
Algorithmic Lower Bounds - Streaming Algorithms

Matt Kovacs-Deak

December 11, 2021

As suggested by the name streaming algorithms sequentally receive as input some (very long) data
stream x = (x1, ..., xn), and they are required to process it with limited amount of memory, and
limited processing time per datapoint xi. Typically streaming algorithms are built to answer some
question about a (global) property of the stream x, and as such one can conceptualize streaming
algorithms as ones that work by creating some kind of a ”summary” of their input data x. One
example is the following: given a stream x with xi ∈ [m] such that there is precisely one element
k ∈ [m] that doesn’t occur in x, identify k. This of course would be trivial if one is allowed O(m)
memory, however the problem becomes interesting with the restriction that one is only allowed
O(
√
m) memory. There is an efficient algorithm for this problem, finding it servers as an easy

exercise for the reader.
Another, equivalent, albeit somewhat less natural way of formulating a streaming algorithm is

the following. Starting with some initilly all zero vector a = (0, 0, ..., 0), the algorithm receives a
stream xi = 〈ji, ci〉. On each such update it updates the occurancy count of element ji, that is it
assigns aji ← aji + cji . Given a vector a = (a1, ..., am) some typical measures of interest are,

(i) Frequency moments: Fk(a) =
∑

j a
k
j

(ii) Heavy hitters: {j : aj > k}

(iii) Number of distinct elements:
∣∣{j : aj 6= 0}

∣∣
(iv) Entropy: E(a) =

∑
j aj/M log aj/M for M =

∑
j aj

Notice that F1(a) is just the number of elements in the dataset.

Streaming graph algorithms

In the context of streaming algorithms concerning graphs, the vertex set of the graph is often
assumed fix. With these constraint, there are two main classes of graph streaming. In insertion
only algorithms, as the name suggests the graph ”keeps growing”. On the other hand, for dynamic
algorithms edges can be both added and removed with each datapoint. As an example, we consider
the Maximum Matching problem. Here we are given a graph G = (V,E) and we need to find a
matching with maximal size. We can classify streaming algorithms for the Maximum Matching
problem by (1) the number of passes it makes; (2) memory it uses; (3) and the approximation
factor it achieves. The following claim gives our first example of a streaming algorithm,

Claim 1. There is a single-pass algorithm that (1) decides on (& commits to) each edge upon
receipt; (2) requires Õ(n) amount of space; (3) and achieves an approximation factor of 1/2.

1

Proof (sketch). Initially store all the vertices using O(log n) space, keeping them unmarked. Ini-
tialize M ← ∅. On receipt of edge (x, y) add it to the matching M if both x, y are unmarked. Mark
x and y.

There are a number of open questions regarding Maximum Matching:

• Does the above algorithm achieve the best possible approximation factor for any single-pass
algorithm with Õ(n) memory? Konrad et al. shows that it is possible to achieve a better
than 2 approximation if multiple passes are allowed.

• Is there an algorithm that achieves a constant or polylog approximation factor using o(n)
space only?

• What’s the best we can do for bipartite graphs? Feigenbaum et al proved that for any
0 < ε < 1/3 there is a streaming algorithm with O(ε−1 log ε−1) passes that achieves a (2/3− ε)
approximation factor on bipartite graphs.

For streaming algorithms many of the hardness results come from communication complexity.

Communication Complexity

We will discuss some results from communication complexity that will serve as building blocks for
our hardness proofs. For a more complete exposition, the reader is advised to consult the book of
Kushilevitz & Nisan. Assume two distant parties (Alice and Bob) each have a bitstring of length n
(i.e. x, y ∈ {0, 1}n, respectively). How many bits would Alice and Bob need to share to determine
if x=y? One trivial protocol involves sending (n+ 1) bits. The following exercise gives two known
results,

Exercise 2.

(i) Prove that any deterministic protocol requires at least n bits to determine x
?
= y.

(ii) Show that there is a randomized protocol for determining x
?
= y that uses private coins,

O(log n) bits, and achieves a probability of error at most 1/n.

Next, we formalize the notion of a 2-party communication protocol1.

Definition 3. Let f : {0, 1}2n → {0, 1} be some function. A t-round 2-party communication
protocol Π for computing f is a seqeunce of t functions P1, ..., Pt : {0, 1}∗ → {0, 1}∗. On inputs
x,y ∈ {0, 1}n the scheme proceeds by: Alice computes p1 = P1(x) and sends p1 ∈ {0, 1} to Bob,
Bob computes p2 = P2(y, p1) and sends p2 to Alice, etc. In the ith round Alice (Bob) computes
pi = Pi(z, p1, ..., pi−1) for z = x (z = y) and send pi to Bob (Alice), provided that i is odd (even).
The protocol Π is valid if the last message sent pt is equal to f(x,y) for any pair of inputs x,y.

