1. (0 points) What is your name? When is the midterm? By what day
must you tell Dr. Gasarch you can’t make the midterm? (While this
problem is 0 points, if you miss the midterm and do not tell Dr.
Gasarch, you will get \(-100\) on every single homework problem 1).
When is the final?

2. (40 points) Recall the second proof of the infinite can Ramsey
theorem that used 3-ary, 4-color Ramsey and a maximal set argument. Finitize
it. Give a bound on \(\text{CR}_2(k)\), where you can have a Big-Oh in the
exponent.

(Note: You will learn how to do this in the Thurs Feb 27 lecture)

SOLUTION TO PROBLEM TWO

We first state the finite version of the 1-ary can Ramsey theorem, which
is from a previous homework: For every coloring of \((k - 1)^2 + 1\) points,
there exists a set of \(k\) points that are all the same color or a set of \(k\)
points that are all different colors. That is, \(\text{CR}_1(k) = (k - 1)^2 + 1\).

Let \(\text{COL}: \binom{[n]}{2} \to \omega\) be given. Define \(\text{deg}_c(v)\) for \(v \in [n]\) as we did in
class.

Let \(X\) be any set with a coloring \(\binom{X}{2} \to \omega\), and let \(R\) be a maximal
rainbow set of \(X\). Suppose \(\text{deg}_c(x) \leq 1\) for all \(x \in X\).

We define \(f\) as a function that maps \(y \in X \setminus R\) to the reason \(y \notin R\).
The reason \(y \notin R\) could be:

- Case 1: \(\exists u \in R, \exists \{a, b\} \in \binom{R}{2}\), s.t. \(\text{COL}(u, y) = \text{COL}(a, b)\).
- Case 2: \(\exists a \in R, \exists b \in R\), s.t. \(\text{COL}(u, a) = \text{COL}(u, b)\). This can’t
 happen because \(\text{deg}_c(u) \leq 1\) for all \(c\).

So only Case 1 can happen. Then, define \(f: X \setminus R \to R \times \binom{R}{2}\) where
\(f(y) = (u, \{a, b\})\) means that \(y \notin R\) because \(\text{COL}(u, y) = \text{COL}(a, b)\).

Note that \(f\) is injective, so we have \(|X| - |R| \leq |R| \times \frac{1}{2} |\binom{R}{2}|\), so we have
roughly \(|X| \leq |R|^3 + |R|\), or \(|R| \geq |X|^{1/3}\).

So our rainbow set has size at least \(|X|^{1/3}\).
Next we define \(\text{COL}' : \binom{[n]}{3} \to [4] \) from \(\text{COL} \) as we did in class:

\[
\text{COL}'(x_1, x_2, x_3) = \begin{cases}
1 & \text{if } \text{COL}(x_1, x_2) = \text{COL}(x_1, x_3) \\
2 & \text{if } \text{COL}(x_1, x_3) = \text{COL}(x_2, x_3) \\
3 & \text{if } \text{COL}(x_1, x_2) = \text{COL}(x_2, x_3) \\
4 & \text{otherwise}
\end{cases}
\]

where each case assumes the negation of the previous case, and \(x_1 < x_2 < x_3 \).

We apply 3-ary Ramsey to get a homogeneous set \(H \) for \(\text{COL}' \). Using the bound \(R_3(k) \leq 2^{2^k} \), we get that \(|H| \geq \frac{1}{4} \log \log n \). There are four possible colors \(H \) can be:

- **Case 1:** If \(H \) has color 1, we have that for all \(x, y, z \in H \) with \(x < y < z \), \(\text{COL}(x, y) = \text{COL}(x, z) \). So, we define \(\text{COL}'' : H \to \omega \) so that \(\text{COL}''(x) \) is the color that is equal to \(\text{COL}(x, y) \) for all \(y \in H \) with \(x < y \). Now we can apply the finite 1-ary can Ramsey to get a set \(H' \) that is either rainbow or homogeneous. If \(H' \) is homog for \(\text{COL}'' \), then \(H' \) is homog for \(\text{COL} \). On the other hand, if \(H' \) is rainb for \(\text{COL}'' \), then it is min-homog for \(\text{COL} \). By the finite 1-ary can Ramsey theorem, our min-homog or homog set has size \(|H'| \geq \sqrt{|H|} - 1 \geq \sqrt{\frac{1}{4} \log \log n} - 1 \).

