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THIOOHE1"4S m THE ADDITIVE THEORY OF NUMBERS

R. C. Bose and S. Chowla

Summary. This paper extends some earlier results on difference sets

and B2 sequences by Singer, Bose, Erdos and Turan, and Chowla.

1. Singer (6) proved that if m =pn (where p is a prime), then we

can find m + 1 integers

d , dl , ••. , do m

i,j =O,l, •.• ,m) when reduced

2different non-zero integers less than m + m + 1.

such that the m2+ m differences di - dj(i ~ j,

2modem + m + 1), are all the

Bose (1) proved that if m =pn (where p is a prime), then we can find

m integers

, d
m

such that the m(m-l) differences di-d j ,(i ~ j, i,j = 1,2, .. "m) when reduced

mod(m2- 1), are all the different non-zero integers less than m2_ 1, which

are not divisible by m y 1.

From the theorems of Singer and Bose the following corollaries are

obvious.

Corollary L If m =pn (Where p is a prime), then we can find m + 1

integers

d , dl, ••• ,do m

such that the sums di + dj are all different mOd(m2+ m + 1), where 0 ~ i ~ j ~ m.

Corollary 2. If m =pn (where p is prime), then we can find m integers

2such that the sums di + dj are all different modem - 1), where 0 ~ i ~ j ~ m.
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We shall prove here the following two theorems generalizing corol~aries

1 and 2.

Theorem 1. If m = pn (where p is prime) we can find m non-zero

integers (less than mr )

(1.0)

(1.1)

such that the sums

di + d. + .•• + d.
1 1 2 1 r

1 ~ i 1 ~ 12 ... ~ i r ~ m are all different mod (mr _ 1).

Proof. Let Q1= 0, Q2' ... , Qm be all the different elements of the

Galois field GF(pn). Let x be a primitive element of the extended field

GF(pnr). Then x cannot satisfy any equation of degree less than r with

elements from GF(pn). Let

(1.2)
d
1x = x + a.,

1
i 1 n d

i
·....; p'nr= ,c, .. , mj "

then the required set of integers is

If possible let

d •
m

+ .•.

where 1 ~ i l ~ i 2
... < i < m, 1 ~ j1 ~ J2 ~ ... < j < m, andr- - r-

. (i
1

, i
2

, ... , i r ) F (J l , j2' ... , Jr )· Then

d. di d
ir

d. d
j

di
(1.3)

11 2 J l 2 rx x x = x x x
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Hence from (1.2)

(x + a. )(x + a. ) . . . (x + a. )= (x + a. )(x + a
j

) . . . (x + a. )
1 1 1 2 1 r J1 2 J r

After cancelling the highest power of x from both sides we are left with

an equation of the (r-l)-th degree in x, with coefficients from GF(pn), which

is impossible. Hence the theorem.

The roots of the equation ~= 2x + 3nExample 1. Let P = 5, r = 3.

are primitive elements of GF(53). LSee Carmichael (2), p. 26g7. If x is

any root then we can express the powers of x in the form ax + b where a and

b belong to the field GF(5). We get

Hence the set of integers

is such that the sum of any three (repetitions allowed) is not equal to the

sum of any other three mod (124). This can be directly verified by calculating

(1.4)

Theorem 2. n
If m =p (Where p is a prime) and

( r+l /q = m - 1) (m - 1)

we can find m + 1 integers (less than q)

such the sums

(1.6) d. + d. +.•.+ di1 1 1 2 r

o ~ i l ~ i 2 ~ ... < i r ~ m, are all different mod (q).
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Proof. Let a l = 0, a
2
=1, a

3
, ••. am be all the elements of

GF(pn), and let x be a primitive element of the extended field GF(pnr+n).

Then xq and its various powers belong to GF(pn) and x cannot satisfy any,
equ.ation of degree less than r + 1, with coefficients from GF(pn). Let

are all different, where infinity is regarded as one of the ratios. Thus we

may take for example

We can find d. < q (i =0,1,2, ••• ,m), such that
J.