Given a t-round 2-party protocol Π we define the communication complexity of Π to be the maxi-
mum number of bits communicated, i.e. the maximum of the quantity

∑
i|pi|, where the maximum

is taken over all the possible inputs x,y. Given a function f : {0, 1}2n → {0, 1} the communication
complexity of f , denoted C(f), is defined to be the minimum communication complexity of any
protocol Π that is valid for f .
Next we consider some well-known problems in communication complexity,

1The below definition is due to Arora & Barak. See https://www.cs.princeton.edu/courses/archive/

spring08/cos598D/communicatechap.pdf.

2

https://www.cs.princeton.edu/courses/archive/spring08/cos598D/communicatechap.pdf
https://www.cs.princeton.edu/courses/archive/spring08/cos598D/communicatechap.pdf

• Index: Alice receives a string x ∈ {0, 1}n and Bob receives an integer k ∈ [n]. Bob would
like to learn the value of xk. We enforce the additional constraint that the protocol must be
one-way, that is only Alice is allowed to send bits.

• IndexSame: Alice receives a string x ∈ {0, 1}n and Bob receives an integer k ∈ [n− 1]. Bob
would like to learn if xk = xk+1. As above, we require that the procol be one-way: only Alice
can share information.

• Disjointness: Alice and Bob receive n-bitstrings x and y respectively. They want to deter-
mine if the sets represented by x and y (eg. {j ∈ [n] : xj = 1}) are disjoint.

The following bounds are known for these problems,

Theorem 4. Each of the following lower bounds on communication complexity hold for both de-
terministic and randomized protocols:

(i) In the one-way communication model Index has communication complexity Ω(n).

(ii) In the one-way model IndexSame requires Ω(n) bits.

(iii) Disjointness requires Ω(n) bits in the two-way model.

The following steps can be used to prove that o(n) bits are not enough for IndexSame. First,
show that deterministic one-way protocols require at least n bits for Index. Next, prove that if
IndexSame can be done using o(n) bits then so too can Index be done. Finally, conclude that
IndexSame cannot be done using o(n) bits.

Lower Bounds on Graph Streaming Algorithms

To prove lower bounds for the space requirements of streaming algorithms for graphs, we will
produce reductions from the three communication complexity results introduced above. In these
notes, our main focus will be determinstic algorithms.

The first problem we consider is the Maximum Connected Component problem. This
problem is parameterized by some integer k ∈ N and takes as its input a simple graph G = (V,E).
The task is to decide if there is a connected component of G of size k? Our first result is the
following,

Theorem 5. Any single-pass streaming algorithm that solves Maximum Connected Compo-
nent for some k ≥ 3, requires Ω(n) space.

Proof (sketch). From Index via a construction, see fig. 1 for a hint.

3

Figure 1: An example demonstrating the reduction from Index to Maximum Connected Com-
ponent with k = 4. The construction is given for Index with input x = 1011 and i = 3.

Next, we consider the problem called isTree which is the problem of deciding whether or not a
given graph G = (V,E) is a tree. We have the following result,

Claim 6. Any single-pass algorithm for isTree requires Ω(n) space.

Proof (sketch). Reduce from IndexSame similarly to the reduction given for theorem 5.

A closely related problem is Tree Diameter. This is parameterized by an integer k ≤ 3. Here,
given a graph G = (V,E) which is a tree, the task is to determine if its diameter is at least k.

Exercise 7. Prove that any single-pass algorithm needs Ω(n) memory for Tree Diameter.

Next, we consider the Perfect Matching problem. Here given a graph G = (V,E), the task is
to decide if G has a perfect matching. For this we have the following result,

Claim 8. Any single-pass streaming algorithm for Perfect Matching requires Ω(n2) space.

Proof (sketch). Reduce from Index where the bitstring considered is viewed as an n× n matrix of
bits, and Bob wants to learn the value of the entry in position (i, j).

Our final example graph problem is Shortest Path: given some simple graph G = (V,E) together
with two vertices u, v ∈ V , what is the length of the shortest u-v path in G? We have the following
result,

Claim 9. Any single-pass algorithm that approximates Shortest Path with an approximation
factor better than 5/3 requires Ω(n2) memory.

