P
in C. The signature of Her(P,1) is equal to the number of roots of P in R.
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Proof of Theorem 4.57: For x € C, let L(z, —) be the linear form on CP
defined by:
Lz, f)= fi+ fax+ -+ fpaP ™"

Let {x € C|P(z)=0AQ(z) #0}={z1, ...,z }. Thus,

T

Her(P, Q)= Z N(xl) Q(xl)L(xlv f)2

The linear forms L(x;, f) are linearly independent since the roots are distinct
and the Vandermonde determinant

det(V(z1,...,2,)) = H (x; —xj).

r>i>j>1

is non-zero. Thus the rank of Her(P, Q) is r.
Let

{zeR|P(x)=0AQ(z) #£0}={y1,--, Ys }-
{r e C\R|P(z)=0AQ(x)#0} ={z1,71, ..., 21, Z }-
The quadratic form Her(P, Q) is equal to

S

t
Z 1(y:) Q(ya) L(yis f 2+Z (z (z77f) + Q(z7) L(z7, f)2)7
i=1 j=1
with the L(y;, f), L(z;, f), L(z;, f) ¢ =1, ..., s, j = 1, ..., t) linearly
independent.

Writing u(2;)Q(z5) = (a(z;) +1ib(z;))? with a(z;), b(z;) € R and denoting
by s;(2;) and #;(z;) the real and imaginary part of 2},

p%ﬁ

a(z;)si(z5) — b(z5)ti(25)) fi

@
Il
—

Lo(z;) = )  (a(zj)ti(z;) +b(z;)si(z5)) fi

v

i=1

are linear forms with coefficients in R such that
1(2)(Q(25)L(z5, £)? + Q(75) L(z5, £)?) = 2L1(2;)* — 2La(25)*.

Moreover the L(y;, f), Li(2;), La(z;) (i =1, ..., s, j =1, ..., t) are linearly
independent linear forms. So, using Theorem 4.38 (Sylvester’s inertia law), the
signature of Her(P, Q) is the signature of 37 u(y:)Q(y:)L(y:, f)?. Since
the linear forms L(y;, f) are linearly independent, the signature of Her(P, Q)
is TaQ(@Q, P). O
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Remark 4.59. Note that it follows from Theorem 4.58 and Theorem 4.33
that the signature of Her(P, 1),which is the number of roots of P in R can
be computed from the signs of the principal minors sDisc,_;(P),k=1,...,p
of the symmetric matrix Newto(P) defining Her(P, 1). This is a general fact
about Hankel matrices that we shall define and study in Chapter 9.

O

4.4 Polynomial Ideals

4.4.1 Hilbert’s Basis Theorem

An ideal [ of a ring A is a subset I C A containing 0 that is closed under
addition and under multiplication by any element of A. To an ideal I of A is
associated an equivalence relation on A called congruence modulo I. We
write a=b mod [ if and only if a —b€ . It is clear that if ay —b1 €1, a5 — b1
then (a1—|—a2)— (b1—|—b2)61,a1a2—b1b2:a1 (ag—b2)+b2(a1—b1)el.

The quotient ring A/I is the set of equivalence classes equipped with
the natural ring structure obtained by defining the sum or product of two
classes as the class of the sum or product of any members of the classes.
Observation 4.9 shows that this is well defined.

The set of those elements a such that a power of a belongs to the ideal
is an ideal called the radical of I:

VIi={acA|ImeN amecl}.

A prime ideal is an ideal such that xy €I implies z €l or y € I.
To a finite set of polynomials P C K[ X7, ..., Xj] is associated Ideal(P, K),
the ideal generated by P in] K[Xq,..., X] i.e.,

Ideal(P,K) = { > ApP|ApeK[Xy, ...,Xk]}.
PeP

A polynomial in Ideal(P,K) vanishes at every point of Zer(P, CF).

Note that when k=1, the ideal generated by P in K[X}] is principal (i.e.
generated by a single polynomial) and generated by the greatest common
divisor of the polynomials in P (Definition, page 13).

This is no longer true for a general k, but the following finiteness theorem
holds.

Theorem 4.60. [Hilbert’s basis theorem] Any ideal I C K[X7,..., Xi] is
finitely generated, i.e. there exists a finite set P such that I =Ideal(P,K).

The proof uses the partial order of divisibility on the set M}, of monomials
in k variables X1, ..., X, which can be identified with N*, partially ordered by

a= (alu ...,Oék) < ﬁ: (517 teey ﬁk) < S ﬁlu e O S ﬁk-
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If a=(ay,...,ax_1) ENF~1 and n €N, we denote by (a,n) = (ay,...,ax_1,n).

Lemma 4.61. [Dickson’s lemma] Every subset of My, closed under multi-
plication has a finite number of minimal elements with respect to the partial
order of divisibility.

Proof: The proof is by induction on the number k of variables. If k=1, the
result is clear. Suppose that the property holds for £k —1. Let B C M} and

A= {X“eMk_1|3neNX(“’”)eB}.

By induction hypothesis, A has a finite set of minimal elements for the partial
order of divisibility

{xom, . xoY,
Let n be such that for every i=1,..., N, X(®():") ¢ B For every m < n,
Cm:{Xo‘eMk_1| X<avm>eB}

has a finite set of minimal elements with respect to the partial order of divis-
ibility
{me,l), _“’me,e(m))},

using again the induction hypothesis. Consider the finite set

D= {xem i =1, N} ] {XO@Dm i1, em)}.

Let X# € B, with § = (a, 7). If » > n, X? is multiple of X(@@:") for
some i =1, ..., N. On the other hand, if 7 < n, X# is multiple of X(7(m9).")
for some i =1,...,4(r). So every element of B is multiple of an element in D.
It is clear that a finite number of minimal elements for the partial order of
divisibility can be extracted from D. 0

In order to prove Theorem 4.60, the notion of monomial ordering is useful.

Definition 4.62. [Monomial ordering| A total ordering on the set My, of
monomials in k variables is a monomial ordering if the following properties
hold

a) X“>1 for every a € NF, a=(0,...,0)

b) X1>...> Xk,

c) X¥> XP— Xt7> XB+7 for every a, 3, elements of N¥,

d) every decreasing sequence of monomials for the monomial order < is
finite. O
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The lexicographical ordering defined in Notation 2.14 and the graded lex-
icographical ordering defined in Notation 2.15 are examples of monomial
orderings. Another important example of monomial ordering is the reverse
lexicographical ordering defined above.

Definition 4.63. [Reserve lexicographical ordering] The reverse lexi-
cographical ordering , <,cylex, On the set My of monomials in k variables
is the total order X <gyiex X7 defined by

X <grex X7 & (deg(X®) <deg(XP))V (deg(X*) = deg(X?) A <1ex @)

with a = (a1, ..., ax), B = (B1, ..., Br), @ = (au, ..., a1), B = (Br, ..., 1),
Xo= X0 X0 XP = XPLXP% and <y is the lexicographical ordering
defined in Notation 2.14.

In the reverse lexicographical ordering above, X1 >1cviex ... >reviex X&- Lhe
smallest monomial with respect to the reverse lexicographical ordering is 1,
and the reverse lexicographical ordering order is compatible with multiplica-
tion. Note that the set of monomials less than or equal to a monomial X in
the reverse lexicographical ordering is finite. O

Definition 4.64. Given a polynomial P € K[X1, ..., Xj] we write cof(X“, P)
for the coeflicient of the monomial X ¢ in the polynomial P. The monomial X
is a monomial of P if cof(X“, P)+#0, and cof(X*, P)X®* is a term of P.

Given a monomial ordering < on My, we write lmon(P) for the leading
monomial of P with respect to < i.e. the largest monomial of P with respect
to < . The leading coefficient of P is lcof(P)=cof(lmon(P), P), and the
leading term of P is 1t(P)=lcof(P)lmon(P). Let X* be a monomial of P,
and let G be another polynomial. The reduction of (P, X®) by G is defined
by

Red(P, X*,G)
_ P — (cof (X%, P)/lcof(G)) X G if 3 3 NF X*= X"lmon(G),
B P otherwise.
Given a finite set of polynomials, G C K[Xy, ..., X], Q is a reduction

of P modulo G if there is a G € G and a monomial X% of P such that
Q=Red(P, X% G). We say that P is reducible to @ modulo G if there is a
finite sequence of reductions modulo G starting with P and ending at Q.

O

Remark 4.65. Note that if P is reducible to @ modulo G, it follows that
(P — Q) €ldeal(G,K). Note also that if P is reducible to 0 modulo G, then

3G1€G...3Gs€G P=A1G1+ -+ As Gy,
with Imon(4; G;) <lmon(P) for all i=1,...,s. O
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Definition 4.66. A Grébner basis of an ideal I C K[X7, ..., Xj] for the
monomial ordering < on My is a finite set, G C I, such that

— the leading monomial of any element in I is a multiple of the leading
monomial of some element in G,

— the leading monomial of any element of G is not a multiple of the leading
monomial of another element in G.

A Grébner basis for the monomial ordering < on My, is a finite set G C
K[Xy,...,Xk] which is a Grobner basis of the ideal Ideal(G, K). O

Deciding whether an element belongs to an ideal I is easy given a Grobner
basis of I.

Proposition 4.67. If G is a Grobner basis of I for the monomial ordering
<on My, Pel if and only if P is reducible to 0 modulo G.

Proof: It is clear that if P is reducible to 0 modulo G, P € I. Conversely, let
P+0¢€ 1. Then, the leading monomial of P is a multiple of the leading mono-
mial of some G € G, so that defining () =Red(P,lmon(P),G) either Q =0 or
Imon(Q) <lmon(P), @ € I. Since there is non infinite decresing sequence for
<, this process must terminate at zero after a finite number of steps. O

As a consequence

Proposition 4.68. A Grébner basis of I for the monomial ordering < on
My, is a set of generators of I.

Proof: Let P € I. By Proposition 4.67, P is reducible to 0 by G
and Pe I(G,K). O

Proposition 4.69. Every ideal of K[X1,..., Xk] has a Grébner basis for any
monomial ordering < on M.

Proof: Let I C K[Xy, ..., Xi] be an ideal and let lmon(I) be the set of
leading monomials of elements of I. By Lemma 4.61, there is a finite set
of minimal elements in lmon(7) for the partial order of divisibility, denoted
by {X°W . XN} Let G ={G,..., Gy} be elements of I with leading
monomials { XM .. XM} By definition of G, the leading monomial of
any polynomial in I is a multiple of the leading monomial of some polynomial

in G, and no leading monomial of G is divisible by another leading monomial
of G. O

Proof of Theorem 4.60: The claim is an immediate corollary of Proposi-
tion 4.69 since a Grobner basis of an ideal is a finite number of generators, by
Proposition 4.68. O

Corollary 4.70. Let Iy C I C --- C I, C --- be an ascending chain of ideals
of K[X1,...,Xy]. Then IneNVmeN (m>n= I,=1I,).



136 4 Algebra

Proof: It is clear that I =], [; is an ideal and has a finite set of generators

according to Theorem 4.60. This finite set of generators belongs to some Iy
and so Iy =1. O

If I CcK[Xy, ..., Xi] is an ideal and L is a field containing K, we denote
by Zer(I,L*) the set of common zeros of I in L*,

Zer(I,L¥)={zeL*|VPeI P(x)=0}.

When L = K, this defines the algebraic sets contained in K*. Note that
Theorem 4.60 implies that every algebraic set contained in K* is of the form

Zer(P,K*) = {z € KF| /\ P(z)=0},
PeP

where P is a finite set of polynomials, so that the definition of algebraic sets
given here coincides with the definition of algebraic sets given in Chapter 1
(Definition page 11) when K = C and in Chapter 2 (Definition page 57)
when K=R.

4.4.2 Hilbert’s Nullstellensatz
Hilbert’s Nullstellensatz (weak form) is the following result.

Theorem 4.71. [Weak Hilbert’s Nullstellensatz]| Let P = {Py, ..., Ps}
be a finite subset of K[X1, ..., X3] then Zer(P, C¥) = () if and only if there
exist Ay,..., As € K[Xq,..., X such that

AP+ + APs=1.

We develop several tools and technical results before proving it.

The degree of a monomial X* = X*...X{* in k variables is the sum of
the degrees with respect to each variable and the degree of a polynomial P
in k variables, denoted deg(Q), is the maximum degree of its monomials. A
polynomial is homogeneous if all its monomials have the same degree.

Definition 4.72. A non-zero polynomial P € K[X1, ..., X;_1][Xk] is quasi-
monic with respect to Xy, if its leading coefficient with respect to Xy is an
element of K. A set of polynomials P is quasi-monic with respect to X if
each polynomial in P is quasi-monic with respect to Xk. O

If v is a linear automorphism K*¥ — K* and [v; ;] is its matrix in the
canonical basis, we write

k k
U(X): < Z Ul’ij"”’Z Ukﬁij>.
j=1 j=1
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Lemma 4.73. Let P C K[X1, ..., Xi| be a finite subset. Then, there exists
a linear automorphism v: KF — K such that for all P € P, the polyno-
mial P(v(X)) is quasi-monic in X.

Proof: Choose a linear automorphism of the form

v( X, .., Xp) = X1+ a1 Xk, Xot+ao Xp, ooy Xi—1+ar—1Xp, Xi)

with a; € K. Writing P(X)=T1I(X) + -+, where II is the homogeneous part of
highest degree (say d) of P, we have

P(X)) =Tl(a1, . ap1,1) Xf + Q

(where @ has smaller degree in X}); it is enough to choose ay, ..., ap—1 such
that none of the I(ay, ..., ax—1, 1) is zero. This can be done by taking the
product of the II and using the following Lemma 4.74. ]

Lemma 4.74. If a polynomial B(Zu, ..., Zy) in K[Z1,..., Zy| is not identically
zero and has degree d, there are elements (21, ..., zx) in {0, ..., d}* such
that B(z1,...,2) is a non-zero element of K.

Proof: The proof is by induction on k. It is true for a polynomial in one
variable since a non-zero polynomial of degree d has at most d roots in a
field, so it does not vanish on at least one point of {0, ..., d}. Suppose now
that it is true for k — 1 variables, and consider a polynomial B(Zy,..., Zx) in k
variables of degree d that is not identically zero. Thus, if we consider B as a
polynomial in Zj, with coefficients in K[Z1, ..., Z_1], one of its coefficients is
not identically zero in K[Z1, ..., Z;_1]. Hence, by the induction hypothesis,
there exist (21,...,2zx—1) in {0,...,d}* =1 with B(21,..., 2x_1, Z1) not identically
zero. The degree of B(zy,...,2k—1, Z) is at most d, so we have reduced to the
case of one variable, which we have already considered. 0

Let P C K[X3, ..., Xi] and Q C K[X3, ..., X;_1] be two finite sets of
polynomials. The projection 7 from C* to C¥~1 forgetting the last coordinate
is a finite mapping from Zer(P, C*) onto Zer(Q, C*~1) if its restriction
to Zer(P, C*) is surjective on Zer(Q, C*¥~1) and if P contains a polyno-
mial quasi-monic in X, denoted by P. Since P is quasi-monic in Xy, for
every y€ Zer(Q,CF~1), Zer(P(y, X}), C) is finite. Thus

7Y (y) N Zer(P,Ck) C Zer(P(y, X), C)
is finite.

Proposition 4.75. Let P={P,..., Ps} CK[Xy, ..., X}] with P1 quasi-monic
in Xg. There exists a finite set

Projx,(P) CK[Xy,..., Xp—1] NIdeal(P, K)
such that
7(Zer(P, CF)) = Zer(Projx,(P), C*~1)
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(where T is the projection from CF to CF=1 forgetting the last coordinate)
and 7 is a finite mapping from Zer(P,CF) to Zer(Projx,(P), Ck~1).

Proof: If s=1, take Projx,(P)={0}. Since P; is quasi-monic, the conclusion
is clear.
If s>1, then let U be a new indeterminate, and let

R(U, X1, ..., Xg) = Po(X) + U P3(X) 4+ U2 P(X).

The resultant of P, and R with respect to X}, (apply definition in page 106),
belongs to K[U, X1, ..., X;;—1] and is written

Resx, (P, R)= QU '+ + Q,

with Q; € K[Xl, ey Xk—l]- Let PrOij('P) = {Ql, ey Qt}
By Proposition 4.18, there are polynomials M and N in K[U, X7, ..., Xj]
such that

ReSXk(Pl,R)ZMpl—FNR.

Identifying the coefficients of the powers of U in this equality, one sees
that there are for ¢ = 1, ..., t identities Q;=M; P+ N; 2 Po+--+ + N; 5 P

with M; and N;o...N; s in K[Xq, ..., Xi] so that @i, ..., @Q; belong
to Ideal(P,K)ﬂK[Xl,...,Xk_l].
Since

Projx,(P) CIdeal(P,K) NK[X},..., Xx_1],
it follows that
7(Zer(P,CF)) C Zer(Projx,(P),Ck~1).

In the other direction, suppose z’ € Zer(Projx,(P), C¥~1). Then for
every u € C, we have Resx,(P1, R)(u, ') = 0. Since P; is quasi-monic
with respect to X,

Res(Pi(z', Xk), R(u,z’, Xi)) =Resx, (P, R)(u,z') =0,

using Proposition 4.20. For every uw € C, by Proposition 4.15 the polyno-
mials P(z’, Xi) and R(u, z’, Xj) have a common factor in K[X}], hence a
common root in C. Since P(z’, Xj) has a finite number of roots in C, one of
them, say xg, is a root of R(u,a’, X}) for infinitely many u € C. Choosing s — 1
such distinct elements uq, ..., us—1, we get that the polynomial R(U,z’, xx)
of degree < s — 2 in U has s — 1 distinct roots, which is possible only
if R(U,x',xy) is identically zero. So one has Pa(x’, ) = --- = Py(z’, x) = 0.
We have proved that for any 2’ € Zer(Projx,(P), Ck¥~1), there exist a finite
non-zero number of xj such that (z’,z)) € Zer(P, C¥), so that

Zer(Projx,(P), C*—1) C w(Zer(P, CF)).

Since P; is monic, Zer(P, CF) is finite on Zer(Projx,(P), CF~1). O
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Let P CK[Xy,..., Xk], T CK[X1, ..., Xi/] be two finite sets of polynomials
and k > k’. The projection II from C* to CF’ forgetting the last (k — k)
coordinates is a finite mapping from Zer(P,CF) to Zer (7, Ck’) if for each ¢,
0<i<k—k' there exists a finite set of polynomials Qy_; C K[X1,..., Xi_]
with P = Qy, 7 = Qy such that for every 7, 0<i <k — k'’ — 1, the projection
from C*~% to C*~?~1 forgetting the last coordinate is a finite mapping from
Zer(Qp i, CF=%) to Zer(Qp_;—1,CF 1),

Proposition 4.76. Let P={P,..., Ps} CK[X;,..., Xk]. Then

— either 1 €Ideal(P,K),

— or there exists a linear automorphism v: K¥ —KF and a natural number k',
0 <k’ <k, such that the canonical projection II from C* to C*' forgetting
the last k — k' coordinates is a finite mapping from v(Zer(P,CF)) to C*’
(the linear automorphism v being extended to CF).

Proof: The proof is by induction on k.

When k=1, consider the greatest common divisor () of P, which generates
the ideal generated by P. If Q=0 take k'=1, and if Q +#0, take k'=0.

If deg(Q) = 0, then @Q is a non-zero constant and 1 € Ideal(P, K).
If deg(Q) > 0, then Zer(P, C) = Zer(Q, CF) is non-empty and finite, so
the projection to {0} is finite and the result holds insthis ca

Suppose now that k£ > 1 and that the theorem holds for k£ — 1.
If Ideal(P,K) = {0}, the theorem obviously holds by taking k"= 0.
If Ideal(P,K)# {0}, it follows from Lemma 4.73 that we can perform a
linear change of variables w and assume that P;(w(X)) is quasi-monic with
respect to Xg.

Let Py ={Pi(w(X)),..., Ps(w(X))}.

Applying the induction hypothesis to Projx, (Puw),

— either 1 €Ideal(Projx,(Pw, K)),

— or there exists a linear automorphism v’: K¥~1 — K*~1 and a natural
number k’,0 <k’ <k —1, such that the canonical projection II’ from C*—!
to C*' is a finite mapping from v’(Zer(Projx,(Pw, CF~1)) to C¥'.

Since Projx, (P) C Ideal(P, K), it is clear that if 1 € Ideal(Projx, (Pw), K)),
then 1 €Ideal(P,, K), which implies 1 € Ideal(P, K).

We now prove that if there exists a linear automorphism v’: K¥~1 — K*k—1
and a natural number k’,0 < k’<k — 1, such that the canonical projection IT’
from C*~1 to C* is a finite mapping from v’(Zer(Projx,(Pw), C*~1)) to C*/,
there exists a linear automorphism v: K¥ — K* such that the canonical projec-
tion IT from C* to C*' is a finite mapping from v(Zer(P,CF)) to C¥'. By Propo-
sition 4.75, w1 (Zer(P,C*)) = Zer(P.,, C*) is finite on Zer(Projx, (Pw), CF 1),
so v = (v/,1d) ow™! is a linear automorphism from K* to K* such that the

canonical projection IT from C* to C*' is a finite mapping from v(Zer(P, C*))
to C*'. O
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We are now ready for the proof of Theorem 4.71 (Weak Hilbert’s Nullstel-
lensatz).

Proof of Theorem 4.71: The existence of Ay, ..., A; € K[Xq, ..., X§] such
that Ay Py + -+ + A4 Ps = 1clearly implies Zer(P, Ck) (Z)

On the other hand, by Proposition 4.76, if Zer(P, C¥) = (), there cannot
exist a linear automorphism v: K¥ — K* and a natural number £/, 0 < k' <k
such that the canonical projection II from CF to C* is a finite mapping
from v(Zer(P,C*)) to C*’, since such a map must be surjective by definition.

So, using Proposition 4.76, 1 € Ideal(P, K) which means that there
exist Ay, ..., A; € K[Xy,..., Xi] such that A; Py + -+ A, Ps=1. O

Hilbert’s Nullstellensatz is derived from the weak form of Hilbert’s Null-
stellensatz (Theorem 4.71) using what is commonly known as Rabinovitch’s
trick.

Theorem 4.77. [Hilbert’s Nullstellensatz] Let P be a finite subset of
K[X1,...,X%]. If a polynomial P with coefficients in K vanishes on Zer(P,CF),
then P" €Ideal(P,K) for some n.

Proof: The set of polynomials PU{TP — 1} in the variables X1, ..., Xy, T has
no common zeros in C¥*! so according to Theorem 4.71 if P ={Py, ..., P},
there exist polynomials

Al(Xla "'7Xk7T)7 "'aAS(Xla "'7Xk7T)7A(X17 7XkaT)

in K[X1,..., X, T] such that 1=Ay Py +---+ A; P+ A(TP — 1). Replacing
everywhere T by 1P and clearing denominators by multiplying by an appro-
priate power of P, we see that a power of P is in the ideal Ideal(P,K). O

Another way of stating Hilbert’s Nullstellensatz which follows immediately
from the above is:

Theorem 4.78. Let P be a finite subset of K[Xy, ..., Xg]. The radical of
Ideal(P, K) coincides with the set of polynomials in K[Xy, ..., Xj| vanishing
on Zer(P,CF) i.e.

VIdeal(P,K) = {P € K[Xy,..., X}] | V& € Zer(P, CF), P(z) =0}.

Corollary 4.79. [Homogeneous Hilbert’s Nullstellensatz]

Let P={P,..., Ps} CK[Xy,..., Xi| be a finite set of homogeneous polynomials
with deg(P;) =d;. If a homogeneous polynomial P € K[ X1, ..., Xi] of degree p
vanishes on the common zeros of P in C¥, then there exists n €N and homo-
geneous polynomials Hy, ..., Hs in K[X1,..., Xg] of degrees c1,...,cs such that

P" = HiPi+--+H P,
np = ci+di=-=cs+ds.
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Proof: According to Hilbert’s Nullstellensatz, there exist n € N and polyno-

mials By, ..., By in K[ X1, ..., X;] such that P"=B; Py + - + B Ps.
Decompose B; as H; + C; with H; homogeneous of degree np — d;, and

notice that no monomial of C; P; has degree np. So P*=H1 P, +---+ Hs Ps. [

Remark 4.80. Let us explain the statement claimed in the introduction of the
chapter that our proof of Hilbert’s Nullstellensatz is constructive.

Indeed, the method used for proving Theorem 4.71 (Weak Hilbert’s
Nullstellensatz) provides an algorithm for deciding, given a finite
set P CK[X1,..., X, whether Zer(P, C¥) is empty and if it is empty, com-
putes an algebraic identity certifying that 1 belongs to the ideal generated
by P.

The algorithms proceeds by eliminating variables one after the other.
Given a finite family P # {0} of polynomials in k variables, we check whether
it contains a non-zero constant. If this is the case we conclude that Zer(P, C*)
is empty and that 1 belongs to the ideal generated by P. Otherwise, we
perform a linear change of coordinates so that one of the polynomials of the
family gets monic and replace the initial P by this new family. Then we com-
pute Projx, (P), which is a family of polynomials in k& — 1 variables together
with algebraic identities expressing that the elements of Projx,(P) belong
to the ideal generated by P. If Projx,(P) = {0} we conclude that Zer(P, C*)
is not empty. If Projx, (P)# {0} we continue the process replacing k by k — 1
and P by Projx,(P). After eliminating all the variables, we certainly have
that either the family of polynomials is {0} or it contains a non-zero con-
stant, and we can conclude in both cases. O

Let us illustrate the algorithm outlined in the preceding remark by two
examples.

Ezxample 4.81. a) Let P = {X3, Xo + X1, Xo 4+ 1}. The first polyno-
mial is monic with respect to Xs. We consider the resultant with respect
to Xo of Xo and (U + 1) Xy + U X7 + 1, which is equal to U X; + 1.
Thus Projx,(P)={X1,1}# {0}, and contains a non-zero constant. More-
over 1=(X2+1)— X5. So we already proved that 1 belongs to the ideal
generated by P and Zer(P,C?)=).

b) Let P = {Xs, X2 + X3, X2 + 2 X;}. The first polynomial is
monic with respect to Xs. The resultant with respect to X5 of X5 and
(U+1) X2+ (U+2) Xy isequal to (U +2) X;. Thus Projx,(P) ={X1}+# {0},
contains a single element, and Projx,(Projx,(P)) =0. Thus 1 does not belong
to the ideal generated by P and Zer(P,C?)+0. In fact, Zer(P,C?) = {(0,0)}.0

Since the proof of Theorem 4.71 (Weak Hilbert’s Nullstellensatz) is con-
structive, it is not surprising that it produces a bound on the degrees of the
algebraic identity output. More precisely we have the following quantitative
version of Hilbert’s Nullstellensatz.
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Theorem 4.82. [Quantitative Hilbert’s Nullstellensatz]

Let P={P1,..., Ps} CK[Xy,..., Xi] be a finite set of less than d polynomials,
of degrees bounded by d. If a polynomial P € K[X3, ..., Xji| of degree at
most d in k variables vanishes on the common zeros of P in CF, then there
exists n <d (2d)%"" and s polynomials By, ..., B in K[X1, ..., Xi] each of
degree <d (2 d)Qk+l such that P"= By Py +--- + B, Ps.

Proof: The proof of the theorem follows from a close examination of the
proofs of Proposition 4.76 and Theorem 4.77, using the notation of these
proofs.

Suppose that P = { Py, ..., P;} has no common zeros in C.

We consider first the case of 1 variable X. Since Zer(P,C) =10,

Resx (P, Po+UPs+ -+ US_2PS) S K[U]
is not the zero polynomial, and we can find u € K such that
Resx (P, Po+u P+ - +u®~2 Py)

is a non-zero element of K. By Proposition 1.9, there exist U and V of degree
at most d such that

UP +V (Po+uPs+-+u"2P)=1,
which gives the identity
1:UP1+VP2+UVP3+"'+US_2VPS

with deg(U), deg(V) <d.

Consider now the case of k variables. Since Resx, (P, R) is the deter-
minant of the Sylvester matrix, which is of size at most 2 d, the degree
of Resx, (P1, R) with respect to X1, ..., Xj_1,U is at most 2d? (the entries of
the Sylvester matrix are polynomials of degrees at most d in X1,..., X;_1,U).
So there are at most 2 d? polynomials of degree 2 d? in k — 1 variables
to which the induction hypothesis is applied. Thus, the function g defined by

g(d,1) = d

g(da k) = g(2d23 k— 1)
bounds the degree of the polynomials A;. It is clear that (2 d)2" is always
bigger than g(d, k).

For P + 1, using Rabinovitch’s trick and apply the preceding bound
to Pi,..., Ps, PT — 1, we get an identity

A Pi++ AP+ A(PT—1)=1,

with Ay, ..., As, A of degree at most (2 d)QkH. Replacing T by 1/P and
removing denominators gives an identity

Pr"=BPi+--+ B, P
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with n < (2d)?""" and deg(B;) <d (2d)2""". 0

The following corollary follows from Theorem 4.82 using the proof of
Corollary 4.79.

Corollary 4.83. Let P = {P..., Ps} C K[Xq, ..., Xi] be a finite set of less
than d homogeneous polynomials of degrees d; bounded by d. If a homogeneous
polynomial P € K[ X7, ..., Xi] of degree p vanishes on the common zeros of

P in CF, there exist n € N, n < (2 d)QkH, and homogeneous polynomzials
Hy,...,H, in K[X7, ..., Xi| of respective degrees cu,...,cs such that

pPr = HiPi+--+H P
np = c1+di==cs+ds.

Remark 4.84. Note that the double exponential degree bound in the number
of variables obtained in Theorem 4.82 comes from the fact that the elimination
of one variable between polynomials of degree d using resultant produces
polynomials of degree d2. A similar process occurs in Chapter 11 when we
study cylindrical decomposition. (|

4.5 Zero-dimensional Systems

Let P be a finite subset of K[X7,..., X3]. The set of zeros of P in C*

Zer(P,Ck) = {z € CF| /\ P(x)=0}
PcP

is also called the set of solutions in C* of the polynomial system of equa-
tions P =0. Abusing terminology, we speak of the solutions of a polynomial
system P. A system of polynomial equations P is zero-dimensional if it has
a finite number of solutions in C¥, i.e. if Zer(P, C¥) is a non-empty finite set.
We denote by Ideal(P,K) the ideal generated by P in K[X7,..., Xi].

We are going to prove that a system of polynomial equations

P C K[Xl, ey Xk]
is zero-dimensional if and only if the K-vector space
A =K[Xy,..., X;]/Ideal(P,K)

is finite dimensional. The proof of this result relies on Hilbert’s Nullstellensatz.

Theorem 4.85. Let K be a field, C an algebraically closed field containing K,
and P a finite subset of K[Xq, ..., Xi|.

The vector space A=K[X1,..., Xy]/Ideal(P,K) is of finite dimension m >0
if and only if P is zero-dimensional.
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The number of elements of Zer(P,CF) is less than or equal to the dimen-
sion of A as a K-vector space.

Note that the fact that C is algebraically closed is essential in the state-
ment, since otherwise there exist univariate polynomials of positive degree
with no root.

The proof of the theorem will use the following definitions and results.

We consider the ideal Ideal(P, C) generated by P in C[Xy, ..., X}] and
define A = C[X4, ..., Xg]/Ideal(P, C) . Given = = (z1, ..., z) € Zer(P, CK)
and Q € A, Q(z) € C is well-defined, since two polynomials in C[Xj, ..., X}]
having the same image in A have the same value at .

The following result makes precise the relationship between A and A.

Lemma 4.86. AC A.

Proof: If a and b are elements of K[X7y, ..., Xj] equal modulo Ideal(P,C),
then there exists for each P € P a polynomial Ap of some degree dp in
C[X1, ..., Xj] such that a —b=>_ ApP. Since the various polynomials ApP
are linear combinations of a finite number of monomials, this identity can be
seen as the fact that a system of linear equations with coefficients in K has a
solution in C (the unknowns being the coefficients of the Ap). We know from
elementary linear algebra that this system of linear equations must then also
have solutions in K, which means that there are Cp € K[ X7, ..., Xj] such that
a—=b=3p.p CpP.Thusa=0bin A. This implies that the inclusion morphism
A C A is well-defined. O

We also have

Lemma 4.87. Let P be a finite set of polynomials in K[Xq, ..., Xi]. Then
A=K[Xjy,..., Xi]/Ideal(P,K) is a finite dimensional vector space of dimen-
sion m over K if and only if A = C[Xy, ..., Xi]/Ideal(P, C) is a finite

dimensional vector space of dimension m over C.

Proof: Suppose that A has finite dimension m and consider any finite set of
m'>m monomials in K[X7,..., X;]. Since the images in A of these monomials
are linearly dependent in A over K, the images in A of these monomials are
linearly dependent in A over C. Therefore the dimension of A is finite and
no greater than the dimension of A, since both A and A are spanned by
monomials.

For the other direction, if A has finite dimension m then we consider any
family By, ..., By, of m’>m elements in K[ X7, ..., X;] and denote by by, ..., by,
their images in A and by b1, ..., b}, their images in A. Since b1, ..., b}, are
linearly dependent, there exist (Ay, ..., Ap,) in C™ which are not all zero and
for each P € P a polynomial Ap of some degree dp in C[X7,..., Xi] such that

M Bit 4 A B =Y ApP. (4.5)
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Since the various polynomials Ap P are linear combinations of a finite number
of monomials, the identity 4.11 can be seen as the fact that a system of linear
equations with coefficients in K has a solution in C (the unknowns being the \;
and the coefficients of the Ap). We know from elementary linear algebra that
this system of linear equations must then also have solutions in K which means
that there are p; € K not all zero and Cp € K[ X7, ..., Xi] such that

M1B1+"'+Mm’Bm':Z CPP

Thus, by, ..., by, are linearly dependent over K and hence the dimension of A
is no greater than the dimension of A. O

Definition 4.88. An element a of A is separating for P if a has distinct
values at distinct elements of Zer(P, C¥). O

Separating elements always exist when P is zero-dimensional.

Lemma 4.89. If #Zer(P, CF) =n, then there erists i, 0 <i < (k — 1) (72‘),
such that
a;i=X1+iXo+ - +iFT1 Xy

18 separating.

Proof: Let 2 = (x1,...,21), y= (y1,..., yx) be two distinct points of Zer(P, C¥)
and let {(z,y) be the number of 4, 0 <4 < (k —1)(3), such that a;(z) = ai(y).
Since the polynomial

(z1—y1) + (w2 = y2) T+ + (g — y) T
is not identically zero, it has no more than k —1 distinct roots. If follows that

{(z,y) <k —1. As the number of 2-element subsets of Zer(P, C¥) is (5), the
lemma is proved. O

An important property of separating elements is the following lemma:

Lemma 4.90. If a is separating and Zer(P, CF) has n elements,
then 1,a,...,a™ 1 are linearly independent in A.

Proof: Suppose that there exist ¢; € K such that Zl o c;a'=0in A, whence
the polynomial ¢y + ¢1 @ + -+ + ¢,,—1 a1 is in Ideal(P, K). Thus for all
a € Zer(P,CF), Y1 ciai(a ) 0. The univariate polynomial "' ¢; T"=0
has n distinct roots and is therefore identically zero. O

Proof of Theorem 4.85: If A is a finite dimensional vector space of dimen-
sion N over K, then 1, X1,..., X{V are linearly dependent in A. Consequently,
there is a polynomial p1(X;) of degree at most N in the ideal Ideal(P, C). It
follows that the first coordinate of any x € Zer(P, C*) is a root of p;. Doing
the same for all the variables, we see that Zer(P, C¥) is a finite set.
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Conversely, if Zer(P, CF) is finite, take a polynomial p;(X;) € C[X/]
whose roots are the first coordinates of the elements of Zer(?, C¥). According
to Hilbert’s Nullstellensatz (Theorem 4.77) a power of p; belongs to the
ideal Ideal(P, C). Doing the same for all variables, we see that for every i,
there exists a polynomial of degree d; in C[X,] in the ideal Ideal(P, C). It
follows that A has a basis consisting of monomials whose degree in X; is
less than d;. Thus, A is finite dimensional over C. We conclude that A is
finite dimensional over K using Lemma 4.87.

Part b) of the theorem follows from Lemma 4.89 and Lemma 4.90. |

We now explain how the quotient ring A splits into a finite number of local
factors, one for each = € Zer(P, CF)). These local factors are used to define
the multiplicities of the solutions of the system of polynomial equations. In
the case where all the multiplicities are one these local factors will be nothing
but the field C itself, and the projection onto the factor corresponding to
an z € Zer(P, C¥) consists in sending an element of A to its value at z.

We need a definition. A local ring B is a ring, such that for every a € B,
either a is invertible or 1+ a is invertible. A field is always a local ring.

Exercise 4.2. A ring B is local if and only if has a unique maximal (proper)
ideal which is the set of non-invertible elements.

Given a multiplicative subset S of a ring A (i.e. a subset of A closed
under multiplication), we define an equivalence relation on ordered pairs (a, s)
with @ € A and s € S by (a, s) ~ (a/, s') if and only if there exist t € S
such that t(a s’ — a’s) = 0. The class of (a, s) is denoted a/s. The ring of
fractions S !4 is the set of classes a/s equipped with the following addition
and multiplication

a/s+a'/s'=(as"+a’s)/(ss),

(a/s)(a’/s") = (aa’)/(s5").

The localization of A at x € Zer(P, C*) is denoted A,. It is the ring of
fractions associated to the multiplicative subset S, consisting of elements
of A not vanishing at x. The ring A, is local: an element P/Q of A, is
invertible if and only if P(z)=£0, and it is clear that either P/Q@ is invertible
or 1+ P/Q=(Q+ P)/Q is invertible.

We will prove that the ring A is isomorphic to the product of the various A,
for z € Zer(P, CF). The proof relies on the following result.

Proposition 4.91. If Zer(P, CF) is finite, then, for every x € Zer(P, C¥),
there exists an element e, onsuch that

ZwEZer(P,C’“) ex=1,

— egey=0 for y+x with y,x € Zer(P,CF),
2

— €x =€y,

— ex(z)=1 for x € Zer(P,CF),
— ex(y)=0 for z,y € Zer(P,CF) and v+ y.
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Proof: We first prove that, for every x € Zer(P,CF), there exists an element s,
of A with s,(z) = 1, s,(y) = 0 for every y € Zer(P, C¥), y # x. Making if
necessary a linear change of variables, we suppose that the variable X; is
separating. The classical Lagrange interpolation formula gives polynomials
in X; with the required properties. Namely, writing each x € Zer(P, CF)

as (z1,...,Tk), we set

X —

= I Nom
r1—Y
yEZer(P,CFk)
y#a

Since s.s, vanishes at every common zero of P, Hilbert’s Nullstellensatz
(Theorem 4.77) implies that there exists a power of each s,, denoted .,
such that ¢, t, = 0 in A for y # z, and t,(z) = 1. The family of polyno-
mials P U {t, | x € Zer(P, C¥)} has no common zero so, according to Hilbert’s
Nullstellensatz, there exist polynomials r, such that > ¢, r, = 1 in A
Take e, =t, r,. It is now easy to verify the claimed properties. O

The element e, is called the idempotent associated to z. Since e2 =e,,
the set e, A equipped with the restriction of the addition and multiplication
of A'is a ring with identity (namely e).

Proposition 4.92. The ring e, A is isomorphic to the localization A, of A
at .

Proof: Note that if Q(x) # 0, e, Q is invertible in e, A. Indeed, we can
decompose Q = Q(z) (1 + v) with v(x) = 0. Since Yy € Zer(P, C¥), we
have ve,(y) =0, (ve;)N =0 for some N € N by Hilbert’s Nullstellensatz and
thus e, (1+v) is invertible in e, A. Its inverse is

(1—ezv+-+ ()N Ne,,

and it follows that e, @ is invertible as well.

So, denoting by (e, Q) ~! the inverse of e, Q in e, A, consider the mapping
from A, to A which sends P/Q to P (e, Q) ' =e, P (e, Q)™ 1. It is easy to
check that this is a ring homomorphism. Conversely, to Pe, is associated P/1,
which is a ring homomorphism from e; A to A,.

To see that these two ring homomorphisms are inverses to each other, we
need only prove that (P(e;Q)~1)/1=P/Q in A,. This is indeed the case since

Pez((ez Q) (em Q)_l - 1) =0
and e, (z) =1. O

We now prove that A is the product of the A,.

Theorem 4.93. For each x € Zer(P, C¥) there exists an idempotent e, such
that e, A= A, and
n =

z€Zer(P,CF)

A

12
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Proof: Since Zzezcr(P,ck) ex =1, A HzeZcr(P,Ck) A,. The canonical

surjection of A onto A, coincides with multiplication by e,. O

We denote by () the dimension of A, as a C-vector space. We call p(z)
the multiplicity of the zero z € Zer(P, C¥).

If the multiplicity of x is 1 we say that x is simple . Then A, = C and the
canonical surjection A onto A, coincides with the homomorphism from A to C
sending P to its value at . Indeed, suppose that P(z)=0. Then Pe,(y)=0 for
every y € Zer(P,CF) and hence by Hilbert’s Nullstellensatz there exists N € N
such that (Pem)N =0. Since e, is idempotent this implies that PNe, =0, and
thus PN =0 in A, which is a field. Hence P=0 in A,.

When the system of polynomial equations P ={P, ..., Py} is zero-dimen-
sional, simple zeros coincide with non-singular zeros as we see now.

Let P4, ..., Py be polynomials in C[X7,..., Xi]. A non-singular zero of

Pi(X1,., Xi), ooy P( X1, o0y Xi)
is a k-tuple z = (x1,..., 7;) of elements of C* such that
Pi(z1,...,x) = = Pg(x1,...,25) =0

and det( [ g;z_ (z) ] ) 0.

Proposition 4.94. Let P={P,..., Py} C K[X3,..., X}] be a zero dimensional
system and x a zero of P in CF. Then the following are equivalent

a) x is a non-singular zero of P,

b) x is simple, i.e. the multiplicity of x is 1 and A, =C,

¢) M, C Ideal(P, C) + (M,)?, denoting by M, the ideal of elements
of C[Xy,..., Xk] vanishing at x.

Proof: a) = ¢) Using Taylor’s formula at z,

oP;
Pi=>" o (@) (Xi— @) + B;
with B; € (M,)2. So '

gﬁj (z)(X; — ;) € Ideal(P,K) + (M,)2.
. . aP] . . . .
Since the matrix [ e (1‘):|IS invertible, for every 4

(X; —z;) € ldeal(P,K) + (M,)2

¢)=b) Since (X; — x;)e, vanishes on Zer(P) for every i, and €2 =e,, according
to Hilbert’s Nullstellensatz, there exists N; such that

(X; —z;)Nie, € Ideal(P,K).
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So there exist N such that (M,)N - e, C Ideal(P, K). Using repeatedly
M, C Ideal(P,K) + (M,)?, we get

(M,)N~1.e, Cldeal(P,K), ..., M, e, CIdeal(P,K).

This implies A, =C.

b) = a) If A, = C, then for every i, (X; — ;) e, € Ideal(P, K). Indeed
(Xi—z;)e;=0in A, = C and (X; — ;) ez e, = 0 in A, for y # z and
y € Zer(P,C). So, for every i there exist A; ; such that

T )ewzz Ai7ij.
J
Differentiating with respect to X; and Xy, £+ i and evaluating at x we get
OP;
L = Z Ai () —j_(x),
0 = Z A 4( (), 0+1,

so the matrix {g?; (x)} is invertible. O

4.6 Multivariate Hermite’s Quadratic Form

We consider a zero dimensional system P and its set of solutions in C*

Zer(P,Ck) = {z € CF| /\ P(x)=
PeP
We indicate first the relations between Zer(P, C¥) and the eigenvalues of
certain linear maps on the finite dimensional vector spaces
A = K[Xy,..., Xp)/Ideal(P,K) and

A = C[Xy,..., Xj]/Ideal(P, C).

Notation 4.95. [Multiplication map] If f € A, we denote by L: A — A the
linear map of multiplication by f defined by Ls(g)= fg for g € A. Similarly,
if fe A, we also denote by‘ Ly: A— A the linear map of multiplication by f
defined by L¢(g) = fg for g€ A. By Lemma 4.86, A C A, so we denote also
by Ly: A+ A the linear map of multiplication by f € A defined by Ls(g)= fg
for g€ A and for f€A.

We denote as above by A, the localization at a zero z of P and by u(z)
its multiplicity. We denote by Ly ., the linear map of multiplication by f
from A, to A, defined by Ly ,(P/Q)= fP/Q. Note that Ly ,is well-defined
since if P1/Q1=P/Q,then fP1/Q1= fP/Q. Considering A, as a sub-vector
space of A, Ly . is the restriction of Ly to A,.
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Theorem 4.96. The eigenvalues of Ly are the f(z), with multiplicity p(z),
for x € Zer(P, CF).

Proof: As e,(f — f(x)) vanishes on Zer(P, CF), Hilbert’s Nullstellensatz
(Theorem 4.77) implies that there exists m € N such that (e, (f — f(z)))™=0
in A, which means that Le,(f- f(a)) is nilpotent and has a unique eigenvalue 0
with multiplicity p(x). Thus Ly , has only one eigenvalue f(x) with multi-
plicity p(x). Using Theorem 4.93 completes the proof. O

It follows immediately:

Theorem 4.97. [Stickelberger| For f € A, the linear map Ly has the
following properties:
The trace of Ly is

TL)= Y p@)f@). (4.6)
z€Zer(P,C*)
The determinant of Ly is
det(Lp)= J[  fla)m@. (4.7)

x€Zer(P,Ck)

The characteristic polynomial x(P, f,T) of Ly is
x(P. £, 1)= [ (@ f@) . (48)

z€Zer(P,CF)

Note that the statement on the trace is a generalization of Proposition 4.54.

