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Let Σ be some finite non-empty set, called the alphabet. Finite (ordered) sequences of elements
Σ will be called words over the alphabet. Let Σ∗ denote the collection of all words over Σ. Then
for any subset L ⊆ Σ∗ we’ll say that L is a formal language over the alphabet Σ. Now fix some
alphabet Σ.

Definition 1. The complexity class P is defined as the collection of all languages L for which,

(i) There exists a Turing machine M that runs in polynomial time on all of its inputs, and

(ii) Given any x ∈ Σ∗ M accepts if x ∈ L, and rejects otherwise.

A few notes are in order:

• The running time of M is quantified in terms of the number of steps M takes as a function of
the input size |x|, ie. the length of the input word. Notice that since Turing machines operate
with discrete steps, this makes sense.

• To demonstrate that a language L belongs to P, one can produce an algorithm A that decides
L. A crucial point here is that the Church-Turing Thesis asserts that the intuitive notion of
algorithms is the same as the class of algorithms captured by Turing machines.

• Conversely to disprove that L ∈ P one needs a model of computation. One such model is
given by Turing machines. See Sipser’s standard text for a formal definition.

• For the rest of this note, the terms language and (decision) problem will be used inter-
changably.

Analogously to P one can define the class FP of so called function problems that can be solved in
polynomial time. Informally speaking a function problem seeks to efficiently evaluate some given
function on a set of inputs.

One main goal in the study of complexity theory is to relate computational problems in terms
of their hardness to other problems. This is done through so called reductions:

Definition 2. Let L1 and L2 be some languages. Then we say that L1 reduces polynomially to L2

if there exists some f ∈ FP such that, for all x ∈ Σ∗,

x ∈ L1 ⇔ f(x) ∈ L2

Whenever the above statement holds, the notation L1 ≤p L2 is used to signify this relationship.
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The intuition that is captured by the above definition is that L2 is ”at least as hard as” L1 is. It
is in easy exercise to prove the following properties: (1) The relation L1 ≤p L2 is transitive, (2) If
L2 ∈ P and L1 ≤p L2 then L1 ∈ P. Note that the contrapositive of the second point can be used
to disprove membership in P.

The Boolean Satisfiability Problem (Satisfiability) is the following decision problem: Given
a Boolean formula φ(x1, ...xn) is there a truth assignment for the variables xi under which φ
evaluates to 1? Notice that an exhaustive search would solve Satisfiability in 2n time. On the
other hand given any truth assignment a : {xi} → {0, 1} one can easily verify whether or not
φ(a(x1), ..., a(xn)) = 1. This notion of easy verifiability of candidate solutions is captured by the
complexity class NP,

Definition 3. Let L be some language. L ∈ NP if there exists L′ ∈ P together with some
polynomial P, such that,

L1 = {x : ∃y : |y| ≤ p(|x|) and x.y ∈ B}.

The intuition captured by the above definition is the following: for any x ∈ L1 there exists a witness
y that is not too long such that y can be used to efficiently verify the membership x ∈ L1. On
the other hand when x 6∈ L1 the above definition doesn’t guarantee any witness. Notice also that
P ⊆ NP clearly. As an exercise one can show that,

Exercise 4. Show that NP is closed under union and concatenation.

Below we give a couple examples of problems that belong to NP:

(i) Given a graph G together with some k ∈ N, does G contain a clique of size k?

(ii) Given a graph G together with some k ∈ N, does G have a vertex cover of size k?

(iii) Given a graph G does it have an Eulerian cycle (one which visits each edge precisely once)?

(iv) Given n, a ∈ N is there some 2 ≤ b ≤ a that divides n?

(v) Given S1, ..., Sm ⊆ [n] and k ∈ [m] are there distinct i1, ..., ik ∈ [m] such that [n] = ∪jSij?

(vi) Given a multiset of integers S and a target integer t is there some S′ ⊆ S such that
∑
S′ = T?

The above problems are typically denoted by Clique, Euler Circuit, Vertex Cover, FACT,
Set Cover, Subset Sum respectively. The reader can easily convince herself that for any solution
to the above problems there is an easy-to-verify witness, hence each of the above problems belongs
NP. Additionally, Euler Circuit ∈ P, for an Eulerian cycle exists if and only if each vertex has
even degree. However, some of the above problems are not known to belong to P. To capture this
class of problems we will define,

Definition 5. Let L be some language. L is said to be NP-hard if, for all L′ ∈ NP, L′ ≤p L. If
in addition L ∈ NP, then we will say that L is NP-complete.