Proof (sketch). Similar to the proof of claim 8.

We close this notes with some computational problems concerning frequency numbers.

Frequency Moments

Given a stream of numbers y1, ..., ym ∈ [n], let xk be the frequency of the number k ∈ [n]. Then,
as mentioned earlier (for p ∈ R+ ∪ {∞}) the pth frequency moment of this datastream is,

Fk(x) =


∑
i

xpi , if p 6=∞

maxxi, p =∞
(1)

The following results are known concerning frequency moments,

4

Claim 10.

(i) For any p ∈ [0, 2], there is a randomized streaming algorithm which (1+ε)-approximates Fp(x)
using O(poly(logn, logm)) space.

(ii) For any p > 2, any randomized streaming algorithm that (1 + ε)-approximates Fp(x) requires
Ω(m1−2/p) space.

(iii) For any p ∈ [0, 2], there is exists a randomized streaming algorithm which (1+ε)-approximates
Fp(x) using O(m(1−2/p)) space.

Further reading

• Given an ordered sequence of numbers x = (x1, ..., xn) the Longest Increasing Subse-
quence problem is the problem of identifying an increasing subsequence (ie. a subsequence
xij of (xi) with xij ≤ xij+1 for all j) that is of maximal length. In 2012, Saks & Seshadhri
gave [5] a deterministic, single-pass streaming algorithm for additively approximating the
Longest Increasing Subsequence problem to within an additive δn for any given δ > 0
using O(log2 n/δ) memory. They also considered the Longest Common Subsequence
problem2 and gave an analogous result for that one as well.

• In 2021, Chen et al. gave [1] a single-pass streaming algorithm for the Maximum Weight
k-Matching problem. Given some weighted graph G, together with the parameter k ∈ N,
their probabilistic algorithm produces with high probability a maximum-weight k-matching
in the input graph, using O(k2) space.

• Czumaj et al. recently considered [3] the Geometric Steiner Forest problem with k color
classes, and the inputs on some discrete grid [m] × [m]. They gave a single-pass streaming
algorithm that requires poly(k · logm) memory and estimates the cost of an optimal Steiner
forest with an approximation ratio that can be made arbitrarily close to a certain constant,
the so-called Euclidean Steiner ratio3 α2.

• Recall the NP-hard problem of Maximum Coverage: given some collection of subsets Si
of some finite universe Σ together with some parameter k, the task is to select k subsets
such that their union has maximal cardinality. There is a straightforward greedy (1 − e−1)-
approximation algorithm that runs in polynomial time. In the streaming model, McGregor
& Tu gave two algorithms for the streaming formulation of Maximum Coverage, each
achieving an (1− e−1 − ε)-approximation [4]:

(i) A single-pass algorithm that requires Õ(ε−2m) space, where m is the number of subsets
considered.

(ii) A multi-pass algorithm that requires Õ(ε−2k) space and Õ(ε−1) passes.

• Chitnis, Cormode, Hajiaghayi, and Monemizadeh considered parameterized streaming algo-
rithms for the Vertex Cover problem [2]. They proved a tight lower bound of Ω(k2)
for the space complexity of the parameterized Vertex Cover problem for any randomized
streaming algorithm (both dynamic, and insert-only).

2Here, given two strings x and y the goal is to identify a maximal sequence that is a subsequence of both strings.
3The value of α2 is between 1.1547 ≤ α2 ≤ 1.214.

5

References

[1] J. Chen, Q. Huang, I. Kanj, and G. Xia. Optimal Streaming Algorithms for Graph Matching. arXiv e-prints,
page arXiv:2102.06939, Feb. 2021.

[2] R. Chitnis, G. Cormode, M. Hajiaghayi, and M. Monemizadeh. Parameterized Streaming Algorithms for Vertex
Cover. arXiv e-prints, page arXiv:1405.0093, May 2014.

[3] A. Czumaj, S. H. C. Jiang, R. Krauthgamer, and P. Veselý. Streaming Algorithms for Geometric Steiner Forest.
arXiv e-prints, page arXiv:2011.04324, Nov. 2020.

[4] A. McGregor and H. T. Vu. Better Streaming Algorithms for the Maximum Coverage Problem. arXiv e-prints,
page arXiv:1610.06199, Oct. 2016.

[5] M. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to monotonicity and asymmetric
edit distance. arXiv e-prints, page arXiv:1204.1098, Apr. 2012.

6