Remark 4.98. Note that if f € A, Tr(Ly) and det(L;) are in K and
x(P, f,T) € K[T]. Moreover, if the multiplication table of A in the basis B
has entries in a ring D contained in K and f has coefficients in D in the
basis B, Tr(Ly) and det(Ly) are in D and x(P, f,T) € D[T]. O

A consequence of Theorem 4.97 (Stickelberger) is a multivariate gener-
alization of the univariate Hermite’s theorem seen earlier in this chapter
(Theorem 4.57).

We first define the multivariate generalization of Hermite quadratic form.
For every @ € A, we define the Hermite’s bilinear map as the bilinear map:

her(P,Q): AxA — K
(f.9) = Tr(Lygq) "

The corresponding quadratic form associated to her(P, Q) is called the Her-
mite’s quadratic form,

Her(P,Q): A — K
f — TI‘(Lf2Q) ’



4.6 Multivariate Hermite’s Quadratic Form 151

When @ =1 we simply write her(P) =her(P, 1) and Her(P) =Her(P,1).
We shall write A;,q to denote the ring K[ X7, ..., Xj]//Ideal(P,K).

The next theorem gives the connection between the radical of Ideal(P, K)
and the radical of the quadratic form Her(P):

Rad(Her(P))={f€A|Vge A her(P)(f,g)=0}.

Theorem 4.99.

v/Ideal(P,K) = Rad(Her(P)).

Proof: Let f be an element of /Ideal(P,K). Then f vanishes on every
element of Zer(P, C¥). So, applying Corollary 4.97, we obtain the following
equality for every g € K[X7,..., Xi|:

her(P)(f,9)=Tr(Lg)= > p)f(z)g(x)=0.

xE€Zer(P,CF)

Conversely, if f is an element such that her(P)(f, g) =0 for any ¢ in A, then
Corollary 4.97 gives:

VgeAher(P)(f,9)=Tr(Lg)= Y,  u(z)f(x)g(x)=0. (4.9)
zE€Zer(P,CF)

Let a be a separating element (Definition 4.88). If Zer(P,C¥) = {z1,..., 2},
Equality (4.15) used with each of g=1,...,a" ! gives,

1 1 (1) f(21) 0

a(xl‘)"_l a(xn.)”‘1 u(xn)f(xn) 0

so that f(x1) =--- = f(x,) =0, since a is separating and the matrix at the
left hand side is a Vandermonde matrix, hence invertible. Using Hilbert’s

Nullstellensatz 4.71, we obtain f € 1/Ideal(P,K) as desired. ]

The following result generalizes Hermite’s Theorem (Theorem 4.57) and
has a very similar proof.
We define the Tarski-query of @ for P as

TaQ(Q,P)= Y,  sign(Q(x))

x€Zer(P,RF)

Theorem 4.100. [Multivariate Hermite]

Rank(Her(P, Q)) = #{z € Zer(P,C*)| Q(x)#0},
Sign(Her(P, Q)) = TaQ(Q,P).
Proof: Consider a separating element a. The elements 1, a, ..., a” ! are

linearly independent in A by Lemma 4.90 and can be completed to a basis
wi=1l,we=a,...,w,=a"" wyi1,...,wn of the K-vector space A.
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Corollary 4.97 provides the following expression for the quadratic

form Her(P, Q): if fZZ;v:l fiwje A

N 2
Her(P,Q)(f)= > MMM(ZE%@)
j=1

zE€Zer(P,CF)
Consequently, denoting Zer(P,C¥) = {z1, ..., x, }, Her(P, Q) is the map
f’_) (f17 sy fN) Tt A(N(iUl) Q(‘rl)a sy M(l’n) Q((En)) I (f17 sy fN)t7

where

{1 a(a'zrl) a(:z:l.)"_l wn+'1(:131) ngﬂUl)-I

F:{i o) e e (o) e on(e) |

and A denotes a diagonal matrix with the indicated diagonal entries. There-
fore it suffices to prove that the rank of I' is equal to n. But a is separating
and the principal minor of the matrix I' is a Vandermonde determinant.

Given (fi, ..., fn), let f =N f; wi. According to Corollary 4.97, the
quadratic form Her(P, Q) is given in this basis by

N 2
> u(y)Q(y)<Z fiwi(y)> +

yEZer(P,RF)

Z N(Z)Q(Z)( Z fiwi(z)>

z€Zer(P,Ck)\Zer(P,RF)

as a quadratic form in the variables f;. We have already seen in the first part
of the proof that the n rows of I" are linearly independent over C. Moreover,
if z and z are complex conjugate solutions of P, with Q(z)#0,

N 2 2

is easily seen to be a difference of two squares of real linear forms. Indeed,
writing 11(2) Q(2) = (a(2) +ib(2))?,

(a(z)+1ib(z <Z fiwi(z >=L1,z+iL2,z=

with s;(z) and it;(z) the real and imaginary part of w;(z),
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are real linear forms in fi,..., fy with coefficients in R so that

N 2 2
Z)(Z fzwz(z)> Z_ Z(Z fzwz ) :2L%,z_2L%,z
i=1

Moreover, L(y, f), L1(2), La(2) (y € Zer(P, R¥), 2, 7€ Zer(P,CF) \ Zer(P,RF))
are linearly independent linear forms.
So the signature of Her(P, Q) is the signature of

w(y)Q(y)L(y, f)*.

yEZer(P,RF)

Since the linear forms L(y, f), are linearly independent the signature of
Her(P. Q) 15 30, cporp ey S12(Q(1)) = TaQ(Q. P). 0

4.7 Projective Space and a Weak Bézout’s Theorem

Let R be a real closed field and C = R[i]. The complex projective space
of dimension k, P;(C), is the set of lines of C**! through the origin.

A (k + 1)-tuple = = (zo, 21, ..., i) # (0,0, ..., 0) of elements of C defines
a line T through the origin. This is denoted by T = (xo: x1: ...: x) and
(2o, 21, ..., T) are homogeneous coordinates of Z. Clearly,

(zo:z1: i) = (Yor Y1: -t Yk)

if and only if there exists A#0 in C with x; = Ay;.

A polynomial P in C[X1,0, ..., X1,kys s Xm,05 -y X, kepn] 18
multi-homogeneous of multidegree di, ..., d,, if it is homogeneous of
degree d; in the block of variables X; g, ..., X; , for every ¢ <m.

For example T'(X?2+Y?) is homogeneous of degree 1 in the variable T and
homogeneous of degree 2 in the variables{X,Y }.

If P is multi-homogeneous of multidegree di, ..., dp,, a zero of P
in Py, (C) x ... x P (C) is a point

= (T7,..., Tm) € P4, (C) x ... x Py, (C)

such that P(z1, ..., ;) =0, and this property denoted by P(z) =0 depends
only on x and not on the choice of the homogeneous coordinates. An alge-
braic set of P, (C) x ... x P, (C) is a set of the form

Zer(P, HIP’k {erPk A

i=1 pPePpP

where P is a finite set of multi-homogeneous polynomials in

ClX 1, ey Xin) = CX1,00 o0y X1 kigs eees Xm0 evvs Xom ko) -
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Lemma 4.101. An algebraic subset of P1(C) is either P1(C) or a finite set
of points.

Proof: Let P ={P, ..., Ps} with P, homogeneous of degree d;. If all the P,
are zero, Zer(P,P1(C)) =P1(C). Otherwise, Zer(P,P1(C)) contains (0: 1) if
and only if

Pi(0,X;)=--=Ps0,X;)=0.

The other elements of Zer(P,P1(C)) are the points of the form (1:x1), where 1
is a solution of

Pl(la Xl) == PS(17 Xl) = 07
which is a finite number of points since the P;(1, X7) are not all zero. |

Theorem 4.102. If V CPy,(C) x Py, (C) is algebraic, its projection on Pg,(C)
s algebraic.

Proof: We first introduce some notation. With X = (X, ..., Xj), we
denote the set of homogeneous polynomials of degree d in X by C[X]s.
Let P={P,..., Ps} be a finite set of homogeneous polynomials with P; of
degree d; in X. For d >d;, let M4(P) be the mapping

C[X]d—ah X ... X C[X]d_dSHC[X]d

sending (Hy, ..., Hy) to Hy Py + -+ + H, Ps. Identifying a homogeneous
polynomial with its vector of coefficients in the basis of monomials, My(P)
defines a matrix My(P).

The projection of Zer(P, P, (C) x Pi,(C)) on Py,(C) is

m(Zer(P, Py, (C) x Pyy(C)) = {g€ P*(C) | 3T € Py, (C) A Pla,y)=0}
Pep
Consider g¢ m(V), i.e. 7€P,(C) and such that

{reP(C)| N\ Pz, y)=0}=0.

Then rer
{zeCM T N\ P(x,y)=0}={0}.
pPep
According to Corollary 4.83, there exists for every ¢« = 0, ..., k; an

integer n; < (24)2"""” and polynomials A; j € C[X]n,—a; such that
Xi"=Ai1(X) Pu(X, y) 4+ Ai o(X) Po(X, ).

Since any monomial of degree N = 220 (2d)2’cl+2 is a multiple of X"
for some 1 < i < ky, for every polynomial P € C[X]|xy there exist poly-
nomials Hy, ..., H; with H; € C[X]|y —4, such that

P:HI(X)PI(Xﬂy)++HS(X) Ps(va)
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We have proved that g ¢ m(V) if and only if My({Pi(X,y),.... Ps(X,y)})
is surjective. This can be expressed by a finite disjunction of
conditions M;(y)#0, where the M;(Y) are the maximal minors extracted
from the matrix My({Pi(X, Y, ..., Ps(X, Y)}) in which Y =(Y5,...,Y%,)
appear as variables. Hence, w(V) = {7 | A M;(y) = 0}, which is an alge-
braic set of P,(C). O

The remainder of the chapter is devoted to proving a weak version of
Bézout’s theorem, estimating the number of non-singular projective zeros of
a polynomial system of equations. The proof of this theorem is quite simple.
The basic idea is that we look at a polynomial system which has exactly the
maximum number of such zeros and move continuously from this polyno-
mial system to the one under consideration in such a way that the number
of non-singular projective zeros cannot increase. In order to carry out this
simple idea, we define projective zeros and elaborate a little on the geometry

If P, ..., P, are homogeneous polynomials in C[Xy, ..., Xi], we
say that z=(zo:x1:....2) €P,(C) is a non-singular projective zero
of Pp,..., Py if Pi(x)=0fori=1,...,k and

rank([g)lz (:r)]):k,

fori=1,...,k, 7=0,...,k. Note that (x1,...,x) is a non-singular zero of

Pi(1, Xy, ., Xi)y ooy Pr(1, X1, 0y Xi)

if and only if (1:x;:...:2%) is a non-singular projective zero of
Pi,..., P .

For i =0,..., k, let ¢; be the map from C* to Px(C) which maps (z1, ..., z)
to (w1:...omi_1: iz ... xp), and let U; = ¢;(C*). Note that

U, = {Te Pk(C) | 581# 0},

gbi_l(xozxi_l:xi:x“rl: i TE) = <@,...,E,@, ,ﬂ)
It is clear that U;—¢... 1 U; = Pi(C). It is also clear that qs;l(ui NU;) is a
semi-algebraic open subset of C* = R?* and that qu_l o ¢; is a semi-algebraic
bijection from ¢; " (U;NU;) to ¢7 (U NU,;).

We define the euclidean topology and semi-algebraic sets of P(C) as fol-
lows:
— asubset U of P(C) is open in the euclidean topology if only if for every

i=0,....k, ¢; *(UNU,;) is an open set in the euclidean topology of C*=R2*,
— a subset S of Pg(C) is semi-algebraic if only if for every i =0, ..., k,

o7 1(SNU,;) is semi-algebraic in C* =R?*,

Note that the U; are semi-algebraic open subsets of Py(C).
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Similarly, it is easy to define the semi-algebraic sets of P(C) x P,(C). A
semi-algebraic mapping from Px(C) to Py(C) is a mapping whose graph is
semi-algebraic.

Since every point of Py(C) has a neighborhood that is contained in
some U;, the local properties of Py(C) are the same as the local proper-
ties of C¥=R?*. In particular the notion of differentiability and the classes S™
and S can be defined in a similar way and the corresponding implicit func-
tion theorem remains valid.

Theorem 4.103. [Projective Implicit Function Theorem]

Let (2°,4°) € Pr(C) x Py(C), and let fi, ..., fo be semi-algebraic functions
of class 8™ on an open neighborhood of (P, ?) such that fj(P, ?) =0
for j=1,....¢ and the Jacobian matriz

is invertible. Then there exists a semi-algebraic open neighborhood U (resp. V)
of 2° (resp. y°) in Px(C) (resp. Pe(C)) and a function ¢ € S™U, V) such
that p(zY) = y" and such that for every (T,7) €U x V, we have

hE 7)== fulF7)=07=p().

Our final observation is the following lemma showing that the complement of
a finite subset of P;(C) is semi-algebraically path connected.

If S is a semi-algebraic subset of Py(C), we say that S is semi-alge-
braically path connected if for every x and y in S, there exists a continuous
path from z to y, i.e. a continuous mapping v from [0, 1] to S such
that v(0) =z, (1) =y and the graph of ~ is semi-algebraic.

Lemma 4.104. If A is a finite subset of P1(C), then P1(C) \ A is semi-
algebraically path connected.

Proof: If = and y both belong to Uy (resp. U1), it is clear that there
is a semi-algebraic continuous path from ¢y '(z) to ¢g'(y) (resp. ¢7 ()
to ¢1 '(y)) avoiding ¢g (A N Up) (resp. o1 (A N Up)). If x €Uy, y €Uy,
take z € (P1(C)\ A)NUrNU1 and connect x to z and then z to y outside
A by semi-algebraic and continuous paths. g

Proposition 4.105. Let Pi,..., P, € C[Xy,..., X)] be homogeneous polynomials
of degrees d, ..., di. Then the number of non-singular projective zeros of
Py, ..., Py is at most dy --- dy.

Proof: Fori=1,...,k, let
Hi,)\,,u(XOa veey Xk) = A Pl + 1% (Xz — Xo) (Xz — 2X0) (Xz — leo) s fOI‘ ()\7
p) € C*\ {0}
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We denote by Sx.,) the polynomial system
H17A:N7"'7Hk))\7ﬂ'

Note that the polynomial system S(g.1) has d; --- dy non-singular projective
zeros and S(1.0) is Pi, ..., Pr. The subset of (z, (A: p)) € Pr(C) x Py(C)
such that z is a singular projective zero of the polynomial system Sy.,) is
clearly algebraic. Therefore, according to Theorem 4.102, its projection A
on P1(C) is an algebraic subset of P1(C). Since (0: 1)¢A, the set A consists of
finitely many points, using Lemma 4.101. Since P1(C) \ A is semi-algebraically
connected, there is a semi-algebraic continuous path +: [0, 1] C R — P;(C)
such that v(0) = (1: 0), v(1) = (0: 1), and ~((0, 1]) C P1(C) \ A. Note
that (A: ) € P1(C)\ A if and only if all projective zeros of S(y.,) are non-
singular. By the implicit function theorem, for every non-singular projec-
tive zero = of S(i.0), there exists a continuous path o,: [0, 1] — Py(C) such
that 0,(0) = x and, for every ¢t € (0, 1], 0,(¢) is a non-singular projective
zero of S.(;). Moreover, if y is another non-singular projective zero of S(1.),
then o,(t) # o,(t) for every t €[0,1]. From this we conclude that the number
of non-singular projective zeros of S(1.0): P1=---= P, =0 is less than or equal
to the number of projective zeros of 8(0:1), which is dq -+ dj. O

Theorem 4.106. [Weak Bézout] Let P, ..., P, € C[ Xy, ..., Xj]| be polyno-
mials of degrees dy,...,dx. Then the number of non-singular zeros of Py,..., Py
is at most dq --- dj.

Proof: Define

) X1 Xk .
PihZXd7'P¢<—, -~-7—>7Z: Lok,
0 Xo XO

and apply Proposition 4.105. The claim follows, noticing that any non-sin-
gular zero of Py, ..., Py is a non-singular projective zero of P}, ..., Pl. 0

4.8 Bibliographical Notes

Resultants were introduced by Euler [56] and Bézout [24] and have been
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Hilbert’s Nullstellensatz appears in [91] and a constructive proof giving
doubly exponential degrees can be found in [88]. Much better degree bounds
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Decomposition of Semi-Algebraic Sets

In this chapter, we decompose semi-algebraic sets in various ways and study
several consequences of these decompositions. In Section 5.1 we introduce the
cylindrical decomposition which is a key technique for studying the geometry
of semi-algebraic sets. In Section 5.2 we use the cylindrical decomposition
to define and study the semi-algebraically connected components of a semi-
algebraic set. In Section 5.3 we define the dimension of a semi-algebraic set
and obtain some basic properties of dimension. In Section 5.4 we get a semi-
algebraic description of the partition induced by the cylindrical decomposition
using Thom’s lemma. In Section 5.5 we decompose semi-algebraic sets into
smooth manifolds, called strata, generalizing Thom’s lemma in the multi-
variate case. In Section 5.6 we define simplicial complexes, and establish the
existence of a triangulation for a closed and bounded semi-algebraic set in
Section 5.7. This triangulation result is used in Section 5.8 to prove Hardt’s
triviality theorem which has several important consequences, notably among
them the finiteness of topological types of algebraic sets defined by polyno-
mials of fixed degrees. We conclude the chapter with a semi-algebraic version
of Sard’s theorem in Section 5.9.

5.1 Cylindrical Decomposition

We first define what is a cylindrical decomposition: a decomposition of R¥ into
a finite number of semi-algebraically connected semi-algebraic sets having a
specific structure with respect to projections.

Definition 5.1. A cylindrical decomposition of R* is a sequence S, ..., Sy
where, for each 1 < i < k, S; is a finite partition of R’ into semi-algebraic
subsets, called the cells of level i, which satisfy the following properties:

— Each cell S €8, is either a point or an open interval.
— For every 1 <14 < k and every S € S;, there are finitely many continuous
semi-algebraic functions

£s51< - <&s505:5—R
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such that the cylinder S x R C Rt is the disjoint union of cells of S;, 1
which are:
— either the graph of one of the functions &g ;, for j=1,...,¢s:

{(@",2541) €S xR|zjp1=Es,5(z)},

— or a band of the cylinder bounded from below and from above by the

graphs of the functions {5 ; and &g jy1, for j =0, ..., s, where we
take {5, 0=—o00 and &; ¢441 = +o0:
{(@2j41) €5 xR &s,5(2") <jy1 <& j41(2)} - O

Remark 5.2. Denoting by 7, the canonical projection of R* to RY, it follows
immediately from the definition that for every cell T of S;, i > ¢, S =my(T) is
a cell of Sy. We say that the cell T lies above the cell S. It is also clear that
if S is a cell of S;, denoting by T1, ..., T}, the cells of S;11 lying above S, we
have S xR=J", T}. O

Proposition 5.3. Every cell of a cylindrical decomposition is semi-alge-
braically homeomorphic to an open i-cube (0,1)" (by convention, (0, 1)° is
a point) and is semi-algebraically connected.

Proof: We prove the proposition for the cells of S; by induction on 1.

If :=0, the cells are clearly either points or open intervals and the claim
holds.

Observe that if S is a cell of S;, the graph of {g,; is semi-algebraically
homeomorphic to S and every band

{(z",zj41) €S x R[ &g ;(2) <wjr1<&s,j+1(z")}
is semi-algebraically homeomorphic to S x (0, 1). In the case of the graph
of &g, ;, the homeomorphism simply maps =’ € S to (z/, &g, ;(z")).
For {(z',zj41) € S X R| &g, i(2)) < xj41 < &s,j41(x)}, 0< j < {lg we

map (z',t) € § % (0,1) to (', (1 —1)&s j(z') +t&s,j+1(z)).
In the special case j =0, j=/{g, we take

(:E’,%—Ffs,j(x’)) if5=0, t540

t e
(x’,m—l—ﬁs,gs(x')) if j=0s#0,
1 1
ot — ifj=¢5=0.
(v ) itimts
These mappings are clearly bijective, bicontinuous and semi-algebraic, noting
that the mappings sending ¢t € (0, 1) to

—t_1+a—t +a —l+—1
t 11—t Tt 1t

are semi-algebraic bijections from (0,1) to (—o0,a), (a,+00), (—o0,4+00). O
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A cylindrical decomposition adapted to a finite family of semi-
algebraic sets T1, ..., T; is a cylindrical decomposition of R* such that
every T; is a union of cells.

Example 5.4. We illustrate this definition by presenting a cylindrical decom-
position of R? adapted to the unit sphere.

Note that the projection of the sphere on the X7, Xs plane is the unit
disk. The intersection of the sphere and the cylinder above the open unit disk
consists of two hemispheres. The intersection of the sphere and the cylinder
above the unit circle consists of a circle. The intersection of the sphere and
the cylinder above the complement of the unit disk is empty. Note also that
the projection of the unit circle on the line is the interval [—1,1].

/\I\/\

|
|

=
Fig. 5.1. A cylindrical decomposition adapted to the sphere in R3

The decomposition of R consists of five cells of level 1 corresponding to
the points —1 and 1 and the three intervals they define.

51:(—00,—1)
Sy={-1}
Ss=(-1,1)
Sy={1}
55:(1,00).
Above S; i = 1, 5, there are no semi-algebraic functions, and only one

cell Si,l = Sl x R.
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Above S;, i =2, 4 there is only one semi-algebraic function associating to
—1 and 1 the constant value 0, and there are three cells.

SM:SZ- X (—O0,0)
Sm:Si X {O}
Sl"g:Si X (O, OO)

Above Ss, there are two semi-algebraic functions &3 1 and &3 2 associating

to @ € S3 the values &3 1(7) = —V1—2?% and & 2(z) = V1 —22. There are 5
cells above Ss, the graphs of &3 1 and &3 2 and the bands they define

Szai={(z,y)| - 1<z <ly<&a(z)}
Szi={(z,y)|-1<z<l,y=E&1(x)}
53 3—{(9c7y) | —l<x< 1,{371(:10) <y<§372(x)}
Sza={(z,y)|-1<z<l,y=E&2(x)}
Sss={(z,y)|—1<z<1,&(x)<y}.

Above Si,jv (Zv .]) € {(13 1)7 (27 1)a (25 3)7 (37 1)a (3a 5)7 (47 1)3 (4a 3)3 (57 1)}7 there
are no semi-algebraic functions, and only one cell:
Siyjﬁlei,j xR

Above S; ;, (i,7)€{(2,2),(3,2),(3,4), (4,2)}, there is only one semi-algebraic
function, the constant function 0, and three cells:

Sij,1=2Sijx (=00,0)

Si,j.2 =5, x {0}

Si,j,B = Si)j X (O, OO)
Above 53 3, there are two semi-algebraic functions &3 3 1 and &3 3 2 associating

to (x,y) € Ss.3 the values
Eaa(z,y)=—V1-2"—y

and five cells

S331=1(z,y,2)| (z,y) €533, 2<&31(7,y)}
S332=1{(z,y,2)|(x,y) €S33,2=E31(x,y)}
Ss33={(z,y,2)|(z,y) €533,&331(x,y) <z<E&3.20x,9)}
S33,4=1{(z,y,2)| (z,y) €533, 2=E33, 2($ y)}
S335=1{(7,y,2)| (x,y) € S33,&32(x,y) <z}

O

Note that a cylindrical decomposition has a recursive structure. Let S be
a cell of level ¢ of a cylindrical decomposition S and x € S. Denoting by ;
the canonical projection of R* to R’ and identifying m; *(z) with R¥~7, the
finite partition of R*~% obtained by intersecting the cells of S;y; above S
with m; 1(96) is a cylindrical decomposition of R¥~% called the cylindrical
decomposition induced by S above z.
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Definition 5.5. Given a finite set P of polynomials in R[X7, ..., X, a
subset S of RF is P-semi-algebraic if S is the realization of a quantifier
free formula with atoms P=0, P >0 or P <0 with P € P. It is clear that for
every semi-algebraic subset S of R, there exists a finite set P of polynomials
in R[X3,..., X such that S is P-semi-algebraic.

A subset S of R* is P-invariant if every polynomial P € P has a constant
sign (>0, <0, or =0) on S.

A cylindrical decomposition of R* adapted to 7P is a cylindrical
decomposition for which each cell C' € Sy, is P-invariant. It is clear that if S
is P-semi-algebraic, a cylindrical decomposition adapted to P is a cylindrical
decomposition adapted to S. O

The main purpose of the next few pages is to prove the following result.

Theorem 5.6. [Cylindrical decomposition] For every finite set P of poly-
nomials in R[X1, ..., Xy], there is a cylindrical decomposition of R* adapted
to P.

The theorem immediately implies:

Corollary 5.7. For every finite family of semi-algebraic sets Sh, ..., Se of R¥,
there is a cylindrical decomposition of R* adapted to S, ..., Sy.

Since we intend to construct a cylindrical decomposition adapted to P it
is convenient if for S € S;_1 we choose each {g ; to be a root of a polyno-
mial P € P, as a function of (z1, ..., zx—1) € S. To this end, we shall prove
that the real and complex roots (those in R[i]=C') of a univariate polynomial
depend continuously on its coefficients.

Notation 5.8. [Disk] We write D(z,7)={w € C| |z —w]| <r} for the open
disk centered at z with radius 7. |

First we need the following bound on the modulus of the roots of a poly-
nomial.

Proposition 5.9. Let P=a, X?+---+a1 X +ao€ C[X], with a, #0. Ifz€C
is a root of P, then
1/3
) -

Proof: If z € Cis such that |z| > M, then |a,_;| <|a,||2|/p,i=1,..., p. Hence,

ap—i
ap

lap—12P7 4+ ao| <lap—1|[2|P7 4 + |ao| <|ap 27|
and P(z)#0. O

We identify the monic polynomial X9+ b,_1 X971 + ... + by € C[X] of
degree ¢ with the point (by_1,..., by) € CY
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Lemma 5.10. Given r > 0, there is an open neighborhood U of (X — z)*
in CH such that every monic polynomial in U has its roots in D(z,r).

Proof: Without loss of generality, we can suppose that z = 0 and apply
Proposition 5.9. 0

Consider the map
m:CIx Cr — CItr
(Q,R) — QR

defined by the multiplication of monic polynomials of degrees ¢ and r respec-
tively.

Lemma 5.11. Let Py € C4T" be a monic polynomial such that Py= Qo Ro,
where Qo and Ry are coprime monic polynomials of degrees q and r, respec-
tively. There exist open neighborhoods U of Py in CI+7, Uy of Qg in CY and Us
of Ry in C" such that any P € U is uniquely the product of coprime monic
polynomials Q R with Q € Uy and R € Us,.

Proof: The Jacobian matrix of m is the Sylvester matrix associated to
Xq—l ROu seey ROu XT_l Q07 sy QO

(Proposition 4.19). Hence the Jacobian of m is equal, up to sign, to the
resultant of Ry and Qg and is therefore different from zero by Proposition 4.15,
since Ry and @y have no common factor. The conclusion follows using the
implicit function theorem (Theorem 3.25). O

We can now prove

Theorem 5.12. [Continuity of Roots| Let P € R[X}, ..., Xi] and let S
be a semi-algebraic subset of R¥~1. Assume that deg(P(x', X})) is constant
on S and that for some a’ € S, zi, ..., z; are the distinct roots of P(a’, Xx)
in C=R[i], with multiplicities p1, ..., 15, respectively.

If the open disks D(z;, r) C C are disjoint then there is an open neigh-
borhood V of a' such that for every ' € VNS, the polynomial P(x', X)) has
exactly p; roots, counted with multiplicity, in the disk D(z;,r), fori=1,...,j.

Proof: Let Py = (X — z1)** -+ (X — z;)". By Lemma 5.11 there exist
open neighborhoods U of Py in C* T THi ]} of (X — z)"™ in CM, ...,
U; of (X — z;)* in C*7 such that every P € U can be factored uniquely as
P=Q:-- Qj, where the Q; are monic polynomials in U;.

Using Lemma 5.10, it is clear that there is a neighborhood V' of a’ in S so
that for every 2’ € V' the polynomial P(z’, X}) has exactly u; roots counted
with multiplicity in D(z;,r), for i=1,..., j. O

We next consider the conditions which ensure that the zeros of two poly-
nomials over a connected semi-algebraic set define a cylindrical structure.
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Proposition 5.13. Let P, Q € R[X1,...Xk] and S a semi-algebraically con-
nected subset of RF¥~1. Suppose that P and Q are not identically 0 over S
and that deg(P(z', X)), deg(Q(x’, X)), deg(ged(P (', Xi), Q(z', Xk))), the
number of distinct roots of P(x', X}) in C and the number of distinct roots
of Q(x’, Xy) in C are constant as x’ varies over S. Then there exists £ contin-
uous semi-algebraic functions & < --- < &p: S — R such that, for every ' €S,
the set of real roots of (PQ)(x’, Xy) is exactly {&1(x’), ..., (")}

Moreover for i =1, ..., £, the multiplicity of the root &;(x’) of P(x', X})
(resp. Q(z', X})) is constant for ' € S. (If a is not a root, its multiplicity is
zero, see Definition page 30).

Proof: Let o’ € S and let z, ..., z; be the distinct roots in C of the pro-
duct (P @Q)(a’, Xi). Let p; (resp. v;) be the multiplicity of z; as a root
of P(a’, X)) (resp. Q(a’, X%)). The degree of ged(P(a’, Xi), Q(a’, X))
is Zgzl min (u;,v4), and each z; has multiplicity min (u;,v;) as a root of this
greatest common divisor. Choose r >0 such that all disks D(z;,r) are disjoint.

Using Theorem 5.12 and the fact that the number of distinct complex roots
stays constant over S, we deduce that there exists a neighborhood V of o’
in S such that for every z’ €V, each disk D(z;,r) contains one root of multi-
plicity p; of P(z’, X)) and one root of multiplicity v; of Q(z’, X}). Since the
degree of ged(P(z', X), Q(a’, X)) is equal to -7 min (1, 14), this greatest
common divisor must have exactly one root (;, of multiplicity min (u;, v;),
in each disk D(z;, r) such that min (u;, v;) > 0. So, for every z’ € V,
and every i=1,..., j, there is exactly one root ¢; of (PQ)(x’, Xy) in D(z;,7r)
which is a root of P(z’, X}) of multiplicity p; and a root of Q(z’, X}) of
multiplicity v;. If z; is real, ¢; is real (otherwise, its conjugate {; would be
another root of (P Q)(z’, Xx) in D(z;, r)). If z; is not real, ¢; is not real,
since D(z;, r) is disjoint from its image by conjugation. Hence, if z’ € V,
the polynomial (P @)(z’, Xx) has the same number of distinct real roots
as (P Q)(a’, Xi). Since S is semi-algebraically connected, the number of
distinct real roots of (PQ)(z’, Xi) is constant for ' € S according to Proposi-
tion 3.9. Let ¢ be this number. For 1 <{ </, denote by &;: S — R the function
which sends z’ € S to the i-th real root (in increasing order) of (PQ)(z’, Xk).
The argument above, with arbitrarily small r also shows that the functions &;
are continuous. It follows from the fact that S is semi-algebraically connected
that each &;(x") has constant multiplicity as a root of P(z’, X},) and as a root
of Q(x’, X}) (cf Proposition 3.9). If S is described by the formula ©(X’), the
graph of ¢; is described by the formula

o(X")
A ((EN)...(FY) V1< <Yy A(PQ)(X', Y1) =0 AN (PQ)(X',Ye) =0)
A (YY) (PQ)X,Y)=0= (Y =YV..VY =Y))) A X, =Y)),

which shows that ¢; is semi-algebraic, by quantifier elimination (Corol-
lary 2.78). O
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We have thus proved:

Proposition 5.14. Let P be a finite subset of R[X1, ...Xx] and S a semi-
algebraically connected semi-algebraic subset of RF~1. Suppose that, for
every P € P, deg(P(z', X)) and the number of distinct real roots of P are con-
stant over S and that, for every pair P, Q € P, deg(ged (P (2, Xi), Q(z', Xi))
is also constant over S. Then there are ¢ continuous semi-algebraic func-
tions & < - < &: S — R such that, for every x’' € S, the set of real roots
of Ilpep P(a's Xi), where P’ is the subset of P consisting of polyno-
mials not identically 0 over S, is exactly {&1(z'), ..., &(z')}. Moreover, for
i=1,....,0 and for every P € P’, the multiplicity of the root &;(x") of P(x’,
Xk) is constant for x' € S.

It follows from Chapter 4 (Proposition 4.24) that the number of distinct
roots of P, of @) and the degree of the greatest common divisor of P and @)
are determined by whether the signed subresultant coefficients sRes;(P, P’)
and sRes;(P, Q) are zero or not, as long as the degrees (with respect to Xy)
of P and @Q are fixed.

Notation 5.15. [Elimination] Using Notation 1.16, with parameters
X1,..., X;_1 and main variable Xy, let

Tru(P)={Tru(P)| P P}.

We define Elimx, (P) to be the set of polynomials in R[X7, ..., Xj;_1] defined
as follows:

— If R e Tru(P), degx,(R) > 2, Elimy, (P) contains all sRes;(R, OR/0X})
which are not in R, j=0,...,degx, (R) — 2.
— If ReTru(P), SeTru(P),
— if degx,(R) > degx,(S), Elimy, (P) contains all sRes;(R,S) which are
not in R, j=0,...,degx,(5) — 1,
— if degx,(R) <degx,(S), Elimx,(P) contains all sRes;(S, R) which are
not in R, j=0,...,degx,(R) — 1,
— if degx,(R) = degx,(9), Elimy,(P) contains all sRes;(S, R), with
R=1cof(S)R —lcof(R)S which are not in R, j=0,...,degx,(R) — 1.
— If ReTru(P), and lcof(R) is not in R, Elimx, (P) contains lcof(R). O

Theorem 5.16. Let P be a set of polynomials in R[X1, ..., Xi|, and
let S be a semi-algebraically connected semi-algebraic subset of R¥~1 which
is Elimx, (P)-invariant. Then there are continuous semi-algebraic func-
tions & <--- < &S — R such that, for every x' € S, the set {&1(2),..., &(z))}
is the set of all real roots of all non-zero polynomials P(z', Xj), P € P.
The graph of each & (resp. each band of the cylinder S x R bounded by
these graphs) is a semi-algebraically connected semi-algebraic set semi-alge-
braically homeomorphic to S (resp. S x (0,1)) and is P-invariant.
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Proof: For P in P, R € Tru(P), consider the constructible set A ¢ RF~!
defined by lcof(R) 0, deg(P) =deg(R). By Proposition 4.24, for every a’€ A,
the vanishing or non-vanishing of the sRes;(R, OR/0Xy)(a’) determines the
number of distinct roots of P(a’, X}) in C, which is

deg (R(a’, X})) — deg(ged (R(a’, X), OR/0Xk(a’, X))

Similarly, for R € Tru(P), S € Tru(Q), consider the constructible set B defined
by
lcof(R) # 0, deg(P) = deg(R), 1cof(S) # 0, deg(Q) = deg(.S).

For every a’ € B, which of the sRes;(R,S)(a’) (resp. sRes;(S, R)(a’),
sRes;(S, R)(a’)) vanish, determine deg(ged(P(a’, Xi), Q(a’, X))), by Propo-
sition 4.24. Thus, the assumption that a connected semi-algebraic subset
of R*~! is Elimy,(P)-invariant implies that the hypotheses of Proposi-
tion 5.14 are satisfied. ]

We are finally ready for the proof of Theorem 5.6.

Proof of Theorem 5.6 The proof is by induction on the dimension of the
ambient space.

Let Q CR[X1] be finite. It is clear that there is a cylindrical decomposition
of R adapted to Q since the real roots of the polynomials in @ decompose the
line into finitely many points and open intervals which constitute the cells of
a cylindrical decomposition of R adapted to Q.

Let Q CR[X},..., X;] be finite. Starting from a cylindrical decomposition
of Ri~! adapted to Elimx,(Q), and applying to the cells of this cylin-
drical decomposition Proposition 5.16, yields a cylindrical decomposition of R?
adapted to Q.

This proves the theorem. O

Example 5.17. We illustrate this result by presenting a cylindrical decom-
position of R? adapted to the polynomial P = X7 + X3 + X2 — 1. The 0-th
Sylvester-Habicht matrix of P and OP/0X3 is

10 X2+X35-1
0 2 0
20 0
Hence, sReso(P, OP/0X3) = —4(X} + X3 — 1) and sRes;(P, OP/0X3) = 2.
Getting rid of irrelevant constant factors, we obtain

Elimy,(P)={X{+ X3 —1}.
Similarly,

Elim x,(Elimx,(P)) = {X? - 1}.

The associated cylindrical decomposition is precisely the one described in
Example 5.4. 0
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Remark 5.18. The proof of Theorem 5.6 provides a method for con-
structing a cylindrical decomposition adapted to P. In a projection phase,
we eliminate the variables one after the other, by computing Elimy,(P),
then Elimy, ,(Elimy,(P)) etc. until we obtain a finite family of univariate
polynomials.

In a lifting phase, we decompose the line in a finite number of cells which
are the points and intervals defined by the family of univariate polynomials.
Then we decompose the cylinder contained in R? above each of these points
and intervals in a finite number of cells consisting of graphs and bands between
these graphs. Then we decompose the cylinder contained in R? above each of
plane cells in a finite number of cells consisting of graphs and bands between
these graphs etc.

Note that the projection phase of the construction provides in fact an
algorithm computing explicitly a family of polynomials in one variable. The
complexity of this algorithm will be studied in Chapter 12. 0

Theorem 5.19. Every semi-algebraic subset S of RF is the disjoint union of
a finite number of semi-algebraic sets, each of them semi-algebraically home-
omorphic to an open i-cube (0,1)* CR? for some i <k (by convention (0,1)°
is a point).

Proof: According to Corollary 5.7, there exists a cylindrical decom-
position adapted to S. Since these cells are homeomorphic to an
open i-cube (0,1)* C R? for some i < k, the conclusion follows immediately. [J

An easy consequence is the following which asserts the piecewise continuity
of semi-algebraic functions.

Proposition 5.20. Let S be a semi-algebraic set and let f: S — R* be a
semi-algebraic function. There is a partition of S in a finite number of semi-
algebraic sets S1, ..., Sy, such that the restriction f; of f to S; is semi-algebraic
and continuous.

Proof: By Theorem 5.19, the graph G of f is the union of open i-cubes of
various dimensions, which are clearly the graphs of semi-algebraic continuous
functions. 0

5.2 Semi-algebraically Connected Components

Theorem 5.21. Every semi-algebraic set S of R¥ is the disjoint union of a
finite number of semi-algebraically connected semi-algebraic sets C1,...,Cy that
are both closed and open in S.

The C4, ..., Cy are called the semi-algebraically connected compo-
nents of S.
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Proof of Theorem 5.21: By Theorem 5.19, S is the disjoint union of a finite
number of semi-algebraic sets 5; semi-algebraically homeomorphic to open
d(i)-cubes (0,1)%? and hence semi-algebraically connected by Proposition 3.8
Consider the smallest equivalence relation R on the set of the .S; containing
the relation “S; N S_ﬂé @”. Let C1,...,Cp be the unions of the equivalence classes
for R. The C} are semi-algebraic, disjoint, closed in .S, and their union is S. We
show now that each C; is semi-algebraically connected. Suppose that we have
Cj=F1UF, with F} and F; disjoint, semi-algebraic and closed in C;. Since
each S; is semi-algebraically connected, S; C C; implies that .S; C F} or S; C Fb.
Since Fy (resp. Fb) is closed in Cj, if S; C Fy (resp. F») and S;NS; # () then
S;» C Fy (resp. F»). By the definition of the Cj, we have C; = F or C; = Fo.
So C; is semi-algebraically connected. |

Theorem 5.22. A semi-algebraic subset S of R* is semi-algebraically con-
nected if and only if it is connected. Every semi-algebraic set (and in particular
every algebraic subset) of R* has a finite number of connected components,
each of which is semi-algebraic.

Proof: It is clear that if S is connected, it is semi-algebraically connected.
If S is not connected then there exist open sets O; and Os (not necessarily
semi-algebraic) with

S CO1UO,, OlﬁS#Q,OgﬂS#@

and (SNO;)N(SNO3)=0. By Theorem 5.19, we know that S is a union of
a finite number C1, ..., Cy of semi-algebraic sets homeomorphic to open cubes
of various dimensions. If O1 NS and O2N S are unions of a finite number of
semi-algebraic sets among C4, ..., Cp, O1 NS and Oy N S are semi-algebraic
and S is not semi-algebraically connected. Otherwise, some C; is disconnected
by O; and Os, which is impossible since C; is homeomorphic to an open cube.

Hence a semi-algebraic subset S of RF is semi-algebraically connected
if and only if it is connected. The remainder of the theorem follows from
Theorem 5.21. |

Theorem 5.23. A semi-algebraic set is semi-algebraically connected if and
only if it is semi-algebraically path connected.

Proof: Since [0, 1] is semi-algebraically connected, it is clear that semi-alge-
braic path connectedness implies semi-algebraic connectedness. We prove the
converse by using Theorem 5.19 and the proof of Theorem 5.21. It is obvious
that an open d-cube is semi-algebraically path connected. It is then enough
to show that if S; and S; are semi-algebraically homeomorphic to open d-
cubes, with S;NS;# 0, then S;US; is semi-algebraically path connected. But
this is a straightforward consequence of the Curve Selection Lemma (The-
orem 3.19). O

Let R’ be a real closed extension of the real closed field R.
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Proposition 5.24. The semi-algebraic set S is semi-algebraically connected
if and only if Ext(S,R’) is semi-algebraically connected.

More generally, if Ci, ..., Cy are the semi-algebraically connected com-
ponents of S, then Ext(Cy, R), ..., Ext(Cy, R’) are the semi-algebraically
connected components of Ext(S,R’).

Proof: Given a decomposition S = U:n:l S;, with, for each ¢, a semi-algebraic
homeomorphism ¢;: (0, 1)d(i) —S;, the extension gives a decomposition

Ext(S,R") = | ] Ext(S;, R),
i=1

and semi-algebraic homeomorphisms
EXt((piv R/): (EXt((Ov 1)5 R/)di - (EXt(Sla R/)

The characterization of the semi-algebraically connected components from a
decomposition (cf. Theorem 5.21) then gives the result. a

5.3 Dimension

Let S be a semi-algebraic subset of R¥. Take a cylindrical decomposition of R*
adapted to S. A naive definition of the dimension of S is the maximum of the
dimension of the cells contained in S, the dimension of a cell semi-algebraically
homeomorphic to (0,1)? being d. But this definition is not intrinsic. We would
have to prove that the dimension so defined does not depend on the choice of
a cylindrical decomposition adapted to S. Instead, we introduce an intrinsic
definition of dimension and show that it coincides with the naive one.

The dimension dim (S) of a semi-algebraic set S is the largest d such that
there exists an injective semi-algebraic map from (0,1)? to S. By convention,
the dimension of the empty set is —1. Note that the dimension of a set
is clearly invariant under semi-algebraic bijections. Observe that it is not
obvious for the moment that the dimension is always < +o0. It is also not clear
that this definition of dimension agrees with the intuitive notion of dimension
for cells.

We are going to prove the following result.

Theorem 5.25. Let S C R* be semi-algebraic and consider a cylindrical
decomposition of R* adapted to S. Then the dimension of S is finite and is
the maximum dimension of the cells contained in S.

The key ingredient for proving this result is the following lemma.
Lemma 5.26. Let S be a semi-algebraic subset of R* with non-empty interior.

Let f: S — RF be an injective semi-algebraic map. Then f(S) has non-empty
mterior.
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Proof: We prove the lemma by induction on k. If k=1, S is semi-algebraic
and has infinite cardinality, hence f(S)CR is semi-algebraic and infinite and
must therefore contain an interval.

Assume that £ > 1 and that the lemma is proved for all / < k. Using
the piecewise continuity of semi-algebraic functions (Proposition 5.20), we
can assume moreover that f is continuous. Take a cylindrical decompo-
sition of R* adapted to f(S). If f(S) has empty interior, it contains no
cell open in RF. Hence f(S) is the union of cells Cy, ..., C, that are
not open in R* and, for i=1,...,n, there is a semi-algebraic homeomor-
phism C;— (0,1)% with ¢;<k. Take a cylindrical decomposition of R
adapted to the f~1(C;). Since S=J;_, f~*(C;) has non-empty interior, one
of the f~1(C;), say f~(C1), must contain a cell C' open in R¥. The restric-
tion of f to C' gives an injective continuous semi-algebraic map C' — Ci.

Since C' is semi-algebraically homeomorphic to (0, 1)¥ and C; semi-alge-
braically homeomorphic to (0,1)¢ with £ < k, we obtain an injective continuous
semi-algebraic map g from (0, 1)* to (0, 1)*. Set a = (%, ey %) € RF~* and
consider the mapping g, from (0,1)“to (0,1)* defined by g.(z)=g(a,z). We can
apply the inductive assumption to g,. It implies that g,((0,1)) has non-empty
interior in (0,1)¢. Choose a point ¢= g,(b) in the interior of g,((0,1)). Since g
is continuous, all points close enough to (a,b) are mapped by ¢ to the interior
of ga((0,1)%). Let (z,b) be such a point with z # a. Since g, is onto the interior
of g4((0, 1)%) there is y € (0, 1) such that g(x, b) = gu(y) = g(a, y), which
contradicts the fact that g is injective. Hence, f(S) has non-empty interior. [J

Proposition 5.27. The dimension of (0,1)% is d. The dimension of a cell
semi-algebraically homeomorphic to (0,1)? is d.

