When Is There R? with no Red L; or Blue Lyg
Exposition by William Gasarch, Chaewoon Kyoung, Kelin Zhu

1 Pre Introduction

The following is well known.
Theorem 1.1 For all COL: R? — [2] there exists 2 points, same color, 1 inch apart.
We rephrase this but first need some definitions.
Definition 1.2
1. ¢5 is 2 points in the plane an inch apart.
2. /3 is three colinear points p1, p2, ps where d(p1,p2) = d(p2,p3) = 1.
3. You can define /.

4. Given COL: R? — [2], a RED /{}, is an £}, where all the points in it are RED. Similar for a
BLUE /.

In this paper we present proves of the following two known Theorems.

1. (Szlam [5]) There exists a constant ¢ such that R — (fo, £,,) where m = 2¢". (He proved a
more general theorem. See his paper for details.)

2. (Conlon & Fox [1]) There exists a constant d’ such that R" /4 (f2,£,,) where m = 2¢™. We
will just prove the n = 2 case in this paper. (They proved a more general theorem. See their
paper for details.)

BILL- WE MAY ADD THE GENERAL CASE LATER

2 Lemma Needed To Show R" — ({5, /,,) where m = 2°"

Notation 2.1 Let G,, = (V, E) be the graph with V = R" and £ = {(z,y): d(z,y) = 1}. Let ¢(n)
be the chromatic number of G,,.

It is well known that 5 < ¢(2) < 7.
The following is known:

Theorem 2.2
1. (Larman and Rogers [3]) ¢(n) < (34 o(1))"
2. (Raigorodskii [4]) c¢(n) < (1.239...4 o(1))"

3. (Frankl and Wilson [2]) c¢(n) > (1 +0(1))(1.2)". We use the following easier-to-use version:
There exists ¢ such that c(n) < 2.

BILL: WILL LATER FILL IN PROOFS OF ALL THREE OF THESE.



3 R"— (ly,0,,) where m = 2°"
Theorem 3.1 (Szlam [5]) There exists ¢’ such that R* — ({a, £y,) where m = 2°™.

Proof:  We will need the following notation: I is the vector (1,0,...,0) in R™.
Let COL: R™ — [2].

Case 1 There is a BLUE /,,. Done

Case 2 There is no BLUE /4,,,. We form a coloring COL: R" — [m] as follows:
Given point p € R" look at

p+1,p+21,....p+ml.

Since there is no BLUE 4,,, there exists i such that COL(p+i1) = RED. Color p with the least
such 1.

By Theorem 2.2 there exists points p,q € R" and 1 < i < m such that d(p,q) = 1 and p, q are
the same color. Hence p + il and ¢ + il are both RED. Since d(p,q) =1, d(p + il,q + ZT) = 1.
Hence p + 41 and g + i1 form a RED 4y. |

4 Lemmas Needed To Show R" 4 ({5,(,,) where m = 27"

We will be 2-coloring the m x m square and then use that to form a periodic coloring of R?. Hence
we think of coloring the m x m with the two horizontal sides identified and the new vertical sides
identified. We denote this T2, (The T is for Taurus.)

BILL- THE PAPER USES m x m. I WILL LATER SAY WHY I USE m x m.

BILL: WE NEED A PICTURE FOR AN EXAMPLE. KELIN CAN DO THIS WITH A COLOR
PICTURE OF A SQUARE, LIKE HE DID A COLOR BULLSEYE IN THE L6-L6 PAPER.

We need several lemmas.

Definition 4.1 Let t € RT. Let P C T2.
1. P is t-separated if, for all p,q € P, d(p,q) > t.

2. P is mazimally t-separated (1) if P is t-separated and (2) for all » ¢ P, P U {r} is not
t-separated.

Lemma 4.2 Lett € RT and m € N.

1. There exists P C T2, that is mazimally t-seperated.

2. If P C T? is mazimally t-seperated then |P| < (G

™

3. If P C T2 is mazimally %-seperated then |P| < (1.7Tm)?. This follows from Part 2.



Proof:
1) A greedy algorithm forms a maximally ¢-seperated set.
BILL: How fast is this? Can we get a faster algorithm?
2) Let p € P. Then there is no element of P inside the circle centered at p of radius ¢. This circle
has area 7t2. The set T2 has area m?. Hence

P x 72 <m?, so0 |P| < A2

Lemma 4.3 Lett € RY. Let S C R? be t-seperated. Let p € R?. Let s > 0. The number of points
of S within s of P’ is at most (2s/t + 1)2.

Proof:  Let T be the set of points within ¢ of p. For every ¢ € T we look at the circle centered
at ¢ of radius ¢/2 (we can’t use radius t since then the circles would not be disjoint). These circles
have no other points of 7' in them and are disjoint. These circles have area m(#/2)?. The union of
these circles is contained in the circle around p of radius s +¢/2 which has area 7 (s +t/2)?. Hence
IT| x wt?/4 < (s +1/2)?
7] % (/2)% < (s +1/2)?

T < ()2 = (2s/t +1)% 1

Definition 4.4 Assume S C R? or S C T3". If p € S then V) is the set of points of R? or T3" that
are closer (or tied) to p then to any other point of S. The Voronoi Diagram of S is the set of all
the V},’s.