Cook and Levin independently proved that,

Theorem 6. Satisfiability is NP-complete.

The above thorem allows showing NP-hardness without dealing with the computational model
(e.g. Turing machines) directly: notice that one can prove that L is NP-hard by producing a
reduction from some L′ which is already known to be NP-hard. For example, by reducing from
Satisfiability one can show that,
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Claim 7. Each of the following problems are NP-complete: Clique, Vertex Cover, Set
Cover, Subset Sum.

As noted earlier the inclusion P ⊆ NP is easy to see. However, some problems (such as FACT

from our list above) are not known to be in P, while they clearly belong to NP. Hence the question
about the reverse containment P ⊇ NP arises naturally. The answer to this question is not known,
although most theorists believe that the inclusion P ⊂ NP is proper. This makes intuitive sense,
for one would expect that finding is generally harder than verifying (a solution).

Additionally, the supposition P 6= NP can be used to explain the lack of certain results. In par-
ticular, there are computational problems for which efficient approximation algorithms are known
up to a certain approximation ratio c, however despite many attempts no approximation algorithms
are known beyond c. In many such cases it has been proved that surpassing a certain approximation
ratio c would imply P = NP. Therefore, if P 6= NP was indeed true, that would explain why one
cannot produce approximation algorithms beyond certain ratios. For more details, see eg. [1].

Fixed parameter tractability

Consider the following two problems:

Clique = {(G, k) : G has a clique of size k}
Cliquek = {G : G has a clique of size k}

As discussed earlier Clique is NP-hard. On the other hand it is easy to see that there is a O(nk)
algorithm that solves Cliquek. That is if we ”freeze” the value of the parameter k, then Cliquek
seems more tractable. This behavior is called fixed parameter tractability, and it characterizes many
problems other than Clique, indeed another example would be Vertex Cover.

The Exponential Time Hypothesis

Notice that while the assumption Satisfiability 6∈ P rules out polynomial time algorithms
for Satisfiability, it might still be plausible that there exists some nO(logn) time algorithm that
solves Satisfiability. The Exponential Time Hypothesis captures the widely held belief that Sat-
isfiability in fact requires exponential time.

Strong NP-hardness

We claimed that Subset Sum is NP-hard, this is true as long as the input is encoded in binary.
When its input is encoded in unary Subset Sum belongs to P, as one can show that a dynammic
programming algorithm can solve it efficiently. Thus, the notion of NP-hardness depends on the
encoding of the inputs, to signify this the following terminology is introduced,

Definition 8. A problem is weakly NP-hard if it is NP-hard when its inputs are given in binary
encoding. When a weakly NP-hard problem remains NP-hard even when the inputs are encoded in
unary, we say that the problem is strongly NP-hard.

One can analogously define strong and weak NP-completeness.

Complexity of Function Problems
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So far we mostly focused on decision problems, and we defined the complexity classes P, NP, etc.
accordingly. These notions, however, are not suited for the study of so-called function problems.
While for decision problems we are looking for a binary answer for each input, in the case of a
function problem the output is typically more complex. As an example, one might formulate the
function problem of finding the size of a maximal clique in a given graph. For such problems
we have the class FP, the class of polynomially computable functions. Just as in the above
example of Clique, many decision problems have corresponding search variants. Furthermore, the
complexities of the two variants are often related as suggested by the following claim,

Claim 9. Let Max Clique denote the function problem of returning the size of the largest clique
in a given graph. Then the following are equivalent,

(i) Clique ∈ P

(ii) Max Clique ∈ FP

The polynomial hierarchy

Say that two Boolean formulas are equivalent if they use the same set of variables, and their truth
tables are identical. Consider the following decision problem called Minimum Formula (MINFML):
Given a Boolean φ is there a shorter formula ψ that is equivalent to φ? As an example note that
the following two formulas are equivalent (a ∨ d) ∧ (b ∨ d) ∧ (c ∨ d) ≡ (a ∧ b ∧ c) ∨ d, while the first
one is longer. We rewrite this problem as,

MINFML = {φ : (∀ψ with |ψ| < |φ|) : ∃b : φ(b) 6= ψ(b)}

Recall the definition of NP, and compare it to the above formulation. It seems that MINFML might
not belong to NP. Indeed, one can define further complexity classes by generalizing the definition
of NP by the way introducing additional quantifiers:

Definition 10. We define the complexity classes Σ1,Π1,Σ2,Π2 by:

• Let Σ1, which is also called NP, be the set of decision problems A for which there exists some
B ∈ P together with some polynomial p such that,