Proof: There is no injective semi-algebraic map from (0,1)€ to (0,1)% if e > d.
Otherwise, the composition of such a map with the embedding of (0, 1)¢ in
R¢=R? x R*"? as (0, 1)¢ x {0} would contradict Lemma 5.26. This shows
the first part of the corollary. The second part follows, using the fact that
the dimension, according to its definition, is invariant under semi-algebraic
bijection. O

Proposition 5.28. If S CT are semi-algebraic sets, dim (S) <dim (7).

If S and T are semi-algebraic subsets of R¥, dim (S UT) =max (dim (S),
dim (7).

If S and T are semi-algebraic sets, dim(S x T') = dim (S) + dim (7).

Proof: That dim (S) < dim (T) is clear from the definition. The inequality
dim (SUT) > max (dim S, dim T) follows from 1. Now let f:(0,1)¢— SUT
be a semi-algebraic injective map. Taking a cylindrical decomposition of R?
adapted to f~1(S) and f~Y(T), we see that f~1(S) or f~1(T) contains a cell
of dimension d. Since f is injective, we have dim (S) >d or dim (T") > d. This
proves the reverse inequality dim (SUT) <max (dim (), dim (7).
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Since dim (S UT) = max (dim (S), dim (7)), it is sufficient to consider the
case where S and T are cells.

Since S x T is semi-algebraically homeomorphic to (0, 1) % x (0,1)dm T
the assertion in this case follows from Proposition 5.27. 0

Proof of Theorem 5.25: The result follows immediately from Proposi-
tion 5.27 and Proposition 5.28. O

Proposition 5.29. Let S be a semi-algebraic subset of R, and let f: S — R?
a semi-algebraic mapping. Then dim (f(S)) <dim (S). If f is injective, then
dim( f(S)) =dim (S).

The proof uses the following lemma.

Lemma 5.30. Let S CR**¢ be a semi-algebraic set,  the projection of R¥*+¢
onto RY. Then dim(n(S)) <dim(S). If, moreover, the restriction of w to S is
injective, then dim(7(S))=dim S.

Proof: When /=1 and S is a graph or a band in a cylindrical decomposition
of R¥*1 the result is clear. If S is any semi-algebraic subset of R¥*1, it is a
union of such cells for a decomposition, and the result is still true. The case
of any ¢ follows by induction. O

Proof of Proposition 5.30: Let G € R¥** be the graph of f. Lemma 5.30
tells us that dim(S) = dim(G) and dim( f(S)) < dim(S), with equality if f is
injective. O

Finally the following is clear:

Proposition 5.31. Let V be an S submanifold of dimension d of R* (as a
submanifold of R*, see Definition 3.25). Then the dimension of V as a semi-
algebraic set is d.

5.4 Semi-algebraic Description of Cells

In the preceding sections, we decomposed semi-algebraic sets into simple
pieces, the cells, which are semi-algebraically homeomorphic to open i-cubes.
We have also explained how to produce such a decomposition adapted to
a finite set of polynomials P. But the result obtained is not quite satis-
factory, as we do not have a semi-algebraic description of the cells by a boolean
combination of polynomial equations and inequalities. Since the cells are semi-
algebraic, this description certainly exists. It would be nice to have the poly-
nomials defining the cells of a cylindrical decomposition adapted to P. This
will be possible with the help of the derivatives of the polynomials.
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We need to introduce a few definitions.

Definition 5.32. A weak sign condition is an element of

{{0}7 {Ov 1}7 {07 _1}}‘
Note that
sign(x) € {0} if and only if =0,
sign(z) €{0,1} if and only if z >0,
sign(z) € {0,—1} if and only if z <0.

A weak sign condition on Q is an element of {{0}, {0, 1}, {0, —1}}<.
If o0 €{0,1,—1}<, its relaxation & is the weak sign condition on Q defined

by 6(Q) =0(Q). The realization of the weak sign condition 7 is
Reali(t) = {z €RF | /\ sign(Q(z)) e7(Q)}.

QeQ

The weak sign condition 7 is realizable if Reali(7) is non-empty.
A set of polynomials Q C R[X] is closed under differentiation if 0¢Q
and if for each Q € Q then Q'€ Q or Q'=0. O

The following result is an extension of the Basic Thom’s lemma
(Lemma 2.28) seen in Chapter 2. It implies that if a family of polynomials
is stable under differentiation, the cells it defines on a line are described
by sign conditions on this family.

Lemma 5.33. [Thom’s lemma] Let Q C R[X] be a finite set of polynomials
closed under differentiation and let o be a sign condition on the set Q. Then

— Reali(o) is either empty, a point, or an open interval.

— If Reali(o) is empty, then Reali(7) is either empty or a point.

— If Reali(o) is a point, then Reali(7) is the same point.

— If Reali(o) is an open interval then Reali(7) is the corresponding closed
interval.

Proof: The proof is by induction on s, the number of polynomials in Q. There
is nothing to prove if s=0. Suppose that the proposition has been proved for
s and that @) has maximal degree in Q, which is closed under differentiation
and has s+ 1 elements. The set Q \ {@} is also closed under differentiation.
Let o € {0, 1, —l}Q be a sign condition on Q, and let ¢’ be its restriction to
0\ {Q}. If Reali(o’) is either a point or empty, then

Reali(o) =Reali(c’) N{z € R|sign(Q(z)) =0(Q)}

is either a point or empty. If Reali(c”) is an open interval, the derivative of @
(which is among Q \ {Q}), has a constant non-zero sign on it (except if @ is
a constant, which is a trivial case). Thus @ is strictly monotone on Reali(7”)
so that the claimed properties are satisfied for Reali(o). |
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By alternately applying the operation Elim and closing under differenti-
ation we obtain a set of polynomials whose realizable sign conditions define
the cells of a cylindrical decomposition adapted to P.

Theorem 5.34. Let P*=U,;=1, 1 P; be a finite set of non-zero polynomials
such that:

— Py contains P,

— foreachi, P; is a subset of R[X7,...,X;] that is closed under differentiation
with respect to X;,

— for i<k, Elimy,(P;) CP;_1.

Writing P<; = Ujgi P, the families S;, for i = 1, ..., k, consisting of
all Reali(o) with o a realizable sign condition on P<; constitute a cylin-
drical decomposition of R* adapted to P.

Proof: The case k =1 is covered by Lemma 5.33. The proof of the general
case is clear by induction on k, again using Lemma 5.33. 0

Remark 5.85. Since P<;41 is closed under differentiation, for every
cell S CR® and every semi-algebraic function s ; of the cylindrical decom-
position described in the theorem, there exists P € P<;41 such that, for
every z € S, &s, () is a simple root of P(x, X;11). O

5.5 Stratification

We do not have so far much information concerning which cells of a cylindrical
decomposition are adjacent to others, for cells which are not above the same
cell.

In the case of the cylindrical decomposition adapted to the sphere, it is not
difficult to determine the topology of the sphere from the cell decomposition.
Indeed, the two functions on the disk defined by X7 + X2 + X2 < 1, whose
graphs are the two open hemispheres, have an obvious extension by continuity
to the closed disk.

Ezample 5.36. We give an example of a cylindrical decomposition where it
is not the case that the functions defined on the cells have an extension by
continuity to boundary of the cell. Take P = (X; X5 X3) — (X7 4 X3). In order
to visualize the corresponding zero set, it is convenient to fix the value of x3.

The zero set Z of (X1 Xox3) — (X7 + X3) can be described as follows.

— If —2<wx3<2, Z consists of the isolated point (0,0, z3).
— If 3= —2 or 3 =2, Z consists of one double line through the origin in
the plane X35=uxs.
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— If 23> —2 or x3< 2, Z consists of two distinct lines through the origin in
the plane X5=xs.

Note that the set of zeroes of P in the ball of center 0 and radius of 1 is the
segment (—1,1) of the X3 axis, so that Zer(P,R?) has an open subset which
is a semi-algebraic set of dimension 1.

—  When X; X5#0, P=0 is equivalent to

N XE+ X3
3TTXX,

— When X; =0, X5+#0, the polynomial P is — X3.
— When X3=0, X;+#0, the polynomial P is — X
— When X;=0, Xo=0, P is identically zero.

The function (X7 + X3)/(X; X3) does not have a well defined limit when X;
and X5 tend to 0. The function describing the zeros of P on each open
quadrant cannot be extended continuously to the closed quadrant.

The main difference with the example of the sphere is the fact that the
polynomial P is not monic as polynomial in Xj3: the leading coefficient X; Xo
vanishes, and P is even identically zero for X; = Xs=0. O

We explain now that the information provided by the cylindrical decom-
position is not sufficient to determine the topology.

Example 5.37. We describe two surfaces having the same cylindrical decom-
position and a different topology, namely the two surfaces defined as the zero
sets of

P, = (X1X5X3)2— (X?+X3)?
P = Po=(X1 X2 X3— (X1—X2)?) (X1 X2 X3— (X1+ X2)?).

Consider first P; = (X1 X2 X3)? — (X7 + X3)2. In order to visualize the zero set
of P, it is convenient to fix the value of z3.

The zero set of P;= (X1 Xo23)?— (X{+ X3)?is the union of the zero set Z;
of (X1 Xow3) + (X?+ X3) and the zero set Zs of (X1 Xox3) — (X7 + X3) in
the plane X35=ux3.

— If —2<w3<2, Z1 =75 consists of the isolated point (0,0, z3).

— If z3=—2or x3=2, Z1U Z5 consists of two distinct lines through the origin
in the plane X3=x3.

— If x3> — 2 or x3 < 2, Z1 U Z3 consists of four distinct lines through the
origin in the plane X3=ux3.

Note that the set of zeroes of P; in the ball of center 0 and radius of 1 is the

segment (—1,1) of the X3 axis, so that Zer(Py, R?) has an open subset which

is a semi-algebraic set of dimension 1.
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It is easy to see that the 9 cells of R? defined by the signs of X; and X5
together with the 3 cells of R defined by the sign of X; determine a cylindrical
decomposition adapted to {P;}.

— When X; X5#0, P, =0 is equivalent to

X7+ X5
XXy

_XP+ X3

Xg—m or X3:_

So the zeroes of P, are described by two graphs of functions over each
open quadrant, and the cylindrical decomposition of P; has five cells over
each open quadrant. The sign of P; in these five cells is 1,0, —1,0, 1.

— When X; =0, Xo#0, the polynomial P, is — X3. The cylinders over each
open half-axis have one cell on which P; is negative.

— When X;#0, Xo=0, the polynomial P; is — Xf. The cylinders over each
open half-axis have one cell on which P; is negative.

— When X; =0, Xo=0, P, is identically zero. The cylinder over the origin
has one cell on which P; is zero.

The function (X7 + X3)/(X: X3) does not have a well defined limit
when X; and X5 tend to 0. Moreover, the closure of the graph of the func-
tion (X7 + X3)/(X1X2) on X; > 0, X5 > 0 intersected with the line above
the origin is [2,+00), which is not a cell of the cylindrical decomposition.

Consider now Pg = (Xl Xg X3 — (Xl — X2)2) (Xl X2 X3 - (Xl + X2)2)7

In order to visualize the corresponding zero set, it is convenient to fix the
value of z3.

The zero set of (X1 X2 23 — (X1 — X2)?) (X1 X2 23 — (X1 + X2)?) is
the union of the zero set Z; of X7 X w3 — (X1 — X32)? and the zero set Z
of X7 Xox3— (X1 + X2)? in the plane X3=z3.

It can be easily checked that:

— If —4<x3, or x3>4, the zeroes of P, in the plane X3=x3 consist of four
lines through the origin.

— If z3=—4 or x3=4, the zeroes of P; in the plane X3=x3 consists of three
lines through the origin.

— If £3=0, the zeroes of P» in the plane X3=x3 consists of two lines through
the origin.

— If —4<x3<0or 0<z3<4, the zeroes of P, in the plane X3=x3 consists
of two lines through the origin.

It is also easy to see that the 9 cells of R? defined by the signs of X; and X and
the 3 cells of R defined by the sign of X; determine a cylindrical decomposition
adapted to {P»}.

— When X;X2#0, P,=0 is equivalent to

(X1 - Xo)? (X1 + Xo)?
X3——X1X2 or X3——X1X2 .
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So the zeroes of P, are described by two graphs of functions over each
open quadrant, and the cylindrical decomposition of P, has five cells over
each open quadrant. The sign of P» in these five cells is 1,0, —1,0, 1.

— When X;=0, X5+#0, the polynomial P is — X3. The cylinders over each
open half-axis have one cell on which P, is negative.

— When X;#0, Xo=0, the polynomial P, is — Xf. The cylinders over each
open half-axis have one cell on which P, is negative.

— When X; =0, Xo=0, P, is identically zero. The cylinder over the origin
has one cell on which P is zero.

Finally, while the descriptions of the cylindrical decompositions of P and P»
are identical, Zer(Py, R3?) and Zer(P,, R?) are not homeomorphic: Zer(Pp, R3)
has an open subset which is a semi-algebraic set of dimension 1, and it is not
the case for Zer(P,, R3). O

A semi-algebraic stratification of a finite family S;, ..., Sy of semi-
algebraic sets is a finite partition of each .S; into semi-algebraic sets .S; ; such
that

— every S; ;j is a §° submanifold,
— the closure of S; ; in S; is the union of S; ; with some S; ;s where the
dimensions of the S; ;/’s are less than the dimension of .S; ;.

The S; ; are called strata of this stratification. A cell stratification of R*
adapted to P is a stratification of R* for which every stratum S; is S
diffeomorphic to an open cube (0,1)% and is also P-invariant. A cell stratifi-
cation of R* adapted to P induces a stratification of S, ..., S, for every finite
family Sy, ..., Sp of P-semi-algebraic sets.

Theorem 5.38. For every finite set P C R[Xq, ..., Xk], there exists a cell
stratification of R* adapted to P.

In Thom’s lemma, the closures of the different “pieces” (points and open
intervals) are obtained by relaxing strict inequalities. The key technique to
prove Theorem 5.38 is to extend these properties to the case of several vari-
ables. In the cylindrical decomposition, when the polynomials are quasi-
monic, we can control what happens when we pass from a cylinder S x R
to another 7' x R such that 7' C §. The quasi-monicity is needed to avoid
the kind of bad behavior described in Example 5.37.

The following result can be thought of as a multivariate version of Thom'’s
lemma.

Suppose that

— P CR[Xy, ..., Xi] is closed under differentiation with respect to X} and
each P € P is quasi-monic with respect to X (see Definition 4.72),

— S and S’ are semi-algebraically connected semi-algebraic subsets of R¥ 1,
both Elimx, (P)-invariant, and S’ is contained in the closure of S.
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It follows from Proposition 5.16 that there are continuous semi-algebraic func-
tions & <+ < &:S—R and & < < & S"— R which describe, for all P € P,
the real roots of the polynomials P(x, Xj) as functions of = = (z1, ..., xx_1)
in S or in S’. Denote by T'; and T'; the graphs of ¢; and &}, respectively.
Since P is closed under differentiation, there is a polynomial P € P such
that, for every x € S (resp. = € S’), &;(x) (vesp. &j(x)) is a simple root
of P(z,X}) for P € P (see Remark 5.35). Denote by B; and Bj the bands
of the cylinders S x R and S’ x R, respectively, which are bounded by these
graphs.

Proposition 5.39. [Generalized Thom’s Lemmal]

— EBuvery function £; can be continuously extended to S’, and this extension
coincides with one of the functions ;.

— For every function &}, there is a function §; whose extension by continuity
to S"is &
— For every 0 €{0,1,—1}7, the set

Reali(o, S x R)={(z,zx) € S xR |sign(P(z,xr)) =0}

is either empty or one of the T'; or one of the B,. Let Reali(, S x R) be
the subset of S x R obtained by relaxing the strict inequalities:

Reali(7, S x R) ={(z,zr) € S xR |sign(P(z,zr)) €7},
and let

Reali(7; 5" x R)={(z,zx) € S’ xR |sign(P(z,zx)) €T} .
If Reali(o, S x R) # 0, we have Reali(o, S x R) N (S x R) = Reali(7,
S x R)) and Reali(o, S x R) N (S’ x R) = Reali(7, S’ x R). More-

over, Reali(c, S’ x R) is either a graph T, or the closure of one of the
bands B}, in S’ x R.

Proof: Let '€ S’. Consider one of the functions §;. Since P is closed under
differentiation, there is a polynomial P € P such that, for every z € S, £;(z)
is a simple root of

Pz, Xp)=ap XF+a,_1(z) XP ™'+ +ag(x)

(see Remark 5.35). Moreover, a), is a non-zero constant. Let

ap—i(z') e
ap '

By Proposition 5.9, and the continuity of M, there is a neighborhood U of z’
in R¥~1 such that, for every z € SN U, we have

.....

§i(x) € [=M(a") =1, M(z') +1]
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Choose a continuous semi-algebraic path v such that
7((0,1]) CSNU, 7(0)==".

The semi-algebraic function f = &; o 7 is bounded and therefore has, by
Proposition 3.18, a continuous extension f with

FO)e[-M(z") =1, M(2") +1].

Let 7 =sign(P'(z, £;(2))), ..., T, =sign(PP)(z, ;(x))), for z €S (observe that
these signs are constant for z €.5). Since every point in the graph of {; satisfies

P(ax',2}) =0, sign(P'(z’, z})) =71, ..., sign(PP)(z, 2})) =74,
every point (2’,z}) in the closure of the graph of &; must satisfy
P(z',x},) =0, sign(P'(z’, z})) €71, ..., sign(PP) (2, x})) €Ta .

By Lemma 5.33 (Thom’s lemma), there is at most one zj satisfying these
inequalities. Since (z/, f(0)) is in the closure of the graph of ¢;, it follows
that &; extends continuously to z’ with the value f(0). Hence, it extends
continuously to S’, and this extension coincides with one of the functions &
This proves the first item.

We now prove the second item. Choose a function &j. Since &} is a
simple root of some polynomial P in the set, by Proposition 3.10 there is a
function ¢;, also a root of P, whose continuous extension to S’ is &

We now turn to the third item. The properties of Reali(o, S x R)
and Reali(7, S x R) are straightforward consequences of Thom’s lemma,
since P € P has constant sign on each graph I'; and each band B;. The clo-
sure of B; in S x Ris I'; U B; UT 41, where I'g = I'y41 = () and therefore
it is obvious that Reali(o, S x R) N (S’ x R) C Reali(7, S’ x R). It fol-
lows from 1 and 2 that Reali(oc, S x R) N (S’ x R) is either a graph I’
or the closure of one of the bands Bj/ in S’ x R.

By Thom'’s lemma, this is also the case for Reali(7, S’ x R). It remains
to check that it cannot happen that Reali(a, S’ x R) is the closure of a
band B}, and Reali(o, S x R) N (S’ x R) is one of the graphs I'}, or T}/

In this case, all o(P) should be different from zero and the sign of P should
be o(P) on every sufficiently small neighborhood V' of a point z’ of B}, This
implies that VN (S xR) C R(o,S x R) and, hence, 2’ € R(c,S x R), which is
impossible. O

Proposition 5.40. Let P*= Ule Pi be finite sets of non-zero polynomials
such that:

— Py contains P,
— oreachi, P; is a subset of R[X1,...,X;] that is closed under differentiation
and quasi-monic with respect to X,
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— for i<k, Elimx,(P;) CP;_1.

Writing P<; = Ujgz' Pj, the families S;, for i =1, ..., k, consisting of all
Reali(o) with o a realizable sign conditions on P<; constitute a cylindrical
decomposition of RF that is a cell stratification of R* adapted to P.

Proof: The proof of the proposition is a simple induction on k. The preceding
Proposition 5.39 (Generalized Thom’s Lemma) provides the induction step
and Thom’s lemma the base case for £ = 1. To show that the dimension
condition is satisfied, observe that if o € {0, 1, —1}” and Reali(c) # 0,
then Reali(7) is the union of Reali(c) and some Reali(o’), o'+ 0.

Since Reali(o) (resp. Reali(c’)) is a cell of a cylindrical decomposition,
Reali(o) (resp. Reali(c”)) is semi-algebraically homeomorphic to (0,1)%)
(resp. (0,1)%°"). That d(c’) < d(o) is easily seen by induction. O

A family P is a stratifying family if it satisfies the hypothesis of Propo-
sition 5.40.

The theorem above holds for a stratifying family of polynomials. But we
shall now see that it is always possible to convert a finite set of polynomials
to a quasi-monic set by making a suitable linear change of coordinates. By
successively converting to quasi-monic polynomials, closing under differenti-
ation and applying Elim, we arrive at a stratifying family.

Proposition 5.41. Let P C R[Xy, ..., Xi]. There is a linear automor-
phism u:R¥ —RF and a stratifying family of polynomials Q* = U;—1__x Q;
such that P(u(X)) € Qy, for all P € P (where X = (X1, ..., X))

Proof: By Lemma 4.73, there is a linear change of variables v such that, for
all P € P, the polynomial P(v(X)) is quasi-monic with respect to Xj.

Let Qy consist of all polynomials P(v(X)) for P € P together with all
their non-zero derivatives of every order with respect to X;. Using induction,
applied to Elimx, (Q}), there is a linear automorphism u”: R¥~! —R¥~! and a
stratifying family of polynomials Ui <;<x—17R; such that Q(u'(X’)) € Ry —1 for
every @ € Elimy, (Qk), where X'=(X1,...,X;_1). Finally, set u=(u'xId)ow
(where v/ xId(X', Xi) = (v'(X'), Xi)), Q;={R(X)|ReR;} for j<k—1. 0O

We are now ready for the proof of Theorem 5.38.

Proof of Theorem 5.38: Use Proposition 5.41 to get a linear automorphism
u: R¥ — R* and a stratifying family Q* that contains

Q={P(u(X))| PP}

in order to obtain, by Proposition 5.40, a cell stratification adapted to Q.
Clearly, u~! converts this cell stratification to one adapted to P. O

Theorem 5.38 has consequences for the dimension of semi-algebraic sets.
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Theorem 5.42. Let S C RF be a semi-algebraic set. Then,

dim(S) = dim(9),
dim(S\ S) < dim(S).

Proof: This is clear from Proposition 5.28 and Theorem 5.38, since the closure
of a stratum is the union of this stratum and of a finite number of strata of
smaller dimensions. O

5.6 Simplicial Complexes

We first recall some basic definitions and notations about simplicial com-
plexes.

Let aq, ..., aq be points of R* that are affinely independent (which means
that they are not contained in any affine subspace of dimension d — 1). The
d-simplex with vertices ag, ..., aq is

d
[ao, ey ad] = {)\0 ap+ -+ Agaq | Z A;=1land Ag,..., \g > 0}.
i=0

Note that the dimension of [ag, ..., ag] is d.

A A

Fig. 5.2. Zero, one, two, and three dimensional simplices

An e —face of the d —simplex s =ay, ..., a4] is any simplex s’ = [by, ..., b]
such that

{b07"'7be} - {(10, ...,(Zd}-

The face s’ is a proper face of s if {by,...,be } # {ao, ..., aq}. The 0 — faces of
a simplex are its vertices, the 1 — faces are its edges, and the (d — 1) — faces
of a d — simplex are its facets. We also include the empty set as a simplex
of dimension —1, which is a face of every simplex. If s’ is a face of s we
write s’ < s.

The open simplex corresponding to a simplex s is denoted s° and consists
of all points of s which do not belong to any proper face of s:

d
s°=(ag,...,aq) ={Aoao+-+Agaq |Z Ai=1land A\g>0,...,\s>0}.
i=0
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which is the interior of [ag, ..., ag. By convention, if s is a 0 — simplex
then s°=s.

The barycenter of a d —simplex s = [aq, ..., a4] in R¥ is the point ba(s) € R
defined by ba(s)=1/(d+1) > ., @i

A simplicial complex K in R* is a finite set of simplices in R* such
that s, s’ € K implies

— every face of s isin K,
— sNs’is a common face of both s and s’.

Fig. 5.3. A two dimensional simplicial complex homeomorphic to S?

The set |K| = J,cx , which is clearly a semi-algebraic subset of R¥, is
called the the realization of K. Note that the realization of K is the disjoint
union of its open simplices. A polyhedron in R¥ is a subset P of R* such that
there exists a simplicial complex K in R* with P=|K|. Such a K is called a
simplicial decomposition of P.

Let K and L be two simplicial complexes. Then L is called a subdivision
of K if

— |LI=K],
— for every simplex s € L there is a simplex s’ € K such that s C s’.

Given a simplicial complex K, an ascending sequence of simplices is a
collection of simplices {sq, s1,...,s;} such that so<s1 <+ <s;.

Let K be a simplicial complex. Let ba(K) denote the set of simplices that
are spanned by the barycenters of some ascending sequence of simplices of K.
Thus for every ascending sequence of simplices in K, so < 51 < -+ < 55, we
include in K’ the simplex [ba(sg), ..., ba(s;)], and we call ba(s;) the leading
vertex of [ba(so), ..., ba(s;)]. It is easy to check that ba(K) is a simplicial
complex, called the barycentric subdivision of K.
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Fig. 5.4. The barycentric subdivision of a two dimensional simplex

5.7 Triangulation

A triangulation of a semi-algebraic set S is a simplicial complex K together
with a semi-algebraic homeomorphism % from |K| to S. We next prove that
any closed and bounded semi-algebraic set can be triangulated. In fact, we
prove a little more, which will be useful for technical reasons. The triangula-
tion will also be a stratification of S which respects any given finite collection
of semi-algebraic subsets of S, i.e. the images of the open simplices will be
the strata and each of the specified subsets of S will be stratified as well.

Semi-algebraic homeomorphism

Fig. 5.5. Semi-algebraic triangulation

A triangulation of S respecting a finite family of semi-algebraic sets
S1,...,84 contained in S is a triangulation K, h such that each S is the union
of images by h of open simplices of K.

Theorem 5.43. [Triangulation] Let S CRF be a closed and bounded semi-
algebraic set, and let Si, ..., Sq be semi-algebraic subsets of S. There exists
a triangulation of S respecting S, ..., Sq. Moreover, the vertices of K can be
chosen with rational coordinates.
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Proof: We first prove the first part of the statement. The proof is by induction
on k. For k=1, let |K|=, taking as open simplices the points and bounded
open intervals which constitute S.

We prove the result for £ > 1 supposing that it is true for £k — 1. After
a linear change of variables as in Proposition 5.41, we can suppose that S
and the S; are the union of strata of a stratifying set of polynomials P.
Thus R*~! can be decomposed into a finite number of semi-algebraically
connected semi-algebraic sets C;, and there are semi-algebraic and continuous
functions & 1 <--- <&;,¢,: C;— R describing the roots of the non-zero polyno-
mials among P(z, Xy), P € Py, as functions of z € C;. We know that S, and
the S;, are unions of some graphs of &; ; and of some bands of cylinders C; x R
between these graphs. Denote by 7: R¥ — R*~1 the projection which forgets
the last coordinate. The set 7(5) is closed and bounded, semi-algebraic, and
the union of some Cj; also, each 7(S;) is the union of some C;. By the induction
hypothesis, there is a triangulation g: |L| — 7(S) (where g is a semi-algebraic
homeomorphism, L a simplicial complex in R*~1) such that each C; C m(S)
is a union of images by ¢ of open simplices of L. Thus, at the top level, R*
is decomposed into cylinders over sets of the form ¢(¢°) for ¢ a simplex of L.

We next extend the triangulation of 7(S) to one for S. For every ¢ in L
we construct a simplicial complex K; and a semi-algebraic homeomorphism

hti |Kt| — SN (g(to) X R)

Fix a t in L, say t = [bg, ..., b4), and let &: g(t°) — R be a function of the cylin-
drical decomposition whose graph is contained in S. We are in the situation
of Proposition 5.39, and we know that £ can be extended continuously to &
defined on the closure of g(¢°) which is g(t). Define a; = (b;, £(g(b;))) € R*
for i=0,...,d, and let s¢ be the simplex [ay, ..., ag) C R¥. The simplex s¢ will
be a simplex of the complex K; we are constructing. Define h; on s¢ by

hy(Aoao+ -+ +Xgaa) = (y,£(y)), where y=g(Aobo+ - + Aqba).

If ¢": g(t°) — R is another function of the cylindrical decomposition whose
graph is contained in S, define s¢-=[ag, ..., ag] in the same way. It is important
that s¢ not coincide with se. At least one of the a; must differ from the
corresponding a;. Similarly when the restrictions of & and & to a face r
of ¢t are not the same, we require that on at least one vertex b; of r, the
values of € and &’ are different (so that the corresponding a; and a are
distinct). Thus we require that or every simplex ¢ of L, if £ and £’ are two
distinct functions g(¢°) — R of the cylindrical decomposition then there exists
a vertex b of ¢ such that &(g(b)) # £'(g(b)). It is clear that this requirement
will be satisfied if we replace L by its barycentric division ba(L). Hence, after
possibly making this replacement, we can assume that our requirement is
satisfied by L.
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Now consider a band between two graphs of successive functions
§<&g(t’) —R

contained in S (note that an unbounded band cannot be contained in S,
since S is closed and bounded). Let P be the polyhedron above ¢ whose
bottom face is s¢ and whose top face is s¢-. This polyhedron P has a simplicial
decomposition

d
/ /
pP= U [ag, ..., ai, ai, ..., ad].
i=0

Note that it may happen that a;=a; in which case we understand

/ !
[a07"'7ai7ai7"'7a/d]
to be the d — 1-simplex
/ o
[a07"'7ai7al+17"'7ad]'

The complex K; we are constructing contains the simplices (and their faces)
of this simplicial decomposition of P. We define h; on P by the condition that
the segment [Ao ag+ -+ Adad, Ao ab+ -+ Agay] is sent by an affine function
to [(y,€(y)), (v, €'(y))], where

Y= g()\0b0+ s )\dbd).

Having constructed K; and h, for each simplex ¢ of L, it remains to prove that
these K; and h; can be glued together to give K and h as a triangulation of S.
We next show that it is possible if we first choose a total order for all vertices
of L and then label the simplices of L compatibly with this total order.

It is enough to check this for a simplex ¢ and one of its faces r. The first
thing to notice is that if we have a simplex s,, in K, that is sent by &, onto the
closure of the graph 7: g(r°) — R, a function of the algebraic decomposition,
and if s, meets | K|, then it is a simplex of K;: indeed in this case 7 coincides
with one of the £ on g(r°) by point 2 of Proposition 5.39 (for &: g(t°) — R, s¢
simplex of K, and s,, a facet of s¢). For this reason, it is also the case that h,
and h, coincide on | K| N|K,|. What remains to verify is that the simplicial
complex of the polyhedron P in ¢ X R (see above) induces the simplicial
decomposition of the polyhedron PN (r x R). This is the case if the simplicial
decomposition P = Uj:o [a, ..., a;, a;, ..., aq) is compatible with a fixed total
order on the vertices of L.

It remains to prove that there exists a simplicial complex L with rational
coordinates such that |K | and |L| are semi-algebraically homeomorphic. The
proof is by induction on k. When k=1, the semi-algebraic subsets S, 51,..., 5,
are a finite number of points and intervals and the claim is clear. The inductive
steps uses the cylindrical structure of the constructed triangulation. |

The following corollary of Theorem 5.43 will be used in the proof of The-
orem 5.46.
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Proposition 5.44. Let S C R* be a closed and bounded semi-algebraic set,
and let Sy, ..., Sq be semi-algebraic subsets of S, such that S and the S;
are given by boolean combinations of sign conditions over polynomials that
are all either monic in the variable Xi or independent of Xy. Let w be the
projection of R* to R¥~1 that forgets the last factor. There are semi-algebraic
triangulations

s’/

o:|K|[= ] [sp| =S, |K|CRF
p=1
and

U:(L| =] [t = =(S), |LICRF!
=1

such that m o ®(z) = ¥ o w(x) for x € |K|, and each S; is the union of
some P(s5).

5.8 Hardt’s Triviality Theorem and Consequences

Hardt’s triviality theorem is the following.

Theorem 5.45. [Hardt’s triviality theorem| Let S C R™ and T C R*
be semi-algebraic sets. Given a continuous semi-algebraic function f: S —T,
there exists a finite partition of T into semi-algebraic sets T = U:Zl T;, so that
for each i and any x; € T;, Ty x f~Y(x;) is semi-algebraically homeomorphic
to f~H(T).

For technical reasons, we prove the slightly more general:

Theorem 5.46. [Semi-algebraic triviality] Let S ¢ R™ and T C R
be semi-algebraic sets. Given a continuous semi-algebraic function f:S—T
and S1, ..., S, semi-algebraic subsets of S, there exists a finite partition
of T into semi-algebraic sets T = U:Zl T;, so that for each i and
any x; € T;, Ty x f~(x;) is semi-algebraically homeomorphic to f~(T;). More
precisely, writing F; = f~(x;), there exist semi-algebraic subsets F; 1,...F; 4
of F; and a semi-algebraic homeomorphism 60;:T; X F; — f_l(Ti) such that
f o8, is the projection mapping T; X F; — T; and such that

0:(T; x F; j)=S;0 f~H(Ty).

Proof: We may assume without loss of generality that

— S and T are both bounded (using if needed homeomorphisms of the form
z—x/(1+||z|), which are obviously semi-algebraic),

— S is a semi-algebraic subset of R™** and f is the restriction to S of the
projection mapping II: R™+* — RF that forgets the first m coordinates,
(replacing S by the graph of f which is semi-algebraically homeomorphic
to S).
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The proof proceeds by induction on the lexicographic ordering of the
pairs (m, k).

The sets S and S; are given by boolean combinations of sign conditions
over a finite number of polynomials P C R[X, Y], where X = (X3, ..., X;»)
and Y = (Y73,..., Yx). Making, if needed, a linear substitution of the variables
of the Y’s only as in Proposition 5.41, one may suppose that each P € P can
be written

gp,o(X) ka(P) +gp1(X,Y) ka(P)_l + 4 gpap) (X, Y),
where Y' = (Y1, ..., Yx_1), with gp o(X) not identically zero. Let

A(X) = H gp,0(X).

PeP

The dimension of the semi-algebraic set 7" = {x € T'| A(z) = 0} is strictly
smaller than m. By Theorem 5.19, this set can be written as the finite union
of sets of the form ¢((0, 1)?) where ¢ is a semi-algebraic homeomorphism
and d <m. Taking the inverse image under ¢, we have to deal with a subset
of R%, and our induction hypothesis takes care of this case.

It remains to handle what happens above T'=T \ T"”. We multiply each
polynomial in P by a convenient product of powers of gg o(X), @ € P, so that
the leading coefficient of P becomes (A(X)Y;)“"). Replacing A(X)Y} by Zy
defines a semi-algebraic homeomorphism from SN (T’ x R¥) onto a bounded
semi-algebraic set S'C R™**. Denote by S;» the image of S; N (T’ x R¥) under
this homeomorphism. Now, the sets S and S;» are both given by boolean com-
binations of sign conditions over polynomials that are all either quasi-monic
in the variable Z; or independent of Zj;. Up to a linear substitution of the
variables involving only the variables X and (Y3, ..., Y;_1), one may suppose
that S and the S.;- are given by boolean combinations of sign conditions over
polynomials of a stratifying family. By Proposition 5.40, S” is also given by a
boolean combination of sign conditions over the same polynomials.

One can now apply Corollary 5.45 to S and Sé =9, Sll, ey S;: there are
semi-algebraic triangulations

o: K| =] lsp| =S [K|cR™H
p=1
and

UL = ltel = 7(S), [L]cRmHF
=1

such that To®(z) =V on(z) if z € |K]|, and each S;- (7=0,...,q) is the union
of some ®(s7).
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We now apply the induction hypothesis to w(?), with the subsets U(¢7)
and the projection mapping IT: R™~1+% — R*¥. We obtain a finite parti-
tion of R* into semi-algebraic sets (Ti/)i:L...,r- We also obtain semi-algebraic
sets Gi, Gi 0,Gi1,..., Gi s with G; o C G; C R™~! and semi-algebraic homeo-
morphisms p;: TZ—, x G;— H/_l(Tl-l) N w(?) such that IT' o p; is the projection
mapping T, x G;— T;. Moreover, for every ¢, py(T} x Gi)= IT'—4(T;) N W(t).
Let us fix ¢, and let 7 be a point of Tl/ One may suppose that

Gi=1""Y(z1) N7(S)

and that if (21, ¥') € Gy, then pi(zy, (x1, ¥)) = (z1, ¥'). Let us then set
F/=TI"Y(z;)NS and FZ,J =T"Yx1)N S;-. It remains to build

0:T, x F, ~TI-YT))n 5.

Let z €T} and (z1,y') € Gy; (z1,y') belongs to one of the W(£3), say U(t39), and
pi(z, (x1,y)) € U(t3). By the properties of the triangulations ® and ¥, the
intersections with the ®(s,) decompose

7

7 a1, y) NS  and 7 (pe(z, (21,9))) NS
in the same way: 6; maps affinely the segment
{w}x (7 (21,5) ND(sp)) CT; x F;

(which is possibly either a point or empty) onto the segment

W_l(pi($7 (xla y/))) N (I)(SP)'
We leave it to the reader to verify that the 6; built in this way is a semi-
algebraic homeomorphism and that 91-(TZ-/ X FZ-/) )= H_l(T; n S;». O

Theorem 5.46 (Semi-algebraic triviality) makes it possible to give an easy
proof that the number of topological types of algebraic subsets of R¥ is finite
if one fixes the maximum degree of the polynomials.

Theorem 5.47. [Finite topological types| Let k and d be two positive
integers. Let M(k, d) be the set of algebraic subsets V C R¥ such that there
exists a finite set P C R[X1, ..., X}] with V =Zer(P,R¥) and deg(P) <d for
every P €P. There exist a finite number of algebraic subsets Vi,..., Vs of RF in
M(k,d) such that for every Vin M(k,d) there exist i, 1 <i<s, and a semi-
algebraic homeomorphism @: R*¥ — RF with o(V;) =V.

Proof: The set M(k,d) is contained in the set JF of algebraic subsets of R¥
given by a single equation of degree < 2d because

Zer(P,RF)=Zer( ) P*%RF).
PeP
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One parametrizes the set F by the space RY of coefficients of the equa-
tion: abusing notation, P denotes the point of RY whose coordinates are
the coefficients of P. Let S = {(P,z) € RN x R¥| P(z) = 0}. The set S is
algebraic. Let II: R x R¥ — R be the canonical projection mapping. One
has II71(P) NS = {P} x Zer(P,R¥). Theorem 5.46 applied to the projection
mapping II: RY x R¥— R and to the subset S of RN x R gives the result. [

Another consequence of Theorem 5.46 (Semi-algebraic triviality) is the
theorem of local conic structure of the semi-algebraic sets.

Theorem 5.48. [Local conic structure| Let E be a semi-algebraic subset
of R* and x a non-isolated point of E. Then there exist r €R, r >0, and for
every ', 0<r’'<r, a semi-algebraic homeomorphism o: By(x,r") — Bi(x,r’)
such that:

= lle(y) =zl =lly —=| for every y € Br(x,r"),
— | S*=Y(z,r’) is the identity mapping,
— @(ENBi(x,r")) is a cone with verter x and base ENS*~(x, r’).

Proof: Apply Theorem 5.46 (Semi-algebraic triviality) with S =RF, S;=FE,
and f:S— R defined by f(y)=|y — || to deduce that there exists r >0 and
for every r’/, 0 <7’ <r, a semi-algebraic homeomorphism

6: (0,7"] x S*=Yz,r") — By(z,r") \ {z}

such that, for every y in S*~1(z,7’), 16(t,y) —x|[=tfort € (0,r], O(r',y) =y,

and 0((0, 7] x (BN S*Yx,r")) = EN Bi(x, )\ {z}. It is then easy to
build . |

Let S be a closed semi-algebraic set and 1" a closed semi-algebraic subset
of S. A semi-algebraic deformation retraction from S to T, is a con-
tinuous semi-algebraic function h: S x [0, 1] — S such that h(—, 0) is the
identity mapping of S, such that h(—,1) has its values in T" and such that for
every ¢t €[0,1] and every z in T, h(x,t)=1.

Proposition 5.49. [Conic structure at infinity| Let S be a closed semi-
algebraic subset of RE. There existsr €R, >0, such that for everyr’, r' >r,
there is a semi-algebraic deformation retraction from S to S, =S N Bi(0,7)
and a semi-algebraic deformation retraction from Sys to S;.

Proof: Let us suppose that S is not bounded. Through an inversion mapping
©:R¥\ {0} — R¥\ {0}, ¢(z) =2/||z||?, which is obviously semi-algebraic, one
can reduce to the property of local conic structure for ¢(S)U{0} at 0. O

Proposition 5.50. Let f: S — T be a semi-algebraic function that is a
local homeomorphism. There exists a finite cover S = U?:1 U; of S by semi-
algebraic sets U; that are open in S and such that f|U; is a homeomorphism
for every i.
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Proof: We assume, as in the proof of Theorem 5.46, that T is bounded
and that the partition T' = UZ:1 T, is induced by a semi-algebraic triangu-
lation ®: |K| = J;_, |se| = T such that T, = ®(s§). We then replace T by
Z = U;Zl |s?| and set g=® o f. There are semi-algebraic homeomorphisms
Op: 89 x Fy— g~ 1(sY) such that go @y is the projection mapping s x F,— s by
Theorem 5.46 (Semi-algebraic triviality). Each Fy consists of a finite number
of points since g is a local homeomorphism and Fy is semi-algebraic. Let
Z¢.1,...,%¢,p, denote these points. Note that if s)C Z, then 52/ C Z, sy is a face
of s,s and @ € Fy, then there exists a unique point z, /= @7@/(1327)\) €F,
such that 0y(s? x {x, »}) is equal to the closure of (GZ/(S% x{zy )N g 1(sP).
Fix ¢ and A and set

Vo= U {0, (sy x {By ¢ (xe,2)}) | sy C Zand syis a face of s,/} .

By the previous remark, g | Vo » is a homeomorphism over the union of
the sgz C Z such that s is a face of s,.. The proposition is then proved, since
the V4 » form a finite open cover of S. O

Corollary 5.51. Let M be an S submanifold of R* of dimension d. There
exists a finite cover of M by semi-algebraic open sets M; such that, for
each M;, one can find j1,..., ja€{1,....,k} in such a way that the restriction
to M; of the projection mapping (21, ..., xk) — (T, ..., 2;,) from R* onto R?
is an 8 diffeomorphism onto its image (stated differently, over each M;
one can express k —d coordinates as S functions of the other d coordinates).

Proof: Let IT: R* — R? be the projection mapping that forgets the last k —d
coordinates, and let M’ C M be the set of points z such that IT induces an
isomorphism from the tangent space T,(M) onto R The function IT | M '
is a local homeomorphism, hence, by Proposition 5.50, one can cover M’ by
the images of a finite number of semi-algebraic continuous sections (i.e. local
inverses) of IT| M ' defined over semi-algebraic open sets of R% these sections
are S functions by Theorem 3.25 (Implicit Function Theorem). We do the
same with projections onto all other £ — d-coordinates, thereby exhausting
the manifold. O

We now introduce a notion of local dimension.

Proposition 5.52. Let S C R* be a semi-algebraic set, and let a be a point
of S. There exists a semi-algebraic open neighborhood U of x in S such that,
for any other semi-algebraic open neighborhood U’ of x in S contained in U,
one has dim(U) =dim(U").

Proof: Clear by the properties of the dimension and Theorem 5.48 (local
conic structure). O
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Let S C R* be a semi-algebraic set and = a point of S. With U as
in Proposition 5.52, one calls dim(U) the local dimension of S at «z,
denoted dim(Sy).

A point z € S is a smooth point of dimension d of S if there exists a
semi-algebraic open neighborhood U of R¥ such that SN U is an S* manifold
of dimension d. Note that a smooth point of S of dimension d has local
dimension d.

Proposition 5.53. Let S be a semi-algebraic set of dimension d. There exists
a non-empty semi-algebraic subset T C .S such that every point of T is a smooth
point of dimension d and SV = {x € S| dim(S,) =d} is a non-empty closed
semi-algebraic subset S, which is the closure of T. Moreover dim(S\ S(¥) <d.

Proof: By Theorem 5.38, the set S is a finite union of semi-algebraic sets S;,
each 8> diffeomorphic to (0, 1)®. Let T be the union of the S; such that
d(i) =d (there are such S; since d=sup (d(7))). It is clear that every point of
T is a smooth point of dimension d. Let S’ be the closure in S of T'. Of course
S’ S If ¢S’ there is a sufficiently small open neighborhood U of z such
that S;NU # () implies d(i) < d hence ¢S®. Therefore R¥\ §(? is open. Note
that S\ S contains no stratum of dimension d. This proves the claim. [J

Proposition 5.54. Let S be a semi-algebraic set. There exist non-empty
semi-algebraic subsets of S, Si, ..., Se such that every point of S; is a smooth
point of dimension d(i) and S is the union of the closure of the S;.