(1. 7)

l':I
i

being a suitably chosen non-zero element of GF(pn). Then the required

set of integers is

If possible let

(1.8) d. + d
i

+
J.l 2

+ d. = d
j

+ d. +.
J.r 1 J2

+ d. (mod q)
Jr

Then

where a is an element of GF(pn). Substituting from (1.7) we have an equation

of degree r in x, with coefficients from GF(pn). This is impossible. Hence

the theorem.
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Example 2. Let pn= 3, r = 3. The roots of the equation

x4= 2~+ 2x2+ x +.1 are primitive elements of GF(34) [See Carmichael (2),

p. 26g7. If x is any root then we can express the powers of x in the form

ax + b where a and b belong to the field GF(3). We get

a 1 26 ~2
x = 1, x = x, 2x = 1 + x, 2X- = 2 + x

Hence the set of integers

is such that the sum of any three (repetitions allowed) is not equal to the

sum of any other three mod (40). This can be directly verified by calculating

3· A B2 sequence is a sequence of integers

in ascending order of magnitude, such that the sums di + dj (i ~ j) are all

different. Let F2(X) denote the maximum number of members which a B2 se­

quence can have, when no member of the sequence exceeds x. Clearly F2 (X)

is a non-decreasing function of x. Erdos and Turan (4) proved that

for all positive € and m > m(€), and conjectured that

Lt F2 (m)/ym = 1
n~a::

Chowla (3) deduced from collaries 1 and 2, of section 1, that if m is

a prime power
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and proved the conjecture of Erdos and Turan.

We shall here generalize the notion of a B2 sequence and prove some

theorems about these generalized sequences.

A Br sequence (r ~ 2) may be defined as a sequence

of integers in ascending order of magnitude such that the sums

d~ + d. + ••• + d.
~l ~2 ~r

(i
l

< i
2

< ... i )
- - r

are all different. Let F (x) the maximum number of members 8 B sequence can
r r

have when no member of the sequence exceeds x. Clearly F (x) is a non­
r

decreasing function of x. We can then state the following theorems.

Theorem 3. nIf m =p , where p is prime, and r > 2

mr+l_l
(ii) Fr (1 + m-l ) > m + 2.

Proof of part (i). nLet m = p , and let dl = 1, d2, .•. , dm be

integers satisfying the c::mditions of Theorem 1. Then the sequence

is a Br sequence. For if possible let

d. + d
i

+ .•.
~l 2

+ d. = d. + d
j

+... + d.
~r Jl 2 Jr

Then the relation (3.5 also holds mod(mr-l), with any dm+l's occuring in it

replaced by dl = 1. This contradicts Theorem 1. Hence (3.4) is Br seqenee· with
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r
m + 1 members, no member of which exceeds m •

Proof of part (1i).

Hence F (mr ) > m + l.
r -

nLet m =p , and let doe 0, dl =1, d2, •• ·,dm

satisfy conditiollS of Theorem 2. Then the sequence

.d 1 = q, dm+·,..,= q +. 1·m+ c

where q = (mr +l _ l)/(m - 1) is a B sequence. For if possible let
r

d
i

+ d
i

+ . . . + d. = d
j

+ dj +
1 2 ~r 1 2

. < j < m+l, I

- r-

(il ,i2, .•• ,ir ) p (jl,J2, ••. ,jr)' Then the relation (;.7) also holds mOd(q),

where cr;'s occurring in it are replaced by d = 0, and d lIs occurring in itm 0 m+

are replaced by dl = 1. This contradicts Theorem 2. Hence (;.6) is a Br

sequence with m+2 members, no member of which exceeds q+l. Hence

Example;. It follows from Examples 1 and 2, that

(i) 1, 14, ;4, 10;, 119, 125

(1i) 1, 26, ;2, 40, 41

are B; sequences.

(4.0)

4. Taking n =1 in Theorem ;(i), we have

where p is any prime. Let
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where p and pI are consecutive primes. It follows from a Theorem of Ingham (5),

that

It follows from the monotonicity of Fr that

F (y) > F (pr) > p + 1
r - r -

(4.4)

From (4.1) and (4.2)

yl/r= p + o(p
2/3)

SJ."nce l/r > > 1. llr o( l/r)y _P_2Y ,p= Y •

llr o( 2/3r )p =y - y

Hence from (4.4)

(4.6)

From (4.3) and (4.5)

F (y) > yl/r_ o(~/3r)
r -

Hence we have,

Theorem 4.
Fr(Y)

lim 17 > 1 ,- r-y
y~oc

Eraos and Turam (4), proved that for r = 2

(4.7)
F (y)

r
lim --:J.Tr ~ 1

Y

as y ..;> cc

We may conjecture that (4.1) remains true for r ~ 3, though we gather

from oral conversations with Professor Erd5s that this is still unproved. If

the conjecture is correct it will follow that

(4.8) lim
y~ cc

for r > 2. At present we only know this to be true for r =2.
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