BILL- DO EXAMPLES
1. ANORMAL EXAMPLE

2. AN EXAMPLE WHERE THE VORONOI CELL IS A POLYGON WITH LOTS OF SIDES.
I THINK IF THE SET OF POINTS IS A p AND m POINTS ON THE CIRCLE OF RADIUS
1 AROUND z THEN V,, would be a m-sided convex polygon.

Note 4.5 There exists S C R™ and an s € S such that V,, is a convex |S|-gon. See BILL-WILL
NEED FIGURE NUMBER.

Lemma 4.6 Let S C R? be a mazimal t-separated set. We form the Voronoi diagram of S. The
Voronoi cells are {Vp}pes.

1. If x € V), then d(z,p) < t.
2. If p,p’ € V,, then d(p,p’") < 2t. (This follows from Part 1.)
3. If p,p’ € S and V},, V,,. share a boundary then d(p,p’) < 2t.

4. Vp is convex polygon with < 25 sides.



Proof:
1) Assume, by way of contradiction, that there is an = € V, and d(x,p) > t. Since x € V,, d(z,p)
is the smallest distance from z to a point of S. Hence «x is greater than ¢t away from any point in
S. Since S is maximal, x € S which is a contradiction.
3) Draw a line from p to p’. It will hit a point x that is on both the boundary of V, and the
boundary of V,y. By Part 1

d(p,p') =d(p,z) + d(x,p') < t+t =2t
4) Vj, is a convex polygon. Map each side of V,, to the p’ such that V}, and V}, share that side. Using
Part 2 we get that the number of sides is bounded above by the number of points of p’ € S such
that d(p,p’) < 2t. By Lemma 4.3 the number of such points is < ((2 x 2t)/t +1)2 =52 =25. |

BILL- I DO NOT THINK I NEED THE LEMMA BELOW FOR THE THEOREM. THEY
NEED TO USE A SET OF SIZE m/5 THAT HAS POINTS 5 APART. WE WILL JUST NEED
THAT /¢,, DOES NOT HIT TWO ANALOGOUS VORONOI CELLS FROM DIFF TILES. THIS
WILL BE ACCOMPLISHED BY MAKING THE TILES m x m SINCE THE MAX DISTANCE
BETWEEN POINTS OF ¢,, IS m — 1. THE PAPER DOES MORE COMPLICATED THINGS

Lemma 4.7 Let K be a 1-seperated set. Let s > 1. There is a set K' C K that is s-separated such
that |[K'| > |K|/(2s + 1)2.

5 R" /4 (ly,0,) where m =277
Theorem 5.1 There ezists d' such that R* /> (9, £,,) where m = 247,

Proof: Let P be a maximal %-separated subset of T5". We create the Voronoi diagram of P.

Let @ C P be formed by, for each p € P, choose it with probability = (we will determine x
later).

Let S C @ be the set of points s € Q such that, for all s’ € Q, d(s,s’) > 5/3.

Recall that we have a Voronoi diagram formed by the points in P. Let the Voronoi cells that
have a point of S in them be denoted V1,...,Vg.

We will color each V;, including boundary, RED. We will color every other point in 75" BLUE.
We will then use this to periodically color R?. We view this as tiling the plane with m x m tiles
and coloring all the tiles the same.

We will show that if you take a nine tiles arrange 3 x 3 then there is no RED ¢» or BLUE /,,
with a point in the middle tile. This will suffice.

No RED /5 This part does not use probability.
Let ¢, ¢ both be RED.
Case 1: ¢,¢ are in the same Voronoi cell. By Lemma 4.6.2 d(q,q') <1/3.
Case 2: ¢, ¢ are in the same tile but in different Voronoi cells. Let the Voronoi cells have centers
p,p’. Then

1 1 )
d(p,p) < d(p.q) +d(g,q) +d(d',p) < g+ 143 = 3.
But by definition of S, d(p,p’) > %
Case 3: ¢,q are in different tiles but in the analogous Voronoi cells. Let the Voronoi cells have
centers p, p’. Since d(p,p’) =m, d(q,q') > m — % > 1.

4



Case 4: ¢, q are in different tiles and non-analogous Voronoi cells. Since the Voronoi diagram was
on a Taurus this is identical to Case 2.

No BLUE /¢,

Let L = (q1,-..,qm) be an £,,. We bound the probability that L is BLUE.

Let {pi};’ial be such that, for 0 <i <m' —1, ¢; € V},,. We need to bound the probability that
Vp, is BLUE. Not so fast! We need to show that all of the V), are distinct.

Let ¢,¢' € {qo,- ., ¢m—1}. Let {p,p'} be such that ¢ € V,, and ¢’ € V.
Case 1 ¢, ¢ are in the same tile and in the same Voronoi cell. This cannot happen since d(q,q") > 1
and by Lemma 4.6.2 the diameter of these cells is 2/3.
Case 2 ¢, ¢ are in the different tiles but in analogous Voronoi cells. Two points in analogous cells
are at least m — % apart. Since d(q,q') < m —1, ¢,q’ cannot be in different tiles but in analogous
Voronoi cells.

The probability that L is BLUE is the prob that V,,, V,,, ..., V},, are all BLUE.

Let p € P. We determine a lower bound on the probability that V), is RED. Recall that V), is
RED iff p € S.

|
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