Proof: The proof is by induction on the dimension of S. The claim is obvi-
ously true for dim(S) =1, since S is a finite number of points and intervals,
and a closed interval is the closure of the corresponding open interval.
Suppose by induction hypothesis that the claim holds for all semi-algebraic
sets of dimension < d and consider a semi-algebraic set S of dimension d.
By Proposition 5.53, the set S¥ = {z € § | dim(S,) = d} is the closure of
a semi-algebraic subset T; such that every point of T; is a smooth point
of dimension d. Define S; = S \ S, It follows from Proposition 5.53 that
the dimension of S; is < d, and the claim follows by applying the induction
hypothesis to 5. |

5.9 Semi-algebraic Sard’s Theorem

Definition 5.55. [Critical point] If f: N — M is an S* function between
two §°° submanifolds N and M, then a critical point of f is a point x of N
where the rank of the differential D f(z): T;.(N) — T'f(5)(M) is strictly smaller
than the dimension of M; a critical value of f is the image of a critical point
under f. A regular point of f on N is a point which is not critical and a
regular value of f on M is a value of f which is not critical. O
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We now give the semi-algebraic version of Sard’s Theorem.

Theorem 5.56. [Sard’s theorem] Let f: N — M be an S function between
two S submanifolds. The set of critical values of f is a semi-algebraic subset
of M whose dimension is strictly smaller than the dimension of M.

The proof of Theorem 5.56 uses the constant rank theorem which can be
proved from the inverse function theorem for S functions.

Theorem 5.57. [Constant Rank] Let f be a 8 function from a semi-
algebraic open set A of RF into R™ such that the rank of the derivative d f(x)
s constant and equal to p over A, and a be a point in A.

There exists a semi-algebraic open neighborhood U of a which is contained
in A, an 8 diffeomorphism u: U — (=1, 1)*, a semi-algebraic open set
V2 f(U), and an 8 diffeomorphism v:(—1,1)"— V such that f |y=vo gou,
where g: (—1,1)F — (=1,1)™ is the mapping (z1,...,Tk) > (T1, ..., 2p, 0, ..., 0).

Proof: Without loss of generality let a =0 be the origin and f(a)=0. Then,
df(0):RF—R™ is a linear map of rank p. Let M C R¥ be the kernel of d f(O)
and N C R™ be its image. It is clear that dim(M) =k — p and dim(N) = p.

Without loss of generality we can assume that M is spanned by the
last k — p coordinates of R*, and we denote by M’ the subspace spanned
by the first p coordinates.

We also assume without loss of generality that N is spanned by the
first p coordinates of R™ and we denote by N’ the subspace spanned by
the last m — p coordinates. We will denote by mas (resp. wn, mn/) the pro-
jection maps from R¥ to M (resp. R™ to N, N').

Let U’ be a neighborhood of O in A and consider the map 41: U’ — N x M
defined by

iy (x) = (rn(f(x)), ().

Clearly, dds(O) is invertible, so by Proposition 3.24 (Inverse Function The-
orem), there exists a neighborhood U” of the origin such that 4|y~ is an S
diffeomorphism and ;(U") contains the set Iy(r) = (—r,r)* =P x (—r,r)P for
some sufficiently small r > 0. Let U =1y '(Ix(r)) and u; = 1|y

Let V' be a neighborhood of the origin in R™ containing f(U) and
define 71: V' — N x N’ by

31(y) = (mn(y), v (y — fui (7n(y), 0)))).

Shrinking U and r if necessary, we can choose a neighborhood V" C V'
containing f(U), such that 1]y~ is an S diffeomorphism. To see this observe
that do;1(O) is invertible, and apply Proposition 3.24 (Inverse Function The-
orem). Shrink r if necessary so that (V") contains

I, (r)=(—=r,r)P X (—r,r)™ P,
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Let V = 97 Y(I,,(r)) and v; = ©1|y. Finally, let u: U — I;(1) be defined
by w(z) = u(z)/r and let v: I,,(1) — V be the S diffeomorphism defined

by v(y) =vi '(ry).

We now prove that f |y =v o gou, where g: (—1,1)¥ — (=1, 1)™ is the
projection mapping (z1, ..., Tx) — (21, ..., Zp, 0, ..., 0).

Since the rank of the derivative df(x) is constant and equal to p for
all x €U, we have that for each 2 € U the image N, of d f(z) is a p-dimensional
linear subspace of R™. Also, choosing r small enough we can ensure that my
restricted to IV, is a bijection. We let L,: N — N, denote the inverse of this
bijection.

Now, consider the S™ map fi: (—7,7)" — R™ defined by,

fi(z1z2) = flug H(mn(z1), 22))-

We first show that fi(z1,22) is in fact independent of zs.
Clearly,

fx)= filur H(mn(f (), mr(2)).-

Differentiating using the chain rule, denoting g =du~!(7n(f(z)), mar(x)), for
all t € R¥,

df(@)(t) = difiu (rn(f(2)), ma(@))) 0 gomyodf(x)(t)
+dofi(ur (v (f (@), mar(x))) 0 go mu(t),
where d; is the derivative with respect to z;. Note also that,
df(z)(t) = Lyomyodf(z)(t).
Hence, with L = (L, —dy fi(ui "(7n(f(z)), 7a(z)))
da fi(ur (mn (f(2)), mar(2))) o du™" (i ( f(x)), mar () 0 mas (2)
= Lodu™(nn(f(2)), ma(2)))omnod f(z)(t).
Let S, denote the linear map
Lo —di fulur  (mn(£(@)), mar(a))) 0 du= (£ (), ma()): N — N
For t € M’, mp(t) =0 and hence, S,onyodf(x)(t) =0. Since, myodf(x) is
a bijection onto N, this implies that S, =0. Therefore, we get that
dofi(uy (mn(f(2)), mar(@))) 0 du™ (i (f (), mar(x)) o mar (£) = 0
for all t € R* implying that
o fi(ur (v (f (@), ma())) =0

for all x € U. This shows that fi(z1,22) is in fact independent of zo.
Suppose now that v1(y) € N for some y € V. This means that,

vy — flug (ma(y), 0))) =0.
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Let uy '(mn(y), O) = x. Tt follows from the definition of u; and from our
assumption that 7 (f(z)) =7mn(y) and mn(y) =7n(f(z)). Hence, y= f(x).

Conversely, suppose that y= f(z). Then using the fact that f1(z1, 22) does
not depend on 29 and the fact that u; is injective we get that

flur H(mn(y), 0) = fur (v (f(2)), mar(2))) = f(x) =y
and hence mn/(y — f(uy '(7mn(y),0))) =0. Thus, vi(y) € N. O

Proof of Theorem 5.56: By Corollary 5.51, one may suppose that M is a
semi-algebraic open set of R™. Let S C N be the set of critical points of f.
The set S is semi-algebraic since the partial derivatives of f are S° functions.
By Proposition 5.40, S is a finite union of semi-algebraic sets 5; that are
the images of §*° embeddings ¢;: (0, 1)d(i) — N. The rank of the composite
function f o ¢; is <m. It remains to prove that the dimension of the image
of fo;is <m. This is done in the following lemma.

Lemma 5.58. Let g: (0,1)?— R™ be an S function such that the rank of
the differential dg(x) is everywhere <m. Then, the dimension of the image
of g is <m.

Proof of Lemma 5.58: Let us suppose that dim(g((0,1)¢)) =m. By applying
Corollary 5.51 to g, one can find a semi-algebraic open set U of R™ that is con-
tained in g((0,1)?) and a semi-algebraic homeomorphism 6: U x F — g~4(U)
such that g o # is the projection of U x F onto U. If z € g~1(U), then the
image under g of every semi-algebraic open neighborhood of z is a semi-
algebraic open neighborhood of g(z) and is thus of dimension m. If for 2 one
chooses a point where the rank of dg(x) is maximal (among the values taken
over g~1(U)), then one obtains a contradiction with Theorem 5.57 (Constant
Rank). OO0

5.10 Bibliographical Notes

The geometric technique underlying the cylindrical decomposition method
can be found already in [160], for algebraic sets. The specific cylindrical
decomposition method using subresultant coefficients comes from Collins [45].
Triangulation of semi-algebraic sets seems to appear for the first time
in [28].
Hardt’s triviality theorem appears originally in [83)].
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Elements of Topology

In this chapter, we introduce basic concepts of algebraic topology adapted to
semi-algebraic sets. We show how to associate to semi-algebraic sets discrete
objects (the homology and cohomology groups) that are invariant under semi-
algebraic homeomorphisms. In Section 6.1, we develop a combinatorial theory
for homology and cohomology that applies only to simplicial complexes. In
Section 6.2 we show how to extend this theory to closed semi-algebraic sets
using the triangulation theorem proved in Chapter 5. In Section 6.3 we define
homology groups, Borel-Moore homology groups and Euler-Poincaré charac-
teristic for special cases of locally closed semi-algebraic sets.

6.1 Simplicial Homology Theory

6.1.1 The Homology Groups of a Simplicial Complex

We define the simplicial homology groups of a simplicial complex K in a com-
binatorial manner. We use the notions and notation introduced in Section 5.6.

Given a simplicial complex K, let K; be the set of i-dimensional simplices
of K. In particular, K is the set of vertices of K.

6.1.1.1 Chain Groups

Let p € N. A non-degenerate oriented p-simplex is a p-simplex [ag, ..., ap)
together with an equivalence class of total orderings on the set of ver-
tices {ao, ..., ap}, two orderings are equivalent if they differ by an even
permutation of the vertices. Thus, a simplex has exactly two orientations.
If ao, ..., ap are not affinely independent, we set [ag, ..., ap] = 0, which
is a degenerate oriented p-simplex.
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Abusing notation, if s={ag, ...,a,] is a p-simplex, we denote by [a, ..., a,)
the oriented simplex corresponding to the order ag < a; < -+ < a, on the
vertices. So, s=[ag, ..., ap] is an oriented simplex and — s = [a1, ag, az, ..., Gy
is the oppositely oriented simplex.

Given a simplicial complex K, the Q-vector space generated by the p-
dimensional oriented simplices of K is called the p-chain group of K and is
denoted C,(K). The elements of C,(K) are called the p-chains of K. Notice
that if K contains no p-simplices then C,(K) is a Q-vector space generated
by the empty set, which is {0}. Since K, is finite, C,(K) is finite dimensional.
An element of C,(K) can be written c=3"_ n;s;,n; € A, s; € K. For p<0, we
define C,(K)=0. When s is the oriented p-simplex [ao, ..., a,], we define [b, 5]
to be the oriented p + 1-simplex [b, ag, ..., ap]. If c=3", n;s;, (with n; € A) is
a p-chain, then we define [b, c] to be . n;[b, s;].

Given an oriented p-simplex s = [ag, ..., ap], p >0, the boundary of s is
the (p — 1)-chain

8p(s) = Z (—1)i[a0, ceey Qg — 1, CLAi,CLH_l, ceey ap],

0<i<p

where the hat = means that the corresponding vertex is omitted.
The map 0, extends linearly to a homomorphism 9,: Cp(K) — Cp—1(K)

by the rule
8p< Z nisi) = Z nzﬁp(sl)

K3

Note that, if ¢ is a p-chain, 0,41([b, c]) =c —[b, dp(c)].
For p <0, we define d,=0. Thus, we have the following sequence of vector
space homomorphisms,

A Op_ Op_
s G () 2 g (K) 227 () 2270 2 Co(K) 20,
Using the definition of d, and expanding, it is not too difficult to show that,

for all p

8p_108p=0.

The sequence of pairs {(C,(K),dp)}pen is denoted Co(K).

Given two simplicial complexes K, L, a map ¢: |K | — |L| is a simplicial
map if it is the piecewise linear extension to each simplex of a map ¢g: Kg— Lg
that maps the vertices of every simplex in K to the vertices of a simplex in L

(not necessarily of the same dimension). A simplicial map ¢ defines a sequence
of homomorphisms Cyp(¢) from C,(K) to C,(L) by

Cp(9)ao, ..., ap] = [po(ao), ..., po(ap)]-
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Notice that the right hand side is automatically zero if ¢¢ is not injective on
the set {ag, ..., ap}, in which case [¢o(ao), ..., po(ap)] is a degenerate simplex.
Also note that a simplicial map is automatically semi-algebraic.

6.1.1.2 Chain Complexes and Chain Maps

The chain groups obtained from a simplicial complex are a special case of
more general abstract algebraic objects called chain complexes. The homo-
morphisms between the chain groups obtained from simplicial maps are then
special cases of the more general chain homomorphisms, which we introduce
below.

A sequence {C,}, p € Z, of vector spaces together with a sequence {9,}
of homomorphisms 9,: C, — C,_; for which d,_100,=0 for all p is called a
chain complex. Given two chain complexes, Co=(C,, d,) and Cq=(C},d,,),
a chain homomorphism ¢,: C, — C, is a sequence of homomorphisms ¢,
Cp— C,, for which )0 ¢,,= ¢,,_1 00, for all p.

In other words, the following diagram is commutative.

d
N Cp BN Cp—l - ..

|2 =

)
/ P /
O Oy — e

Notice that if ¢: K — K" is a simplicial map, then Co(¢): Co(K) — Co( K')
is a chain homomorphism between the chain complexes Co(K) and Co(K’).

6.1.1.3 Homology of Chain Complexes

Given a chain complex C,, the elements of Bp(Ce) =Im(0p+1) are called p-
boundaries and those of Z,(C,) = Ker(d,) are called p-cycles. Note that,
since 0p—1 00, =0, B,(C,) C Z,(Cs). The homology groups H,(C,) are
defined by H,(Cs) = Z,(Cs)/Bp(Ca).

Note that, by our definition, the homology groups H,(C,) are all Q-vector
spaces (finite dimensional if the vector spaces C)’s are themselves finite dimen-
sional). We still refer to them as groups as this is standard terminology in
algebraic topology where more general rings of coefficients, for instance the
integers, are often used in the definition of the chain complexes. In such
situations, the homology groups are not necessarily vector spaces over a field,
but rather modules over the corresponding ring.

This sequence of groups together with the sequence of homomorphisms
which sends each Hy,(Cl) to 0€ H,_1(Cl) constitutes a chain complex (H,(Cl),
0) which is denoted by H,(Cl,).
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Lemma 6.1. Given two chain complezes Co and C,, a chain homomor-
phism ¢e: Co — Cy induces a homomorphism Hy(¢e): Hi(Ce) — Hy(C}) which
respects composition. In other words, given another chain homomorphism s:

Ce—CJ,
H (e © a) = Ha(t)e) 0 Hi(0)
and H*(Idc.) = IdH*(C.).

Proof: Using the fact that the diagram of a chain homomorphism commutes,
we see that a chain homomorphism carries cycles to cycles and boundaries to
boundaries. Thus, the chain homomorphism ¢ induces homomorphisms

Zy(@e): Zp(Co) — ZP(C‘),

Bp(¢e): Bp(Ce) — B;D(C‘)'
Thus, it also induces a homomorphism

Hy(da): Hp(Co) — Hp(Cl).

The remaining claims follow easily. O

6.1.1.4 Homology of a Simplicial Complex

Definition 6.2. Given a simplicial complex K, H,(K)=H,(C.(K)) is
the p-th simplicial homology group of K. As a special case of Lemma 6.1,
it follows that a simplicial map from K to L induces homomorphisms between
the homology groups H,(K) and H,(L).

We denote by H,(K) the chain complex (Hp(K), 0) and call it the
homology of K.

It is clear from the definition that H,(K) is a finite dimensional Q-vector
space. The dimension of H,(K') as a Q-vector space is called the p-th Betti
number of K and denoted b,(K).

The Euler-Poincaré characteristic of K is

X(E) =) (~1)bi(K). .

%

Proposition 6.3. Let n;(K) be the number of simplexes of dimension i of K.
Then

NE) =S (-1 ni(K).

Proof: Recall from the definition of H;(K) that,

b;(K) =dim H;(K)=dim Ker(9;) — dim Im(9;11).
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Moreover,
n;(K)=dim C;(K) = dim Ker(9;) + dim Im(9;).

An easy calculation now shows that,

X(E) = 37 (1K)
= Z (—1)" (dim Ker(9;) — dim Im(8;41))
= Z (—1)* (dim Ker(9;) + dim Im(9;))
= Z (1) n,.

i

6.1.2 Simplicial Cohomology Theory

We have defined the homology groups of a simplicial complex K in the pre-
vious section. We now define a dual notion — namely that of cohomology
groups. One reason for defining cohomology groups is that in many situations,
it is more convenient and intuitive to reason with the cohomology groups than
with the homology groups.

Given a simplicial complex K, we will denote by CP(K) the vector space
dual to Cp(K), and the sequence of homomorphisms,

§0 spti

0— COK)- O () -2 O (K)o CP ()2 0o ()

is called the cochain complex of K. Here, 6 is the homomorphism dual to
Op+1 in the chain complex C*(K). The sequence of pairs {(CP(K), %)} pen is
denoted by by C*(K). Notice that each ¢ € CP(K) is a linear functional on
the vector space CP(K), and thus ¢ is determined by the values it takes on
each i-simplex of K.

6.1.2.1 Cochain Complexes

The dual notion for chain complexes is that of cochain complexes. A sequence
{CP}, p€Z, of vector spaces together with a sequence {6} of homomorphisms
0P: CP — CP*! for which §7+1o§P=0 for all p is called a cochain complex.
Given two cochain complexes, C* = (CP, §7) and D*® = (D?, §’*), a cochain
homomorphism ¢°*:C®— D® is a sequence of homomorphisms ¢P: CP — DP
for which 0’F o ¢P = ¢pP+10 9P for all p.
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In other words, the following diagram is commutative.

5P
. (Cr ., (Cptt _, ..

l(ﬁp l¢p+1

6/17
. — Dp — Dptl _, ..

It is clear that given a chain complex Co = {(C,, 9,)}pen, we can obtain a
corresponding cochain complex C® = {(CP, 6?)},en by taking duals of each
term and homomorphisms. Doing so reverses the direction of every arrow in
the corresponding diagram.

6.1.2.2 Cohomology of Cochain Complexes

The elements of BP(C®) = Im(6” ') are called p-coboundaries and those
of ZP(C*)=Ker(d?) are called p-cocycles. It is easy to verify that BP(C*®) C
ZP(C®). The cohomology groups, HP(C*®), are defined by

ZP(C®)
HP(C®) = ~5.
(= Bc)
This sequence of groups together with the sequence of homomorphisms which
sends each HP(C®) to 0 € HPT1(C®) constitutes a chain complex (HP(C®), 0)
which is denoted by H*(C®).
It is an easy exercise in linear algebra to check that:

Proposition 6.4. Let C, be a chain complex and C® the corresponding
cochain complex. Then, for every p >0, Hy(C,) = HP(C®).

Given a simplicial complex K, the p-th cohomology group HP(C*(K))
will be denoted by HP(K). The cohomology group H(K) has a particularly
natural interpretation. It is the vector space of locally constant functions on
K.

Proposition 6.5. Let K be a simplicial complex such that Ko#(. The coho-
mology group H°(K) is the vector space of locally constant functions on |K|.
As a consequence, the number of connected components of | K | is bo(K).

Proof: Clearly, H’(K) depends only on the 1-skeleton of K, that is the sub-
complex of K consisting of the zero and one-dimensional simplices.

Let z € CO(K) be a cocycle, that is such that d°(z) =0. This implies that
for any e = [u, v] € K1, z(u) — z(v) = 0. Hence z takes a constant value on
vertices in a connected component of | K |. Since BY(C*(K)) is 0, this shows
that HO(K) is the vector space of locally constant functions on | K |.
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Using Proposition 6.4, the last part of the claim follows since the dimension
of the vector space of locally constant functions on | K | is the number of
connected components of | K |. O

It follows immediately from Lemma 6.1 that

Lemma 6.6. Given two cochain complexes C* and C’*, a cochain homomor-
phism ¢*: C* — C'* induces a homomorphism H*(¢*): H*(C®) — H*(C'*) which
respects composition. In other words, given another chain homomorphism ¢°®:

C/.—>C”.,
H*(4* 0 ¢°) = H*(¢*) o H*(¢*) and H*(Idcs) = Idg+(ce).

6.1.3 A Characterization of H! in a Special Case.

Let A be a simplicial complex and A, ..., A® sub-complexes of A such that,
each A’ is connected and

A = Alu...uA4s,
H(AY) = 0,1<i<s.

For 1 <i < j < < s, we denote by A% the sub-complex A* N AJ, and
by A" the sub-complex A’ N A9 N A’ We will denote by C% the sub-
complexes corresponding to connected components of A% , and by C”Z the
sub-complexes corresponding to connected components of A*¢.

We will show that the simplicial cohomology group, H'(A), is isomorphic
to the first cohomology group of a certain complex defined in terms of HY(A?),
HO(A%) and H°(A%*). This result will be the basis of an efficient algorithm
for computing the first Betti number of semi-algebraic sets, which will be
developed in Chapter 16.

Let

N*=N’— N!' - N2-0
denote the complex
co(4)-Lci(a)-Lc2(4) — 0.
Note that N*® is just a truncated version of the cochain complex of A. The

coboundary homomorphisms d°, d! are identical to the ones in C*(A).
For each h >0, we define

e @ ) @ o)
1<i<s 1<i<j<s
as follows.

For ¢ € ®1<i<s CO(AY), 1<i<j<s, and each oriented h-simplex o € A}/,

53¢i,j(0) =¢i(0) — ¢j(0)-
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Similarly, we define

h
@ Ch(Aij) N @ Ch(AijZ)

1<i<j< 1<i<j<f<s

by defining for 1) € ®1<i<j<s C"(AY), 1 <i < j << s and each oriented h-
simplex o € A7,

(619)ije(0) = Pje(a) = ie( @) + Yij(0).
Let
M*=M°— M!'— M?>—=0
denote the complex

@ oA 2o @ C(AY) @ CO(Aij)ﬂ) @ @Cl(Ail...in)_)O

1<i<s 1<i<s 1<i<j<s l+n=2 J,

where J, ={i1...ip| 1 <1 <... <ip < 5.}
The homomorphism Dy is defined by

Do(¢)=d"(¢) ©60(¢), b € @ Co(4)

and D; is defined by
Di(¢ @) =d"(¢) @ (—d(¢) +d°(¢)) & — 0 (¥),
e P Cl(A), ve G CoAY).
1<i<s 1<i<j<s
Finally let
L*=1"—[1'— 1250
denote the complex

@ HO Az o @ HO(A”) 01 @ HO(Aiﬂ)—>O

1<i<s 1<i<j<s 1<i<j<l<s

Recall that H(X) can be identified as the vector space of locally constant
functions on the simplicial complex X, and is thus a vector space whose dimen-
sion equals the number of connected components of X. The homomorphisms
d; in the complex L°® are generalized restriction homomorphisms. Thus, for

O3S ®1§i§s HO(AY),
(009)ij = bi

and for Yy € P, ;. H(AY),

(01%)ije = jel aise — ie] arie 4 Pij| grse.

A= 6la0
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We now define a homomorphism of complexes,
Fe:L*— M°,
as follows: ‘
For ¢ € L and u € A},
FHp)i(u) = di(A").
For ¢ € L? and e € A,

and
F?()i5(e) = vi;(CY),
where C%/ is the connected component of A% containing e.
For € L? and o € A"
F3(0);=F>(0)i;=0,
and
F3(0)i50=1150(CLly),

where Céﬂ is the connected component of A** containing o. It is easy to verify
that F'® is a homomorphism of complexes, and thus induces an homomorphism

H*(F*): H*(L*) — H*(M*).

We now prove that,

Proposition 6.7. The induced homomorphism,
HY(F*):HY(L*) — H'(M*)
is an isomorphism.

Proof: We first prove that, HY(F*): H(L®) — HY(M®) is surjective. Let
2= ¢ ® 1 € M" be a cocycle, where

pe P c'4)
1<i<s
and

ve @ CoaY)
1<i<j<s
Since z is a cocycle, that is Dy(z) =0, we have from the definition of Dy that,
d'¢ = 0,
My =0,
Sp+d% = 0.
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From the first property, and the fact H'(A?) =0 for each i,1 <4 </, we deduce
that there exists

feM'= H COA)
1<i<e
such that, for e =[u,v] € A%,
oi(e) =0;(u) — 0;(v). (6.1)
As a consequence of the second property, we have that for 1 <i < j </l <s,
and u e A",
Pje(u) = hie(u) + thij(u) =0. (6.2)

Finally, from the third property we get that, for 1 <i < j < s and e = [u,
v] € AY, and 6 defined above,

0i(u) — 03(v) — 0;(u) 4+ 0;(v) + ¥ij(u) — i;(v) =0. (6.3)
We now define 2/ =0@ € M! by defining, for 1 <i<j <s and uec Ay,
Yij(w) = 0i(u) —0;(u) + pij(u).

From (6.3) it follows that ~;;(u) is constant for all vertices u in any connected
component of A%. Thus, z'€ F*(L'). Next, for 1 <i<j <s, and e=[u,v] € A}’

dyij(e) = Oi(w) = 0;(uw) + ¥ij(u) — (0i(v) = 0;(v) + ¥i;(v))
= 0.
where we again use (6.3). This shows that 2z’ is a cycle.

Finally, it is easy to check, using the facts that ¢ — v =66, and ¢ = d°6,
that, z — 2/ = (d° + 89)0 is a coboundary in M®. This proves the surjectivity
of HY(F*).

We now prove that H!(F*®) is injective by proving that for any z € L1, if
F1(z) is a coboundary in M! then z must be a coboundary in L'. Let

Fl(2) = (d+ 88)0
for 6 € ®1<i<, C°(A"). We define ye @, _, ., H(A") by defining

Yi(Ai) = 0i(u)
for some u € A§. This is well defined, since by assumption each A’ is connected,
and d°0 =0, and thus we have that for each e = [u,v] € A, 0;(u) — 6;(v) = 0.
For any 1<i<j <s, C% a connected component of A/, and u€ CY, we
have that,
F'(2)ij(u) = 2;5(CF)
= 0i(u) — 0;(u).
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It is now easy to check that oy = 2, proving that z is a coboundary in L?.
This proves the injectivity of HX(F). O

We now define a homomorphism of complexes, G*: N®* — M?*, as follows.
First observe that for 1 < i < j < ¢ < s, there are natural restriction
homomorphisms,

r3:C*(A) — C*(AY),
For ¢ € CY(A),
6= @ 6.

1<i<s

For ¢ € C*(A), o
GYo)= P (W)

1<i<s

For v € C?*(4), o
Gv)= @ 7).

1<i<s

We now prove that,

Proposition 6.8. The induced homomorphism,
HY(G*®):HY(N®) —H(M*)
is an isomorphism.

Proof: We first prove that H1(G®) is surjective.
Let z=¢ @1 € M' be a cocycle, where

pe P Ci4), ve P Co4aY).
1<i<s 1<i<j<s

Since z is a cocycle, that is Dy(z) =0, we have from the definition of Dy that,

d'¢ = 0,
My = 0,
o +dy = 0.

For 1<i<j<¥¢<s, and ueAijé,
Yje(u) — Yie(u) + Yij(u) =0. (6.4)

We now define 6 € @, _, ., C°(A") such that, do(0) = 1.
For 1<i<s and u e A} we define,

Oiu)=— > (=1)"Iy(u),

where n, =#{j|ue A}}.
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It is easy to check using (6.4) that 6o(6) = 1. Now define, 2'= (¢ —d0) &0
Now, 2’ € GY(N?), since for 1<i<j<s, and e=[u,v] € A,

(0 —d0)i(e) — (¢ —d%0)(e) = ¢ile) — pj(e) — (6 — 0;)(u—v)
= (¢ile) — ¢j(e)) — Yij(u) + ¥ij(v)

(650 — d®)iz(e)

= 0.

Also, z — 2’ =d° @ ¢p = (d° 4 9)0 is a coboundary. This show that H'(G*) is
surjective.

Finally, since G is obviously injective, it is clear that if the image of z € N'!
is a coboundary in M1, then it must also be a coboundary in N, which shows
that HY(G*®) is injective as well. O

We are now in a position to prove,

Theorem 6.9. Let A be a simplicial complex and A%, ..., A* sub-complexes of
A such that, each A; is connected and
A = Alu...u 43,
HY(AY) = 0,1<i<s,

and let L® be the complex defined above. Then,
HY(A)~HYL®).

Proof: The theorem follows directly from Proposition 6.7 and Proposition
6.8 proved above. O

6.1.4 The Mayer-Vietoris Theorem

In the next chapter, we will use heavily certain relations between the homology

groups of two semi-algebraic sets and those of their unions and intersections.

We start by indicating similar relations between the homology groups of the

unions and intersections of sub-complexes of a simplicial complex. It turns

out to be convenient to formulate these relations in terms of exact sequences.
A sequence of vector space homomorphisms,

Pi—2 Pi—1 Pit1

iy 1—>F—>E+1—>
is exact if and only if Im(¢;) = Ker(¢;+1) for each 1.
Let C,, C,, C. be chain complexes, and let ¢o: Co — CL, e: Ci — Cl be

chain homomorphisms. We say that the sequence 0 — C.—>C’ Ve Cl—0is
a short exact sequence of chain complexes if in each dimension p the

¥p
sequence 0 — C,—>C;,—>C}/ — 0 is an exact sequence of vector spaces.
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We need the following lemma from homological algebra.

Lemma 6.10. [Zigzag Lemma] Let 0 — C.gCﬁin—m be a short ezact
sequence of chain complexes. Then, there exist connecting homomorphisms,
H,(0), making the following sequence exact

L0 oty (o @h, ()01, (C))--

Proof: The proof is by “chasing” the following diagram:

0 — Cpa 2% Cht1 Yoy pt1 — 0
lap+l lazl)-i-l l 1
0—- ¢ = ¢ oo -0
Lo [ o7
$p—1 ’ Yp—1 "
0 — Cpor — Cpoy — p—1 — O.

We have already seen in the proof of Lemma 6.1 that the chain homo-
morphisms ¢, and 1, actually take boundaries to boundaries and hence the
homomorphisms ¢, (resp. ;) descend to homomorphisms on the homology
vector spaces Hy(C,) — Hy(Cy) (resp., Hy(Cq) — H,(CY)). We denote these
homomorphisms by Hy(¢s) (resp. Hy(1)).

We now define the homomorphism H,(9): H,(CJ) — H,_1(C,). Let a” be
a cycle in Cj. By the exactness of the second row of the diagram we know
that 1, is surjective and thus there exists a’ € C}, such that ¢,(a’) =a”. Let
B'=0p(a’).

We show that 3’ € Ker(v,_1). Using the commutativity of the diagram,
we have that

Up-1(0') = ¢p-1(0p(a)) = 05 (¢p(a')) = 95/ (") =0,

the last equality by virtue of the fact that o is a cycle.

By the exactness of the third row of the diagram, we have
that Im(¢,—1) =Ker(¢,_1) and hence ¢,_; is injective. Thus, there exists
a unique 8 € C,_1 such that 5’ = ¢,_1(5). Moreover, [ is a cycle in Cp_.
To see this, observe that

Pp—2(0p—1(8)) = 0p—1(Pp—1(8)) = 0p—1(8") = 0, 1(0,(B’)) = 0.

Since ¢p_2 is injective, it follows that 9,_1(8) = 0, whence 8 is a cycle.
Define H,(9)(a) = 3, where [ represents the homology class of the cycle 3.
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We now check that H,(0) is a well-defined homomorphism and that the
long sequence of homology is exact as claimed.

We first prove that the map defined above indeed is a well-defined homo-
morphism H,(CJ) —H,_1(C,). We first check that the homology class 3 does
not depend on the choice of o’ € C}, used in its definition. Let o] € Cj, be such
that ¢,(al) =a”. Let 1 =0,(a1). Now, [ is also in Ker(¢,—1) and by the
exactness of the third row of the diagram, there exists a unique cycle 3, € C,_1
such that 1= ¢p_1(51).

Now, o’ — aj € Ker(¢,). Hence, there exists oy € C, such
that ¢,(ap) =a’— a1, and using the commutativity of the diagram and the
fact that ¢,_1 is injective, we have that d,(ap) = 3 — 31, whence 31 — =0
in H,_1(C,). This shows that [ is indeed independent of the choice of «’.

We now show that the Im(H,(9)) =Ker(H,_1(¢)). Exactness at the other
terms is easy to verify and is left as an exercise.

Let B€C,_1 be a cycle such that 3 € H,_1(C,) is in the image of H,().
Let o” € C) be such that H,(d)(a})) = B and let o’ € C},, 3’ € C},_, be as above.
Then, ' = ¢,_1(5) = 0,(a’) € B,—1(Cs). Descending to homology, this shows
that Hy_1(¢)(3) =0, and 3 € Ker(H,_1(¢s)).

Now, let 3 € C,_1, such that 3 € Ker(H,_1(¢e)). This implies
that ¢,,_1(3) €Im(9,). Hence, there exists a’ € Cj, such that 9, (a’) = ¢,—1(5).
Let a” = 1p(a’). Since, ¥p_1(9,(a’)) = ¥Yp_1(¢p-1(8)) = 0 by commu-
tativity of the diagram, we have that 9,(c) = 0. Hence, « is a cycle and
it is easy to verify that H,(9)(a@) = 3 and hence 3 € Im(H,(9)). O

Another tool from homological algebra is the following Five Lemma.

Lemma 6.11. [Five Lemma] Let

Clﬂ>02303—>04—>05

|a [o e [a e
D, % D, 2 Dy & D, oD,

be a commutative diagram such that each row is exact. Then if a,b,d, e are
isomorphisms, so is c.

Proof: We first show that ¢ is injective. Let ¢(x3) = 0 for some z3 € Cs.
Then d o ¢3(x3) = 0 = ¢3(x3) = 0, because d is an isomorphism. Hence,
x3 € ker(¢3) = Im(¢p2). Let x2 € Ca be such that x5 = ¢a(x2). But then,
o o b(xg) = 0 = b(ze) € ker(v2) = Im(v);). Let y1 € Dy be such that
¥1(y1) = b(x2). Since a is an isomorphism there exists 1 € C; such that
y1 =a(x1) and ¥y oa(x1) =b(x3) =bo ¢1(x1). Since b is an isomorphism this
implies that x5 = ¢1(x1), and thus z3= @20 ¢1(z1) =0.
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Next we show that c is surjective. Let y3 € D3. Since d is surjective there
exists x4 € C4 such that ¥s(ys) = d(x4). Now, ¥4 0 ¥3(y3) = 0 =€ o ¢a(x4).
Since e is injective this implies that x4 € ker(¢4) = Im(¢s). Let 23 € Cs
be such that x4 = ¢3(x3). Then, d o ¢3(x3) = 13 o c(a3) = ¥3(ys3). Hence,

c(xs) — ys € ker(13) = Im(2). Let y2 € Do be such that 12(ys2) = c(x3) — ys.
There exists zg € Cq such that 9 0 b(z2) = c(x3) — ys = co ¢2(x2). But then,
c(x3 — ¢2(22)) = y3 showing that ¢ is surjective. O

We use Lemma 6.10 to prove the existence of the so called Mayer-Vietoris
sequence.

Theorem 6.12. [Mayer-Vietoris| Let K be a simplicial complex and let
K1, Ko be sub-complexes of K. Then there is an exact sequence

—>HP(K1) EBHP(KQ) —>HP(K1UK2) —>Hp_1(K1ﬁK2) —> e

Proof: We define homomorphisms ¢, 1s so that the sequence

0 Co( K1 N E) 25 Cu( K1) @ Co(K2) -2 Co( K1 UK2) — 0

is exact.

There are natural inclusion homomorphisms i1: Ce(K1 N K3) — Ce(K7)
and io: C.(Kl n KQ) — C.(KQ), as well as ji: C.(Kl) — C.(Kl U KQ)
and jo: C.(KQ) — C.(Kl U KQ)

For c € Co(K1N K3), we define ¢(c) = (i1(c), —iz(c)).

For (d,e) € Co(K1) & Co(K2), we define 1(d, e) = j1(d) + ja(e).

It is an exercise to check that, with these choices of ¢4 and 1, the sequence

0— Co(K1 N K2)-25Ca( K1) @ Co(I) 2% Co(I U Ks) — 0

is exact. Now, apply Lemma 6.10 to complete the proof. O

6.1.5 Chain Homotopy

We identify a property that guarantees that two chain homomorphisms induce
identical homomorphisms in homology. The property is that they are chain
homotopic.

Given two chain complexes, Co = (Cp, 9,) and Cq = (C}, 9,), two chain
homomorphisms @s, 1s: Ce — C, are chain homotopic (denoted @ ~ 1bq) if

there exists a sequence of homomorphisms, 7,: C, — Cj, 11 such that
Opt19%p+ Vp—100p=dp— 1y (6.5)

for all p. The collection ~y, of the homomorphisms 7, is called a chain homo-
topy between C, and C.
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a17-1-2 ap-l-l ap
Cp_;,_l Cp —_ ...
Yp+1 Vp Tp—1
Pp+1| Vp+1 Pp | Pp
/+2 /_,,_1 9!
P -~ P c N N

Lemma 6.13. Chain homotopy is an equivalence relation among chain homo-
morphisms from C, to CJ.

Proof: Clearly every chain homomorphism ¢,: Cs — C, is chain homotopic
to itself (choose 7, =0).

Also, if p: C, — Cj,11 gives a chain homotopy between chain homomor-
phisms ¢ and e, then — 7, gives a chain homotopy between e and ¢,.

Finally, let y,: C,— C}41 be a chain homotopy between the chain homo-
morphisms ¢, and 1 and let A,: C, — Cj,41 be a chain homotopy between
the chain homomorphisms e and 7,.

Then, the homomorphisms v, + A, give a chain homotopy between ¢, and
Ne. This is because

10 (Vp+Ap) + (Vp—1+Ap—1) 09
= Op119%p+Vp-1°0p+0p10Ap+Vp—10Xp
Gp—Vp+tbp—1p
= ¢p—Np

Proposition 6.14. If ¢e~ 1)e: Ce — Cy, then
H,(¢s) = Hi(¢4): Hi(Ca) — H,(Co).

Proof: Let ¢ be a p-cycle in C,, that is ¢ € Ker(9,). Since ¢o and 1), are
chain homotopic, there exists a sequence of homomorphisms v,: Cp, — Cj11
satisfying equation (6.1).

Thus,

(‘%-ﬁ-l 0 Yp+p—100p)(c) = (dp — Pp)(c).

Now, since ¢ is a cycle, d,(c) =0, and moreover, ;. 1(7,(c)) is a boundary.
Thus, (¢, — 1p)(c) =0 in Hy(Cy). O

Example 6.15. As an example of chain homotopy, consider the simplicial
complex K whose simplices are all the faces of a single simplex [ag, a1, ...,
ax) C RF. Consider the chain homomorphisms Ce(¢) and C,(7)) induced by
the simplicial maps ¢ =Idx and ¥ such that ¥(a;) =ae, 1 <i<k.
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Then, Co(¢) and Co(?) are chain homotopic by the chain homotopy =
defined by v,([aig, ..., ai,]) = [ao, @iy, ..., as,] for p >0 and v, =0 otherwise.
Clearly for p >0,

(Op+1°7p+ Yp—1°0p)([aig; -, ai,])
= [@ips s @i, — a0, Op([aig, ..., ai,))] 4 [ao, Op([ai; ..., ai])
]

ip

= (¢P - wi’)([aiw "'7aip])'

For p=0,
(D100 +7-1000)([ai]) = [ai] — [a]
= (¢0— o) ([aid))-
It is now easy to deduce that Ho(K)=Q and H;(K) =0 for all i > 0. O

A simplicial complex K is acyclic if Hy(K)=Q, H;(K) =0 for all i > 0.

Lemma 6.16. Let K be the simplicial complexr whose simplices are all the
faces of a simplex s = [ag, a1, ..., ax] C RE. Then, K is acyclic, and its
barycentric subdivision ba(K) is acyclic.

Proof: Recall from Section 5.6 that for every ascending sequence of simplices
in K,
S0 <81 < <5y,

the simplex [ba(so), ..., ba(s;)] is included in ba(K).

Consider the chain homomorphisms, ¢, 1¥: Ce(ba(K)) — Ce(ba(K)),
induced by the simplicial maps Id and ¢ defined by w(ba(s;)) = ba(s),
for each s; € K.

Then, ¢ and v are chain homotopic by the chain homotopy v defined
by vp([ba(so), ..., ba(sp)]) = [ba(s), ba(sg), ..., ba(sp)] for p >0 and v, =0
otherwise.

Clearly for p >0,

(Op+107p+ Yp—1°0p)([ba(s0), ..., ba(sp)])

= [ba(sg), ..., ba(sp)] — [ba(s), Op([ba(so), ..., ba(sp)])]
+ [ba(s), Op([ba(so), ..., ba(sp)])]

= [ba(sg),..., ba(sp)]

(p — ¥p)([ba(so), ..., ba(sp)]).

For p=0,

(01070 +v-1000)([ba(si)])

[ba(s;)] — [ba(s)]
= (¢ — vo)([ba(sy)]).
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It is now easy to deduce that Hp(ba(K)) = Q and H;(ba(K)) = 0 for
all > 0. 0

We now identify a criterion that is sufficient to show that two homomor-
phisms are chain homotopic in the special case of chain complexes coming from
simplicial complexes. The key notion is that of an acyclic carrier function.

Let K, L be two complexes. A function £ which maps every simplex s € K
to a sub-complex £(s) of L is called a carrier function provided

s'<s=£(s") C&(s)

for all s,s" € K. Moreover, if £(s) is acyclic for all s€ K, £ is called an acyclic

carrier function. A chain homomorphism ¢s: Ce(K) — Co(L) is carried by

a carrier function ¢ if for all p and each s € K, ¢,(s) is a chain in (s).
The most important property of a carrier function is the following.

Lemma 6.17. If ¢, 10e: Co(K) — Co(L)) are chain homomorphisms carried
by the same acyclic carrier &, then e ~ 1s.

Proof: Let 9 (resp. 9’) be the boundary maps of Co(K) (resp. Co(L)). We
construct a chain homotopy =~ dimension by dimension.

For so € Co(K), ¢o(s0) — to(so) is a chain in &(s¢) which is acyclic.
Since &(sg) is acyclic, ¢o(so) — ¥o(so) must also be a boundary. Thus, there
exists a chain ¢ € C1(L) such that 91(t) = ¢o(s0) — Yo(so0), and we let yo(sg) =t.

Now, assume that for all ¢ < p we have constructed <, such
that (¢ — 1) g=04+10 v+ Yg—100q and ~4(s) C &£(s) for all g-simplices s.

We define v,(s) for p-simplices s and extend it linearly to p-chains. Notice
first that (¢ — v¥)p(s) C &£(s) by hypothesis and that ,_1 0 9,(s) is a chain
in £(s) by the induction hypothesis. Hence ((¢ — ), —vp—109,)(s) is a chain
in £(s) and let this chain be ¢. Then,

Fp(t) = (¢ —P)p—1p-100p)(s)
= (0po (¢ —¥)p—0povp-100)(s)
= ((@=vY)p-100p)(s) — (a;zlno Yp—100p)(8)
= (¢ —¥)p-1—0p07p-1)(9p(5))
= Yp—200p-100,(s)
=0
so that t is a cycle.
But, since t = ((¢ — ¥)p — Yp—1 © 9p)(s) is a chain in &(s) and &(s)
is acyclic, ¢ must be a boundary as well. Thus, there is a chain, ¢/, such

that t = 9,4+1(t") and we define ~,(s) =t'. It is straightforward to check that
this satisfies all the conditions. |

Two simplicial maps ¢, : K — L are contiguous if ¢(s) and (s) are
faces of the same simplex in L for every simplex s € K.
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Two simplicial maps ¢, 1: K — L belong to the same contiguity class if
there is a sequence of simplicial maps ¢;,¢=0,...,n, such that ¢o= ¢, ¢, =1,
and ¢; and ¢;1 are contiguous for 0 <7 <n.

Proposition 6.18. If the chain homomorphisms
Ce(9), Ca(¥): Co(K) — Co(L)

are induced by simplicial maps that belong to the same contiguity class,
then H,(¢) =H,(v).

Proof: We show that two contiguous simplicial maps induce chain homotopic
chain homomorphisms, which will prove the proposition. In order to show
this, we construct an acyclic carrier, &, for both ¢ and 1. For a simplex s € K,
let ¢ be the smallest dimensional simplex of L such that ¢(s) and ¥(s) are
both faces of ¢ (in fact any such ¢ will do). Let £(s) be the sub-complex of
L consisting of all faces of ¢. Clearly, £ is an acyclic carrier of both ¢ and v,
which implies that they are chain homotopic. O

6.1.6 The Simplicial Homology Groups Are Invariant Under Home-
omorphism

We shall show that if K and L are two simplicial complexes that are home-
omorphic then the homology groups of K and L are isomorphic.

6.1.6.1 Homology and Barycentric Subdivision

The first step is to show that the homology groups of a simplicial com-
plex K are isomorphic to those of its barycentric subdivision (see Definition
page 182).

Theorem 6.19. Let K be a simplicial complex and ba(K) its barycentric
subdivision. Then, H,(K)~H,(ba(K)).

As a consequence, we can iterate the operation of barycentric subdivision
by setting K" =ba(K) and, in general, K™ =ba(K ™), thus obtaining
finer and finer subdivisions of the complex K.

Corollary 6.20. Let K be a simplicial complex. Then, H,(K)~H,(K™) for
all n>0.

In order to prove Theorem 6.19, we define some simplicial maps between
the barycentric subdivision of a simplicial complex and the simplicial complex
itself that will allow us to relate their homology groups.
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Given a simplicial complex K and its barycentric subdivision ba(K), a
Sperner map is a map w: ba(K )y — K such that w(ba(s)) is one of the
vertices of s for each simplex s € K.

Lemma 6.21. Any Sperner map can be linearly extended to a simplicial map.