- **Case 2:** If \(H \) has color 2, it is similar to Case 1. We define \(\text{COL}''(y) \) to be the color that is \(\text{COL}(x, y) \) for all \(x < y \). Applying can Ramsey gives \(H' \) which is either rainb in \(\text{COL}'' \) and max-homog in \(\text{COL} \), or homogeneous in \(\text{COL}'' \) and also homog in \(\text{COL} \). The size of the homog or max-homog set is the same as the previous case, \(|H'| \geq \sqrt{\frac{1}{4} \log \log n} - 1 \).

- **Case 3:** If \(H \) has color 3, then a similar argument to the one from class shows that \(H \) is homog for \(\text{COL} \). Our homog set has size \(|H| \geq \frac{1}{4} \log \log n \).

- **Case 4:** If \(H \) has color 4, then none of the above cases hold. This is the case where for all \(x \) and for all \(c, \deg_c(x) \leq 1 \). By the reasoning given above, there is a maximal rainbow set \(R \subseteq H \) with size \(|R| \geq |H|^{1/3} \geq (\frac{1}{4} \log \log n)^{1/3} \).
Thus, we have a homog, min-homog, or max-homog set of size at least $k = (\frac{1}{4} \log \log n)^{1/3}$ (the smallest of the bounds above). Solving for n gives:

$$n = 2^{2^{4k^3}}$$

Specifically, this means if we have $n = 2^{2^{4k^3}}$, we will have a homog, min-homog, max-homog, or rainb set of size k. Our final bound is then:

$$\text{CR}_2(k) \leq 2^{2^{O(k^3)}}$$

END OF SOLUTION TO PROBLEM 3

3. (40 points) The $n \times m$ grid is the set of points

$$\{(a, b) : 1 \leq a \leq n \text{ and } 1 \leq b \leq m\}.$$

In this problem we will be coloring these points.

A *monochromatic rectangle* is when there are FOUR points that are the corners of a rectangle that are all the same color. Example would be

$$\{(3, 4), (3, 8), (7, 4), (7, 8)\}.$$

For which values of m can the $4 \times m$ grid be 3-colored without having a monochromatic rectangle? Prove your result.

THERE IS ANOTHER PAGE TO THIS HW

SOLUTION TO PROBLEM FOUR

Omitted, will do in class.

END OF SOLUTION TO PROBLEM FOUR
4. (20 points) Complete the following statement of a theorem so that it is correct and then prove it:

For all COL: $\left(\mathbb{N}^\mathbb{N}\right) \rightarrow \omega$, there exists an infinite set H such that either: BLAH, or BLAH, or ..., or BLAH.

5. (0 points but you must do this so we can discuss) Here is a book review of a book on the Banach-Tarski Paradox:

Read the review. Be prepared to discuss if you think the BT paradox is TRUE or FALSE or SOMETHING ELSE. There is no right answer here but I want to know what you think.

6. (0 points) Compare and contrast the following parodies of Billy Joel’s *The Longest Time*:

- “The Longest Path” https://www.youtube.com/watch?v=a3ww0gwEszo
- “Entropic Time” https://www.youtube.com/watch?v=i6rVHr60wjI (does the singer look like anybody you know?)
- “Graduate on Time” https://www.youtube.com/watch?v=Vw6h6epNS5k
- “Polynomial Time” https://www.youtube.com/watch?v=o09nF0o8q-

For reference, here is the original: https://www.youtube.com/watch?v=a_XgQhMPeEQ