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Exposition by William Gasarch, Chaewoon Kyoung, Kelin Zhu

1 Pre Introduction

The following is well known.

Theorem 1.1 For all COL: R2 → [2] there exists 2 points, same color, 1 inch apart.

We rephrase this but first need some definitions.

Definition 1.2

1. `2 is 2 points in the plane an inch apart.

2. `3 is three colinear points p1, p2, p3 where d(p1, p2) = d(p2, p3) = 1.

3. You can define `k.

4. Given COL: R2 → [2], a RED `k is an `k where all the points in it are RED. Similar for a
BLUE `k.

In this paper we present proves of the following two known Theorems.

1. (Szlam [5]) There exists a constant c′ such that Rn → (`2, `m) where m = 2c
′n. (He proved a

more general theorem. See his paper for details.)

2. (Conlon & Fox [1]) There exists a constant d′ such that Rn 6→ (`2, `m) where m = 2d
′n. We

will just prove the n = 2 case in this paper. (They proved a more general theorem. See their
paper for details.)

BILL- WE MAY ADD THE GENERAL CASE LATER

2 Lemma Needed To Show Rn → (`2, `m) where m = 2c
′n

Notation 2.1 Let Gn = (V,E) be the graph with V = Rn and E = {(x, y) : d(x, y) = 1}. Let c(n)
be the chromatic number of Gn.

It is well known that 5 ≤ c(2) ≤ 7.
The following is known:

Theorem 2.2

1. (Larman and Rogers [3]) c(n) ≤ (3 + o(1))n

2. (Raigorodskii [4]) c(n) ≤ (1.239 . . .+ o(1))n

3. (Frankl and Wilson [2]) c(n) ≥ (1 + o(1))(1.2)n. We use the following easier-to-use version:
There exists c′ such that c(n) ≤ 2c

′n.

BILL: WILL LATER FILL IN PROOFS OF ALL THREE OF THESE.
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3 Rn → (`2, `m) where m = 2c
′n

Theorem 3.1 (Szlam [5]) There exists c′ such that Rn → (`2, `m) where m = 2c
′n.

Proof: We will need the following notation: ~1 is the vector (1, 0, . . . , 0) in Rn.
Let COL: Rn → [2].

Case 1 There is a BLUE `m. Done
Case 2 There is no BLUE `m. We form a coloring COL: Rn → [m] as follows:

Given point p ∈ Rn look at

p+~1, p+ 2~1, . . . , p+m~1.

Since there is no BLUE `m, there exists i such that COL(p+ i~1) = RED. Color p with the least
such i.

By Theorem 2.2 there exists points p, q ∈ Rn and 1 ≤ i ≤ m such that d(p, q) = 1 and p, q are
the same color. Hence p + i~1 and q + i~1 are both RED. Since d(p, q) = 1, d(p + i~1, q + i~1) = 1.
Hence p+ i~1 and q + i~1 form a RED `2.

4 Lemmas Needed To Show Rn 6→ (`2, `m) where m = 2d
′n

We will be 2-coloring the m×m square and then use that to form a periodic coloring of R2. Hence
we think of coloring the m×m with the two horizontal sides identified and the new vertical sides
identified. We denote this T 2

m (The T is for Taurus.)
BILL- THE PAPER USES m×m. I WILL LATER SAY WHY I USE m×m.
BILL: WE NEED A PICTURE FOR AN EXAMPLE. KELIN CAN DO THIS WITH A COLOR

PICTURE OF A SQUARE, LIKE HE DID A COLOR BULLSEYE IN THE L6-L6 PAPER.
We need several lemmas.

Definition 4.1 Let t ∈ R+. Let P ⊆ T 2
m.

1. P is t-separated if, for all p, q ∈ P , d(p, q) ≥ t.

2. P is maximally t-separated (1) if P is t-separated and (2) for all r /∈ P , P ∪ {r} is not
t-separated.

Lemma 4.2 Let t ∈ R+ and m ∈ N.

1. There exists P ⊆ T 2
m that is maximally t-seperated.

2. If P ⊆ T 2
m is maximally t-seperated then |P | ≤ (m/t)2

π .

3. If P ⊆ T 2
m is maximally 1

3 -seperated then |P | ≤ (1.7m)2. This follows from Part 2.
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Proof:
1) A greedy algorithm forms a maximally t-seperated set.

BILL: How fast is this? Can we get a faster algorithm?
2) Let p ∈ P . Then there is no element of P inside the circle centered at p of radius t. This circle
has area πt2. The set T 2

m has area m2. Hence

|P | × πt2 ≤ m2, so |P | ≤ (m/t)2

π .

Lemma 4.3 Let t ∈ R+. Let S ⊆ R2 be t-seperated. Let ~p ∈ R2. Let s ≥ 0. The number of points
of S within s of ~p is at most (2s/t+ 1)2.

Proof: Let T be the set of points within t of ~p. For every ~q ∈ T we look at the circle centered
at ~q of radius t/2 (we can’t use radius t since then the circles would not be disjoint). These circles
have no other points of T in them and are disjoint. These circles have area π(t/2)2. The union of
these circles is contained in the circle around ~p of radius s+ t/2 which has area π(s+ t/2)2. Hence
|T | × πt2/4 ≤ π(s+ t/2)2

|T | × (t/2)2 ≤ (s+ t/2)2

|T | ≤ ( s+t/2t/2 )2 = (2s/t+ 1)2.

Definition 4.4 Assume S ⊆ R2 or S ⊆ Tm2 . If p ∈ S then Vp is the set of points of R2 or Tm2 that
are closer (or tied) to p then to any other point of S. The Voronoi Diagram of S is the set of all
the Vp’s.