Proof: Let w: ba(K)y — Ko be a Sperner map. Then an oriented sim-

plex [ba(sg), ..., ba(s;)] in ba(K) corresponds to sp < -+ < s in K,
with w(ba(s;))€s;, 0 < j <4, and hence [w(ba(sg)), ..., w(ba(s;))] is an
oriented simplex in K. O

Given two simplicial complexes K, L and a simplicial map ¢: K — L,
there is a natural way to define a simplicial map ¢”: ba(K) — L’ by set-
ting ¢’(ba(s)) =ba(¢(s)) for every s € K and extending it linearly to ba(K).
One can check that ¢’ so defined is simplicial.

We define a new homomorphism

te: Co(K) — Co(ba(K)),

which will play the role of an inverse to any Sperner map w, as follows:
It is defined on simplices recursively by,

ap(s) = s,
ap(s) = [ba(s), ap-1(0p(s))],p>0,

(see Definition 6.1.1.1) and is then extended linearly to Co(K). It is easy to
verify that «, is also a chain homomorphism.

Lemma 6.22. Given a simplicial complex K and a Sperner map w,
C.(w)oa.:IdC.(K).

Proof: The proof is by induction on the dimension p. It is easily seen that
the lemma holds when p=0. Consider a simplex s = [ao, ..., a,]. Now,

(Cp(w)oap)(s) = Cp(w)([bals),ap—1(Ip(s))]
= [Co(w)(ba(s)), Cp-1(w) 0 ap—1(Fp(s))].
)

By induction hypothesis, (Cp—1(w)oap—1)(9p(s)) =9p(s). Since, Co(w)(ba(s))
is a vertex of s it follows that Cp(w) o ap(s) = s. This completes the induc-
tion. 0

We now prove that ae o Ce(w) ~Idc, ma(k)) for a Sperner map w.

Lemma 6.23. Let w:ba(K)— K be a Sperner map. Then

Olg O C.(w) ~ IdC.(ba(K))~
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Proof: We construct an acyclic carrier carrying ae o Co(w) and Idc, ba(k))-
Let ba(s) be a simplex of ba(K) and let b = ba(s) be the leading vertex of
ba(s), where s is a simplex in K. Let &(ba(s)) be the sub-complex of ba(K)
consisting of all simplices in the barycentric subdivision of s.

Clearly, ¢ carries both ae, o Ce(w) and Idc,ma(k)) and is acyclic by
Lemma 6.16, and hence satisfies the conditions for being an acyclic carrier. [J

Proof of Theorem 6.19: Follows immediately from the preceding
lemmas. ]

6.1.6.2 Homeomorphisms Preserve Homology

Our goal in this paragraph is to show that homeomorphic polyhedra in real
affine space have isomorphic homology groups.

Theorem 6.24. If two simplicial complezes K C RF, L CR* are two simplicial
complezxes and f:|K|— |L| is a homeomorphism, then there exists an isomor-
phism Hy(f): Ho(K) — Hy(L).

We will use the fact that our ground field is R in two ways. In the next
lemma, we use the fact that R is (sequentially) compact in its metric topology
in order to show the existence of a Lebesgue number for any finite open cov-
ering of a compact set in R¥. Secondly, we will use the archimedean property
of R.

We first need a notation. For a vertex a of a simplicial complex K, its
star star(a) C |K| is the union of the relative interiors of all simplices having
a as a vertex, i.e. star(a)=U{q}<s s°. If the simplicial complexes K and L
have the same polyhedron and if to every vertex a of K there is a vertex b of
L such that star(a) C star(b), then we write K < L and say K is finer than L.

It is clear that for any simplicial complex K, K™ < K. Also, if K < L
and L < M then K <M.

In the next lemma, we show that given a family of open sets whose union
contains a compact subset S of R", any “sufficiently small" subset of S is
contained in a single set of the family.

We define the diameter diam(S) of a set S as the smallest number d such
that S is contained in a ball of radius d/2.

Lemma 6.25. Let A be an open cover of a compact subset S of R"™. Then,
there exists 6 >0 (called the Lebesgue number of the cover) such that for any
subset B of S with diam(B) < ¢, there exists an A € A such that B C A.

Proof: Assume not. Then there exists a sequence of numbers {4, } and sets
Sy C S such that é, — 0, diam(S,,) <d,, and S,ZA, for all A€ A.
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Choose a point p,, in each S,,. Since S is compact, the sequence {p,} has
a convergent subsequence, and we pass to this subsequence and henceforth
assume that the sequence {p,} is convergent and its limit point is p.

Now p € S since S is closed, and thus there exists a set A in the covering A
such that p € A. Also, because A is open, there exists an € > 0 such that the
open ball B(p,e) C A.

Now choose n large enough so that ||p — p,|| <€/2 and §,, <¢€/2. We claim
that S, C A, which is a contradiction. To see this, observe that S,, contains a
point p,, which is within €/2 of p, but S,, also has diameter less than ¢/2. Hence
it must be contained inside the ball B(p,€) and hence is contained in A. O

The mesh mesh(K) of a complex K is defined by
mesh(K) = max {diam(s)|s € K }.

The following lemma bounds the mesh of the barycentric subdivision of a
simplicial complex in terms of the mesh of the simplicial complex itself.

Lemma 6.26. Let K be a simplicial complex of dimension k. Then,

k
mesh(ba(K)) < ) mesh(K).

Proof: First note that mesh(K) (resp. mesh(ba(K))) equals the length of the
longest edge in K (resp. ba(K)). This follows from the fact that the diameter
of a simplex equals the length of its longest edge.

Let (ba(s), ba(s’)) be an edge in ba(K), where s < s’ are simplices in K.
Also, without loss of generality, let s =[aq, ..., ap] and s’ =[ag, ..., ay].

Now,
ba(s) —ba(s’) = % U«i_% Z a;
R A IL
) S e X

= (= a——— a;
<p+1 9+l 52, 9t T,
Hm T e T )

= o — a; — ——— a; |.
Q+1<p+105i§p 1=P 115i<q

The points 1/(p+1)3.;<, @ and 1/(¢—p) 3>, ~;<, @i are both in s".
Hence, we have

Iba(s) = ba(s) | < L mesh(i) < L mesh () < kLH mesh(K). O

Lemma 6.27. For any two simplicial complexes K and L such
that |K|=|L| CR*, there exists n>0 such that K™ < L.
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Proof: The sets star(a) for each vertex a € Ly give an open cover of the
polyhedron |L|. Since the polyhedron is compact, for any such open cover
there exists, by Lemma 6.25, a § > 0 such that any subset of the polyhedron
of diameter < ¢ is contained in an element of the open cover, that is in star(a)
for some a € Ly. Using the fact that mesh(ba(K)) < k/(k + 1) mesh(K) and
hence mesh(K (™) < (k/(k + 1))" mesh(K), we can choose n large enough
so that for each b e Ké”), the set star(b) having diameter < 2mesh(K ™) is
contained in star(a) for some a € L. O

Lemma 6.28. Let K, L be two simplicial complexes with K <L, and such
that |K|=|L| CR¥. Then, there exists a well-defined isomorphism

i(K,L):Ho(K)—H.(L),

which respects composition. In other words, given another simplicial com-
plex M with |M|=|L| and L < M,

(K, M)=i(L, M)oi(K,L).

Proof: Since K < L, for any vertex a € K, there exists a vertex b € Lj such
that star(a) C star(b) since K < L. Consider a map ¢: Ky — Lo that sends
each vertex a € Ky to a vertex b € Ly satisfying star(a) C star(b). Notice that
this agrees with the definition of a Sperner map in the case where K is a
barycentric subdivision of L. Clearly, such a map is simplicial. Note that
even though the simplicial map ¢ is not uniquely defined, any other choice of
the simplicial map satisfying the above condition is contiguous to ¢ and thus
induces the same homomorphism between H,(K) and H,(L). Also, by Lemma
6.27, we can choose n such that L™ < K and a simplicial map v¢: L(" — K
that gives rise to a homomorphism

H,(): Ho(L™) — Hy(K).
In addition, using Theorem 6.19, we have an isomorphism

H,(7): Hy(L™) — H,(L).

H, (¢)

H.(K) H,.(L)

) =

H*(L(”))
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Again, note that the homomorphisms H, (), Hy() are well-defined, even
though the simplicial maps from which they are induced are not. Moreover,
H, () =H,(¢) o H,(¢). To see this let c€ L™, a=1)(c) € Ko, and b= ¢(a) € Lo.
Also, let b= v(c) € Ly.

Then, star(c) C star(a) and star(a) Cstar(b), so that star(c) C star(b). Also,
star(c) C star(b’).

Let s be the simplex in L such that b € s and ¢ € s°. Similarly, let ¢ be
the simplex in L such that b’ €t and c € t°. But, this implies that s°Nt° £,
implying that s=1¢. This proves that the simplicial maps ¢ o1 and v take a
simplex s in L™ to faces of the simplex in L containing s, and hence, ¢ o ¢
and 7 are contiguous, implying that H, () =H.(¢) o Hi ().

Now, since H, () is surjective, so is H,(¢). The same reasoning for the
pair L™ < K tells us that H, (1)) is surjective. Now, since H,(7) is injective
and H, (1) is surjective, H,(¢) is injective.

Define, (K, L) =H,(¢). Clearly, i(K, L) is independent of the particular
simplicial map ¢ chosen to define it. It also follows from the definition that
the homomorphisms i respect composition. O

We next show that any continuous map between two polyhedrons can be
suitably approximated by a simplicial map between some subdivisions of the
two polyhedrons.

Given two simplicial complexes K, L and a continuous map f:|K|— |L|,
a simplicial map ¢: K — L is a simplicial approximation to f if f(z) € s°
implies ¢(x) € s.

Proposition 6.29. Given two simplicial complexes K, L and a contin-
uous map f: |K| — |L|, there exists an integer n > 0 and a simplicial

map ¢: K™ — L that is a simplicial approzimation to f.

Proof: The family of open sets {star(b)|b€ Lo} is an open cover of L, and by
continuity of f the family, { f ~!(star())|b € Lo} is an open cover of |K|. Let §
be the Lebesgue number of this cover of | K| and choose n large enough so that
u(K ™) < §/2. Thus, for every vertex a of Kén), f(star(a)) C star(b) for some
be Ly. It is easy to see that the map which sends a to such a b for every vertex
a€e Kén) induces a simplicial map ¢: K™ — L. To see this, let s = [ao, ..., an]
be a simplex in K (™). Then, by the definition of ¢, Niv, star(¢p(as)) # 0 since
it contains f(s). Hence, {¢(a;) | 0<i<m} must span a simplex in L.

We now claim that ¢ is a simplicial approximation to f. Let x € |K | such
that z € s° for a simplex s in K, and let f(x)€t°C|L|.

Let a € Ké") be a vertex of s, and let b= ¢(a). From the definition of ¢,
we have that f(star(a)) C (star(b)), and since z € star(a), f(z) € star(b).
Thus, f(z) € Ngesstar(¢p(a)), and hence each ¢(a), a € s, is a vertex of the
simplex ¢t. Moreover, since ¢(x) lies in the simplex spanned by {¢(a) | a € s},
it is clear that ¢(x) €t. O
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Proposition 6.30. Given any two simplicial complexes K and L, as well
as a continuous map f: |K| — |L|, there exists a well-defined homomor-
phism H,(f):H,(K)—H,(L) such that if N is another simplicial complex
and g:|L| —|N| is a continuous map, then

H.(go f)=H.(g9) o H.(f) and H*(Iduq):IdH*(K).

Proof: Choose ny large enough so that there is a simplicial approxima-
tion ¢: K" — L to f. Define H,(f) = H,(¢) o i(K™), K)~ It is easy
using Lemma 6.28 to see that H,(f) does not depend on the choice of n;.

Now, suppose that we choose simplicial approximations ¢: L("2) — N of ¢
and ¢: K(") — [("2) of f.

i(L(n2)7L)OH*((ZS)Oi(K(nl)?K)_l = H*(f);
H, () oi(LM2) L)~1
H,(g)oH.(f) = H.(¢)oH,(¢)oi(K"™) K)~L.

I

o=
*
—
)
o

Note that o ¢: K (™) — N is a simplicial approximation of go f. To see this,
observe that for z € |[K|, f(x) € s implies that ¢(z) € s, where s is a simplex
in L("2). Since, ¢ is a simplicial map ¥ (f(z)) € t implies that 1(¢(z)) € t
for any simplex ¢t in N. This proves that 1 o ¢ is a simplicial approximation
of go f and hence

H.(v) o Hi() Oi(K(n1)7K)_l =H.(go f).

The remaining property that H,(Id|x|) =Idg, k) is now easy to check. [

Theorem 6.24 is now an immediate consequence of Proposition 6.30.

6.1.6.3 Semi-algebraic Homeomorphisms Preserve Homology

We next prove a result similar to Theorem 6.24 for semi-algebraic homeomor-
phisms between polyhedra defined over any real closed field.

Let K and L be two simplicial complexes contained in R* whose vertices
have rational coordinates. Since K and L have vertices with rational coordi-
nates, they can be described by linear inequalities with rational coefficients
and hence they are semi-algebraic subsets of R¥. We denote by Ext(|K |, R)
and Ext(|L|,R) the polyhedron defined by the same inequalities over R.

Theorem 6.31. Let K and L be two simplicial complexes whose vertices have
rational coordinates. If Ext(|K|, R) and Ext(|L|, R) are semi-algebraically
homeomorphic for a real closed field R, then H,(K)~H,(L).

The theorem will follow from the transfer property stated in the next
lemma.
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Lemma 6.32. Let K and L be two simplicial complexes whose vertices have
rational coordinates. The following are equivalent

— There exists a semi-algebraic homeomorphism from Ext(|K|, Ray) to
Ext(|L]|, Raig)-
— There exists a semi-algebraic homeomorphism from Ext(|K|, R) to

Ext(|L|,R) for a real closed field R.

Proof: It is clear that if g: |K| = Ext(|K|, Rag) — |L| = Ext(|L|, Rayg) is a
semi-algebraic homeomorphism, then Ext(g, R): Ext(|K|,R) — Ext(|]L|,R) is
a semi-algebraic homeomorphism, using the properties of the extension stated
in Chapter 2 Exercise 2.16), since the property of a semi-algebraic function g
of being a semi-algebraic homeomorphism can be described by a formula.

Conversely let R be a real closed field, and let f:Ext(|K|,R)— Ext(|L|,R)
be a semi-algebraic homeomorphism. Let A= (a1, ...,ax) € RN be the vector
of all the constants appearing in the definition of the semi-algebraic maps f.

Let Ty C R? denote the graph of the semi-algebraic map f, and
let ¢¢(Z1,..., Za) denote the formula defining I'. For 1 < ¢ < N, replace
every appearance of the constant a; in ¢y by a new variable Y; to obtain
a new formula v with N + 2k variables Y1, ..., YN, Z1, ..., Zog. All con-
stants appearing in 1 are now rational numbers.

For b€ RV, let T'(b) C R?* denote the set defined by (b, Z1, ..., Zay).

We claim that we can write a formula ® (Y3, ..., Yn) such that, for
every b€ RN satisfying ®, the set T'f(b) C R?* is the graph of a semi-alge-
braic homeomorphism from Ext(|K|, R) to Ext(|L|, R) (with the domain
and range corresponding to the first k£ and last k coordinates respectively).

A semi-algebraic homeomorphism is a continuous, 1-1, and onto map, with
a continuous inverse. Hence, in order to write such a formula, we first write
formulas guaranteeing continuity, injectivity, surjectivity, and continuity of
the inverse separately and then take their conjunction.

Thinking of ¥ = (Y1, ..., Yy) as parameters, let ®;(Y) be the first-order
formula expressing that given Y, for every open ball B C R, the set in R*
defined by

{(Zl, . Zk) | 3((Zk+1, . sz) €BA 1/)(}7, VAT sz))}

is open in RF. Since, we can clearly quantify over all open balls in R (quantify
over all centers and radii), we can thus express the property of being open by
a first-order formula, ®1(Y).

Similarly, it is an easy exercise to translate the properties of a semi-alge-
braic map being injective, surjective and having a continuous inverse, into
formulas ®5(Y), ®3(Y), ®4(Y), respectively. Finally, to ensure that I'¢(b) is
the graph of a map from Ext(|K |, R) to Ext(|L|,R), we recall that Ext(|K|,R)
is defined by inequalities with rational coeflicients and we can clearly write a
formula ®5(Y) having the required property.
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Now, take ® = ®1 A Py A D3 A Py A Ps5. Since we know that (ay,...,an) € RY
satisfies ® ¢, and thus 3Y3, ..., Y @¢(¥7, ..., Yn) is true in R by the Tarski-
Seidenberg principle (see Theorem 2.80), it is also true over R,i,. Hence,
there exists (by, ..., by) € RJ, that satisfies ®. By substituting (by,...,by)

for (ay, ..., an) in the description of f, we obtain a description of a semi-
algebraic homeomorphism
g: | K| =Ext(|K|,Rals) — |L| =Ext(|L], Raig)- O

Proof of Theorem 6.31: Let f: Ext(|K|, R) — Ext(|L|, R) be a semi-
algebraic homeomorphism. Using Lemma 6.32, there exists a semi-algebraic
homeomorphism ¢: |K| = Ext(|K|, R) — |L| = Ext(|L|, R). Hence, H,(K)
and H,(L) are isomorphic using Theorem 6.24. O

6.2 Simplicial Homology of Closed and Bounded Semi-
algebraic Sets

6.2.1 Definitions and First Properties

We first define the simplicial homology groups of a closed and bounded semi-
algebraic set S.

By Theorem 5.43, a closed, bounded semi-algebraic set S can be triangu-
lated by a simplicial complex K with rational coordinates. Choose a semi-alge-
braic triangulation f:|K|— S. The homology groups H,(S) are H,(K),
p > 0. We denote by H,(S) the chain complex (H,(S), 0) and call it the
homology of S.

That the homology H,(S) does not depend on a particular triangulation
up to isomorphism follows from the results of Section 6.1. Given any two
triangulations, f:|K|— S, g:|L|— S, there exists a semi-algebraic homeomor-
phism, ¢ =g~ ! f:|K|—|L|, and hence, using Theorem 6.31, H,(K) and H, (L)
are isomorphic.

Note that two semi-algebraically homeomorphic closed and bounded semi-
algebraic sets have isomorphic homology groups. Note too that the homology
groups of S and those of its extension to a bigger real closed field are also
isomorphic.

The homology groups of S are all finite dimensional vector spaces over Q
(see Definition 6.2). The dimension of H,(S) as a vector space over Q is called
the p-th Betti number of S and denoted b,(5).

b(S)=Z bi(.5)

the sum of the Betti numbers of S. The Euler-Poincaré characteristic
of Sis
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Note that x (@) =0.
Using Proposition 6.3 and Theorem 5.43, we have the following result.

Proposition 6.33. Let S C R* be a closed and bounded semi-algebraic set, K
be a simplicial complex in RF and h:|K|— S be a semi-algebraic homeomor-
phism. Let n;(K) be the number of simplexes of dimension i of K. Then

W) =5 (~1)ini(K).

7

In particular the Euler-Poincaré characteristic of a finite set of points is the
cardinality of this set.

Proposition 6.34. The number of connected components of a non-empty,
closed, and bounded semi-algebraic set S is bo(S).

Proof: Let f:|K|— S be a triangulation of S. Hence,
Now apply Proposition 6.5. |

We now use Theorem 6.12 to relate the homology groups of the union and
intersection of two closed and bounded semi-algebraic sets.

Theorem 6.35. [Semi-algebraic Mayer-Vietoris] Let S1,.52 be two closed
and bounded semi-algebraic sets. Then there is an exact sequence

e — Hp(Sl N Sg) — Hp(Sl) ©® HP(SQ) — Hp(Sl @] Sg) — Hp_l(Sl n Sg) —> e
Proof: We first obtain a triangulation of S; U Sy that is simultaneously

a triangulation of Si, So, and S1 N S2 using Theorem 5.43 We then apply
Theorem 6.12. O

From the exactness of the Mayer-Vietoris sequence, we have the following
corollary.

Corollary 6.36. Let S, So be two closed and bounded semi-algebraic sets.
Then,

bi(S1) +bi(S2) < bi(S1US2) +bi(S1NS2),
bi(S1NS2) < bi(S1) +bi(S2) +bit1(S1US2),
bi(S1US2) < b(S1) +bi(S2) +bi—1(S1N S2),
X(S1US2) = x(51) + x(S2) — x(S1N S2).
Proof: Follows directly from Theorem 6.35. O

The Mayer-Vietoris sequence provides an easy way to compute the
homology groups of some simple sets.
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Proposition 6.37. Consider the (k — 1)-dimensional unit sphere S*~*C RF
fork>1. If k>0,

Ho(Br) = Q,
Hi(Br) =~ 0, i>0.
Ifk>1,
Ho(S*1) = Q,
Hy(S* Y =~ 0, 0<i<k-—1,
Hk—l(Sk_l) = Qa
Hi(S*1) =~ 0, i>k-1

Proof: We can decompose the unit sphere into two closed hemispheres, A, B,
intersecting at the equator.

Each of the sets A, B is homeomorphic to the standard (k — 1)-dimensional
simplex, and AN B is homeomorphic to the (k — 2)-dimensional sphere S*~2.

If k=1, it is clear that Ho(S') 2~ H;(S') = Q.

For k > 2, the statement is proved by induction on k.

Assume that the result holds for spheres of dimensions less than &k — 1> 2.
The Mayer-Vietoris sequence for homology (Theorem 6.35) gives the exact
sequence

+—H,(ANB)—H,(A)&H,(B)—H,(AUB)—-H,_1(ANB) — -

Here, the homology groups of A and B are isomorphic to those of a (k —1)-

dimensional closed ball, and thus Ho(A) @ Hy(B)~ Q and Hy(A)~H,(B)~0

for all p > 0. Moreover, the homology groups of A N B are isomorphic to

those of a (k —2)-dimensional sphere, and thus Hy(ANB)~Hy,_2(ANB)~Q

and H,(ANB) 0, for p#k—2,p+#0. It now follows from the exactness of

the above sequence that Ho(AUB) ~H;_1(AUB)~Q, and H,(AUB) >0,

forp#£k—1,p#+0

To see this, observe that the exactness of

Hk_l(A) D Hk_l(B) — Hk_l(A U B) — Hk_Q(A n B) — Hk_Q(A) D Hk_Q(B)

is equivalent to the following sequence being exact:
0—Hp_1(AUB)—Q—0,

and this implies that the homomorphism Hy_1(A U B) — Q is an isomor-
phism. O

6.2.2 Homotopy

Let X, Y be two topological spaces. Two continuous functions f, g: X — Y
are homotopic if there is a continuous function F: X x [0, 1] — Y such
that F(z,0)= f(z) and F(z, 1) = g(z) for all z € X. Clearly, homotopy is
an equivalence relation among continuous maps from X to Y. It is denoted

by f~g.
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The sets X,Y are homotopy equivalent if there exist continuous func-
tions f: X =Y, ¢g:Y — X such that go f~Idyx, fog~Idy. If two sets are
homotopy equivalent, we also say that they have the same homotopy type.

Let X be a topological space and Y a closed subset of X. A deformation
retraction from X to Y is a continuous function h: X x [0, 1] — X such
that h(—,0) =Idx and such that h(—,1) has its values in Y and such that for
every t€1[0,1] and every z in Y, h(z,t) =z. If there is a deformation retraction
from X to Y, then X and Y are clearly homotopy equivalent.

Theorem 6.38. Let K, L be simplicial complexes over R and f, g continuous
homotopic maps from |K| to |L|. Then

H.(f) =Hi(9): Ho(K) — Hu(L).

The proposition follows directly from the following two lemmas.

Lemma 6.39. Let K, L be simplicial complexes over R and § the Lebesgue
number of the cover {star(b)|b € Lo}. Let f, g:|K|— |L| be two continuous
maps. If supye|r||f(x) —g(x)| <d/3, then f and g have a common simplicial
approximation.

Proof: For be Ly let By={x €|L| |dist(z, |L|—star(b)) >d/3}. We first claim
that b€ By, and hence, the family of sets { By|b € Lo} is an open covering of L.
Consider the set |L|NB(b,24§/3). If |L|NB(b,26/3) Cstar(b), then clearly,
b€ By. Otherwise, since diam(|L| N B(b,26/3)) < J, there must exists a b’ € Lg
such that |[L| N B(b,24§/3) Cstar(d’). But, then b €star(b’) implying that b="5’,
which is a contradiction.

Let € be the Lebesgue number of the open cover of |K| given by
{f~YBy)|b € Lo}. Then, there is an integer n such that u(K™) < €/2.
To every vertex a € K™, there is a vertex b € Lg such that star(a) C f~1(By),
and this induces a simplicial map, ¢: K™ — L, sending a to b. We now
claim that ¢ is a simplicial approximation to both f and g.

Let z € |K| such that x € s° for a simplex s in K™, and let f(z) € 3
and g(z) € t3 for simplices t1, to € L. Let a € K(()n) be a vertex of s, and
let b= ¢(a). From the definition of ¢, we have that f(star(a)) C By C star(b),
and since z € star(a), f(z) € star(b). Moreover, since | f(z) — g(x)| < /3 for
all z € |K|, dist(f(star(a)), g(star(a))) < /3, and hence g(star(a)) C star(b)
and g(z) € star(b).

Thus, f(z) € Ngesstar(¢(a)), and hence each ¢(a), a € s is a vertex of the
simplex t1. Moreover, since ¢(x) lies in the simplex spanned by {¢(a)|a € s},
it is clear that ¢(x) € t;. Similarly, ¢(z) € ta, and hence ¢ is simultaneously
a simplicial approximation to both f and g. O

Lemma 6.40. Let K, L be simplicial complexes over R and suppose that f, g
are homotopic maps from | K |—|L|. Then, there is an integer n and simplicial
maps ¢, ¥: K™ — L that are in the same contiguity class and such that ¢
(resp. 1) is a simplicial approzimation of f (resp. g).
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Proof: Since f ~ g, there is a continuous map F: |K| x [0, 1] — |L| such
that F(z, 0) = f(z) and F(z, 1) = g(z). To a Lebesgue number § of the
cover star(b), b € Ly, there exists a number e such that |t — ¢/| < e implies
sup |F(z,t) — F(z,t')| < /3. This follows from the uniform continuity of F
since K x [0,1] is compact.

We now choose a sequence tp = 0 < t; < t3 < --- < t,, = 1 such that
[ti11—t;| <e and let F(z,t;) = fi(z). By the previous lemma, f; and f;41
have a common simplicial approximation ;: K" — L. Let n = max; n;,

and let ¢;: K — L be the simplicial map induced by ;. For each 1,
0<i<n, ¢; and ¢;41 are contiguous and are simplicial approximations of f;
and f; 1 respectively. Moreover, ¢¢ is a simplicial approximation of f and
¢n a simplicial approximation of g. Hence, they are in the same contiguity
class. ]

We will now transfer the previous results to semi-algebraic sets and maps
over a general real closed field R. The method of transferring the results
parallels those used at the end of Section 6.1.

Let X,Y be two closed and bounded semi-algebraic sets. Two semi-alge-
braic continuous functions f, g: X —Y are semi-algebraically homotopic,
f ~sag, if there is a continuous semi-algebraic function F: X x [0,1] — Y 'such
that F(x,0)= f(z) and F(z,1) = g(z) for all z € X. Clearly, semi-algebraic
homotopy is an equivalence relation among semi-algebraic continuous maps
from X to Y.

The sets X, Y are semi-algebraically homotopy equivalent if there
exist semi-algebraic continuous functions f: X — Y, ¢g: Y — X such that
go f NsaIdX7 ,f cg NsaIdY-

Let X be a closed and bounded semi-algebraic set and Y a closed semi-
algebraic subset of X. A semi-algebraic deformation retraction from X
to Y is a continuous semi algebraic function h: X x [0, 1] — X such that
h(—,0) =Idx and such that h(—,1) has its values in Y and such that for every
t€[0,1] and every x in Y, h(x,t) =x. If there is a semi-algebraic deformation
retraction from X to Y, then X and Y are clearly semi-algebraically homotopy
equivalent.

Using the transfer principle and the same technique used in the proof of
Theorem 6.31, it is possible to prove,

Proposition 6.41. Let K, L be simplicial complexes with rational vertices,

and let f ~sq g be semi-algebraic continuous semi-algebraically homotopic
maps from Ext(|K|,R) to Ext(|L|,R). Then

H.(f) = Hu(g): Ho(K) — Hi(L).

Finally, the following proposition holds in any real closed field.

Theorem 6.42. Let R be a real closed field. Let X,Y be two closed, bounded
semi-algebraic sets of RF that are semi-algebraically homotopy equivalent.
Then, Hy(X) X H,(Y).
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Proof: We first choose triangulations. Let ¢: |[K| — X and ¢: |[L| — Y be
semi-algebraic triangulations of X and Y, respectively. Moreover, since X
and Y are semi-algebraically homotopy equivalent, there exist semi-algebraic
continuous functions f: X =Y, g:Y — X such that go f ~,Idx, fog~s.Idy.

Then, fi=v%"to fog:|K|—|L|and g1 =¢ Lo go:|L|— |K| give a
semi-algebraic homotopy equivalence between |K | and L|. These are defined
over R. However, using the same method as in the proof of Lemma 6.32, we
can show that in this case there exists f{:|K|— |L| and g¢1:|L| — | K| defined
over R giving a homotopy equivalence between |K| and |L]|.

Now applying Proposition 6.41 and Proposition 6.30 we get

H.(f{og1) =H.(f1) o Hi(g1) = Hu(Idk) =Idn, (k)
H.(g10 f{) =H.(g1) o Hu(f{) = Hi(Idp) = Idy, (1)
This proves that H,(X)=H,(K) 2 H,(L)=H.(Y). O

6.3 Homology of Certain Locally Closed Semi-Algebraic
Sets

In Section 6.2 we have defined homology groups of closed and bounded semi-
algebraic sets. Now, we consider more general semi-algebraic sets - namely,
certain locally closed semi-algebraic sets. We first define homology groups for
closed semi-algebraic sets, as well as for semi-algebraic sets which are realiza-
tions of sign conditions. These homology groups are homotopy invariant, but
do not satisfy an addivity property useful in certain applications. In order to
have a homology theory with the addivity property, we introduce the Borel-
Moore homology groups and prove their basic properties.

6.3.1 Homology of Closed Semi-algebraic Sets and of Sign Condi-
tions

We now define the homology groups for closed (but not necessarily bounded)
semi-algebraic sets and for semi-algebraic sets defined by a single sign condi-
tion.

Let S C R* be any closed semi-algebraic set. By Proposition 5.49 (conic
structure at infinity), there exists r € R, r >0, such that, for every r’>r, there
exists a a semi-algebraic deformation retraction from S to S, = .5 N By(0, ),
and there exists a a semi-algebraic deformation retraction from S, to S,
Thus the sets S, and S, are homotopy equivalent. So, by Theorem 6.42,
H(Sr) = H(Sr’)'

Notation 6.43. [Homology] We define H,(S) =H,(S,). O

We have the following useful result.
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Proposition 6.44. Let Si1,S5 be two closed semi-algebraic sets. Then,

bi(S1) +bi(S2) < bi(S1US2) +bi(S1NS2),
bi(S1NS2) < bi(S1) +bi(S2) +bit1(S1US2),
bi(S1US2) < bi(S1) +bi(S2) +bi—1(S1N S2).

Proof: Follows directly from Corollary 6.36 and the definition of the
homology groups of a closed semi-algebraic set. |

We also define homology groups for semi-algebraic sets defined by a single
sign condition.

Let P = {Py, ..., Ps} C R[Xy, ..., Xi] be a set of s polynomials, and
let 0 €{0,1,—1}" be a realizable sign condition on P. Without loss of gen-
erality, suppose

o(P)=0 ifi=1,.., ],
o(P)=1 ifi=j+1,..,¢,

o(P)=—1 ifi=(+1,..,s.

We denote by Reali(o) C R the realization of o. Let >0 be a variable.
Consider the field R(d) of algebraic Puiseux series in ¢, in which § is an
infinitesimal. Let Reali(o) C R(§)* be defined by

Z X?<1/5AP =-.=P;=0
1<i<k

APj {1 >6N . AP/ >8AP1<—3A...ANP,<—4.

Proposition 6.45. The set Reali(o) is a semi-algebraic deformation retract
of the extension of Reali(o) to R(d).

Proof: Consider the continuous semi-algebraic function f defined by

1

s =nt (g i, 070 )

and note that
Reali(o) = {z € Ext(Reali(c),R(J)) | f(z) >4}

By Theorem 5.46 (Hardt’s triviality), there exists o € R such that

{z €Reali(o) | to > f(z) >0}
(resp. {x € Ext(Reali(c),R(d)) | to> f(x)>0})

is homeomorphic to

{z € Reali(o)| f(z) =to} x (0, to]
(resp. {z € Ext(Reali(0),R(0)) | f(z) =to} x [J, to]).
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Moreover, the corresponding homeomorphisms ¢ and @ can be chosen

such that ¢|(zeRreali(o)| f(2)=to} A V| {zeExt(Reali(o,R(8)))| f(x)=to} are iden-
tities. O

Notation 6.46. [Homology of a sign condition] We define

H,(Reali(c)) = Hy(Reali(c)). a

Proposition 6.47. Suppose that Reali(c) and Reali(7) are semi-algebraically
homotopy equivalent, then

H,(Reali(c)) = H,(Reali(7)).

Proof: By Proposition 6.45, Reali(c) and Reali(7) are homotopy equivalent.

Now apply Theorem 6.42. |
Exercise 6.1. Consider the unit disk minus a point which is the set D defined
by
X24+Y?2-1<0AX%24+Y?2>0.

Prove that

HO(D) = Qa

HI(D) = Qu

Hy(D) = 0.

Remark 6.48. The homology groups we just defined agree with the singular
homology groups [150] in the case when R = R: it is a consequence of
Proposition 6.45 and the fact that the singular homology groups are homotopy
invariants [150]. O

6.3.2 Homology of a Pair

We now define the simplicial homology groups of pairs of closed and bounded
semi-algebraic sets.

Let K be a simplicial complex and A a sub-complex of K. Then, there
is a natural inclusion homomorphism, i: C,(A) — C,(K), between the cor-
responding chain groups. Defining the group C,(K, A) = C,(K)/i(Cp(4)),
it is easy to see that the boundary maps 9,: Cp(K) — C,—1(K) descend to
maps 9p: Cp(K, A) — Cp_1(K, A), so that we have a short exact sequence of
complexes,

00— Ce(A) = Co(K) — Co(K,A)—0.
Given a pair (K, A), where A is a sub-complex of K, the group
Hy(K, A) =H,(Co(K, A))
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is the p-th simplicial homology group of the pair (K, A).

It is clear from the definition that H,(K, A) is a finite dimensional Q-
vector space. The dimension of H, (K, A) as a Q-vector space is called the p-
th Betti number of the pair (K, A) and denoted b,(K, A). The Euler-
Poincaré characteristic of the pair (K, A) is

X(K, A)= Z (=1)"bi(K, A).

We now define the simplicial homology groups of a pair of closed and bounded
semi-algebraic sets T C S C R*. By Theorem 5.43, such a pair of closed,
bounded semi-algebraic sets can be triangulated using a pair of simplicial
complexes (K, A) with rational coordinates, where A is a sub-complex of K.
The p-th simplicial homology group of the pair (S,T), H,(S,T), is H,(K,
A). The dimension of H,(S,T) as a Q-vector space is called the p-th Betti
number of the pair (S, T) and denoted b,(S, T'). The Euler-Poincaré
characteristic of the pair (S,T) is

X(SvT) :Z (_l)lbl(S7T)

i

Exercise 6.2. Consider the pair (S,T) where S is the closed unit disk defined
by X2+Y2—-1<0 and T is the union of the origin and the circle of radius
one defined by X24+Y?2-1=0VvX2+Y?2=0.

Prove that
HO(SvT) = Qv
Hl(S,T) = Qa
Ho(S,T) = Q.

Proposition 6.49. Let T C S C R* be a pair of closed and bounded semi-
algebraic set, (K, A) be a pair of simplicial complexes in R¥, with A a sub-
complex of K and let h:|K|— S be a semi-algebraic homeomorphism such that
the image of |K| is T. Then

X(SvT) = X(K’A)
X(K) = x(4)
= X(8) = x(T).

Proof: From the short exact sequence of chain complexes,
0= Co(A) = Co(K) —Co(K,A)—0,

applying Lemma 6.10, we obtain the following long exact sequence of
homology groups:

= Hp(A) = Hp(K) = Hy(K, A) = Hp—1(A4) = Hp—1(K) —--
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and
= Hp(T) — Hp(S) — Hy(S, T)— Hp—l(S) - H;D—l(T) e (6.6)
The claim follows. O

Proposition 6.50. Let T C S C R* be a pair of closed and bounded semi-
algebraic set, (K, A) be a pair of simplicial complexes in R, with A a sub-
complex of K and let h:|K|— S be a semi-algebraic homeomorphism such that
the image of |K| is T. Let n;(K) be the number of simplexes of dimension i
of K, and let m;(A) be the number of simplexes of dimension i of A. Then

NS T) = X(K,4)
= Y () - Y (1) mi(A),

% 4

Proof: By Proposition 6.49, x (K, A) = x(K) — x(A). The proposition is now
a consequence of of Proposition 6.3. O

Let (X, A), (Y, B) be two pairs of semi-algebraic sets. The pairs are
(X, A), (Y, B) are semi-algebraically homotopy equivalent if there
exist continuous semi-algebraic functions f: X — Y, g: Y — X such that,
Im(f|a) C B, Im(g|g) C A and such that go f ~Idx, g|g o fla ~ Ida,
fog~Idy, and f|acg|p~Idp. If two pairs are semi-algebraically homotopy
equivalent, we also say that they have the same homotopy type.

We have the following proposition which is a generalization of Proposition
6.35 to pairs of closed, bounded semi-algebraic sets.

Proposition 6.51. Let R be a real closed field. Let (X, A), (Y, B) be two
pairs of closed, bounded semi-algebraic sets of R* that are semi-algebraically
homotopy equivalent. Then, H, (X, A) 2 H.(Y, B).

Proof: Since (X, A) and (Y, B) are semi-algebraically homotopy equivalent,
there exist continuous semi-algebraic functions f: X — Y, g: Y — X such
that, Im(f|a) C B,Im(g|p) C A and such that go f~Idx, g|po f|a~1Ida,
fogNIdy, and f|AOgBNIdB-

After choosing triangulations of X and Y (respecting the subsets A and B,
respectively) and using the same construction as in the proof of Proposition
6.35, we see that f induces isomorphisms, H.(f): Hi(X) — H.(Y), H (f):
H.(A) —H.(B), as well an homomorphism H,(f): H.(X,A) — H.(Y, B) such
that the following diagram commutes.

Hi(d) — H(X) — H(X,4) — H_1(A) — H_(X)

H,(B) — (Y — Hy(Y,B) — H;_1(B) — H;_1(Y)
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The rows correspond to the long exact sequence of the pairs (X, A) and
(Y, B) (see (6.6)) and the vertical homorphisms are those induced by f.

Now applying Lemma 6.11 (Five Lemma) we see that H.(f): H.(X,A) —
H.(Y, B) is also an isomorphism. O

6.3.3 Borel-Moore Homology

In this section we will consider basic locally closed semi-algebraic sets
which are, by definition, intersections of closed semi-algebraic sets with basic
open ones. Let S C R* be a basic locally closed semi-algebraic set and let
Sr=SNBi(0,r). The p-th Borel-Moore homology group of S, denoted
by HgM (S), is defined to be the p-th simplicial homology group of the pair (S,
S, \ S,) for large enough r > 0. Its dimension is the p-th Borel-Moore Betti
number and is denoted by by (.S). We denote by HEM(.S) the chain complex
(HZM(9),0) and call it the Borel-Moore homology of S.

Note that, for a basic locally closed semi-algebraic set S, both .S, and
S, \ S, are closed and bounded and hence H;(S,, S, \ S,) is well defined.
It follows clearly from the definition that for a closed and bounded semi-
algebraic set, the Borel-Moore homology groups coincide with the simplicial
homology groups.

Exercise 6.3. Let D be the plane minus the origin.

Prove that
HM(D) = Q,
HM(D) = Q,
HM(D) = Q.

We will show that the Borel-Moore homology is invariant under semi-alge-
braic homeomorphisms by proving that the Borel-Moore homology coincides
with the simplicial homology of the Alexandrov compactification which we
introduce below.

Suppose that X C R¥ is a basic locally closed semi-algebraic set, which is
not simultaneously closed and bounded, and that X is the intersection of a
closed semi-algebraic set, V', with the open semi-algebraic set defined by strict
inequalities, P; >0, ..., P,, > 0. We will assume that X # R*. Otherwise, we
embed X in RF*1,

We now define the Alexandrov compactification of X, denoted by X,
having the following properties:

— X is closed and bounded,

— there exists a semi-algebraic continuous map, 7: X — X, which is a home-
omorphism onto its image,

— X \ X is a single point.
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Let T, ..., T), be new variables and 7: R¥*™ — R* be the projection map
forgetting the new coordinates. Consider the closed semi-algebraic set Y C
R¥*™ defined as the intersection of 7~ (V') with the set defined by

T?P,—1= - =T2P,—1=0, T1>0,..., T, >0.

Clearly, Y is homeomorphic to X. After making an affine change of coordi-
nates we can assume that Y does not contain the origin.
Let ¢: RF+™\ {0} — R**™ be the continuous map defined by

o) =10

no

We define the Alexandroff compactification of X by
X =o(y)u{o},

and
n=gonl|y'.

In case X is closed and bounded, we define X =X.
We now prove,

Lemma 6.52.

a) n(X) is semi-algebraically homeomorphic to X,

b) X is a closed and bounded semi-algebraic set.

Proof: We follow the notations introduced in the definition of X. It is easy
to verify that ¢ is a homeomorphism and since and 7r|{/1 is also a homeomor-
phism, it follows that 7 is a homeomorphism onto its image.

We now prove that X is closed and bounded. It is clear from the definition
of Y, that Y is a closed and unbounded subset of R¥+™. Since 0¢Y, ¢(Y)
is bounded. Moreover, if € ¢(Y), but 2¢$(Y), then = = 0. Otherwise, if
0, then ¢~1(z) must belong to the closure of Y and hence to Y since Y is
closed. But this would imply that = € $(Y"). This shows that X = ¢(Y)U {0}
is closed. |

We call X to be the Alexandrov compactification of X. We now show
that the Alexandrov compactification is unique up to semi-algebraic homeo-
morphisms.

Theorem 6.53. Suppose that X is as above and Z is a closed and bounded
semi-algebraic set such that,

a) There exists a semi-algebraic continuous map, ¢: X — Z, which gives a
homeomorphism between X and ¢(X),
b) Z\ ¢(X) is a single point.
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Then, Z is semi-algebraically homeomorphic to X.

Proof: Let Z = ¢(X)U{z}. We have that X = (X) U {0}. Since (X) and
¢(X) are each homeomorphic to X, there is an induced homeomorphism, ):
n(X) — ¢(X). Extend 9 to X by defining ¢(0) = z. It is easy to check that

this extension is continuous and thus gives a homeomorphism between X and
Z. O

We finally prove that the Borel-Moore homology groups defined above is
invariant under semi-algebraic homeomorphisms.

Theorem 6.54. Let X be a basic locally closed semi-algebraic set. For any
basic locally closed semi-algebraic set Y which is semi-algebraically homeomor-
phic to X, we have that HEM(X) = HEM(Y).

Proof: If X is closed and bounded there is nothing to prove since, X=X
and HEM(X)~H,(X) by definition.

Otherwise, let X be the intersection of a closed semi-algebraic set, V', with
the open semi-algebraic set defined by strict inequalities, P; >0,..., P, >0. We
follow the notations used in the definition of the Alexandrov compactification
above, as well as those used in the definition of Borel-Moore homology groups.

For €,6 >0 we define, X 5 to be the intersection of V N By(0, %) with the
set defined by, Py >¢, ..., Py >¢€.

Let X € RF*™ be the Alexandrov compactification of X defined previ-
ously, and let B, s= Bx(0,0) x B,,(0,e) CR**™. Tt follows from Theorem 5.48
that the pair (X ,0) is homotopy equivalent to (X, B. ;) for all 0 <e < d < 1.
Moreover, the pair (X, B s) is homeomorphic to the pair, (X 5, Xz 5 \ Xc.5).
It follows again from Theorem 5.48 that the pair, (X:s, Xcs \ Xc5), is
homotopy equivalent to (X 4, Xo.5 \ Xo.5). However, by definition H?M (X) =~
H,(Xo,5, X0,5 \ Xo0,s) and hence we have shown that

HEM(X) = H,(X).

Since by Theorem 6.53, the Alexandrov compactification is unique up to semi-
algebraic homeomorphisms, and by Theorem 6.31 the simplicial homology
groups are also invariant under semi-algebraic homeomorphisms, this proves
the theorem. ]

We now prove the additivity of Borel-Moore homology groups. More pre-
cisely, we prove,

Theorem 6.55. Let A C X C RF be closed semi-algebraic sets. Then there
exists an exact sequence,

s = HPM () = HPM () — HIPY(X\ ) —
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Proof: Let Y =X \ A. By definition,
HM(Y) >~ H, (Y, Y\ Y,), where Y, =Y N B(0,7), with 7 >0 and sufficiently

large.

