
1 Further Results

1.1 Graph Problems

1. The Planar Multiway Cut Problem: Given a planar graph G
with k terminal vertices, find a minimum set of edges whose removal
pairwise separates the terminals from each other. k is the parameter.
Marx et al. [8] showed that, (1) assuming ETH, for all computable f

there is no f(k) · no(
√
k), time algorithm for this problem and (2) this

problem is W[1]-hard.

2. Firefighter problem: Consider the following model of how fires
spread. A graph G = (V,E) and a vertex s ∈ V are given. At time
t = 0 vertex s ignites. Firefighters then protect one node from being
burned. At time t = 1 all of the neighbors of s that are not protected
ignite. Firefighters then protect one node. At time t all unprotected
neighbors of burning vertices ignite, and the firefighters protect one
vertex. The process continues until the fire can no longer spread. The
problem is to to find a strategy for the firefighters that minimizes the
number of burned vertices. This problem is NP-hard. (It is not known
to be in NP.) Bazgan et al. [1] showed that if you take the parameter to
be either the number of saved vertices, the number of burned vertices,
or the number of protected vertices, then the problem is W[1]-hard.

1.2 Restrictions on Graphs

Some graph problems are in FPT if the graphs are restricted. Courcelle [5]
and independently Borie et al. [3] showed the following: Let P be some graph
property that is definable in Monadic Second Order Logic, Let k ∈ N. There
is a linear time algorithm for P restricted to graphs of treewidth ≤ k. (See
Flum & Grohe [6] for a complete treatment of Courcelle’s theorem and its
applications.) From this theorem the following problems are FPT with the
parameter being the tree-width.

1. Given a Boolean Circuit, is it satisfiable?

2. Given a graph G and a number k, is G k-colorable?

3. Given a graph G and a number k, does G gave an Independent set of
size k?
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4. Given a graph G and a number k, is the crossing number of G ≤ k?
(This one has parameter k + Treewidth.)

These results raised the question of whether bounding the clique width
can also be used to put a problem into FPT.

Let f be any computable function. Let t bound the clique number. As-
sume ETH. Fomin et al. [7] showed that the following problems cannot be
solved in time f(t)no(t).

1. Edge Domination Set: Given a graph G = (V,E) and a k ∈ N is
there a set E ′ ⊆ E such that (a) |E| ≤ k, and (b) every e ∈ E is either
in E ′ or shares a vertex with some e′ ∈ E ′.

2. Max-Cut: Given a graph G, find the largest cut of edges such that
the graph on these edges form a bipartite graph.

3. Maximum Bisection: Given graph G and integer k, decide if there
exists a cut of G into two equally sized vertex sets such that the cut
has size at least k.

1.3 Problems From Computational Geometry

Bonnet & Miltzow [2] showed the following.

1. Point Guard Art Gallery: Given a simple polygon P on n ver-
tices, two points are visible if the line segment between them is in P .
Find the minimum set S such that every point in P is visible from a
point in S. Bonnet & Miltzow [2] showed the following: (1) assuming
ETH, for any computable function f , this problem has no algorithms in
time f(k)no(k/ log k) (2) with parameter |S|, this problem is W [1]-hard.

2. The Vertex Guard Art Gallery: The same problem as Point
Guard Art Gallery but S is now a subset of P . Bonnet & Miltzow [2]
showed the following: (1) assuming ETH, for any computable func-
tion f , this problem has no algorithms in time f(k)no(k/ log k) (2) with
parameter |S|, this problem is W [1]-hard.

3. Hypervolume Indicator: is a measure for the quality of a set of n
solutions in Rd. The parameter is d . Bringmann & Friedrich [4] showed
the following: (1) assuming ETH the problem has no algorithm in time
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no(d), (2) the problem is W [1]-hard (3) there is an average case FPT
algorithm.
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