1 Extra Related Problems

Cygan et al. [7] showed that, assuming ETH, the following hold:

- 1. Deciding if there is a homomorphism between two graphs G, H can't be done in $|V(H)^{O(|V(G)|)}$ time
- 2. There is no $|V(H)^{O(|V(G)|)}$ algorithm for deciding if H is a subgraph G.

We will now look at a graph coloring problem.

Def 1.1 An (a : b) coloring of a graph is a coloring where you assign b colors to each vertex out of a total a colors, so that adjacent verticers have disjoint sets of colors. One may also say informally that G is $\frac{a}{b}$ -colorable. This number is called the *Fractional Chromatic Number*.

The study of fractional chromatic number was motivated as follows.

- Appel et. al [2, 3] showed that every planar graph is 4-colorable. Their proof made extensive use of a computer program to check a massive amount of cases. Robertson et al. [9] had a simpler proof, though it still needed a computer program. In short, the proof is not *human readable*.
- By contrast, the proof that every planar graph is 5-colorable is easy to follow and is clearly human-readable.
- Fractional chromatic number was defined with the goal of finding humanreadable proofs that every planar graph is *c*-colorable for some values of c < 5. Cranston & Rabern [6] showed that every planar graph is 4.5-colorable. It is open to lower that.

Bonamy et al. [5] showed the following. Assume ETH. Fix $a, b \in \mathbb{N}$ such that $b \leq a$. The problem we are considering is, given a graph G, is it (a : b)-colorable. Assume ETH. Then for any computable function f, the problem does not have an $O(f(b)2^{o(\log b)n})$ algorithm.

2 Some Consequences of SETH

1. The ORTHOGONAL VECTORS PROBLEM (OVP) is the following: given two sets $A, B \subseteq \{0, 1\}^d$ of equal size n, does there exist $\vec{a} \in A, \vec{b} \in B$ with $\vec{a} \cdot \vec{b} \equiv 0 \pmod{2}$? It is easy to see that OVP can be solved in $O(n^2d)$ time. The ORTHOGONAL VECTORS HYPOTHESIS (OVH) is that, for all $\epsilon > 0$, there is no $O(n^{2-\epsilon}$ algorithm for OVP. Williams [10] showed that SETH implies OVH.

- 2. A lattice \mathcal{L} in \mathbb{R}^n is a discrete subgroup of \mathbb{R}^n . The CLOSEST VECTOR PROBLEM (CVP) is: given a *lattice* L (specified through a basis) together with a target vector $\vec{v} \in \mathbb{R}^n$, output the $\vec{u} \in L$ that is closest to \vec{v} . What do we mean by closest? Let $1 \leq p \leq \infty$. Then the *p*-norm of a vector (x_1, \ldots, x_n) is
 - $(|x_1|^p + \dots + |x_n|^p)^{1/p}$ if $p \neq \infty$.
 - $\max_{1 \le i \le n} |x_i|$ if $p = \infty$.

The common case is p = 2 which is the standard Euclidian distance. To indicate that the *p*-norm is being used, the notation CVP_p is the convention. Aggarwal et al. [1] showed the following: Assuming SETH, for all $\epsilon > 0$, for all $p \notin 2\mathbb{Z}$, there is no $2^{(1-\epsilon)n}$ algorithm for CVP_p . It is unfortunate that they do not have the result for p = 2 which is the case of most interest. They comment that the gadgets they use do not exist for even values of p.

- 3. The SHORTEST VECTOR PROBLEM (SVP) is the following: given a lattice \mathcal{L} , output a vector $\vec{v} \in \mathcal{L}$ of minimal norm. Aggarwal et al. [1] showed the following: Assuming SETH, for all $\epsilon > 0$, for all $p \notin 2\mathbb{Z}$, there is no $2^{(1-\epsilon)n}$ algorithm for SVP_p . It is unfortunate that they do not have the result for p = 2 which is the case of most interest. This result was obtained by a reduction from CVP_p . The hardness of SVP problem is the basis for most lattice-based crypto systems.
- 4. Huck Bennet et al. [4] have a survey of open problems on the complexity of lattice problems. We mention one. Show that, assuming SETH, there is no $O(2^{0.99n})$ time algorithm for SVP.
- 5. Based on their names, one would think that SETH \Rightarrow ETH. While this is true, it is not obvious. The interested reader should see the paper by Impagliazzo et al. [8]. Does ETH \Rightarrow SETH? This is open.

References

- D. Aggarwal, H. Bennett, A. Golovnev, and N. Stephens-Davidowitz. Fine-grained hardness of CVP(P) - everything that we can prove (and nothing else). In D. Marx, editor, *Proceedings of the 2021 ACM-SIAM* Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1816–1835. SIAM, 2021. https://doi.org/10.1137/1.9781611976465.109.
- K. Appel and W. Haken. Every planar map is four colorable I: Discharging. *Illinois Journal of Mathematics*, 21:429–490, 1977. https://projecteuclid.org/euclid.ijm/1256049011.
- K. Appel, W. Haken, and J. Koch. Every planar map is four colorable II: Reducibility. *Illinois Journal of Mathematics*, 21:491-567, 1977. https://projecteuclid.org/euclid.ijm/1256049012.
- [4] H. Bennett, S. Golovnev, and N. Stephens-Davidowitz. Fine-grained hardness of lattice problems: Open questions, 2020. This is on the Simons Institute Website.
- [5] M. Bonamy, L. Kowalik, M. Pilipczuk, A. Socala, and M. Wrochna. Tight lower bounds for the complexity of multicoloring. *ACM Trans. Comput. Theory*, 11(3):13:1–13:19, 2019. https://doi.org/10.1145/3313906.
- [6] D. Cranston and L. Rabern. Planar graphs are 9/2-colorable and have independence ratio at least 1/3, 2014. paper: http://arxiv.org/abs/ 1410.7233, talk: http://www.people.vcu.edu/~dcranston/slides/ planar-fractional-SFU.pdf.
- M. Cygan, F. V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. Pachocki, and A. Socala. Tight lower bounds on graph embedding problems. J. ACM, 64(3):18:1–18:22, 2017. https://doi.org/10.1145/3051094.
- [8] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? *Journal of Computing and System Science*, 63(4):512–530, 2001.

- [9] N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four color theorem. *Journal of Combinatorial Theory (Series B)*, 70:2–44, 1997.
- [10] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. *Theor. Comput. Sci.*, 348(2-3):357-365, 2005. https://doi.org/10.1016/j.tcs.2005.09.023.