

1 Conjecture

In this project, we will consider the following conjecture:

For any \(c \in \mathbb{N} \), there exists a number \(E = E(c) \) such that for all \(c \)-colorings of \(\{1, 2, 3, \ldots, E\} \), there exists \(x, y, z \) such that:

- \(x, y, z \) are the same color (I bet you saw that coming!), and
- \(x^2 + y^2 = z^2 \)

The conjecture is known to be true for \(c = 1 \) (this is trivial) and for \(c = 2 \) (this is not so trivial).

We will gather evidence for how big \(E \) might be.

2 Greedy Algorithm

To find lower bounds on \(E(c) \), we find a number \(n \) and a \(c \)-coloring of \([n] = \{1, 2, 3, \ldots, n\} \) such that there is no monochromatic triple \(x, y, z \) such that \(x^2 + y^2 = z^2 \). We will call such a \(c \)-coloring of \(\{1, 2, \ldots, n\} \) a valid coloring. If a valid \(c \)-coloring exists for \(\{1, 2, \ldots, n\} \) we will say that \([n] \) can be \(c \)-colored.

We will consider the following greedy algorithm for finding valid colorings:

For each number \(k \) starting from 1, color \(k \) with the least color possible. That is, assign \(k \) the least color \(\chi \) from the set

\[
\{ \chi : \forall x, y < k \text{ s.t. } \text{COL}(x) = \text{COL}(y) = \chi \} \cup \{ x^2 + y^2 \neq k^2 \}\]

Keep coloring points as long as possible, until you reach a number \(y \) that can’t be colored without creating a monochromatic \(x, y, z \) with \(x^2 + y^2 = z^2 \).

For example, this approach would end up coloring \(\text{COL}(1) = \text{COL}(2) = \text{COL}(3) = \text{COL}(4) = 1; \) then coloring \(\text{COL}(5) = 2 \) to avoid \(3, 4, 5 \) all being the same color.
3 Randomized (Greedy) Algorithm

Consider the following modification to the Greedy algorithm from the last section: When coloring a number \(k \), consider all the valid colors available for color \(k \), and pick one of these at random.

That is, randomly pick one color from the set

\[
\{ \chi : (\forall x, y < k \text{ s.t. } \text{COL}(x) = \text{COL}(y) = \chi)[x^2 + y^2 \neq k^2] \}
\]

and assign \(k \) this color.

As with the original greedy, we continue until some number can’t be colored (i.e. the set of valid colors above is empty).

4 The Project

1. (a) Write a program that implements the regular greedy algorithm and outputs a number \(n \), and a coloring of \(\{1, 2, \ldots, n\} \).

 (b) Write a program that implements the randomized greedy algorithm. It will also output a number \(n \) and a coloring of \(\{1, 2, \ldots, n\} \).

 Submit your code.

2. Run the greedy algorithm for \(c = 2 \) to find a number \(n \) and a 2-coloring of \(\{1, 2, \ldots, n\} \) with no \(x, y, z \) such that \(x^2 + y^2 = z^2 \) and \(x, y, z \) are all the same color.

 What number \(n \) does the greedy algorithm find and output?

 Run the randomized greedy algorithm for \(c = 2 \) to find a number \(n \) such that \(\lceil n \rceil \) can be 2-colored. Run it 50 times. What is the largest \(n \) that the randomized greedy algorithm output?

3. Run the greedy algorithm for \(c = 3 \). What number \(n \) does the greedy algorithm find and output?

 Run the randomized greedy algorithm 50 times, for \(c = 3 \). What is the largest \(n \) that the randomized greedy algorithm output?

GO TO THE NEXT PAGE
4. Run the greedy algorithm for $c = 4$. What number n does the greedy algorithm find and output?

Run the randomized greedy algorithm 50 times, for $c = 4$. What is the largest n that the randomized greedy algorithm output?

5. Run the greedy algorithm for $c = 5$. What number n does the greedy algorithm find and output?

Run the randomized greedy algorithm 50 times, for $c = 5$. What is the largest n that the randomized greedy algorithm output?

(Warning: Nathan’s code took 3 minutes to run 50 times, so yours might take a little while as well)