A = {x : ∃y1 : |y1| ≤ p(|x|) and (x, y1) ∈ B}

• Let Π1, also called coNP, be the set of decision problems A for which there exists some B ∈ P
together with some polynomial p such that,

A = {x : (∀y1 with |y1| ≤ p(|x|)) : (x, y1) ∈ B}

• Let Σ2 be the set of decision problems A for which there is some B ∈ P together with a
polynomial p such that,

A = {x : (∃y1 with |y1| ≤ p(|x|)) : (∀y2 with |y2| ≤ p(|x|)) : (x, y1, y2) ∈ B}

• Let Π2 be the set of decision problems A for which there is some B ∈ P together with a
polynomial p such that,

A = {x : (∀y1 with |y1| ≤ p(|x|)) : (∃y2 with |y2| ≤ p(|x|)) : (x, y1, y2) ∈ B}
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One can analogously define Σi and Πi for i = 3, 4, ...; as well as the classes Σi-complete and
Πi-complete. Then the following containments are known collectively as the polynomial hierarchy
(PH),

Claim 11 (The Polynomial Hierarchy). The following containments hold,

• Σ1 ⊆ Σ2 ⊆ Σ3 ⊆ ...

• Π1 ⊆ Π2 ⊆ Π3 ⊆ ...

• Σi ⊆ Πi+1

• Πi ⊆ Σi+1

It is a straightforward exercise to show that if Σi = Πi for some i ≥ 1 then the polynomial
hierarchy collapses in the sense that Σj = Πj = Σj+1 for all j ≥ i. Note, however, that the
polynomial hierarchy is believed to be proper.

Now consider the following modification of Satisfiability: given a Boolean formula φ(x,y)
defined on two sets of variables, is there some assignment x′ such that φ(x′,y′) = 0 for all assign-
ments y′? Call this problem Σ2-SAT. It can be shown that just like Satisfiability is Σ1-complete,
so is Σ2-SAT Σ2-complete. This kind of construction is applicable more generally: it can be shown
that one can modify any NP-complete problem to form a Σ2-complete problem.

Intermediary problems

We noted above that Euler Circuit ∈ P, whereas Clique, Satisfiability, Subset Sum are
all NP-complete. Often problems in NP either belong to P or are NP-complete. There are
counterexamples to this pattern, however:

• FACT is the problem of given two integers (n, a) ∈ N is there a factor b of n with b ≤ a?
Currently FACT is not known to belong to P, neither is it known to be NP-complete. While
it might be that FACT ∈ P, it is unlikely to be NP-complete, as in that case NP = coNP
would follow. Below we’ll sketch a proof of this implication.

• Graph Isomorphism is the problem of given two graphs determining whether or not they
are isomorphic. Similarly to the case of FACT, the Graph Isomorphism problem is not
known to belong to P, and it’s not known to be NP-complete either. And indeed, it seems
unlikely that Graph Isomorphism is NP-complete, for Boppana et al proved that in that
case the polynomial hierarchy would collapse to level 2, ie. Σ2 = Π2 would follow.

Next we’ll outline the main steps of the proof of the claim that if FACT is NP-complete, then
NP = coNP.

Claim 12. If FACT is NP-complete, then NP = coNP.

Proof (sketch). Let Primality denote the problem of determining whether a number is a prime.
The proof proceeds in three steps,

1. Notice that Primality ∈ NP.

2. Prove by Primality and the Fundamental Theorem of Arithmetic that FACT ∈ NP.

3. Notice that FACT ∈ NP ∩ coNP to conclude the statement claimed.
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In fact it is known that intermediate problems do exist provided that P 6= NP:

Theorem 13 (Ladner [8]). If P 6= NP then there is some L ∈ NP such that L 6∈ P and L is not
NP-complete.

#SAT: number of satisfying assignments

A generalization of the 3-SAT problem is the #3SAT problem: given a 3-CNF formula φ(x1, ..., xn)
what is the number of satisfying assignments? Notice that this is clearly a harder problem than
3-SAT, although it is not a decision problem anymore. The following two results relate #3SAT to
other problems and the polynomial hierarchy PH:

• The permanent of a square matrix A is the quantity perm(A) =
∑

σ∈Sn

∏
i ai,σ(i). Valiant

[11] showed that if computing the permanent is in FP then so is #3SAT.

• Toda [10] showed that if A ∈ PH, then A is reducible to #3SAT. Therefore, if #3SAT ∈ FP,
then every set in the polynomial hierarchy is in P.

Exponential time, and space complexity

So far we have only discussed time complexities of various problems. One can also classify
problems based on how much space is required to solve them. To formalize this we define the
following notions,

Definition 14.