BILL- DO EXAMPLES

1. A NORMAL EXAMPLE

2. AN EXAMPLE WHERE THE VORONOI CELL IS A POLYGON WITH LOTS OF SIDES.
I THINK IF THE SET OF POINTS IS A p AND m POINTS ON THE CIRCLE OF RADIUS
1 AROUND x THEN Vp would be a m-sided convex polygon.

Note 4.5 There exists S ⊆ Rn and an s ∈ S such that Vp is a convex |S|-gon. See BILL-WILL
NEED FIGURE NUMBER.

Lemma 4.6 Let S ⊆ R2 be a maximal t-separated set. We form the Voronoi diagram of S. The
Voronoi cells are {Vp}p∈S.

1. If x ∈ Vp then d(x, p) ≤ t.

2. If p, p′ ∈ Vp then d(p, p′) ≤ 2t. (This follows from Part 1.)

3. If p, p′ ∈ S and Vp, Vp; share a boundary then d(p, p′) ≤ 2t.

4. Vp is convex polygon with ≤ 25 sides.
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Proof:
1) Assume, by way of contradiction, that there is an x ∈ Vp and d(x, p) > t. Since x ∈ Vp, d(x, p)
is the smallest distance from x to a point of S. Hence x is greater than t away from any point in
S. Since S is maximal, x ∈ S which is a contradiction.
3) Draw a line from p to p′. It will hit a point x that is on both the boundary of Vp and the
boundary of Vp′ . By Part 1

d(p, p′) = d(p, x) + d(x, p′) ≤ t+ t = 2t.
4) Vp is a convex polygon. Map each side of Vp to the p′ such that Vp and Vp′ share that side. Using
Part 2 we get that the number of sides is bounded above by the number of points of p′ ∈ S such
that d(p, p′) ≤ 2t. By Lemma 4.3 the number of such points is ≤ ((2× 2t)/t+ 1)2 = 52 = 25.

BILL- I DO NOT THINK I NEED THE LEMMA BELOW FOR THE THEOREM. THEY
NEED TO USE A SET OF SIZE m/5 THAT HAS POINTS 5 APART. WE WILL JUST NEED
THAT `m DOES NOT HIT TWO ANALOGOUS VORONOI CELLS FROM DIFF TILES. THIS
WILL BE ACCOMPLISHED BY MAKING THE TILES m×m SINCE THE MAX DISTANCE
BETWEEN POINTS OF `m IS m− 1. THE PAPER DOES MORE COMPLICATED THINGS

Lemma 4.7 Let K be a 1-seperated set. Let s ≥ 1. There is a set K ′ ⊆ K that is s-separated such
that |K ′| ≥ |K|/(2s+ 1)2.

5 Rn 6→ (`2, `m) where m = 2d
′n

Theorem 5.1 There exists d′ such that R2 6→ (`2, `m) where m = 2d
′n.

Proof: Let P be a maximal 1
3 -separated subset of Tm2 . We create the Voronoi diagram of P .

Let Q ⊆ P be formed by, for each p ∈ P , choose it with probability x (we will determine x
later).

Let S ⊆ Q be the set of points s ∈ Q such that, for all s′ ∈ Q, d(s, s′) > 5/3.
Recall that we have a Voronoi diagram formed by the points in P . Let the Voronoi cells that

have a point of S in them be denoted V1, . . . , V|S|.
We will color each Vi, including boundary, RED. We will color every other point in Tm2 BLUE.

We will then use this to periodically color R2. We view this as tiling the plane with m ×m tiles
and coloring all the tiles the same.

We will show that if you take a nine tiles arrange 3 × 3 then there is no RED `2 or BLUE `m
with a point in the middle tile. This will suffice.
No RED `2 This part does not use probability.

Let q, q′ both be RED.
Case 1: q, q′ are in the same Voronoi cell. By Lemma 4.6.2 d(q, q′) ≤ 1/3.
Case 2: q, q′ are in the same tile but in different Voronoi cells. Let the Voronoi cells have centers
p, p′. Then

d(p, p′) ≤ d(p, q) + d(q, q′) + d(q′, p′) ≤ 1

3
+ 1 +

1

3
=

5

3
.

But by definition of S, d(p, p′) > 5
3 .

Case 3: q, q′ are in different tiles but in the analogous Voronoi cells. Let the Voronoi cells have
centers p, p′. Since d(p, p′) = m, d(q, q′) ≥ m− 1

3 > 1.
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Case 4: q, q′ are in different tiles and non-analogous Voronoi cells. Since the Voronoi diagram was
on a Taurus this is identical to Case 2.

No BLUE `m
Let L = (q1, . . . , qm) be an `m. We bound the probability that L is BLUE.
Let {pi}m

′−1
i=0 be such that, for 0 ≤ i ≤ m′ − 1, qi ∈ Vpi . We need to bound the probability that

Vpi is BLUE. Not so fast! We need to show that all of the Vpi are distinct.
Let q, q′ ∈ {q0, . . . , qm′−1}. Let {p, p′} be such that q ∈ Vp and q′ ∈ Vp′ .

Case 1 q, q′ are in the same tile and in the same Voronoi cell. This cannot happen since d(q, q′) ≥ 1
and by Lemma 4.6.2 the diameter of these cells is 2/3.
Case 2 q, q′ are in the different tiles but in analogous Voronoi cells. Two points in analogous cells
are at least m− 2

3 apart. Since d(q, q′) ≤ m− 1, q, q′ cannot be in different tiles but in analogous
Voronoi cells.

The probability that L is BLUE is the prob that Vp1 , Vp2 , . . ., Vpm are all BLUE.
Let p ∈ P . We determine a lower bound on the probability that Vp is RED. Recall that Vp is

RED iff p ∈ S.
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