Similarly, let X, =X N Bk(0,7), and A, =X N Bg(0,r). Notice that, since X
and A are closed, ;.\ Y, C A,. Consider a semi-algebraic triangulation of h:
| K| — X, which respects the subset A,. Let K'C K? denote the sub-complexes
corresponding to Y, \ Y, C A,. It is now clear from definition that, Cy(K,
K'Y~ Co(K,K?) and hence H,(K, K')~H,(K, K?). But,

H,(K,KY)~H, (Y., Y, \Y,)~HM(Y)

and H,(K, K?) 2 H.(X,, A4,).
This shows that

HM(X \ A) 2 (X, 4,).
The long exact sequence of homology for the pair (X, A,) is

Using the isomorphisms proved above, and the fact that X (resp. A) and X,
(resp. A,) are homeomorphic, we get an exact sequence,

e H () — H(X) — HPM (X 4) = 0

6.3.4 Euler-Poincaré Characteristic

We define the Euler-Poincaré characteristic for basic locally closed semi-alge-
braic sets. This definition agrees with the previously defined Euler-Poincaré
characteristic for closed and bounded semi-algebraic sets and is additive. The
Euler-Poincaré characteristic is a discrete topological invariant of semi-alge-
braic sets which generalizes the cardinality of a finite set. Hence, additivity
is a very natural property to require for Euler-Poincaré characteristic.

We define the Euler-Poincaré characteristic of a basic locally closed
semi-algebraic set S by,

X(8)=_ (=1)"bPM(5),

7

where bPM(S) is the dimension of HEM(S) as a Q-vector space. In the special
case of a closed and bounded semi-algebraic set, we recover the Euler-Poincaré
characteristic already defined.

The Euler-Poincaré characteristic of a basic locally closed semi-algebraic
set S, is related to the Euler-Poincaré characteristic of the closed and bounded
semi-algebraic sets S, and S, \ S, for all large enough r >0, by the following
lemma.
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Lemma 6.56.
X(9) = x(S5r) = x(Sr\ Sr).
where S, =S N Bi(0,7) and r >0 and sufficiently large.

Proof: Immediate consequence of the definition and Proposition 6.49 ]

Proposition 6.57. [Additivity of Euler-Poincaré characteristic|] Let
S, 81 and Ss be basic locally closed semi-algebraic sets such that S1US;=.9,
S1NSy=10. Then

X(8) = x(51) + x(S2).
Proof: This is an immediate consequence of Theorem 6.55. O

Remark 6.58. Note that the additivity property of the Euler-Poincaré charac-
teristic would not be satisfied if we had defined the Euler-Poincare character-
istic in terms of the homology groups rather than in terms of the Borel-
Moor homology groups.

For instance, the Euler-Poincaré of the line would be -1, that of a point
would be 1, and that of the line minus the point is 2.

Using the definition of Euler-Poincaré characteristic through Borel-Moore
homology, the Euler-Poincaré of the line is 0, that of a point is 1, and that of
the line minus the point is — 1. (|

Remark 6.59. Notice that, unlike the ordinary homology (see Proposition
6.47), the Borel-Moore homology is not invariant under semi-algebraic homo-
topy. For instance, a line is semi-agebraically homotopy equivalent to a point,
while their Euler-Poincaré characteristics differ as seen in Remark 6.58. [

Let S C R* be a closed semi-algebraic set. Given P € R[Xj, ..., Xi], we
denote
Reali(P=0,5)={z €S | P(z)=0},
Reali(P >0,5)={ze S | P(x)>0},
Reali(P <0,S8)={ze S | P(x)<0},

and x(P=0,5), x(P>0,5), x(P<0,8) the Euler-Poincaré characteristics of
the corresponding sets.
The Euler-Poincaré-query of P for S is

EuQ(P,S)=x(P>0,5)— x(P<0,5).

The following equality generalized the basic result of sign determination
(Equation 2.6).
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Proposition 6.60. The following equality holds:

11 1 x(P=0,5) EuQ(1,S)
01 -1 x(P>0,59) |=| EuQ(P,S)
01 1 x(P <0,5) EuQ(P? 7)

Proof: We need to prove

X(P=0,5)+ x(P>0,8)+x(P<0,5) = EuQ(L,5),
x(P>0,5)—x(P<0,5) = EuQ(P,S)

X(P>0,5)+x(P<0,9) = EuQ(P?%8S).

The claim is an immediate consequence of Proposition 6.57.

6.4 Bibliographical Notes

(6.7)

Modern algebraic topology has its origins in the work of Poincaré [130]. The
first proof of the independence of the simplicial homology groups from the
triangulation of a polyhedron is due to Alexander [2]. The Mayer-Vietoris
theorem first occurs in a paper by Vietoris [161]. The Borel-Moore homology

groups first appear in [27].
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Quantitative Semi-algebraic Geometry

In this chapter, we study various quantitative bounds on the number of con-
nected components and Betti numbers of algebraic and semi-algebraic sets.
The key method for this study is the critical point method, i.e. the consid-
eration of the critical points of a well chosen projection. The critical point
method also plays a key role for improving the complexity of algorithms in
the last chapters of the book.

In Section 7.1, we explain a few basic results of Morse theory and use
them to study the topology of a non-singular algebraic hypersurface in terms
of the number of critical points of a well chosen projection. Bounding the
number of these critical points by Bézout’s theorem provides a bound on the
sum of the Betti numbers of a non-singular bounded algebraic hypersurface in
Section 7.2. Then we prove a similar bound on the sum of the Betti numbers
of a general algebraic set.

In Section 7.3, we prove a bound on the sum of the i-th Betti numbers
over all realizable sign conditions of a finite set of polynomials. In particular,
the bound on the zero-th Betti numbers gives us a bound on the number of
realizable sign conditions of a finite set of polynomials. We also explain why
these bounds are reasonably tight.

In Section 7.4, we prove bounds on Betti numbers of closed semi-algebraic
sets. In Section 7.5 we prove that any semi-algebraic set is semi-algebraically
homotopic to a closed one and prove bounds on Betti numbers of general semi-
algebraic sets.

7.1 Morse Theory

We first define the kind of hypersurfaces we are going to consider.
A non-singular algebraic hypersurface is the zero set Zer(Q,R¥) of a
polynomial @ € R[X1, ..., X;] such that the gradient of Q, i.e. the vector

Grad(Q)(p) = (g—)?l(p), ey aa—)?k(p)) is never 0 for p € Zer(Q,R¥).
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Exercise 7.1. Prove that a non-singular algebraic hypersurface is an S sub-
manifold of dimension k£ — 1. (Hint. Use the Semi-algebraic implicit function
theorem (Theorem 3.25).)

Exercise 7.2. Let Zer(Q, R¥) be a non-singular algebraic hypersurface. Prove
that the gradient vector of @ at a point p € Zer(Q, R¥) is orthogonal to the
tangent space T),(Zer(Q,R¥)) to Zer(Q,R¥) at p.

We denote by 7 the projection from R* to the first coordinate sending
(21, ..., zx) to 21.

Notation 7.1. [Fiber] For SCR¥, X CR, let Sx denote SN7~1(X). We also
use the abbreviations Sz, S<z, and S<, for Sy, S(—0o,2), and S(_o,z- U

Let Zer(Q, RF) be a non-singular algebraic hypersurface and
p € Zer(Q,R¥). Then, the derivative dn(p) of 7 on Zer(Q, RF) is a linear
map from T)(Zer(Q,R¥)) to R. Clearly, p is a critical point of 7 on Zer(Q,R¥)
if and only if

oQ ;

ox, (P =0.25i<

(see Definition 5.55). In other words, p is a critical point of 7 on Zer(Q,RF)
if and only if the gradient of @ is parallel to the Xj-axis, i.e. T,(Zer(Q,RF))
is orthogonal to the X; direction. A critical value of 7 on Zer(Q, R¥) is the
projection to the Xj-axis of a critical point of 7 on Zer(Q,R¥).

Lemma 7.2. Let Zer(Q,RF) be a bounded non-singular algebraic hypersur-
face. The set of values that are not critical for ™ is non-empty and open.

Proof: The set of values that are not critical for 7 is clearly open, from the
definition of a critical value. It is also non-empty by Theorem 5.56 (Sard’s
theorem) since the set of critical values is a finite subset of R. |

Also, as an immediate consequence of the Semi-algebraic implicit function
theorem (Theorem 3.25), we have:

Proposition 7.3. Let Zer(Q,R¥) be a bounded non-singular algebraic hyper-
surface. If x is not a critical value of ™ on Zer(Q, R*) and p is a point
of Zer(Q,R¥),, then for e small enough Zer(Q,R*)N B(p,€) <, is non-empty
and semi-algebraically connected.

We also have the following proposition.

Proposition 7.4. Let Zer(Q,R¥) be a bounded non-singular algebraic hyper-
surface. The set of critical points of © on Zer(Q, RF) meets every semi-
algebraically connected component of Zer(Q,RF).
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Proof: Let C be a semi-algebraically connected component of Zer(Q,R¥).
Since C' is semi-algebraic, closed, and bounded, its image by 7 is semi-alge-
braic, closed, and bounded, using Theorem 3.20. Thus 7(C) is a finite number
of points and closed intervals and has a smallest element v. Using Proposi-
tion 7.3, it is clear that any a € C' such that w(xz) =v is critical. (|

We will now state and prove the first basic ingredient of Morse theory. In
the remainder of the section, we assume R=R. We suppose that Zer(Q,R¥) is
a bounded algebraic non-singular hypersurface and denote by 7 the projection
map sending (z1,...,2k) to x1.

Consider the sets Zer(Q, R¥)<, as x varies from —oo to co. Thinking
of X1 as the horizontal axis, the set Zer(Q, R¥)<, is the part of Zer(Q, R¥)
to the left of the hyperplane defined by X; =2z, and we study the changes in
the homotopy type of this set as we sweep the hyperplane in the rightward
direction. Theorem 7.5 states that there is no change in the homotopy type
as x varies strictly between two critical values of 7.

Theorem 7.5. [Morse lemma A] Let [a, b] be an interval containing no
critical value of w. Then Zer(Q,R¥)(, 4 and Zer(Q,R¥), x [a,b] are homeo-
morphic, and Zer(Q,R*) <, is homotopy equivalent to Zer(Q,R¥)<y.

Theorem 7.5 immediately implies:

Proposition 7.6. Let Zer(Q,R*) be a non-singular bounded algebraic hyper-
surface, [a,b] such that w has no critical value in [a,b], and d € [a,b].

— The sets Zer(Q,R¥)(, ) and Zer(Q,R¥)y have the same number of semi-
algebraically connected components.

— Let S be a semi-algebraically connected component of Zer(Q, Rk)[a’b].
Then, for every d € [a,b], Sq is semi-algebraically connected.

The proof of Theorem 7.5 is based on local existence and uniqueness of solu-
tions to systems of differential equations. Let U be an open subset of R*.
A vector field I' on U is a C* map from an open set U of R* to R¥. To a
vector field is associated a system of differential equations

dzi
drT

A flow line of the vector field I' is a C* map ~: I — R* defined on some
interval I and satisfying

=T(z1,...,z1), 1 <i < k.

dy oy _
D) =T(), el
Theorem 7.7. Let ' be a vector field on an open subset V of R* such that for
every €V, I'(x) #£0. For every y €V, there exists a neighborhood U of y and
€ >0, such that for every x €U, there exists a unique flow line 7,: (—¢, €) — RF
of T satisfying the initial condition v,(0) =x.
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Proof: Since I' is C°, there exists a bounded neighborhood W of y and L >0
such that [I'(z1) —['(x2)| < L|x1 — 22| for all 1,20 € W. Let A=supgzew |T'(2)|.
Also, let € >0 be a small enough number such that the set

W'={zeW| Bi(z,ed) c W}

contains an open set U containing y.

Let € U. If v, [—¢, €] — RF with 4,(0) = z, is a solution,
then ~,([—e¢,€]) CW'. This is because |[I'(z’)| < A for every z’ € W, and
hence applying the Mean Value Theorem, |z — 7,(t)| <|t|A for all ¢ € [—¢, €].
Now, since z € U, it follows that ~,([—e,€]) CW".

We construct the solution ~,: [—€, e] — W as follows. Let ~, o(t) =z for
all ¢ and

71,n+1(t) :x+/0t F(’men(t))dt

Note that v, n([—€,€]) C W’ for every n > 0. Now,

/ (T(Va,n(t)) — F(vm,n_l(t)))dt‘

|'71,n+1(t) - '7w7n(t)| =

0
i |F(%c,n(t))—F(%,n_l(t))|dt‘

< eLl’yw,n(t) - Vm,n—l(t”

IN

Choosing € such that ¢ < 1/L, we see that for every fixed ¢ € [—e¢, €], the
sequence 7, »(t) is a Cauchy sequence and converges to a limit ~,(¢).
Moreover, it is easy to verify that ~y,(t) satisfies the equation,

Yo(t) =z + /Ot T(v2(t))dt.

Differentiating both sides, we see that 7, (t) is a flow line of the given vector
field ', and clearly ~,(0) =x.
The proof of uniqueness is left as an exercise. O

Given a C* hypersurface M C R*, a C> vector field on M, T, is a C>
map that associates to each x € M a tangent vector I'(z) € T,(M).

An important example of a vector field on a hypersurface is the gra-
dient vector field. Let Zer(Q, R¥) be a non-singular algebraic hypersurface
and (a’, b") such that 7 has no critical point on Zer(Q, Rk)(a,ﬁb,), The gra-
dient vector field of 7 on Zer(Q, R¥)(, 4 is the C vector field on
Zer(Q,R¥) (4 b7y that to every p € Zer(Q, R¥)(,/ ) associates T'(p) charac-
terized by the following properties

— it belongs to Tp(Zer(Q,R¥)),
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— it belongs to the plane generated by the gradient Grad(Q)(p), and the unit
vector of the Xi-axis,
— its projection on the X;i-axis is the negative of the unit vector.

The flow lines of the gradient vector field correspond to curves on the hyper-
surface along which the X; coordinate decreases maximally. A straightforward
computation shows that, for p € Zer(Q,RF),

G(p)

> (3%(19))27

2<i<k

0 2 0Q o oQ
G<p>=<22 (g2w) ,—a—ga—%p),...,—a—ﬁa—%@)).

I'(p)=-—

Fig. 7.1. Flow of the gradient vector field on the 2-sphere

Proof of Theorem 7.5: By Lemma 7.2 we can chose a’ < a, b’ > b such that
7 has no critical point on Zer(Q), R’“)(a/7b/). Consider the gradient vector field
of m on ZeI‘(Q,Rk)(a/’b/).

By Corollary 5.51, the set Zer(Q, Rk)(a/}b/) can be covered by a finite
number of open sets such that for each open set U’ in the cover, there is an
open U of R¥~! and a diffeomorphism ®: U — U’.

Using the linear maps d®, *: T,,(M) — Tp-1,)R ™1, we associate to the
gradient vector field of 7 on U’ C Zer(Q,Rk)(a/}b/) a C° vector field on U.
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By Theorem 7.7, for each point x € Zer(Q, Rk)[a)b], there exists a neigh-
borhood W of ®~1(z) and an € >0 such that the induced vector field in R¥~!
has a solution 7,(t) for t € (—¢, €) and such that v,(0) = ®~1(z). We consider
its image ®(~y,) on Zer(Q,Rk)(a/7b/). Thus, for each point x € Zer(Q,Rk)[mb},
we have a neighborhood U,, a number ¢, >0, and a curve

Doy, (—Gw, Ew) - Zer(Q, IRk)(a’,b/)u

such that ® 0 v,(0) =z, and d® oy, dt =T (D o ,(t)) for all t € (—e,, €;).

Since Zer(Q, Rk)[ayb] is compact, we can cover it using a finite number of
the neighborhoods U, and let €g > 0 be the least among the corresponding €, ’s.
For t €[0,b — a], we define a one-parameter family of smooth maps

ag: Zer(Q,R¥), — Zer(Q, R¥) <b
as follows:

Let = € Zer(Q, R¥),. If [t] < €0/2, we let ay(x) = 7.(t). If [t| > €0/2, we
write t =n¢€p/2+ d, where n is an integer and |§| < €o/2. We let

n times

—PN—
() = Q20+ 0 ey 2 0 t5().
Observe the following.

— For every z € Zer(Q, R¥),, ap(z) = .
dOét(:E)
dt

of T'(as(z)) =(—1,0,...,0), it follows that m(as(x))=b—t.

— ay(Zer(Q,R¥),) = Zer(Q,R¥), .

— It follows from the uniqueness of the flowlines through every point of the
gradient vector field on Zer(Q,R¥),  (Theorem 7.7) that each a; defined
above is injective.

We now claim that the map f:Zer(Q,R")(, ) — Zer(Q,R¥), x [a,b] defined by

(@)= (ap-a(0g n (e (), 7(2))

is a homeomorphism. This is an immediate consequence of the properties of ay
listed above.

Next, consider the map F(z, t): Zer(Q, R¥) <, x [0, 1] — Zer(Q, R¥)<,
defined as follows:

F(z,s) = =, ifr(r)<b—s(b—a)
= as(b—a)(a;_lﬂ(m)(x)), otherwise.

— By construction, =T'(ay(x)). Since the projection on the X; axis

Clearly, F is a deformation retraction from Zer(Q,RF)<; to Zer(Q,R¥) <, so
that Zer(Q, R¥) <, is homotopy equivalent to Zer(Q, R¥)<,.
This completes the proof. O
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Theorem 7.5 states that there is no change in homotopy type on inter-
vals containing no critical values. The remainder of the section is devoted to
studying the changes in homotopy type that occur at the critical values. In
this case, we will not be able to use the gradient vector field of 7 to get a flow
as the gradient becomes zero at a critical point. We will, however, show how
to modify the gradient vector field in a neighborhood of a critical point so as
to get a new vector field that agrees with the gradient vector field outside a
small neighborhood. The flow corresponding to this new vector field will give
us a homotopy equivalence between Zer(Q,R*) <. and Zer(Q,R¥)<._ UB,
where c is a critical value of 7, € >0 is sufficiently small, and B a topological
ball attached to Zer(Q,R¥)<._. by its boundary. The key notion necessary
to work this idea out is that of a Morse function.

Definition 7.8. [Morse function| Let Zer(Q, R¥) be a bounded non-
singular algebraic hypersurface and 7 the projection on the Xj-axis
sending @ = (r1,...,7x) ERF to 71 € R. Let p € Zer(Q, R¥) be a critical
point of m. The tangent space Tp(Zer(Q, R¥)) is the (k — 1)-dimensional
space spanned by the Xo, ..., X} coordinates with origin p. By virtue of
the Implicit Function Theorem (Theorem 3.25), we can choose (Xa, ..., Xi)
to be a local system of coordinates in a sufficiently small neighborhood of p.
More precisely, we have an open neighborhood U C R*~! of p’ = (py, ..., px)
and a mapping ¢: U — R, such that, with 2’ = (za, ..., 21), and

O(2') = (p(x"),2") € Zer(Q,R¥), (7.1)

the mapping @ is a diffeomorphism from U to ®(U).
The critical point p is non-degenerate if the (k — 1) x (k — 1) Hessian
matrix
Hes (p’):[ﬂ(p’)] 2<i,5<k (7.2)
g 8X18XJ o= '

is invertible. Note that Hes,(p’) is a real symmetric matrix and hence all its
eigenvalues are real (Theorem 4.42). Moreover, if p is a non-degenerate critical
point, then all eigenvalues are non-zero. The number of positive eigenvalues
of Hes(p’) is the index of the critical point p.

The function 7 is a Morse function if all its critical points are non-
degenerate and there is at most one critical point of m above each z €¢ R. O

We next show that to require 7 to be a Morse function is not a big loss of
generality, since an orthogonal change of coordinates can make the projection
map 7 a Morse function on Zer(Q,R¥).

Proposition 7.9. Up to an orthogonal change of coordinates, the projection
to the X1-axis is a Morse function.

The proof of Proposition 7.9 requires some preliminary work.
We start by proving:
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Proposition 7.10. Let d be the degree of Q. Suppose that the projection w
on the X1-axis has only non-degenerate critical points. The number of critical
points of 7 is finite and bounded by d(d — 1)k~

Proof: The critical points of 7 can be characterized as the real solutions of
the system of k£ polynomial equations in k variables

0Q _ 9Q _
6—)(2—0,..., m—o.

We claim that every real solution p of this system is non-singular, i.e. the
Jacobian matrix

Q=

[ 0Q 92Q 9%Q ]
axl() 0X20X, () - 0X.0X, (p)
aQ a?é a?é
| 9x,, ) 0X20X . p) axkaxk(p)

is non-singular. Differentiating the identity (7.3) and evaluating at p, we
obtain for 2 <4, j <k, with p’=(p2,..., k),

20 00, 0
axax, P ="ax, ) axax, )

Since gTQ( ) # 0 and Q( ) = 0, for 2 < i < k, the claim follows.By

Theorem 4.106 (Bézout’s theorem)7 the number of critical points of 7 is less
than or equal to the product

deg(Q)deg<6.8§;2 ) deg(aaji2 ) d(d—1)k=1, O

We interpret geometrically the notion of non-degenerate critical point.

Proposition 7.11. Let p € Zer(Q, RF¥) be a critical point of .
Let g:Zer(Q,R*) — S¥=1(0,1) be the Gauss map defined by

() = Crad(Q())
|Grad(Q(x))||"

The Gauss map is an S*-diffeomorphism in a neighborhood of p if and only
if p is a non-degenerate critical point.

Proof: Since p is a critical point of 7, g(p) =(=£1,0,...,0). Using Notation 7.8,
for 2’ €U, z=®(z') = (4(2’),z’), and applying the chain rule,

0Q ), 02 0
S @)+ @) @) =0, 2<i <k (73)
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Thus

g(@:i\/ ! (-1 2wt ).

1+3 (;‘?i(x/)y

1=2

Taking the partial derivative with respect to X; of the j-th coordinate g; of g,
for 2<14, j <k, and evaluating at p, we obtain

9%
X, OX,

Wi (p) =+

No9<i i<k
e (p'), 2<4,j<k

The matrix [0g;/0X;(p)],2 <14, j <k, is invertible if and only if p is a non-
degenerate critical point of ¢ by (7.2). O

Proposition 7.12. Up to an orthogonal change of coordinates, the projec-
tion m to the X1-axis has only non-degenerate critical points.

Proof: Consider again the Gauss map g: Zer(Q,R¥) — S¥~1(0,1), defined by

_ Grad(Q(x))
96) = Grad( Q)

According to Sard’s theorem (Theorem 5.56) the dimension of the set of crit-
ical values of g is at most kK — 2. We prove now that there are two antipodal
points of S¥~1(0, 1) such that neither is a critical value of g. Assume the
contrary and argue by contradiction. Since the dimension of the set of critical
values is at most k — 2, there exists a non-empty open set U of regular values
in S*~1(0,1). The set of points that are antipodes to points in U is non-empty,
open in S¥~1(0,1) and all critical, contradicting the fact that the critical set
has dimension at most k — 2.

After rotating the coordinate system, we may assume that (1, 0, ..., 0)
and (—1,0,...,0) are not critical values of g. The claim follows from Propo-
sition 7.11. O

It remains to prove that it is possible to ensure, changing the coordinates
if necessary, that there is at most one critical point of m above each = € R.

Suppose that the projection 7 on the Xj-axis has only non-degenerate
critical points. These critical points are finite in number according to Propo-
sition 7.10. We can suppose without loss of generality that all the critical
points have distinct X5 coordinates, making if necessary an orthogonal change
of coordinates in the variables Xo, ..., X} only.

Lemma 7.13. Let § be a new variable and consider the field R(5) of algebraic
Puiseuz series in 5. The set S of points p= (Pi, ..., Dk) € Zer(Q, R(6)*) with
gradient vector Grad(Q)(p) proportional to (1,6,0,...,0) is finite. Its number
of elements is equal to the number of critical points of w. Moreover there is a
point P of S infinitesimally close to every critical point p of m and the signature
of the Hessian at p and P coincide.
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Proof: Note that, modulo the orthogonal change of variable
Xl/:Xl+5X27X2/:X2_5X17X1/:X7,71237

a point p such that Grad(Q)(p) is proportional to (1,4, 0,...,0) is a critical
point of the projection 7’ on the X{-axis, and the corresponding critical value
of ' is p1 + 3.

Since Zer(Q, RF) is bounded, a point p € Zer(Q, R(5)*) always
has an image by lims . If p is such that Grad(Q)(p) is proportional
to (1,4,0,...,0), then Grad(Q)(lims (p)) is proportional to (1, O, ..., 0, 0),
and thus p=lims (p) is a critical point of 7. Suppose without loss of gen-
erality that Grad(Q)(p)=(1,0,...,0,0). Since p is a non-degenerate critical
point of m, Proposition 7.11 implies that there is a semi-algebraic neigh-
borhood U of p’=(py,..., pr) such that g o ® is a diffeomorphism from U
to a semi-algebraic neighborhood of (1, 0, ..., 0, 0) € S¥~1(0, 1). Denoting
by ¢’ the inverse of the restriction of g to ®(U) and considering

Ext(g’,R{5)): Ext(g(®(U)),R{5)) — Ext(®(U),R(S)),

there is a unique p € Ext(®(U), R(d)) such that Grad(Q)(p) is proportional
to (1,4,0,...,0). Moreover, denoting by J the Jacobian of Ext(g’,R(d)), the
value J(1,0,0,...,0) =t is a non-zero real number. Thus the signature of the
Hessian at p and p coincide. 0

Proof of Proposition 7.9: Since J is the Jacobian of Ext(g’,R(d)), the
value J(1,0,0,...,0) =t is a non-zero real number, lims (J(y)) =t for every y €
Ext(S*~1(0, 1), R(d)) infinitesimally close to (1,0, 0, ...,0). Using the mean
value theorem (Corollary 2.23)

1
7—pl)=o |—=——o(1,6,0,...,0) = (1,0,0,....0)| | =1.
o7 pl) ('m( ) ( )])
Thus o(p; — pi) > 1,1 > 1.
82(;5

Let bii = ax0x,

(p), 2<i<k,2<j<k. Taylor’s formula at p for ¢ gives

pi=pi+ > b (pi—p) (Fr—py) +e,
2<i<k,2<j<k
with o(c) > 2. Thus o(p1 — p1) > 2.

It follows that the critical value of ©’ at pis p1 + d Pz = p1 + d p2 + w,
with o(w) > 1.

Thus, all the critical values of 7/ on Zer(Q, R{(§)* are distinct since all
values of ps are. Using Proposition 3.17, we can replace ¢ by d € R, and we
have proved that there exists an orthogonal change of variable such that = is
a Morse function. O

We are now ready to state the second basic ingredient of Morse theory,
which is describing precisely the change in the homotopy type that occurs
in Zer(Q,R¥)<, as x crosses a critical value when 7 is a Morse function.
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Theorem 7.14. [Morse lemma B] Let Zer(Q, R¥) be a non-singular
bounded algebraic hypersurface such that the projection © to the Xi-axis is
a Morse function. Let p be a non-degenerate critical point of ™ of index A
and such that ©(p) =c.

Then, for all sufficiently small € >0, the set Zer(Q,R¥) <., has the homo-
topy type of the union of Zer(Q,R¥)<._. with a ball of dimension k—1— ),
attached along its boundary.

We first prove a lemma that will allow us to restrict to the case where =0
and where @) is a quadratic polynomial of a very simple form.
Let Zer(Q,R¥),U, ¢, ® be as above (see page 243).

Lemma 7.15. Let Zer(Q, R¥) be a non-singular bounded algebraic hyper-
surface such that the projection m to the Xi-axis is a Morse function.
Let peZer(Q,RF) be a non-degenerate critical point of the map 7 with
index . Then there exists an open neighborhood V of the origin in RF~1
and a diffeomorphism ¥ from U to V such that, denoting by Y; the i-th coor-
dinate of V(Xo,..., Xk),

¢Oéanq}%):: E: Y?__ E: Y?.

2<i<A+1 A+2<i<k

Proof: We assume without loss of generality that p is the origin. Also, by
Theorem 4.42, we assume that the matrix

Hes(0) = | 507 (0) | 27,5 <k

is diagonal with its first A entries + 1 and the remaining — 1.
Let us prove that there exists a C°° map M from U to the space of
symmetric (k —1) x (k —1) matrices, X — M (X) = (m;;(X)), such that

(X, ..., Xi) = Z mii(X) X; X
2<i <k

Using the fundamental theorem of calculus twice, we obtain

p(Xa, ..., Xp) = Z X/ th,...,th)dt

2<j<k
= Z Z XX/ / 8X8X (st Xo,...,st Xi)dt ds.
2<i<k 2<j<k
Take

82¢
mii(Xa, ..., Xi) / / IXOX, e (st Xa,...,st Xp)dt ds.
Note that the matrix M(Xs, ..., Xj) obtained above clearly
satisfies M (0) = H(0), and M (xa,...,z1) is close to H(xa,...,zk) for (2, ..., xk)
in a sufficiently small neighborhood of the origin.
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Using Theorem 4.42 again, there exists a C'*° map N from a sufficiently
small neighborhood V of 0 in R~ to the space of (k — 1) x (k — 1) real
invertible matrices such that

Ve eV, N(z)! M(z) N(z)=H(0).

Let Y =N(X)~1X. Since N(X) is invertible, the map sending X to Y maps V/
diffeomorphically into its image. Also,

X'M(X)X = YINX)'M(X)N(X)Y
= Y'H(0)Y
-y oy om
2<i<A+1 A2<i<k

O

Using Lemma 7.15, we observe that in a small enough neighborhood of a
critical point, a hypersurface behaves like one defined by a quadratic equation.
So it suffices to analyze the change in the homotopy type of Zer(Q, R¥)<,
as x crosses 0 and the hypersurface defined by a quadratic polynomial of a
very simple form. The change in the homotopy type consists in “attaching a
handle along its boundary”, which is the process we describe now.

A j-ball is an embedding of B;(0, 1), the closed j-dimensional ball with
radius 1, in Zer(Q,R¥). It is a homeomorphic image of B;(0,1) in Zer(Q,R¥).

Let
P=X— > X{+ > X
2<i<A+1 A2<i<k

and 7 the projection onto the X; axis restricted to Zer(P,R¥).

Fig. 7.2. The surface Zer(X; — X2 + X2, R%) near the origin
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Fig. 7.3. The retract of Zer(X; — X%+ X3, R3) near the origin

Let B be the set defined by

Xo==X,41=0,X;=— Z X2 —e< X, <0.
A2<i<k

Note that B is a (k — A — 1)-ball and BN Zer(P,R¥)<_. is the set defined by

2
Xo==X34+1=0,X1=—¢, E Xi=e,
A+2<i<k

which is also the boundary of B.

Lemma 7.16. For all sufficiently small € >0, and r > 2+/€, there exists a

vector field T’ on Zer(P,R¥)_. 4\ B, having the following properties:

1. Outside the ball By(r), 2¢I"’ equals the gradient vector field, T, of m on
Zer(P,Rk)[_E,E].

2. Associated to T there is an one parameter continuous family of
smooth maps ay: Zer(P, R¥). — Zer(P, R¥)_. g, t € [0, 1), such that
for x € Zer(P,RF) ., t€[0,1),

a) Fach ay is injective,

p) 99 _ (g (),

lim; at( ) € Zer(P,RF)_ U B,
e) for every y € Zer(P,R¥)_. 4\ B there exists a unique z € Zer(P,R¥).
and t €[0,1) such that ou(z) =y.

)
)()
d)
)

Proof of Lemma 7.16: In the following, we consider RF~1 as a product
of the coordinate subspaces spanned by Xo, ..., Xxy1 and X2, ..., X,
respectively, and denote by Y ( resp. Z) the vector of variables (Xo,..., Xa+1)
(resp. (Xx12,..., Xz)). We denote by ¢: R¥ — R¥~! the projection map onto
the hyperplane X7 =0. Let S = ¢(By(r)).

We depict the flow lines of the flow we are going to construct (projected
onto the hyperplane defined by X7 =0) in the case when k=3 and A=1 in
Figure 7.4.
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Fig. 7.4. S; and S,

Consider the following two subsets of S.

and

In Zer(P, R¥)_.q N ¢~(S1), consider the flow lines whose projection
onto the hyperplane X; = 0 are straight segments joining the points
(Y2, .., Yk) € ¢(Zer(P,RF),) to (0,...0, yat2, .-, Yi)-

These correspond to the vector field on Zer(P, R¥)_. 4N ¢~'(S1) \ B
defined by

1 -Y
e < ZP+e 2IY|2(|Z|2+6)’0>'

Let p=(e,y, 2) € Zer(P,R¥).N ¢~1(S1) and ¢ the point in Zer(P,R*) having
the same Z coordinates but having Y =0. Then, 7(q) = |z|?> + €. Thus, the
decreases uniformly from € to — |z|? along the flow lines of the vector field
I'y. For a point p= (21, y, 2) € Zer(Q,R¥)_ g N ¢~ 1(S1) \ B, we denote by
g(p) the limiting point on the flow line through p of the vector field I'; as it
approaches Y =0.
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In Zer(P,R*)_. N ¢~1(S\ Ss), consider the flow lines of the vector field

I — 1 Y VA

T\ 2e A(VPHZP) AV P2 )
Notice that I'y is % times the gradient vector field on
Zer(P,Rk)[_e’E] N (;5_1(5 \ S2).

For a point p=(21,y,2) € Zer(P,Rk)[_e,E] N¢~1(S\ Ss), we denote by g(p) the
point on the flow line through p of the vector field I'y such that 7(g(p)) =—e.
We patch these vector fields together in

Zer(P7 Rk)[—e,e] N (b_l(S? \ Sl)

using a C°° function that is 0 in S; and 1 outside Ss. Such a
function p: R¥~' — R can be constructed as follows. Define

0 if <0,
1
1-27%7 if0<z <y,
Mz)=q _
2 07 if <<,
1 if 2> 1.
Take
1y, 2) = A ly| —v2¢ A(IZI—\/E)
’ V2e(vV2 1) Ve

Then, on Zer(P,R¥)_. 4N ¢~1(S2\ S1) we consider the vector field

I(p) = p(o(p))L2(p) + (1 — p(o(p)))T1(p)-

Notice that it agrees with the vector fields defined on
Zer(P, Rk)[_57e] N (;5_1(5 \ Sg), Zer(P, Rk)[_67€] N ¢_1(51).

For a point p = (z1, y, 2) € Zer(Q, R¥)_cq N ¢~ 1(S2 \ S1), we denote
by ¢g(p) the point on the flow line through p of the vector field Ty such
that w(g(p))=—ce.

Denote the flow through a point p € Zer(P, R¥). N ¢~1(S) of the vector
field I'V by ~v,:[0,1] — Zer(P,Rk)[_e’e], with v,(0) =p.

For z € Zer(P,R¥), and t € [0, 1], define ay(z) = 7.(t). By construction of
the vector field I', a; has the required properties. |

Before proving Theorem 7.14 it is instructive to consider an example.
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Ezample 7.17. Consider a smooth torus in R? (see Figure 7.5). There are
four critical points p1, po, p3 and ps with critical values v1, v, v3 and v4 and
indices 2,1,1 and 0 respectively, for the projection map to the X; coordinate.

P4

Y1 vg vg vg

X1- axis

Fig. 7.5. Changes in the homotopy type of the smooth torus in R? at the
critical values

The changes in homotopy type at the corresponding critical values are
described as follows: At the critical value v; we add a O-dimensional ball. At
the critical values vy and v3 we add 1-dimensional balls and finally at v, we
add a 2-dimensional ball. ]

Proof of Theorem 7.14: We construct a vector field T’
on Zer(Q,Rk)[c_€7c+€] that agrees with the gradient vector field I every-
where except in a small neighborhood of the critical point p. At the critical
point p, we use Lemma 7.15 to reduce to the quadratic case and then use
Lemma 7.16 to construct a vector field in a neighborhood of the critical point
that agrees with I' outside the neighborhood. We now use this vector field, as
in the proof of Theorem 7.5, to obtain the required homotopy equivalence. [

We also need to analyze the topological changes that occur to sets bounded
by non-singular algebraic hypersurfaces.

We are also going to prove the following versions of Theorem 7.5 (Morse
Lemma A) and Theorem 7.14 (Morse Lemma B).

Proposition 7.18. Let S be a bounded set defined by @@ > 0, bounded by
the non-singular algebraic hypersurface Zer(Q, R¥). Let [a, b] be an interval
containing no critical value of ™ on Zer(Q,R¥). Then Sla,p) s homeomorphic
to Sq X [a,b] and S<, is homotopy equivalent to S<p.
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Proposition 7.19. Let S be a bounded set defined by QQ >0, bounded by the
non-singular algebraic hypersurface Zer(Q,R¥). Suppose that the projection
to the Xy-axis is a Morse function. Let p be the non-degenerate critical point
of ™ on OW of index \ such that w(p)=c. For all sufficiently small e >0, the
set S<cie has

— the homotopy type of S<c—c if (0Q/0X1)(p) <0,
— the homotopy type of the union of S<.—. with a ball of dimension k—1—\
attached along its boundary, if (0Q/0X1)(p) > 0.

Ezxample 7.20. Consider the set in R3 bounded by the smooth torus. Suppose
that this set is defined by the single inequality @ > 0. In other words, @ is
positive in the interior of the torus and negative outside. Referring back to
Figure 7.5, we see that at the critical points ps and p4, (0Q/0X1)(p) <0 and
hence according to Proposition 7.19 there is no change in the homotopy type
at the two corresponding critical values vy and v4. However, (0Q/0X1)(p) >0
at p1 and ps and hence we add a 0-dimensional and an 1-dimensional balls at
the two critical values v; and vs respectively. |

Proof of Proposition 7.18: Suppose that S, defined by @ >0, is bounded
by the non-singular algebraic hypersurface Zer(Q, R¥). We introduce a new
variable, X1, and consider the polynomial Q4 = @Q — X;%_H and the corre-
sponding algebraic set Zer(Q,, R¥T1). Let ¢: R**! — R* be the projection
map to the first £ coordinates.

Topologically, Zer(Q;, R**!) consists of two copies of S glued
along Zer(Q, R¥). Moreover, denoting by 7’ the projection from R**! to R
forgetting the last k coordinates, Zer(Q, R¥*1) is non-singular and the crit-
ical points of 7’ on Zer(Q_, R**1) are the critical points of m on Zer(Q,R¥)
(considering Zer(Q, R¥) as a subset of the hyperplane defined by the equa-
tion X1 =0). We denote by I'y the gradient vector field on Zer(Q., R¥*1).

Since @4 is a polynomial in Xy, ..., X and X%H, the gradient vector
field T'y on Zer(Qy, R*t1) is symmetric with respect to the reflection
changing Xy4; to — Xpy;. Hence, we can project I'; and its associated

flowlines down to the hyperplane defined by Xj;+1 = 0 and get a vector
field as well as its flowlines in S.

Now, the proof is exactly the same as the proof of Theorem 7.5 above,
using the vector field ' instead of I', and projecting the associated vector field
down to R¥, noting that the critical values of the projection map onto the first
coordinate restricted to Zer(Q,,RF*1) are the same as those of Zer(Q,R¥). O

For the proof of Proposition 7.19, we first study the quadratic case.
Let 7 the projection onto the X; axis and

P=xi— > X+ > X

2<i<A+1 A+2<i<k
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Let B4 be the set defined by

Xo==Xy41=0,X;=— Z XZ, —e< X, <0,
A2<i<k
and let B_ be the set defined by

Xp==Xy1=0,X1<~ ) XP-e<X;<0.
A+2<i<k

Note that, By is a (k— A —1)-ball and B_NZer(P,R¥)~__is the set defined by

Xo==Xy1=0,X1=—¢, >  X?<e
A+2<i<k

which is also the boundary of B..

Fig. 7.6. Set defined by X; — X%+ X% <0 near the origin

Fig. 7.7. Retract of the set X; — X2+ X2<0
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By

Fig. 7.8. Retract of the set X; — X34+ X2>0

Lemma 7.21. Let P+:P—X;3+1,P_::P+X;f+1.

1. Let S’ be the set defined by P > 0. Then, for all sufficiently small ¢ >0
and v > 2+/(€), there exists a vector field T, on S(_c.q\ By, having the
following properties:

a) Outside the ball By(r), 2¢T''y. equals the projection on R¥ of the gradient
vector field, Ty, of m on Zer(Py, RFT1)_ 4.
b) Associated to T, there is a one parameter family of smooth
maps o : S! — S(_e,pt€[0,1), such that for x € S, t€[0,1),
i. Each o is injective,
+
A0 ) _ 1) (o (@),

i, ag (r) =1z,

iv. limy 1 of (z) € S_.U B, and,
v. for every y € Sj_¢,q \ By there exists a unique z € S and t € [0, 1)
such that ax(z) =y.

2. Similarly, let T’ be the set defined by P < 0. Then, for all sufficiently
small € >0 and r > 2\/(¢), there exists a vector field ' on T g\ B+
having the following properties:

a) Outside the ball By(r), 2¢I""_ the projection on R¥ of the gradient vector
field, T_, of m on Zer(P_,R*1)__ 4.
b) Associated to T, there is a one parameter continuous family of smooth
maps oy : Te—Ti_c g, €[0,1), such that for x €T, t€|0,1)
i. Each ay is injective,
e )]

iti. ag (z) ==,
. limy_,1 a7 () €T’ UB_ and,

v. for every y € T_. 4\ B_, there exists a unique z € T, and t €[0,1)
such that ax(z) =y.
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Proof: Since Py (resp. P_) is a polynomial in X, ..., Xj and X7,1, the
gradient vector field T’y (resp. I'_ ) on Zer(Py,RF*1) (resp. Zer(P_,RF*1)) is
symmetric with respect to the reflection changing X1 to — Xy 1. Hence, we
can project I'y (resp. I'_) and its associated flowlines down to the hyperplane
defined by X411 =0 and get a vector field '} (resp. I'*) as well as its flowlines
in S’ (resp. T").
1. Apply Lemma 7.16 to Zer(P,,R¥) to obtain a vector field T, on
Zer(P.,_, Rk—’—l)[_é_’e] \ B+

coinciding with I'}. Figure 7.8 illustrates the situation in the case k =3
and A=1.
2. Apply Lemma 7.16 to Zer(Q_,R¥) to obtain a vector field I'"_ on

Zer(Q—,RF 1) _. g\ ¢~ 1(B-)

coinciding with T'*. Figures 7.8 and 7.8 illustrate the situation in the
case k=3 and A=1. g

We are now in a position to prove Proposition 7.19.

Proof of Proposition 7.19: First, use Lemma 7.15 to reduce to the
quadratic case, and then use Lemma 7.21, noting that the sign of 9Q/9X1}(p)
determines which case we are in. |

7.2 Sum of the Betti Numbers of Real Algebraic Sets

For a closed semi-algebraic set S, let b(S) denote the sum of the Betti numbers
of the simplicial homology groups of S. It follows from the definitions of
Chapter 6 that b(S) is finite (see page 198).

According to Theorem 5.47, there are a finite number of algebraic subsets
of R¥ defined by polynomials of degree at most d, say Vi, ..., V,, such that
any algebraic subset V of R* so defined is semi-algebraically homeomorphic to
one of the V;. It follows immediately that any algebraic subset of R* defined
by polynomials of degree at most d is such that b(V) <max {b(V1),...,b(V,,)}.
Let b(k, d) be the smallest integer which bounds the sum of the Betti numbers
of any algebraic set defined by polynomials of degree d in R*. The goal of this
section is to bound the Betti numbers of a bounded non-singular algebraic
hypersurface in terms of the number of critical values of a function defined on
it and to obtain explicit bounds for b(k, d).

Remark 7.22. Note that b(k, d) > d* since the solutions to the system of
equations,

(X1=1) (X1=2) o (X1 = d) = = (X = 1) (X = 2) o (X = d) =0
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consist of dF isolated points and the only non-zero Betti number of this set
is bg=d". (Recall that for a closed and bounded semi-algebraic set S, by(.9)
is the number of semi-algebraically connected components of S by Proposi-
tion 6.34.) O

We are going to prove the following theorem.

Theorem 7.23. [Oleinik-Petrovski/Thom/Milnor bound]
b(k,d)<d(2d—1)*—L

The method for proving Theorem 7.23 will be to use Theorems 7.5 and 7.14,
which give enough information about the homotopy type of Zer(Q, R¥) to
enable us to bound b(Zer(Q, RF)) in terms of the number of critical points
of .

A first consequence of Theorems 7.5 and 7.14 is the following result.

Theorem 7.24. Let Zer(Q,RF) be a non-singular bounded algebraic hyper-
surface such that the projection m on the Xi-axis is a Morse function.
For 0<i<k—1, let ¢; be the number of critical points of w restricted
to Zer(Q,R¥), of index i. Then,

k—1
b(Zer(Q,R¥) < 3 @,

i=0

k—1
X(Zer(Q,R%)) = >~ (=) 1ic,

i=0

In particular, b(Zer(Q, RF)) is bounded by the number of critical points of ©
restricted to Zer(Q,R¥).

Proof: Let v; < vy < --- < vy be the critical values of m on Zer(Q, R¥) and p;
the corresponding critical points, such that 7(p;) =v;. Let A; be the index of
the critical point p;. We first prove that b(Zer(Q,R¥)<,,) <i.