• Let PSPACE denote the set of decision problems which can be solved by a Turing machine
that only uses a polynomial amount of its tape.

• Analogously to the above, let EXPSPACE denote the set of decision problems that can be
solved using exponential space.

• Let EXPTIME denote the set of decision problems that can be solved by a Turing machine
in exponential time.

It is a straighforward exercise to show the following containments: NP ⊆ EXPTIME, and
NP ∈ PSPACE.

Decidability

The complexity class R is defined to be the class of languages (ie. decision problems) that are
decidable by a Turing machine, that is languages for which are recognized by some Turing machine
that halts on all inputs. These languages have historically been called recursive, hence the notation.
An example of an undecidable problem is the Halting Problem:

ATM = {〈M,w〉 : M is a Turing machine and it accepts w}

Another example of an undecidable problem is the following: Given p ∈ Z[x1, ...xn] is there some
a ∈ Zn with p(a) = 0? The status of the analogous problem for the rationals Q is not known.
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Separations of complexity classes
A major goal in the study of computational complexity is to determine how various complexity

classes relate to each other. Perhaps the most famous such question is the one about P
?
= NP.

Unfortunately, there are only a few pairs of classes for which a separation is known. The following
relations are known, however,

Theorem 15.

(i) P ⊂ EXPTIME ⊂ R

(ii) P ⊆ NP ⊆ EXPTIME ⊂ R

(iii) P ⊆ PSPACE ⊂ EXPSPACE ⊂ R

(iv) P ⊂ EXPTIME ⊂ R

(v) P ⊆ NP and NP ⊆ NPSPACE

(vi) P ⊆ PSPACE and PSPACE ⊆ EXPSPACE

Notice that by part (i) of the above theorem, at least one of the inclusions in each of parts (v)
and (vi) are proper.

Exercises

Exercise 16. Recall the definition of MINFML. Show that assuming P = NP, MINFML is contained
in P.

Exercise 17. Recall the definitions of coNP and NP, and show that P ⊆ NP ∩ coNP.

Further reading

• In this note the algorithms (Turing machines) we considered were all deterministic, ie. they
were not allowed to rely on stochasticity. One can formulate complexity classes where the
algorithms considered are allowed to use randomness to produce their answers. Typically this
means that they are not required to produce correct answers with probability 1. For exam-
ple, analogous to P is the class BPP (abbreviating Bounded-Error Probabilistic Polynomial
Time). Some language L is in BPP if there exists a probabilistic Turing machine M that (1)
runs in polynomial time on all inputs, (2) accepts with probability no less than 2/3 on inputs
x ∈ L, (3) rejects with probability no less than 2/3 on inputs x 6∈ L. Notice that P ⊆ BPP
clearly. However, it is not known how BPP is related to NP: we do not know if one is a
superset of the other, or neither is contained in the other one. For some necessary conditions,
and implications of P = BPP see e.g. [6, 5].

• The complexity class RE (recursively enumerable) is defined to be the class of languages L for
which a Turing machine can produce a list of all instances x ∈ L. Notice that P ⊆ NP ⊆ RE
is easy to see. It can be shown that the last inclusion is proper NP ( RE.

• The complexity class IP (abbreviating Interactive Polynomial time) was defined to comprise
of problems for which a short interactive proof can be given. Informally speaking an inter-
active proof system for some language L involves a prover P and a verifier V such that given
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some input word x, the prover and verifier interact through a shared tape with the objec-
tive that P proves to V that x ∈ L. It can be shown that our earlier example #SAT ∈ IP,
furthermore it was shown in 1990 by Shamir [9] that IP = PSPACE.

• Generalizing the class IP is the complexity class of MIP (abbreviating Multi Prover Interac-
tive Proof ). MIP is essentially the same as IP with the exception that the verifier is allowed
to interact with many provers, not just one as in the case of IP. While the verifier is allowed to
interact with each prover, the provers cannot interact with each other. Denoting by MIP[k]
the class where there are k provers, it has been shown [3] that MIP := MIP[k] = MIP[2]
for k > 2. Babai, Fortnow and Lund [2] showed in 1991 that MIP = NEXPTIME the class
of languages decidable in exponential time using a non-deterministic Turing machine.

• The complexity class MIP* is defined analogously to MIP with the exception that in this
case the provers are allowed to share quantum entanglement1. Very recently Ji, Natarajan,
Vidick, Wright and Yuen showed [7] that MIP* = RE. For a more accessible introduction
see, e.g. [12], [13].
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