First note that Zer(Q,R¥)<,, is {p1} and hence

b(Zer(Q, Rk)ﬁm) = bO(Zer(Qv Rk)gm) =1

By Theorem 7.5, the set Zer(Q, R¥)<,,,,_. is homotopy equivalent to the
set Zer(Q,R¥)<,, . for any small enough € >0, and thus

b(Zer(Q, Rk)ﬁvwl—ﬁ) = b(Zer(Q, Rk)ﬁvi-‘rG)'

By Theorem 7.14, the homotopy type of Zer(Q,R¥)<,, . is that of the union
of Zer(Q,R¥) <, _ with a topological ball. Recall from Proposition 6.44 that
if 51,55 are two closed semi-algebraic sets with non-empty intersection, then

bz(Sl U SQ) < bl(Sl) + bZ(SQ) + bi—l(Sl M SQ), 0<i<k-—1.
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Recall also from Proposition 6.34 that for a closed and bounded semi-
algebraic set S, bo(S) equals the number of connected components of S.
Since, 51N Sy# (), for i =0 we have the stronger inequality,

bO(Sl @] 52) < bO(Sl) + bo(Sg) —1.
By Proposition 6.37, for A >1 we have that

bQ(B)\) = bo(Sk_l)
b)\_l(S)‘_l)
17

b;(B)) 0,7>0,
bi(S* 1) = 0,0<i<A—1.

It follows that, for A > 1, attaching a A-ball can increase by by at most one,
and none of the other Betti numbers can increase.

For A=1, by_1(5*71) =b(S°) =2. It is an exercise to show that in this
case, by can increase by at most one and no other Betti numbers can increase.
(Hint. The number of cycles in a graph can increase by at most one on addition
of an edge.)

It thus follows that

b(Zer(Q, Rk)ﬁvr‘rE) <b(Zer(Q, Rk)ﬁqu—e) +1.

This proves the first part of the lemma.
We next prove that for 1 <i </ and small enough € > 0,

X (Zer(Q, Rk)gvi+e) = x(Zer(Q, Rk})g”i—l‘i‘é) +(=1)k—1=N,

By Theorem 7.5, the set Zer(Q, R¥)<,,_. is homotopy equivalent to the
set Zer(Q,R¥)<,, 4. for any small enough € >0, and thus

X(Zer(Q, Rk)ﬁvi—e) = x(Zer(Q, Rk)ﬁvifﬁ-e)'

By Theorem 7.14, the homotopy type of Zer(Q,R¥)<,, . is that of the union
of Zer(Q,RF)<,, . with a topological ball of dimension k — 1 — ;. Recall from
Corollary 6.36 (Equation 6.36) that if S1,Ss are two closed and bounded semi-
algebraic sets with non-empty intersection, then

X(S1U S2) = x(S1) + x(S2) — x(S1N S2).
Hence,

X(Zer(Qka)Svﬁ-é) = X(ZGI‘(Q,Rk)gyi71+€)
= X(Bk-1-x,)
_ X(Sk}—Q—)\i).

Now, it follows from Proposition 6.37 and the definition of Euler-Poincaré
characteristic, that y(Br_1-,) =1 and x(S¥7272) =14 (=1)F=2-7



7.2 Sum of the Betti Numbers of Real Algebraic Sets 259

Substituting in the equation above we obtain that

X(ZGI’(Q7 Rk)SUH-E) = X(ZGT(Q, Rk)gvi—l"l‘f) + (_1)k_1_>\i'

The second part of the theorem is now an easy consequence. |
We shall need the slightly more general result.

Proposition 7.25. Let Zer(Q,R*) be a non-singular bounded algebraic hyper-
surface such that the projection m on the Xi-axis has non-degenerate critical
points on Zer(Q,RF). For 0<i<k—1, let ¢; be the number of critical points
of 7 restricted to Zer(Q,R¥), of index i. Then,

b(Zer(Q,R¥) < 3 @,

X(Zer(Q,R¥))

I
g
iy
|
L
=
ol
|
L
|
L
o
g

In particular, b(Zer(Q, R¥)) is bounded by the number of critical points of w
restricted to Zer(Q,R¥).

Proof: Use Lemma?7.13 and Theorem 7.24. O

Using Theorem 7.24, we can estimate the sum of the Betti numbers in the
bounded case.

Proposition 7.26. Let Zer(Q,R*) be a bounded non-singular algebraic hyper-
surface with @ a polynomial of degree d. Then

b(Zer(Q,R¥)) <d(d — 1)k~

Proof: Using Proposition 7.9, we can suppose that 7 is a Morse function.
Applying Theorem 7.24 to the function 7: Zer(Q,R¥) — R, it follows that the
sum of the Betti numbers of Zer(Q, R¥) is less than or equal to the number
of critical points of m. Now apply Proposition 7.10. |

In order to obtain Theorem 7.23, we will need the following Proposition.

Proposition 7.27. Let S be a bounded set defined by QQ >0, bounded by the
non-singular algebraic hypersurface Zer(Q,R¥). Let the projection map 7 be
a Morse function on Zer(Q,R¥). Then, the sum of the Betti numbers of S is
bounded by half the number of critical points of © on Zer(Q,RF).

Proof: We wuse the notation of the proof of Proposition 7.18.
Let vy <wvy < --- <y be the critical values of 7 on Zer(Q, R*) and py,..., pe
the corresponding critical points, such that m(p;) = v;. We denote by J the
subset of {1, ..., £} such that the direction of Grad(Q)(p) belongs to S (see
Proposition 7.18).
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We are going to prove that
b(S<v,) <#(j€J,j<i).

First note that S<,, is {pi} and hence b(S<,,) = 1. By
Proposition 7.18 S<, ., —¢ is homotopic to S<y, ¢ for any small enough € >0,
and thus

b(S§0i+1—E) = b(SSUH-E)'

By Theorem 7.14, the homotopy type of S<,+ is that of S<,,_¢if i¢ .J and
that of the union of S<,,_. with a topological ball if ¢ € J.
It follows that

b(SSUH—E):b(SSUx—E) if Z¢J
B(Spre) SD(Scp,_o) +1 if i€,

By switching the direction of the X axis if necessary, we can always ensure
that #(J) is at most half of the critical points. O
Proposition 7.28. If R=R,

b(k,d)<d(2d—1)F"1

Proof: Let V =Zer({Py,..., P;},R¥) with the the degrees of the P;’s bounded
by d. By remark on page 226, it suffices to estimate the sum of the Betti
numbers of V N By(0,7). Let

P-4+ P}
FO ==X

By Sard’s theorem (Theorem 5.56), the set of critical values of F' is finite.
Hence, there is a positive a € R so that no b€ (0, a) is a critical value of F'
and thus the set W, ={z € R*| P(z,b) =0}, where

P(X,b)=Pf+--+PZ+b(|X][?—712))
is a non-singular hypersurface in R¥. To see this observe that, for = € R¥
P(z,b)=0P/0X1(x,b)=---=0P/0X(x,b)=0

implies that F'(z) =b and 0F /0X:(z) =--- = OF /0X}(x) =0 implying that b
is a critical value of F' which is a contradiction.
Moreover, W} is the boundary of the closed and bounded set

Ky ={z eR¥| P(z,b) <0}.

By Proposition 7.26, the sum of the Betti numbers of W} is less than or equal
to2d(2d—1)k—1L

Also, using Proposition 7.27, the sum of the Betti numbers of Kj is at
most half that of W
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We now claim that V' N B(0,r) is homotopy equivalent to K, for all small
enough b>0. We replace b in the definition of the set K} by a new variable T',
and consider the set K C R**! defined by {(x,t) € R¥*!|P(x,t) <0}. Let mx
(resp. 7r) denote the projection map onto the X (resp. T') coordinates.

Clearly, V N B(0, ) C Kj. By Theorem 5.46 (Semi-algebraic triviality),
for all small enough b > 0, there exists a semi-algebraic homeomorphism,

¢: K3, x (0,b] = K N7y ((0,0)),

such that 7p(é(x, s)) = s and ¢ is a semi-algebraic homeomorphism
from V' N Bg(0,r) x (0,b] to itself.

Let G: Kp x [0, b] — Kp be the map defined by G(z, s) = nx(¢(z, s))
for s > 0 and G(z, 0) = lims_ o4 mx(P(z, s)). Let g: Ky — V N Bg(0, r) be
the map G(z,0) and i: V N By(0, r) — K, the inclusion map. Using the
homotopy G, we see that i o g ~Idg,, and goi~Idynp,(o,r), Which shows
that V' N B(0,7) is homotopy equivalent to K} as claimed.

Hence,

b(VNB(0,7) =b(Kp) <1/2b(W) <d (2d —1)F~L. |
Proof of Theorem 7.23: It only remains to prove that Proposition 7.28 is

valid for any real closed field R. We first work over the field of real algebraic
numbers R,j,. We identify a system of ¢ polynomials (P4, ..., P;) in k variables

of degree less than or equal to d with the point of Ri\fg, N=/{ <k+ Z - 1), whose
coordinates are the coefficients of Py, ..., Py. Let
Z={(Py,...,Pp,x) eRY, x RE, | Pi(2) = - = Py(x) =0},

and let II: Z — Rﬁg be the canonical projection. By Theorem 5.46 (Semi-
algebraic Triviality), there exists a finite partition of Rﬁg into semi-algebraic
sets A, ..., Ap, semi-algebraic sets Fi, ..., F, contained in Rflg, and semi-
algebraic homeomorphisms 6;: I171(A;) — A; x Fy, for i =1, ..., m, such that
the composition of §; with the projection A; x F; — A; is H|H71(Ai). The F;
are algebraic subsets of Rfflg defined by ¢ equations of degree less than or
equal to d. The sum of the Betti numbers of Ext(F;, R) is less than or equal
tod(2d—1)"~1. So, by invariance of the homology groups under extension of
real closed field (Section 6.2), the same bound holds for the sum of the Betti
numbers of F;. Now, let V' C RF be defined by k equations P, =---= P, =0 of
degree less than or equal to d with coefficients in R. We have

Ext(II"Y, R)(Py,..., ) = {(Py, ..., P)} x V.

The point (P4, ..., P) € RY belongs to some Ext(A;,R), and the semi-algebraic
homeomorphism Ext(6;,R) induces a semi-algebraic homeomorphism from V
onto Ext(F;, R). Again, the sum of the Betti numbers of Ext(F;, R) is less
than or equal to d (2d — 1)*~!, and the same bound holds for the sum of the
Betti numbers of V. O
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7.3 Bounding the Betti Numbers of Realizations of Sign
Conditions

Throughout this section, let Q and P =) be finite subsets of R[X7, ..., Xi], let
Z =TZer(Q,RF), and let k' be the dimension of Z = Zer(Q, RF).

Notation 7.29. [Realizable sign conditions] We denote by
SIGN(P)c {0,1,-1}"

the set of all realizable sign conditions for P over R¥, and by

SIGN(P, Q) c {0,1,-1}7
the set of all realizable sign conditions for P over Zer(Q,R¥). O

For 0 € SIGN(P, Q), let b;(0) denote the i-th Betti number of
Reali(o, Z) = {z €R¥| /\ Q(z)=0, /\ sign(P(x))=0(P)}.
QeQ PeP

Let bi(Q, P) = > bi(0). Note that bo(Q, P) is the number of semi-alge-
braically connected components of basic semi-algebraic sets defined by P
over Zer(Q,R¥).

We denote by deg(Q) the maximum of the degrees of the polynomials in Q
and write b;(d, k, k', s) for the maximum of b;(Q, P) over all Q, P, where Q
and P are finite subsets of R[X1, ..., X}], deg(Q, P) < d whose elements
have degree at most d, #(P) = s (i.e. P has s elements), and the algebraic
set Zer(Q,R*) has dimension k'.

Theorem 7.30.

bild k. kL)< (j)4ﬂ'd(2d—1)k—1.

1<j<k’—i

So we get, in particular a bound on the total number of semi-algebraically
connected components of realizable sign conditions.

Proposition 7.31.

bo(d, ko ks < - () ard(2a-1)k
1< <k’

Remark 7.32. When d=1, i.e. when all equations are linear, it is easy to find
directly a bound on the number of non-empty sign conditions. The number
of non-empty sign conditions f(k’, s) defined by s linear equations on a flat
of dimension k' satisfies the recurrence relation

f(klvs'i_l)gf(k/75)+2f(kl_175)=
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since a flat L of dimension &’ — 1 meets at most f(k’ — 1, s) non-empty sign
condition defined by s polynomials on a flat of dimension k', and each such
non-empty sign condition is divided in at most three pieces by L.

In Figure 7.9 we depict the situation with four lines in R? defined by four
linear polynomials. The number of realizable sign conditions in this case is
easily seen to be 33.

Fig. 7.9. Four lines in R?
Moreover, when the linear equations are in general position,
f(K s+1)=f(k',s)+2 f(k'—1,s). (7.4)
Since f(k',0) =1, the solution to Equation (7.4) is given by

k' k'—i X
f(k’,s)zg ;) (j)(s;l) (7.5)

Since all the realizations are convex and hence contractible, this bound on the
number of non-empty sign conditions is also a bound on

b0(17 ka k/v 5) :b(17 k/v k/7 5)

i< 3 (%)

1<j<k’

We note that

the right hand side being the bound appearing in Proposition 7.31 with d=1.
O

The following proposition, Proposition 7.33, plays a key role in the proofs
of these theorems. Part (a) of the proposition bounds the Betti numbers of
a union of s semi-algebraic sets in R* in terms of the Betti numbers of the
intersections of the sets taken at most k at a time.
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Part (b) of the proposition is a dual version of Part (a) with unions
being replaced by intersections and vice-versa, with an additional compli-
cation arising from the fact that the empty intersection, corresponding to
the base case of the induction, is an arbitrary real algebraic variety of dimen-
sion k’, and is generally not acyclic.

Let S1,...,Ss CRF, s >1, be closed semi- algebraic sets contained in a closed
semi- algebralc set T of dlmensmn k. For 1 <t <s,let S<; = ﬂ1<J<t S;,

and S=' = U, o, Sj. Also, for J C {1, ..., s}, J# 0, let S; =, 5,
and S/ = Ujes S;- Finally, let Sh=1

Proposition 7.33.
a) For 0<i<k’,

by(5=*) < ‘ > bisa(S). (7.6)

b) For 0<i<k’,

k'—i

<Y b+ () b (7.7)

j=1 JC{l,.,s}
#(J)=j

Proof : a)We prove the claim by induction on s. The statement is clearly
true for s=1, since b;(S1) appears on the right hand side for j=1 and J={1}.
Using Proposition 6.44 (6.44), we have that

bi(SSS) Sbi(sss_l) +b1(SS) +bi_1(SSS_1 n SS) (78)

Applying the induction hypothesis to the set S<*~1, we deduce that

1+1

bi(s=s=) <> Z bi—j1+1(Sy). (7.9)

j=1 JC{l ,s—1}
=Jj

Next, we apply the induction hypothesis to the set
s==ins,= |J (N8,

1<j<s—1
to get that =7=e

b1 (SS57INS) <> >0 b i(Syugsy)- (7.10)

j=1 Jc{l ,s—1}
=i

Adding the inequalities (7.9) and (7.10), we get
it+1
bi(S=571) +b;(Ss) +bi—1(S=571NS,) < Z Z bi—j+1(Ss).

j=1 JC{1,..,s}
#(J)=3J
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We conclude using (7.8).
b) We first prove the claim when s=1. If 0<4i <k’ —1, the claim is

bi(S1) < br/(S?) + (bs(S1) + brr(S?)),

which is clear. If i =k’ the claim is by/(S1) < bkr(Sw). If the dimension of S}
is k', consider the closure V of the complement of S; in T'. The intersection W
of V with S;, which is the boundary of S7, has dimension strictly smaller
than k' by Theorem 5.42 thus by, (W) =0. Using Proposition 6.44

bi(S1) + br(V) < bpr(5%) + b (W),

and the claim follows. On the other hand, if the dimension of S is strictly
smaller than &', by/(S1)=0

The claim is now proved by induction on s. Assume that the induction
hypothesis (7.7) holds for s — 1 and for all 0 <7 <k’

From Proposition 6.44 (6.44), we have

bi(Sgs) < bi(Sgs—l) —|—bi(55) +bi+1(5§s—1 U Ss). (7.11)

Applying the induction hypothesis to the set S<;_1, we deduce that

k'—i

bi(S<s1) < Y Y biga(S)

71]c{1 ,s—1}
#(N=j

(e
Next, applying the induction hypothesis to the set,

Scs1US;= () (S;USy),

1<j<s—1
we get that

k'—i—1

bis1(S<o-1USy) < Z S b (8700

]C{l Ls—1}
#())=j

+ (ks ) pu(s?). (7.12)

Adding the inequalities (7.11) and (7.11), we get

CENESD DD DN ETERTCU S (R LWL
j=1 JC{l,..,s}

We conclude using (7.11). O

Let P = {P4, ..., Ps}, and let ¢ be a new variable. We will consider the
field R(d) of algebraic Puiseux series in ¢, in which ¢ is an infinitesimal.
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Let S; =Reali( PA(P? — 6%) > 0,Ext(Z,R(6))), 1 <i<s, and let S be the
intersection of the S; with the closed ball in R(6)* defined by

52< > XE) <1.

1<i<k

In order to estimate b;(.S), we prove that b;(P, Q) and b;(S) are equal and
we estimate b;(5).

Proposition 7.34.
b;(P, Q) =b,(5).

Proof: Consider a sign condition o on P such that, without loss of generality,

o(P)=0 ifiel
o(Pj)=1 ifjeJ
o(P)=-1 ifte{l,...,s}\(TUJ),

and denote by Reali(c) the subset of Ext(Z,R(d)) defined by
52 Z X2 \<1,P=0,iel,
1<i<k
Pi>6,jed,P<—6,0e{l,...s}\(IUJ).

Note that S is the disjoint union of the Reali(c) for all realizable sign condi-
tions o.

Moreover, by definition of the homology groups of sign conditions (Nota-
tion 6.46) b;(c) =b;(Reali(c)), so that

=" bi(o) =bi(9). O
Proposition 7.35.
k'—i
bi(S) < *Y4id(2d —1)k1
=3 (5)waed-

Before estimating b;(.S), we estimate the Betti numbers of the following sets.
Let 5 >1,

Vi=Reali{ \/ PP, =0,Ext(Z,R(3)) |,
1<i<yj
and

W,-:Rean< \/ PA(P?-6%>0,Ext(Z, R(&)))

1<i<yj
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Note that W; is the union of Si,...,5;.

Lemma 7.36.
bi(V;) < (47 1) d (2d — 1),

Proof: Each of the sets
Reali( P?(P? — 6%)) =0, Ext(Z,R(d)))
is the disjoint union of three algebraic sets, namely
Reali(P; =0, Ext(Z,R{d))),
Reali(P; =, Ext(Z,R(d))),
Reali(P;= —6,Ext(Z,R{J))).

Moreover, each Betti number of their union is bounded by the sum of the
Betti numbers of all possible non-empty sets that can be obtained by taking,
for 1 < ¢ < j, f-ary intersections of these algebraic sets, using part (a) of
Proposition 7.33. The number of possible ¢-ary intersection is (‘é) Each

such intersection is a disjoint union of 3 algebraic sets. The sum of the Betti
numbers of each of these algebraic sets is bounded by d (2d —1)*~! by using
Theorem 7.23.

Thus,

J

bi(‘/j)gz (Z)3£d(2d_1)k_1=(4j—1)d(2d—1)k—1_ 0

=1

Lemma 7.37.
b(W;) < (49 —1)d(2d —1)F =1 +Dby(Z).

Proof: Let Q; = P?(P?— 6%) and

F_Reali< A (@i<ov \/ (QizO),EX‘u(Z,R(&))).

1<i<j 1<i<j
Apply inequality (6.44), noting that
W;UF =Ext(Z,R(0)), W;NF =W, o.
Since b;(Z) =b;(Ext(Z,R(d))), we get that
bi(W;) <bi(W;NF)+b;(W; UF)=biy(V;) +bi(Z).

We conclude using Lemma 7.36. 0
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Proof of Proposition 7.35: Using part b) of Proposition 7.33 and Lemma
7.37, we get
k'—i
bi($) < 3 ()@ -nd@Ed-1)F bz
5) < 3 (5)(@-naEd-1 b))

j=1

S
+ ()i
By Theorem 7.23, for all ¢ <k/,
bi(Z) +by(Z2)<d(2d—1)F1

Thus, we have
k'—i

bi(s) < S (j)4jd(2d—1)k—1. 0

j=1

Theorem 7.30 follows clearly from Proposition 7.34 and Proposition 7.35.

7.4 Sum of the Betti Numbers of Closed Semi-algebraic
Sets

Let P and Q be finite subsets of R[X1, ..., Xj].
A (Q,P)-closed formula is a formula constructed as follows:

— For each Pe P,
/\ @=0rP=0, \ Q=0AP>0, \ Q=0AP<0,

QeQ QeQ QeQ

— If &; and P, are (Q,P)-closed formulas, ®; A Py and &1V Py are (Q, P)-
closed formulas.

Clearly, Reali(®), the realization of a (Q, P)-closed formula ®, is a closed
semi-algebraic set. We denote by b(®) the sum of its Betti numbers.

We write b(d, k,k’, s) for the maximum of b(®), where ® is a (Q, P)-closed
formula, Q and P are finite subsets of R[X7, ..., Xi] deg(Q,P) <d, #(P)=
and the algebraic set Zer(Q,R*) has dimension &'.

Our aim in this section is to prove the following result.

Theorem 7.38.
k' k'—i

b(d. bk, 5) <3 Y ( )6Jd 92d— 1)k~

1=0 j=1

For the proof of Theorem 7.38, we are going to introduce several infinitesimal
quantities. Given a list of polynomials P ={ P, ..., Ps} with coefficients in R,
we introduce s new variables d1, -+, §; and inductively define

R<51, ceey 5i+1> =R<51, ey 5z><5z+1>
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Note that ;41 is infinitesimal with respect to §;, which is denoted by
01> ...> 0.
We define P~;={P;+1,...,Ps} and
¥i = {P,=0,P,=0;, P;=—0;, P;>26;, P; < —20,},
Yo = {¥|V= /\ U, U, €3}

J=1,..,i
If & is a (Q, P)-closed formula, we denote by Reali;(®) the extension
of Reali(®) to R(d1, ..., §;)*. For ¥ € L;, we denote by Reali;(® A V)

the intersection of the realization of ¥ with Reali;(®) and by b(® A ¥) the
sum of the Betti numbers of Reali;(® A ¥).

Proposition 7.39. For every (Q,P)-closed formula ®,

b(®) < > b(D).

PES £
Realig(¥)CRealis(®)

The main ingredient of the proof of the proposition is the following lemma.
Lemma 7.40. For every (Q,P)-closed formula ® and every ¥ € X<,

b@AT)< Y b(EAVAY).
YeEit1

Proof: Consider the formulas

Oy =DANUA (PP —621)>
@2—@/\@/\(0§R+1§(574+1).

Clearly, Reali;+1(® A ¥) =Reali;1(P1V P2). Using Proposition 6.44, we have
that,

b(®AT) <b(P1) +b(P2) +b(Py A D).
Now, since Reali;11(®1 A ®2) is the disjoint union of
Reali;4+ 1 (PAVA (Piy1=0;+1)), Realij 1 1(PAYA (Pp1=—0;+1)),
b(®1ADP)=b(PATA(P11=06;4+1)) +b(PAYA(Pir1=—06;41))-
Moreover,

b(q?l) = b((I) AU A (Pi+1
> 251'4.1)) —|—b((1) AU A (Pi—l-l <- 251‘_._1)),
b(@g) = b((I) AW A (Pi+1 = 0))

Indeed, by Theorem 5.46 (Hardt’s triviality), denoting
={z € Realij(PAT) | Pisq1(x)=t},
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there exists to € R{(d1, ..., d;) such that

Fl_ty,0)0(0,t0) = { € Realiy(® A W) | t§ > P41 (z) > 0}
and
([=t0,0) X F_4,) U ((0, to] X Fy,)
are homeomorphic. This implies clearly that

F[(; {ZZ? S RealiiH((I) A \I/) | to > Pi+1($) > 5i+1}

it+1,t0] —
and

F[25i+1)t0] = {ZZ? S RealiiH((I) N \I/) | to > PH_l(ZE) > 2 5i+1}

are homeomorphic, and moreover the homeomorphism can be chosen such
that it is the identity on the fibers F_,, and Fy,.
Hence,

b(q)l) :b((I) AW A (13i+1 > 251‘4.1)) +b(q) AU A (IDi-i-l < — 251'_,_1)).

Note that Fo=Reali; 1 1(PAVA(P;11=0)) and Fi_5,,, 5,,, = Realij;1(P2).

Thus, it remains to prove that b(Fi_s,, , s,.,)) = b(Fb). By Theorem 5.46
(Hardt’s triviality), for every 0 < u < 1, there is a fiber preserving semi-
algebraic homeomorphism

Pu: F[_5i+1>—U571+1] — [=0ip1, —udiy1] X F—u5i+1
and a semi-algebraic homeomorphism
Yur Flus, 1,600 = [W0iy1,0i41] X Fus, -

We define a continuous semi-algebraic homotopy ¢ from the identity of

Fi_s,,1,6:, tolims, , (from Fi_5, . 5..,) to Fp) as follows:

i+1,0 i+1
— 9(0,—) is lims,, ,,
— for 0 < uw < 1, g(u, —) is the identity on F{_ys,,, us,,, and sends

Flosiy1,—usiia] (resp. F[U5i+176i+1]) to Flusi i, (resp. Fu5z’+1) by ¢y

(resp. v,) followed by the projection to Fys,,, (resp. F_ys,, ).
Thus,

b(F[_571+116i+1]) :b(FO)
Finally,
b(@AT)< D b(@ATAY). O
PED;t1

Proof of Proposition 7.39: Starting from the formula ®, apply Lemma 7.40
with ¥ the empty formula. Now, repeatedly apply Lemma 7.40 to the terms
appearing on the right-hand side of the inequality obtained, noting that for
any ¥ e€X<g,
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— either Realis(® A ) =Realis(¥) and Realig(V) C Realis(P),
— or Reahs(@/\\ll):@ O

Using an argument analogous to that used in the proof of Theorem 7.30, we
prove the following proposition.

Proposition 7.41. For 0<i<k’,

k'—1

S by <Z(j)6jd(zd—1)k—1

veXcsy

We first prove the following Lemma 7.42 and Lemma 7.43.
Let P={Py,..., P;} C R[X1,..., X), and let Q;= P?(P} —6})%(P? —467).
Let 5 >1,

v/ Reali( \ Qi:0,Ext(Z,R<517-~~7§j>)>»

1<i<j

W/ Reali( \ Qi>0,EX‘6(Z,R<517-~~7§J‘>)>~

1<i<j
Lemma 7.42.
bi(V{)<(69—1)d(2d—1)*~!

Proof: The set Reali((P?(P? — 63)%(P? —463)=0), Z) is the disjoint union of
)

Reali(P;=0,Ext(Z,R{1, .. »g) )
Reali( P; = 6;, Ext(Z,R{d1, ..., >)),
Reali(P; = —d;, Ext(Z,R{d1, ..., d;))),
Reali(P; =28, Ext(Z,R{(d1, ..., ,))),
Reali(P; = —26;, Ext(Z,R{51, .. ,J>))~

Moreover, the i-th Betti number of their union Vj is bounded by the sum
of the Betti numbers of all possible non-empty sets that can be obtained by
taking intersections of these sets using part (a) of Proposition 7.33.

The number of possible /-ary intersection is (é) Each such intersection is
a disjoint union of 5¢ algebraic sets. The i-th Betti number of each of these
algebraic sets is bounded by d (2d — 1)*~! by Theorem 7.23.

Thus,

i()t’)‘d?d DE=1=(67 —1)d (2d — 1)k~ . O

{=1
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Lemma 7.43.
bi(W)) < (67 = 1)d (2d — 1)" 1 4 by(2).

Proof: Let

F =Reali /\ Q; <0V \/ Qi=0,Ext(Z,R(61,...,8)) |.
1<i<y 1<i<y
Now,

W/UF=2,W/NF=V].
Using inequality (6.44) we get that
bi(W5) <bi(WjiNF)+bi(WjUF)=bi(Vy) + bi(Z)
since b;(Z) =b;(Ext(Z,R(d1,...,0;))). We conclude using Lemma 7.42. O
Now, let
S;=Reali( P7(P? — 67)%(P? — 467) > 0,Ext(Z,R(d1, ..., 65)) ), 1<i<s,

and let S be the intersection of the S; with the closed ball in R{d1, ..., 05,5 )"

defined by §2 Z X2 | <1. Then, it is clear that
1<i<k

Proof of Proposition 7.41: Since, for all 1 <k%’,
bi(Z) + b (Z)<d(2d—1)k~1
by Theorem 7.23 we get that,

W; bi(\I/):bi(S)gjéi (j) (67 — ”d(“‘1>k‘1+(kf°’_i)bk/(2)

using part (b) of Proposition 7.33 and Lemma 7.43.
Thus, we have that

S by Z__:( )6Jd 2d — 1)+~ O

\PEESS

Proof of Theorem 7.38: Theorem 7.38 now follows from Proposition 7.39
and Proposition 7.41. O
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7.5 Sum of the Betti Numbers of Semi-algebraic Sets

We first describe a construction for replacing any given semi-algebraic subset
of a bounded semi-algebraic set by a closed bounded semi-algebraic subset
and prove that the new set has the same homotopy type as the original one.
Moreover, the polynomials defining the bounded closed semi-algebraic subset
are closely related (by infinitesimal perturbations) to the polynomials defining
the original subset. In particular, their degrees do not increase, while the
number of polynomials used in the definition of the new set is at most twice
the square of the number used in the definition of the original set. This
construction will be useful later in Chapter 16.

Definition 7.44. Let P C R[X4,..., X}] be a finite set of polynomials with ¢
elements, and let S be a bounded P-closed set. We denote by SIGN(S) the
set of realizable sign conditions of P whose realizations are contained in S.

Recall that, for o € SIGN(P) we define the level of o as #{P € P|o(P)=0}.
Let, €91 > €91-1>> +++ > €9 > 1 > 0 be infinitesimals, and denote by R; the
field R{eat)---(g;). For i >2t, R;=R and for ¢ <0,R; =R;.

We now describe the construction. For each level m, 0 <m <t, we denote
by SIGN,,(S) the subset of SIGN(S) of elements of level m.

Given o € SIGN,,(P, S), let Reali(c$) be the intersection of Ext(S, Ray,)
with the closed semi-algebraic set defined by the conjunction of the inequali-
ties,

—&om < P <egy, for each P € A such that o(P)=0,
P>0 for each P € A such that o(P) =1,
P<0 for each P € A such that o(P)=—1.

and let Reali(c9) be the intersection of Ext(S,Ra, —1) with the open semi-
algebraic set defined by the conjunction of the inequalities,
—Eom-1< P <egp_1 for each P € A such that o(P)=0,
P>0 for each P € A such that o(P) =1,
P<0 for each P € A such that o(P)=—1.

Notice that, denoting Reali(o); = Ext(Reali(o), R;),
Reali(0)2m C Reali(o}),
Reali(0)am -1 C Reali(c9).
Let X C S be a P-semi-algebraic set such that
X= U Reali(o)
oey

with ¥ C SIGN(S). We denote %,, =X NSIGN,,(S) and define a sequence of
sets, X™ C R’k, 0 <m <t inductively by

— XO9=Ext(X,Ry).
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— For 0<m <t,

Xmtl= (Xmu U Reali(c$); Reali(09)1 |

\

TES, ) o €SIGN,,(S)\ T
with Reali(c$); = Ext(Reali(c$), R;), Reali(c%); = Ext(Reali(c%), R;).

We denote by X’ the set X*t1, O

Theorem 7.45. The sets Ext(X, R1) and X' are semi-algebraically homotopy
equivalent. In particular,

For the purpose of the proof we introduce several new families of sets defined
inductively.
For each p, 0 <p <t+1 we define sets, Y, C R’fp, Z,C Rép_l as follows.

— We define

VP = Ext(X,Rgp)U | Reali(0$)2,

p
ocES,

Zg = Ext(Ypp,Rzp—l)\ U Reali(09)2p—1.
o €SIGN,(S)\Zp

— For p<m <t, we define

<Ypmu U Reali(ai)2p>\ U Reali(0%)a,

CES, 0 €SIGN 1, (S)\ S,

m+1
YZD

Zntt = (Z;nu J Reali(69)2p1 Reali(c )2p—1.

CET, ) 0 ESIGN 1, (S)\ S

We denote by YPCRIQP the set Yzf+1 and by Z, C nggp_l the set Z;Jrl.
Note that

- X=Y11=2Z41,

— Zy=X".

Notice also that for each p,0<p <t,
— Ext(ZE1,Rop) C Y,

— ZyCExt(Y),Rap-1)

The following inclusions follow directly from the definitions of Y, and Z,,.

Lemma 7.46. For each p,0<p<t,

— Ext(Zp11,Rap) CY),
— ZPCEXt(Yp,RQP_l).
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We now prove that in both the inclusions in Lemma 7.46 above, the pairs of
sets are in fact semi-algebraically homotopy equivalent. These suffice to prove
Theorem 7.45.

Lemma 7.47. For 1<p<t, Y, is semi-algebraically homotopy equivalent to
EXt(Zp+1, Rgp).

Proof: Let Y,(u) C RIQCP_H denote the set obtained by replacing the infinites-
imal €3, in the definition of Y, by u, and for ug >0, we will denote by

Y,((0, uo)) = {(z, u)|z € Yp(u), u € (0, uol} C R
By Hardt’s triviality theorem there exist ug € Rap1, 1o >0 and a homeomor-
phism,
¥: Yy (uo) X (0, uo] = Y3((0, uo)),
such that
- 7rk+1((;5($, u)) =u,

— Yz, u0) = (z,u0) for z € Yy(uo),
— for all u € (0, u), and for every sign condition o on

Upep{P, P tea,..., P tegpia},
(-, u) defines a homeomorphism of Reali(o, Y (ug)) to Reali(o, Y, (u)).

Now, we specialize ug to €2, and denote the map corresponding to i by ¢.
For o € ¥, we define, Reali(c% ;) to be the set defined by
—2¢e9p, <P <2égy, for each P € A such that o(P)=0,
P>—e9, for each P € A such that o(P)=1,
P <eqp for each P € A such that o(P)=—1.

Let A:Y,— Ro, be a semi-algebraic continuous function such that,
Az)=1 onY,NUsex, Reali(c9),
Az)=0 onY,\Usex, Reali(c$,),
0<A(z)<1 else.

We now construct a semi-algebraic homotopy,

h:Y, % [0,e2p] = Yy,

by defining,
hz,t) = 7.k o ¢(z, AN(z)t+ (1 — A(x))egp) for 0 <t <egyp
h(z,0) lim; o4 h(x,t), else.

Note that the last limit exists since S is closed and bounded. We now show
that, h(z,0) € Ext(Z,41,Rqp) for all z €Y,
Let z €Y, and y=h(z,0).
There are two cases to consider.
— Ax) < 1. In this case, x € Ext(Z,41, Rap) and by property (3) of ¢ and
the fact that M(z) <1, y € Ext(Zp+1, Rap).
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A(z) > 1. Let o, be the sign condition of P at y and suppose that
yZExt(Zp+1, Rap). There are two cases to consider.
— o0y €X. In this case, y € X and hence there must exist

7 €SIGN,,(S)\ Sy,

with m > p such that y € Reali(79).

— oy ¢ X. In this case, taking 7= oy, level(7) > p and y € Reali(7{). It
follows from the definition of y, and property (3) of ¢, that for any
m > p, and every p € SIGN,,(S5),
— y€Reali(p%) implies that « € Reali(p9),
— z €Reali(p$) implies that y € Reali(p9).
Thus, z¢Y),, which is a contradiction.

It follows that,

— h(-,e2p):Y,— Y, is the identity map,

— h(Yp,0) =Ext(Z,+1,Rap),

— h(-,t) restricted to Ext(Z,11, Rap) gives a semi-algebraic homotopy
between

h’( ! 752P)|Ext(Zp+1,R2p) = ldEXt(Zp+1,R2p)
and

h‘( i) O)|EXt(Zp+1,R2p)'
Thus, Y, is semi-algebraically homotopy equivalent to Ext(Z,41,Rap).
O

Lemma 7.48. For each p, 0 < p <t, Z, is semi-algebraically homotopy
equivalent to Ext(Y,, Rap_1).

Proof: For the purpose of the proof we define the following new sets for

ue

Ra,.

Let Z,(u) C lep be the set obtained by replacing in the definition of Z,,,
€25 by €25 —U and €251 by €2j—1tu for all i>np, and €2p by €2p — U, and
€2p—1 by u. For ug>0 we will denote

Zp((0,ug)) ={(z,u) |z € Zy(u),u € (0,u]}.

Zp((0,ug)) the set {(z,u) |z € Z)(u),ue (0,ug)}

Let Yy (u) C Réﬂp be the set obtained by replacing in the definition of Y,
€25 by €25 — U and €251 by €2j—1tu for all i>p and €2p by by €2p — U.
For o € Sign,,(S), with m > p, let Reali(c$)(u) C RS, denote the set
obtained by replacing ea,, by €2, — v in the definition of Reali(c$).

For o € Sign,,(S), with m > p, let Reali(c9)(u) C RS, denote the set
obtained by replacing €2, 1 by €2m—1+ u in the definition of Reali(c9).
Finally, for o € Sign,(S) let Reali(c$)(u) C R5,_; denote the set obtained
by replacing in the definition of Reali(c§), e2p—1 by w.
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Notice that by definition, for any u,v € Rap with 0 <u <wv, Zp(u) C Yy(u),
Zy(v) C Zy(u), Y, (v) CY,(u), and

U ve= U 2.

0<s<u 0<s<u

We denote by Z, (respectively, Y,) the set Z,(eap—1) (respectively,
Y, (e2p—1)). It is easy to see that Y, is semi-algebraically homotopy equiv-
alent to Ext(Y}, Rop—1), and Z,, is semi-algebraically homotopy equivalent
to Z,. We now prove that, Y, is semi-algebraically homotopy equivalent to
Z,, which suffices to prove the lemma.
Let p:Y, — Rap—1 be the semi-algebraic map defined by
W)= s {ulzeZyw)}.
u€(0,e2p 1]
We prove separately (Lemma 7.49 below) that 4 is continuous. Note that the
definition of the set Z,(u) (as well as the set Y, (u)) is more complicated than
the more natural one consisting of just replacing €3, in the definition of
Zp by u, is due to the fact that with the latter definition the map p defined
below is not necessarily continuous.
We now construct a continuous semi-algebraic map,

h: Yp/ X [0, 5217—1] — Yp/
as follows.

By Hardt’s triviality theorem there exist ug € Raj,, with ug>0 and a semi-
algebraic homeomorphism,

: Zp(ug) x (0,u0) = Z,((0, ug)),
such that

= me+1(Y(z,u) =u,
— Y(z,up) = (x,up) for x € Z,(u),
— for all u € (0,ug] and for every sign condition o of the family,

U {P,P+eg,...., PEeapi1},
PeP

the map ¢( -, u) restricts to a homeomorphism of Reali(c, Z,(uo)) to
Reali(o, Z,(u)).

We now specialize ug to €2,,—1 and denote by ¢ the corresponding map,

¢Z Z[I, X (0, Egp_l] — Z[/,((O, Egp_l]).
Note, that for every u, 0 <u <egp,_1, ¢ gives a homeomorphism,

bu: Zp(u) — Z,),
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Hence, for every pair, u, v/, 0 < u <u' < eg,_1, we have a homeomorphism,
O ur: Zp(u) — Z(u') obtained by composing ¢, with ¢,

For 0 <uw' <wu <egp_1, we let 6, , be the identity map. It is clear that
0., varies continuously with u and u’.

For z €Y,,t€[0,e2,_1] we now define,

h(:c, t) = G,u(m),t(x)-

It is easy to verify from the definition of h and the properties of ¢ listed above
that, h is continuous and satisfies the following.

— h(-,0):Y, =Y, is the identity map,
- h(Yplu‘SQp—l):Z;/n
— h(-,t) restricts to a homeomorphism Z,, x t — Z,, for every t € [0, e2,-1].

This proves the required homotopy equivalence. g
We now prove that the function p used in the proof above is continuous.
Lemma 7.49. The semi-algebraic map p1:Y, — Rap_1 defined by

pe)=  sup  {u|zeZj(u)}
) ) u€(0,62p 1]
18 continuous.

Proof : Let 0 < § <« €2,—1 be a new infinitesimal. In order to prove the
continuity of p (which is a semi-algebraic function defined over Rg,_1), it
suffices, by Proposition 3.5 to show that

lim Ext (g, Rap-1(8)) (2') = lim Ext(p, Rap-1(9)) ()

for every pair of points z, 2’ € Ext(Y,,Ra,—1(d)) such that limsz =limsz’.

Consider such a pair of points z,z" € Ext(Y,,Rap_1(0)). Let ue (0,e2,—1]
be such that = € Z),(u). We show below that this implies 2’ € Z},(u’) for some
u' satisfying limsu' = limsu.

Let m be the largest integer such that there exists o € ¥, with z €
Reali(0¢)(u). Since x € Zp(u) such an m must exist.

We have two cases:

— m>p: Let 0 € 3, with € Reali(¢$)(u). Then, by the maximality of m,
we have that for each P € P, o(P) # 0 implies that lims P(z) # 0. As a
result, we have that 2’ € Reali(c$)(u’) for all

u<u— PePrfloa(}lg):O |P(z) — P(z')],

and hence we can choose u’ such that 2’ € Reali(o$)(u’) and limsu'=limsu.
— m<p:If 2’¢Z,(u) then since 2’ €Y, CY,(u),

2’ € Ugesian,(p,s)\ s, Reali(c$) (u).
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Let 0 € SIGN,(S) \ ¥, be such that 2’ € Reali(c%)(u). We prove by
contradiction that lim  max  |P(z’)|=u.
§ PeP,o(P)=0
Assume that

3 !/

U pedlith o P
Since, z¢Reali(c)(u) by assumption, and limsz’=limsx, there must exist
PeP, o(P)+#0, and lims P(z) = 0. Letting 7 denote the sign condition
defined by 7(P) =0 if lims P(z) =0 and 7(P) = o(P) else, we have that
level(7) > p and = belongs to both Reali(79)(u) as well as Reali(7$)(u).

Now there are two cases to consider depending on whether 7 is in X or

not. If 7 € X, then the fact that = € Reali(7{)(u) contradicts the choice of
m, since m < p and level(7) > p. If 7¢3 then x gets removed at the level of
7 in the construction of Z,(u), and hence z € Reali(p$)(u) for some pe %
with level(p) > level(7) > p. This again contradicts the choice of m. Thus,

li a; P(z")] = u and since z'¢ U, esien Reali(a® /

im  max |P(e)] = u and since o' Usesian, (c.5)\x, Reali(0%)(w)

for all U/< max |P( )| we can choose U/ such that liméu/:hméu’
PeP,o(P)=

and 2'¢ Uy esiaN (P, 5)\zp Reali(o})(u').

In both cases we have that 2’ € Zp(u’) for some v’ satisfying lims u’ =
limsu, showing that lims p(2’) > limgs u(x). The reverse inequality follows by
exchanging the roles of x and z’ in the previous argument. Hence,

lim p(2”) = lim p(z),
proving the continuity of . |

Proof of Theorem 7.45: The theorem follows immediately from Lemmas
7.47 and 7.48. ]

We now define the Betti numbers of a general P-semi-algebraic set and
bound them. Given a P-semi-algebraic set Y C R¥, we replace it by

X =Ext(Y,R{e)) N Bk(0,1/¢).

Taking S = B(0, 1/¢), we know by Theorem 7.45 that there is a closed
and bounded semi-algebraic set X’ C R{e)¥ such that Ext(X, R(e);) and
X' are semi-algebraically homotopy equivalent.We define the Betti numbers
b;i(Y'): =Db;(X’). Note that this definition is clearly homotopy invariant since
Y and X’ has are semi-algebraically homotopy equivalent. We denote by
b(Y) =b(X"’) the sum of the Betti numbers of Y.

Theorem 7.50. Let Y be a P-semi-algebraic set where P is a family of at
most s polynomials of degree d in k variables. Then

k i
)< (25 +1>6-7‘d(2d—1)k-1.
1

1=0 j=

k—
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Proof: Take S = By(0, 1/¢) and X = Ext(Y, R{e)) N B(0, 1/¢). Defining
X' according to Definition 7.44, apply Theorem 7.38 to X', noting that the
number of polynomials defining X’ is 2 s?-+1, and their degrees are bounded
by d. O
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Complexity of Basic Algorithms

In Section 8.1, we discuss a few notions needed to analyze the complexity of
algorithms and illustrate them by several simple examples. In Section 8.2, we
study basic algorithms for linear algebra, including computations of determi-
nants and characteristic polynomials of matrices, and signatures of quadratic
forms. In Section 8.3, we compute remainder sequences and the related sub-
resultant polynomials. The algorithms in this chapter are very basic and will
be used throughout the other chapters of the book.

8.1 Definition of Complexity

An algorithm is a computational procedure that takes an input and after
performing a finite number of allowed operations produces an output.

A typical input to an algorithm in this book will be a set of polynomials
with coefficients in a ring A or a matrix with coefficients in A or a formula
involving certain polynomials with coefficients in A.

Each of our algorithms will depend on a specified structure. The specified
structure determines which operations are allowed in the algorithm. We list
the following structures that will be used most:

e Ring structure: the only operations allowed are addition, subtraction,
multiplication between elements of a given ring, and deciding whether an
element of the ring is zero.

e Ordered ring structure: in addition to the ring structure operations,
we can also compare two elements in a given ordered ring. That is, given
a,b in the ordered ring we can decide whether a =b, a > b, or a <b.

e Ring with integer division structure: in addition to the ring structure
operations, it is also possible to do exact division by an element of Z
which can be performed when we know in advance that the result of the
division belongs to the ring. In such a ring n-1+0 when n € Z,n+0.



282 8 Complexity of Basic Algorithms

e Integral domain structure: in addition to the ring structure operations,
it is also possible to do exact division by an element of a given integral
domain which can be performed when we know in advance that the result
of a division belongs to the integral domain.

e Field structure: in addition to the ring structure operations, we can also
perform division by any element of a given field, which can be performed
only by a non-zero element.

e Ordered integral domain structure: in addition to the integral domain
structure operations, we can also compare two elements of a given ordered
integral domain. That is, given a, b in the ordered integral domain, we can
decide whether a=b, a>b, or a <b,

e Ordered field structure: in addition to the field structure operations,
we can also compare two elements of a given ordered field.

Which structure is associated to the algorithm will be systematically indicated
in the description of the algorithm.

The size of the input is always a vector of integers. Typical parameters
we use to describe the size of the input are the dimensions of a matrix, the
number of polynomials, their degrees, and their number of variables.

The complexity of an algorithm in a structure is a function associating to
a vector of integers v describing the size of the input a bound on the number
of operations performed by the algorithm in the structure when it runs over
all possible inputs of size v.

Remark 8.1. In this definition of complexity, there are many manipulations
that are cost free. For example, given a matrix, we can access an element for
free. Also the cost of reading the input or writing the output is not taken into
account. ]

The same computation has a different complexity depending on the struc-
ture which is specified. In a ring A, the complexity of a single addition or
multiplication is 1. However, if the ring A is D[X], where D is a ring, then
the cost of adding two polynomials is one in D[X], while the cost of the same
operation in D clearly depends on the degree of the two polynomials.

To illustrate the discussion, we consider first a few basic examples used
later in the book.

We consider first arithmetic operations on univariate polynomials.

Algorithm 8.1. [Addition of Univariate Polynomials|

e Structure: aring A.
e Input: two univariate polynomials in A[X]:

P = apX?+a,1XP" +ap_2XP2 4+ ag,
Q = bgX94by 1 X9 4+ by

e Output: the sum P+ Q.



8.1 Definition of Complexity 283

e Complexity: p+ 1,where p is a bound on the degree of P and Q.
e Procedure: For every k < p, compute the coefficient ¢;, of X* in P+ Q,

Cr = ay + bg.

Here, the size of the input is one natural number p, a bound on the degree of
the two polynomials. The computation takes place in the ring A.

Algorithm 8.2. [Multiplication of Univariate Polynomials]

e Structure: a ring A.
Input: two univariate polynomials

P = apXP4ap 1 XP 1 +a, o XP72+ -+ ay,
Q = b X1+ bq_qu_l + v+ bo.
in A[X], with p>gq.
Output: the product PQ.
Complexity: (p+1) (¢+ 1) + pg,where p is a bound on the degree of P

and ¢ a bound on the degree of Q.
e Procedure: For each k < p+ ¢, compute the coefficient c; of X* in PQ,

Zf:o a’k—ibi7 lfogkgq’
Ck:: 1‘,1:0 a’k—ibi7 lf q< k <p’
S L ax—ibi if p<k<p+gq.

Here the size of the input is two natural numbers, a bound on the degree of
each of the two polynomials. The computation takes place in the ring A.

Complexity analysis: For every k, 0 <k < g, there are k additions and k+ 1
multiplications in A, i.e. 2k + 1 arithmetic operations. For every k, such that
q < k < p, there are ¢ additions and ¢ + 1 multiplications in A, i.e. 2 ¢ + 1
arithmetic operations. For every k, p <k < p+ q, there are p+ g — k additions
and p + ¢ — k + 1 multiplications in A, i.e. 2 (p + ¢ — k) + 1 arithmetic
operations. Since Y ! _ k=(q+1)q/2,

q P+aq
S RE+1)=> 2p+g—k)+1)=(¢+1)>
k=0 k=p

So there are all together

2(q+1)2+(p—q—1)(2¢+1)=(p+1) (¢+ 1) +pg

arithmetic operations performed by the algorithm. O

From now on, our estimates on the complexity of an algorithm will often
use the notation O.
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Notation 8.2. [Big O] Let f and g be mappings from N to R and h be
a function from R to R. The expression " f(v) is h(O(g(v)))" means that
there exists a natural number b such that for all v € N¥, f(v) <h(bg(v)). The
expression " f(v) is h(O(g(v)))" means that there exist natural number a such
that for all v € N, f(v) <h(g(v)loga(g(v))?). O

For example, the complexity of the algorithms presented for the addition
and multiplication of polynomials are O(p) and O(pq).

Remark 8.3. The complexity of computing the product of two univariate poly-
nomials depends on the algorithm used. The complexity of the multiplication
of two univariate polynomials of degree at most d is O(d?) when the multi-
plication is done naively, as in Algorithm 8.2, O(d'°#2(3)) when Karatsuba’s
method is used, O(dloga(d)) = O(d) using the Fast Fourier Transform (FFT).
We decided not to enter into these developments and refer the interested
reader to [64]. O

Algorithm 8.53. [Euclidean Division]

Structure: a field K.
Input: two univariate polynomials

P apo+ap_1Xp_1—|—ap_2Xp_2—|—---—I—ao,
Q = b XT+by; 1 X971+ 4 by.

in K[X], with b, #£0.

e Output: Quo(P, Q) and Rem(P, Q), the quotient and remainder in the
Euclidean division of P by Q.

e Complexity: (p—q+1)(2g+3),where p is a bound on the degree of P
and ¢ a bound on the degree of Q.

e Procedure:
— Initialization: C:=0, R:= P.
— For every j from p to ¢,

C = C+ ( )Xj_q,
bq

cof( )

R = R— Xi-aQ.

— Output C, R.

Here the size of the input is two natural numbers, a bound on the degree of
one polynomial and the degree of the other. The computation takes place in
the field K.

Complexity analysis: There are p — ¢+ 1 values of j to consider. For each
value of j, there is one division, ¢+ 1 multiplications and ¢+ 1 subtractions.
Thus, the complexity is bounded by (p—g¢+1) (2 ¢+ 3). O
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The complexity of an algorithm defined in terms of arithmetic operations
often does not give a realistic estimate of the actual computation time when
the algorithm is implemented. The reason behind this is the intermediate
growth of coefficients during the computation. This is why, in the case of
integer entries, we also take into account the bitsizes of the integers which
occur in the input. The bitsize of a non-zero integer is the number of bits
in its binary representation. More precisely, the bitsize of n is 7 if and only
if 2771 <|n| < 27. The bitsize of a rational number is the sum of the bitsizes
of its numerators and denominators.

Adding n integers of bitsizes bounded by 7 gives an integer of bitsize
bounded by 7 4+ v where v is the bitsize of n: indeed, if for every 1 <i <n,
we have m; < 27, then mq +--- +m,, <n27 <27V,

Multiplying n integers of bitsizes bounded by 7 gives an integer of size
bounded by n 7: indeed, if for every 1<¢ <n, m; <27, then my---m, <2"".

When the input of the algorithms belongs to Z, it is thus natural to discuss
the binary complexity of the algorithms, i.e. to estimate the number of bit
operations.

Most of the time, the binary complexity of our algorithms is obtained in
two steps. First we compute the number of arithmetic operations performed,
second we estimate the bitsize of the integers on which these operations are
performed. These bitsize estimates do not follow in general from an analysis
of the steps of the algorithm itself, but are consequences of bounds coming
from the mathematical nature of the objects considered. For example, when
all the intermediate results of a computation are determinants of matrices with
integer entries, we can make use Hadamard’s bound (see Proposition 8.10).

Remark 8.4. The binary complexity of an addition of two integers of
bitsize 7 is O(7). The binary cost of a multiplication of two integers
of bitsize 7 depends strongly of the algorithm used: O(7%) when the
multiplication is done naively, O(7'°82()) when Karatsuba’s method, is

used, O(7 loga(7) loga(loga(7))) = O(d 7) using FFT. These developments
are not included in the book. We refer the interested reader to [64]. |

Now we describe arithmetic operations on multivariate polynomials.

Algorithm 8.4. [Addition of Multivariate Polynomials]

Structure: a ring A.
Input: two multivariate polynomials P and @ in A[Xy, ..., Xi| whose
degrees are bounded by d.
Output: the sum P+ Q.
Complexity: (djg k) <(d+1)*k.
e Procedure: For every monomial m of degree <d in k variables, denoting

by am, bm, and ¢, the coefficients of m in P, @), and P + @), compute
Cm i= G + by

Studying the complexity of this algorithm requires the following lemma.
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Lemma 8.5. The number of monomials of degree < d in k wvariables
is (TR < (d+ 1k,

Proof: By induction on k£ and d. The result is true for £ = 1 and every d
since there are d + 1 monomials of degree less than or equal to d. Since either
a monomial does not depend on Xy or is a multiple of X, the number of
monomials of degree <d in k variables is the sum of the number of monomials
of degree <din k — 1 variables and the number of monomials of degree <d—1

in k variables. Finally, note that (d;gﬁ; 1) + (d - i+ k) = (dzk).

The estimate (dzk) <(d+1)* is also proved by induction on k and d. The
estimate is true for k=1 and every d, and also for d=1 and every k >0. Sup-
pose by induction hypothesis that (d;gf; 1) <(d+1)*~! and (d _iJ’ k) <d*.
Then

(dzk) <A+ D 4 d < (A1) d(d 1) = (d 4+ )R O
Complexity analysis of Algorithm 8.4:
The complexity is (d']:k) <(d+1)¥using Lemma 8.5, since there is one
addition to perform for each m.

If A=7, and the bitsizes of the coefficients of P and @ are bounded by T,

the bitsizes of the coefficients of their sum are bounded by 7+ 1. O

Algorithm 8.5. [Multiplication of Multivariate Polynomials]|

Structure: a ring A.
Input: two multivariate polynomials P and @ in A[Xy, ..., Xi] whose
degrees are bounded by p and q.
Output: the product PQ.
Complexity: <2 (p']:k) (q;gk) <2(p+1)F(g+ 1)k

e Procedure: For every monomial m (resp. n, resp. u) of degree < p
(resp. < g, resp. <p+ q) in k variables, denoting by a,, by, and ¢, the
coefficients of m in P (resp. @, resp. P-Q), compute

Cyi= Z Ay b

n+m=u

p+k
k

degree < p and (q J]g k) monomials of degree < ¢, there are at most (p ']: k) (7 J]g k)

multiplications and (pzk)(qzk) additions to perform. The complexity is at

most 2 (PFF) (1TF) <2(p+ 1)k (¢ + DR

If A =7, and the bitsizes of the coefficients of P and ) are bounded
by 7 and o, the bitsizes of the coefficients of their product are bounded
by 74+ 0+ kv where v is the bitsize of p + ¢ + 1, since there are at
most (p+ ¢+ 1)* monomials of degree p+ ¢ in k variables. O

Complexity analysis: Given that there are at most ( monomials of
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Algorithm 8.6. [Exact Division of Multivariate Polynomials]

Structure: a field K.

Input: two multivariate polynomials P and @ in K[Xy, ..., Xi] whose

degrees are bounded by p and ¢ < p and such that @ divides P

in K[X1,..., Xg.

Output: the polynomial C such that P=CQ.

Complexity: <(*T*)(2(1T5)+1)<2(p+1)*+1) (¢+ D~

Procedure:

— Initialization: C':=0, R:= P.

— While R#0, order using the graded lexicographical ordering the mono-
mials of P and ) and denote by m and n the leading monomial of P
and @ so obtained. Since ) divides P, it is clear that n divides m.
Denoting by a,, and b,, the coefficient of m and n in P and @,

C = ¢4 4
b,
Amm

R = R-3" Q.

— Output C.

Proof of correctness: The equality P=C @ + R is maintained throughout
the algorithm. Moreover, since @) divides P, @ divides R. The algorithm
terminates with R =0, since the leading monomial of R decreases strictly for
the graded lexicographical ordering in each call to the loop. (]

Complexity analysis: There are at most (” :k) monomials to consider

before the loop terminates, and there are for each call to the loop at most
one division, (q ']: k) multiplications and (q—]: k) additions to perform. The com-
plexity is

("IN [P T 1] @m0+ g+

Note that the choice of the leading monomial for the graded lexicographical
ordering is cost free in our model of complexity. 0

We consider now how to evaluate a univariate polynomial P at a value b.

Notation 8.6. [Horner| Let P=a, X?+ - +ag € A[X], where A is a ring.
The evaluation process uses the Horner polynomials associated to P,
which are defined inductively by

Horg(P,X) = ap,

Hor;(P,X) = X Hor;_1(P,X)+ap_;.
for 0 <14 <p, so that
Hor(P,X)=ap X'+ ap_1 X" "'+ +a,_;. (8.1)
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Note that Horp(P, X) = P(X). O

Algorithm 8.7. |[Evaluation of a Univariate Polynomial|

Structure: a ring A.

Input: P=a, X+ - +ap€ A[X] and b€ A.
Output: the value P(b).

Complexity: 2p.

Procedure:

— Initialize Horo(P,b) := ap.

— For i from 1 to p,

Hor;(P,b):=bHor;_1(P,b) + ap—_i.

— Output Hor,(P,b) = P(b).

Here the size of the input is a number, a bound on the degree of P. The
computation takes place in the ring A.

Complexity analysis: The number of arithmetic operations is 2 p: p addi-
tions and p multiplications. O

When the polynomial has coefficients in Z, we have the following variant.

Algorithm 8.8. [Special Evaluation of a Univariate Polynomial]

Structure: the ring Z.

Input: P=a, XP+ - +ap€Z[X] and b/ce Q with beZ,c€ Z.
Output: the value ¢? P(b/c).

Complexity: 4 p.

Procedure:

— Initialize Ho(P,b):=ap, d:=1.

— For i from 1 to p,

d = cd
mZ(P,b) = bHi_l(P,b)—FdCLp_i.

— Output Hor,(P,b) =c? P(b/c).

Complexity analysis: The number of arithmetic operations is 4 p: p addi-
tions and 3 p multiplications. If 7 is a bound on the bitsizes of the coefficients
of P and 7' is a bound on the bitsizes of b and ¢, the bitsize of Hor;(P,b) is
T+1i7'+ v, where v is the bitsize of p+ 1, since the bitsize of the product of an
integer of bitsize 7 with i-times the product of an integer of bitsize 7/ is T7+i 7/,
and the bitsize of the sum of 7+ 1 numbers of size A is bounded by A+ v. [

The Horner process can also be used for computing the translate of a
polynomial.
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Algorithm 8.9. [Translation)]

Structure: a ring A.

Input: P(X)=apXP+-+ap in A[X] and an element c€ A.
Output: the polynomial T'=P(X — ¢).

Complexity: p(p+1).

Procedure:

— Initialization: T := a,.

— For i from 1 to p,

T:=(X-0)T+ap_;.
— Output 7.

Proof of correctness: It is immediate to verify that after step i,
T=a,(X—c)i+-+ap_;
So after step p, T =P(X —¢). |

Complexity analysis: In step 4, the computation of (X —¢) T takes ¢ mul-
tiplications by ¢ and 4 additions (multiplications by X are not counted). The
complexity is the sum of the p (p+ 1)/2 multiplications by ¢ and p(p+1)/2
additions and is bounded by p (p+1). |

When the polynomial is with coefficients in Z, we have the following
variant.

Algorithm 8.10. |Special Translation)]

Structure: the ring Z.

Input: P(X)=a,XP+--+ap in Z[X] and b/c€ Q, with b€ Z,c € Z.
Output: the polynomial ¢? P(X —b/c).

Complexity: 3p (p+3)/2.

Procedure:

— Initialization: Tg::ap, d:=1.

— For i from 1 to p,

d = cd
T, = (cX—b)Ti_l—Fd-ap_i.

— Output Tp.
Proof of correctness: It is immediate to verify that after step 4,
Ti=c"(ap(X —b/c)' + - +ap—).
So after step p, T, =cP P(X —b/c). O

Complexity analysis: In step 4, the computation of T takes 2 i + 2 mul-
tiplications and ¢ additions. The complexity is the sum of the p(p+ 3) multipli-
cations and p (p+1)/2 additions and is bounded by 3 p (p+ 3)/2.
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Let 7 be a bound on the bitsizes of the coefficients of P, 7/ a bound on
the bitsizes of b and ¢, and v is the bitsize of p+ 1. Since

i ap_r(bX — C)i—k — Z ap—k (z Z k) bi (_c)i—k—ij7
k=0

the bitsizes of the coefficients of T; is 7+ (1 +7') + v: the bitsize of a binomial
coefficient ( k) is at most 7, the bitsize of the product of an integer of bitsize 7

with the product of i — k integers of bitsize 7/ is bounded by 7 +47’, and the
bitsize of the sum of ¢+ 1 numbers of size A is bounded by A+ v. O

Remark 8.7. Using fast arithmetic, a translation by 1 in a polynomial of degree
d and bit size 7 can be computed with binary complexity O(d 7) [64]. O

We give an algorithm computing the coefficients of a polynomial knowing
its Newton sums.

Algorithm 8.11. [Newton Sums]

e Structure: a ring D with division in Z.
Input: the Newton sums N;, i =0, ..., p, of a monic polynomial

P=XP+a, 1 XP~l4. 4 ag
in D[X].
Output: the list of coefficients 1,a,_1,..., a9 of P.
Complexity: p(p+1).
Procedure:
— ap:=1
— For i from 1 to p,

-1 i
ap_i::T ( Z ap_i+ij>.
j=1

Proof of correctness: Follows from Equation (4.1). Note that we have to
know in advance that P € D[X]. O

Complexity analysis: The computation of each a,_; takes 2 ¢+ 1 arithmetic
operations in D. Since the complexity is bounded by

—1
Z (2i+1) 2%+p=p(p+1). O
=1

Note also that the Newton formulas (Equation (4.1)) could also be used
to compute the Newton sums from the coefficients.
We end this list of examples with arithmetic operations on matrices.

Algorithm 8.12. [Addition of Matrices]

e Structure: a ring A.
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Input: two n x m matrices M = [m; ;] and N =[n; ;] with entries in A.
Output: the sum S={s; ;] of M and N.

Complexity: nm.

Procedure: For every i, j, i <n, 7 <m,

8i,51=Mj j + Nj,j.

Here the size of the input is two natural numbers n, m. The computation
takes place in the ring A.

Complexity analysis: The complexity is nm in A since there are nm entries
to compute and each of them is computed by one single addition.

If A =7, and the bitsizes of the entries of M and N are bounded by 7,
the bitsizes of the entries of their sum are bounded by 7+ 1.

If A=Z[Y], Y =Y1,....Y;, and the degrees in Y of the entries of M and N
are bounded by ¢, while the bitsizes of the entries of M and N are bounded
by 7, the degrees in Y of the entries of their sum is bounded by ¢, and the
bitsizes of the coefficients of the entries of their sum are bounded by 7+ 1. I

Algorithm 8.13. [Multiplication of Matrices]

Structure: a ring A.

Input: two matrices M = [m; ;] and N = [n; x] of size n x m and m x ¢
with entries in A.

Output: the product P =[p; x] of M and N.

Complexity: nf (2m —1).

Procedure: For each i, k, i <n,k </,

m
Dik= E M, jNj k.
j=1

Complexity analysis: For each ¢, k there are m multiplications and m — 1
additions. The complexity is nf(2m — 1).

If A =7, and the bitsizes of the entries of M and N are bounded by 7
and o, the bitsizes of the entries of their product are bounded by 7+ o + p,
where p is the bitsize of m.

If A=Z[Y],Y =Y1,...,Y%, and the degrees in Y of the entries of M and N
are bounded by p and ¢, while the bitsizes of the entries of M and N are
bounded by 7 and o, the degrees in Y of the entries of their product are
bounded by p + ¢, and the bitsizes of the coefficients of the entries of their
product are bounded by 7+ o + kv + 1 where p is the bitsize of m and v is
the bitsize of p+ ¢+ 1, since the number of monomials of degree p+ ¢ in k
variables is bounded by (p+ ¢+ 1)*. O
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Algorithm 8.14. [Multiplication of Several Matrices]

e Structure: a ring A.

e Input: m matrices Mj...M,, of size n X n, with entries in A.

e Output: the product P of My, ..., M,,.

e Complexity: (m—1)n?(2n—1).

e Procedure: Initialize N;:= M;. For i from 2 to m define N; = N, _1 M,.

Complexity analysis: For each i from 2 to m, and j, k from 1 to n, there
are n multiplications and n — 1 additions. The complexity is (m —1)n?(n—1).

If A =7, and the bitsizes of the entries of the M; are bounded by 7, the
bitsizes of the entries of their product are bounded by m (7 + u) where p is
the bitsize of n.

If A=Z[Y],Y=Y1,...,Y}, and the degrees in Y of the entries of the M;
are bounded by p, while the bitsizes of the entries of the M; are bounded
by 7, the degrees in Y of the entries of their product are bounded by m p,
and the bitsizes of the coefficients of the entries of their product are bounded
by m (7 + p) + kv where p is the bitsize of n and v is the bitsize of kp+1. O

Remark 8.8. The complexity of computing the product of two matrices
depends on the algorithm used. The complexity of the multiplication of two
square matrices of size n is O(n3) when the multiplication is done naively,
as in Algorithm 8.13, O(n'°2(7)) when Strassen’s method is used. Even more
efficient algorithms are known but we have decided not to include this topic
in this book. The interested reader is referred to [64].

Similar remarks were made earlier for the multiplications of polynomials
and of integers, and apply also to the euclidean remainder sequence and to
most of the algorithms dealing with univariate polynomials and linear algebra
presented in Chapters 8 and 9. Explaining sophisticated algorithms would
have required a lot of effort and many more pages. In order to prove the
complexity estimates we present in Chapters 10 to 15, complexities of @M
for algorithms concerning univariate polynomials and linear algebra (where n
is a bound on the degrees or on the size of the matrices) are sufficient. O

8.2 Linear Algebra

8.2.1 Size of Determinants

Proposition 8.9. [Hadamard] Let M be an n X n matriz with integer
entries. Then the determinant of M is bounded by the product of the euclidean
norms of the columns of M.
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Proof: If det(M) = 0, the result is certainly true. Otherwise, the column
vectors of M, vy, ..., v,, span R™. We denote by u - v the inner product of u
and v. Using the Gram-Schmidt orthogonalization process (Proposition 4.40),
there are vectors wy, ..., w, with the following properties

— w; — v; belong to the vector space spanned by wi, ..., w; 1,
- Viij#i,wi-wjzo.
Moreover, denoting u; = w; — v;,
Jwi [+ [Jusl* = Jvill?,
will < floall-

Then it is clear that
|det(M)[ =T llwill <TT llvill- O
i=1 i=1

Corollary 8.10. Let M be an n x n matriz with integer entries of bitsizes at
most 7. Then the bitsize of the determinant of M is bounded by n (1 +v/2),
where v is the bitsize of n.

Proof: If n<2” and |m; j| <27 then \/377_ | mi ; </n27 <2772
Thus |det(M)] < 2"(7+¥/2) using Lemma 8.9. 0

The same kind of behavior is observed when we consider degrees of poly-
nomials rather than bitsize. Things are even simpler, since there is no carry
to take into account in the degree estimates.

Proposition 8.11. Let M be an n X n matriz with entries that are poly-
nomials in Y1, ..., Yy of degrees d. Then the determinant considered as a
polynomial in Y1,..., Yy has degree in Y1,..., Yy bounded by dn.

Proof: This follows from det(M) =3 _ s (—1)%) [T, mo(i),i» where e(0)

is the signature of o. |
Moreover we have

Proposition 8.12. Let M be an n X n matriz with entries that are polyno-
mials in Y1, ..., Yy of degrees d in Ya,..., Yy and coefficients in Z of bitsize T.
Then the determinant considered as a polynomial in Y7, ..., Yi has degrees
in Y1,..., Yy bounded by dn, and coefficients of bitsize (T +v)n+ku where v
is the bitsize of n and p is the bitsize of nd+ 1.

Proof: The only thing which remains to prove is the result on the bitsize.
Performing the multiplication of n monomials appearing in the entries of the
matrix produces integers of bitsize 7n Since the number of monomials of a
polynomial of degree nd in k variables is bounded by (nd+ 1)* by Lemma 8.5,
the bitsizes of the coefficients of the products of n entries of the matrix are
bounded by (7 + v) n+ k u. Since there are n! terms in the determinant, and
the bitsize of n! is bounded by nv the final bound is (7 +v)n+k pu. O
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8.2.2 Evaluation of Determinants

The following method, which is the standard row reduction technique, can be
used to compute the determinant of a square matrix with coefficients in a field.

Algorithm 8.15. [Gauss]

Structure: a field K.

Input: an n x n matrix M =[m,_ ;| with coefficients in K.
Output: the determinant of M.

Complexity: O(n?).

Procedure:

— Initialization: k:=0 and gz(oj) =My .

— For k from 0 to n — 2,
— Iffor every j=k+1,...,n, g,(ﬁzl)j =0, output det(M)=0.
— Otherwise, exchanging columns if needed, suppose 91(6121, ks17 0.
— For i from k+ 2 to n,

k
gzg,k-:—ll) ::Ou
— For j from k+ 2 to n,
(k+1) (k) ggkk)—k—l (k)
9i5 =95 —m  IktLg (8.2)
Ik+1,k+1
— Output
det(M) = (—1)° i} -~ g1y (83)

(where s is the number of exchanges of columns in the intermediate
computations).

Example 8.13. Consider the following matrix

ar by ¢
M= a9 b2 Co |,
az bz c3

and suppose a1 # 0 and by a1 — b1 a2 # 0. Performing the first step of
Algorithm 8.15 (Gauss), we get

1) _ airba—bias
922 = —&1
1) _ aicz—craz
923 = —al
(1) _ aibs—bias
932 = T
(1) _ aicz—cias
933 = — ——

ai
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After the first step of reduction we have obtained the matrix

ar by Cl—l
Ml:{ 0 g5 gby J
0 g5 gy

Note that the determinant of M is the same as the determinant of M since
M is obtained from M by adding a multiple of the first row to the second
and third row.

Performing the second step of Algorithm 8.15 (Gauss), we get

g(z)_ czai1ba—c3braz—crazba —ca2a1bz+ca2bias+crazbs3
33 baai —byasz

After the second step of reduction we have obtained the triangular matrix

’Val bl C1 -‘
M'=[ 0 g% g J
2
0 0 g

Note that the determinant of M is the same as the determinant of M since M’

is obtained from M; by adding a multiple of the second row to the third row.
Finally, since gf?) =ay,

det(M) = det(M") = g17 95 953 O

i,J
obtained at the end of the algorithm is equal to the determinant of M since
the determinant does not change when a multiple of another row is added to

a row. Thus, taking into account exchanges of rows,

Proof of correctness: The determinant of the n x n matrix M’ = [g

det(M) =det(M') = (=1)* g{? -+ g7V, O

Complexity analysis: The number of calls to the main loop are at
most n — 1, the number of elements computed in each call to the loop is
at most (n — 4)2, and the computation of an element is done by 3 arith-
metic operations. So, the complexity is bounded by

n—1 2
3( 3 (n—i)2> :2”3_3++”:0(n3).

1=1

Note that if we are interested only in the bound O(n?), we can estimate the
number of elements computed in each call to the loop by n? since being more
precise changes the constant in front of n2 but not the fact that the complexity
is bounded by O(n?). O
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Remark 8.14. It is possible, using other methods, to compute determinants
of matrices of size n in parallel complexity O(loga(n)?) using n®*) processors
[127]. As a consequence it is possible to compute them in complexity n®™),

using only loga(n)°?™) space at a given time [127]. O

As we can see in Example 8.13, it is annoying to see denominators arising
in a determinant computation, since the determinant belongs to the ring
generated by the entries of the matrix. This is fixed in what follows.

Notation 8.15. [Bareiss| Let Mi(f;—) be the (k+1) x (k+ 1) matrix obtained
by taking

m(fc)/—mz/ i1 fori'=1,....k,j'=1,...,k,

(k) -/
my Ly jo=mij o for j'=1,..k,
k .
m(,),H_1—171Z g fori'=1,..k,

m®
k+1,k+1— "%,

and define b§’“j =det(Mi(1kj)). Then b,(fk_l) is the principal k-th minor of M,
i.e. the determinant of the submatrix extracted from M on the k first rows
and columns. It follows from the definition of the b( that if M has entries
in an integral domain D then b( ) eD. g

In the following discussion, we always suppose without loss of generality
that if bl(c]321,k+1 =0 then b,(ck_alﬁj =0 for j=k+2,...,n, since this condition is
fulfilled after a permutation of columns.

Note that by (8.3), if i, j >k +1,

b = gih - g ol (8.4)

Indeed, denoting by g/, J(k) the output of Gauss’s method applied to Ml(kj), i

(k).

1,

is easy to check that gi)i( D= gz(l D for i = 1,...,k, and gk+1 k+1( )= 9i 7

Proposition 8.16.
k k
0 _ Bl D) — b D
i b(k—l) .
k,k

Proof: The result follows easily from the recurrence (8.2) and equation (8.4).
Indeed (8.4) implies

k) 0 k—1 k k Kk
bl(~c+1 k+1 b( b( Jk+1 bk-‘,—l i (9( ). 9( k,k )) (géﬁl k41 gz( j) - gz( k)+1 91&21,7)

b(k 1) o 0) . (k—1)

k. k 911 9k.k

0 k—1 k k k k
= g g )(géﬁlk+1gf}—gf£+1gé+)1g)
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On the other hand, (8.2) implies that
(k) (k) _ (&) (k) (k) (k+1)

Ik£1,6+1 9,5 — 9ik+19k+1,5 = 9k+1,k+19i,5 - (8.5)
So
k k k k
bl(€421,k+1 b( ) bg 134—1 bl(chLj_ 0) . (k=1) (k) (k+1)
b(k 1 =911 9%,k  Ik+1,k+19i,5 -
Using again (8.4),
0 k—1 k+1 k+1
g gl Y e gl =00, (8.6)
and the result follows. O

Note that (8.6) implies that, if b\, ., #0,

plE+D)
el — g (8.7)
bk+1,k+1

A new algorithm for computing the determinant follows from Proposi-
tion 8.16.

Algorithm 8.16. [Dogdson-Jordan-Bareiss]

Structure: a domain D.

Input: an n x n matrix M =[m;_ ;| with coefficients in D.
Output: the determinant of M.

Complexity: O(n?).

Procedure:

— Initialization: k£:=0 and bl(-?)- =my,j, b( 1) :=1.

— For k from 0 to n — 2,

— Ifforevery j=k+1,.. bk+1j_0 output det(M)=0.
— Otherwise, exchanging columns if needed, suppose that b,(g _31 kt1F
0.
— For ¢ from k+ 2 to n,
k+1)
bg k++1 =0
— For j from k+2 to n,
(k k k k
b(k+1) bk-zl,k-&-lbl(',;_bl(',lz-i-lb/(c-zl,.] (8.8)
g pF—1)
k,k
— Output
det(M) = (=1)b{" " (8.9)

(where s is the number of exchanges of columns in the intermediate
computation
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Proof of correctness: The correctness follows from Proposition 8.16. Note
that although divisions are performed, they are always exact divisions,
since we know from Proposition 8.16 that all the intermediate computations
obtained by a division in the algorithm are determinants extracted from M
and hence belong to D. O

Complexity analysis: The number of calls to the main loop are at most n —
1, the number of elements computed in each call to the loop is at most (n —1)2,
and the computation of an element is done by 4 arithmetic operations. So,
the complexity is bounded by

n—1 2
4< 3 (n—i)2> :4”3_6++2”:0(n3).

i=1
If M is a matrix with integer coefficients having bitsize at most 7, the

arithmetic operations in the algorithm are performed on integers of bit-
size n (T +v), where v is the bitsize of n, using Hadamard’s bound (Corol-

lary 8.10). O
Example 8.17. Consider again
a1 b1 C1
M .= ag b2 C2
as bg C3

Performing the first step of Algorithm 8.16 (Dogdson-Jordan-Bareiss), we get

bY = ayby—bias,
b%) = aic3— C1ao,
bY = aybs— by as,
b§13) = ajc3—C10a3.

which are determinants extracted from M.
Performing the second step of Algorithm 8.16 (Dogdson-Jordan-Bareiss),
we get
(a1 b2 — bl ag) (a1 C3— C1 a3) — (al Co2 —C1 ag) ( a1 b3 — bl a3)
a1
= 03a1b2—63b1a2—01agbg—cza1b3+02b1a3+cla2b3.

2
bgzs) =

Finally,
det(M) =b2. O

Remark 8.18. Tt is easy to see than either Algorithm 8.15 (Gauss) or Algo-
rithm 8.16 (Dogdson-Jordan-Bareiss) can be adapted as well to compute the
rank of the matrix with the same complexity. O

Exercise 8.1. Describe algorithms for computing the rank of a matrix
by adapting Algorithm 8.15 (Gauss) and Algorithm 8.16 (Dogdson-Jordan-
Bareiss).
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8.2.3 Characteristic Polynomial

Let Abe a ring and M be a matrix M = (m;;) € A"*". The first idea
of the method we present to compute the characteristic polynomial is to
compute the traces of the powers of M, and to use Algorithm 8.11 (Newton
Sums) to recover the characteristic polynomial. Indeed the trace of M?® is
the i-th Newton sum of the characteristic polynomial of M. The second
idea is to notice that, in order to compute the trace of a product of two
matrices M and N, it is not necessary to compute the product M N,
since Tr(M N) = Zk,[ My ¢ Mg k. So rather than computing all the powers M
of M, i=2,...,n then all the corresponding traces, it is enough, defining r
as the smallest integer > +/n, to compute the powers M’ for i =2,...,7 — 1,
the powers M7 for j=2,...,7 — 1 and then Tr(M"+%) =Tr(M® MI").

Algorithm 8.17. [Characteristic Polynomial]

Structure: a ring with integer division A.
e Input: an n X n matrix M = [m; ;], with coefficients in A.
e Output: CharPol(M) = det(X Id,, — M), the characteristic polynomial
of M.
Complexity: O(n??).
e Procedure:
— Define r as the smallest integer > /n.
— Computation of powers M? for i <r and their traces.
- BO = Idn, N() =n.
— For ¢ from 0 to r — 2
Bi+1 = ]\4.317 Ni+1 = TI‘(BH_l).
— Computation of powers M"/for j <r and their traces.
- Cl = MBT_l, NT = TI‘(Cl)
— For j from 1 to r—2
Cj+1=C1Cj, Nijy1yr =Tr(Cj11).
— Computation of traces of M* for k=jr+i,i=1,....r—1,7=1,....,r —1.
— Forifrom1tor—1
— For jfrom1tor—1
Njryi=Tr(B; Cj).
— Computation of the coefficients of det(X Id,, — M): use Algorithm 8.11
(Newton Sums) taking as ¢ — th Newton sum N;,i=0,...,n.

Proof of correctness: Since a square matrix with coefficients in a field K
can be triangulated over C, the fact that the trace of M" is the Newton sums
of the eigenvalues is clear in the case of an integral domain. For a general
ring with integer division, it is sufficient to specialize the preceding algebraic
identity expressed in the ring Z[U; j,i=1,...,n, j =1,...n] by replacing U; ;
with the entries m;, ; of the matrix. O
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Complexity analysis: The first step and second step take O(rn?) = O(n??)
arithmetic operations. The third step take O(n3) arithmetic operations, and
the fourth step O(n?).

If the entries of M are elements of Z of bitsize at most 7, and the bit-
size of n is v, the bitsizes of the intermediate computations are bounded
by O((7+v)n) using the complexity analysis of Algorithm 8.14 (Multipli-
cation of Several Matrices) The arithmetic operations performed are multipli-
cations between integers of bitsizes bounded by (7 + v) /n and integers
of bitsizes bounded by (7 + v) n.

If the entries of M are elements of Z[Y], Y =Y7,..., Y} of degrees at most d
and of bitsizes at most 7, the degrees in Y and bitsizes of the intermediate
computations are d n and (7 + 2 v) n where n u is the bitsize of n d + 1
using the complexity analysis of Algorithm 8.14 (Multiplication of Several
Matrices). The arithmetic operations performed are multiplications between
integers of bitsizes bounded by (7 +2v) +/n and integers of bitsizes bounded
by (7+2v)n. O

Remark 8.19. a) In the case of a field of characteristic zero, the rank of M
is easily computed from its characteristic polynomial CharPol(M): it is the
degree of the monomial of least degree in CharPol(M).

b) Algorithm 8.17 (Characteristic polynomial) provides the determinant
of M in O(n??%) arithmetic operations in an arbitrary ring with integer divi-
sion, substituting 0 to X in CharPol(M). O

8.2.4 Signature of Quadratic Forms

A general method for computing the signature of quadratic form using the
characteristic polynomial is based on the following result.

Proposition 8.20. If ® is a quadratic form with associated symmetric matrix
M of size n, with entries in a real closed field R and

CharPol(M) =det(X Id,, — M) = X"+ a, 1 X" "1+ +ag
is the characteristic polynomial of M, then
Sign(M) = Var(1,a,_1, ..., ap) — Var((—=1)", (=1)""La, _1, ..., ag),
(see Notation 2.82).

Proof: All the roots of the characteristic polynomial of a symmetric matrix
belong to R by Theorem 4.42 and we can apply Proposition 2.33 (Descartes’
law of signs) and Remark 2.38. O
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Algorithm 8.18. [Signature Through Descartes]|

Structure: an ordered integral domain D.

Input: an n X n symmetric matrix M = [m; ;], with coefficients in D.
Output: the signature of the quadratic form associated to M.
Complexity: O(n??).

Procedure: Compute the characteristic polynomial of M

CharPol(M) =det(X Id,, - M) =X"+a, 1 X" '+ +ap
using Algorithm 8.17 (Characteristic polynomial) and output
Var(1,a,_1,...,a0) — Var((—=1)", (=1)""ta, _1,..., ap).

Complexity analysis: The complexity is bounded by O(n??), according to
the complexity analysis of Algorithm 8.17 (Characteristic polynomial). More-
over, if the entries of A are elements of Z of bitsize at most 7, the arithmetic
operations performed are multiplications between integers of bitsizes bounded
by 7 and integers of bitsizes bounded by (7 + 2v) n + v + 2 where v is the
bitsize of n. a

8.3 Remainder Sequences and Subresultants

8.3.1 Remainder Sequences

We now present some results concerning the computation of the signed
remainder sequence that was defined in Chapter 1 (Definition 1.2).
The following algorithm follows immediately from the definition.

Algorithm 8.19. [Signed Remainder Sequence]

Structure: a field K.
Input: two univariate polynomials P and ) with coefficients K.
Output: the signed remainder sequence of P and Q.
Complexity: O(pq), where p is the degree of P and ¢ the degree of Q.
Procedure:
— Initialization: ¢:=1, SRemSo(P, @) := P, SRemS;(P, Q) :=Q.
— While SRemS;(P, Q)+0
— SRemS;1(P, Q) = —Rem(SRemS;_1(P, Q), SRemS,;(P, Q)),
— =i+ 1.

Complexity analysis: Let P and ) have degree p and ¢q. The number of
steps in the algorithm is at most ¢+ 1. Denoting by d; = deg (SRemS;(P, Q)),
the complexity of computing SRemS;;1(P, @) knowing SRemS; (P, @) and
SRemS;(P, Q) is bounded by (d;—1 — d; + 1) (2d; + 3) by Algorithm 8.3. Sum-
ming over all 4 and bounding d; by ¢, we get the bound (p+ ¢+1) (2 ¢+ 3),
which is O(pq). O
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An important variant of Signed FEuclidean Division is the following
Extended Signed Euclidean Division computing the extended signed
remainder sequence (Definition 1.10).

Algorithm 8.20. [Extended Signed Remainder Sequence]

Structure: a field K.

Input: two univariate polynomials P and @ with coefficients in K.
Output: the extended signed remainder sequence Ex(P, Q).
Complexity: O(pq), where p is the degree of P and ¢ the degree of Q.
Procedure:

— Initialization: i:=1,

SRemUy(P, Q) = SRemV;
SRGHIV()(P, Q) = SRemU1

— While SRemS;(P, Q)+#0

— Compute
Ai+1 = QuO(SRemSi—l(Pv Q),SRGH}S»L(P, Q))v

SRemS;+1(P,Q) = —SRemS;_1(P, Q)+ A;+1SRemS;(P, Q),
SRemUi_,_l(P, Q) = — SRemUi_l(P, Q) + A SRemUZ(P, Q),
SRemV,;41(P,Q) = —SRemV;_1(P, Q)+ A;+1SRemV;(P, Q).

- EXi(Pa Q):(SRemSZ(Pa Q)7 SRemUZ(Pa Q)7 SRemV’L(Pv Q))

— 4:=i+1.

Proof of correctness: Immediate by Proposition 1.9. O

Complexity analysis: Suppose that P and @ have respective degrees p and
gq. It is immediate to check that the complexity is O(pgq), as in Algorithm 8.19
(Signed Remainder Sequence). O

If we also take into consideration the growth of the bitsizes of the coef-
ficients in the signed remainder sequence, an exponential behavior of the
preceding algorithms is a priori possible. If the coefficients are integers of
bitsize 7, the bitsizes of the coefficients in the signed remainder sequence
of P and @ could be exponential in the degrees of the polynomials P and @
since the bitsize of the coeflicients could be doubled at each computation of
a remainder in the euclidean remainder sequence.

The bitsizes of the coefficients in the signed remainder sequence can indeed
increase dramatically as we see in the next example.

Ezxample 8.21. Consider the following numerical example:

P = 9X1_ 18X —33X10 4 102X84+7X7—36X6
—122X°%4+49X*4+93X3%—42X2 - 18X +09.
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The greatest common divisor of P and P’ is of degree 5. The leading coeffi-
cients of the signed remainder sequence of P and P’ are:
36

~ 10989

)

16
2228672

165649 ’
900202097355
4850565316 ’
3841677139249510908

~ 543561530761725025
6648854900739944448789496725

~ 676140352527579535315696712
200117670554781699308164692478544184

- 1807309302290980501324553958871415645

8.3.2 Signed Subresultant Polynomials

Now we define and study the subresultant polynomials. Their coefficients
are determinants extracted from the Sylvester matrix, and they are closely
related to the remainder sequence. Their coefficients of highest degree are
the subresultant coefficients introduced in Chapter 4 and used to study the
geometry of semi-algebraic sets in Chapter 5. We are going to use them in
this chapter to estimate the bitsizes of the coefficients in the signed remainder
sequence. They will be also used for real root counting with a good control
on the size of the intermediate computations.

8.3.2.1 Polynomial Determinants

We first study polynomial determinants, which will be useful in the study of
subresultants.

Let K be a field of characteristic 0. Consider the K-vector space F,,
consisting of polynomials whose degrees are less than n, equipped with the
basis

B=Xx""1..X,1.

We associate to a list of polynomials P = Py, ..., Py, with m < n a
matrix Mat(P) whose rows are the coordinates of the P;’s in the basis B.
Note that Mat(B) is the identity matrix of size n.

Let 0 <m <n. A mapping ® from (F,,)" to Fp_m+1 is multilinear if
for \eK,peK

fI)(,)\AH—,uBl,):)\fl)(,Al,H—,qu)(,Bi,)
A mapping @ from (F,)" to F,,_m+1 is alternating if
O(.,A,..., A, ..)=0.
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A mapping @ from (F,)" to F,,_m+1 is antisymmetric if

O( Ay, By )= —0(, By, A L),

Lemma 8.22. A mapping from (F,)" to Fp—_m+1 which is multilinear and
alternating is antisymmetric.

Proof: Since @ is alternating,

o(...,A+B,..,A+B,...) = ®(..,A,...,A,..)
B,...B

Using multilinearity, we get easily

(.., A,..,B,..)+3(..,B,....A,..)=0. O

Proposition 8.23. There exists a unique multilinear alternating mapping ®
from (Fp)™ to Fp—m+1 satisfying, for every n>i1> ... >ty _1>1

QX ., Xt X = X" if for every j<m i;=n— j.
@(Xil, - )('L-mfl7 X’L) = O otherwise.

Proof: Decomposing each P; in the basis B of monomials and using multi-
linearity and antisymmetry, it is clear that a multilinear and alternating map-
ping ® from F7' to F, ., +1 depends only on the values ®(X%,..., X -1 X1)
for n >4y >... >4, 1 >n. This proves the uniqueness.

In order to prove existence, let m;, i <n, be the m x m minor of Mat(P)
based on the columns 1,...,m —1,n — ¢, then

o(P)= Y mX' (8.10)
i<n—m
satisfies all the properties required. g

The (m,n)-polynomial determinant mapping, denoted pdet,, ,, is the
unique multilinear alternating mapping from F3;' to Fp_m+1 satisfying the
properties of Proposition 8.23.

When n=m, it is clear that pdet,, ,(P)=det(Mat(P)), since det is known
to be the unique multilinear alternating map sending the identity matrix to 1.

On the other hand, when m = 1, pdet(P); ,(X?) = X' and, by lin-
earity, pdet; ,(P)=P.

If follows immediately from the definition that

Lemma 8.24. Let P=PFy,..., Py,.
If Q= Q1,..., Qm is such that Q; =P, i + j, Qj:Pj"’Z#i A; Pj, then
pdety, »(Q) =pdety, »(P). '
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If @ = P,, .., P, then pdet, n(Q) = &, pdety, n(P), where
em=(—1)™"=D/2 (see Notation 4.26).

We consider now a sequence P of polynomials with coeflicients in a ring D.
Equat