1 Further Results

1.1 Graph Problems

- 1. The PLANAR MULTIWAY CUT PROBLEM: Given a planar graph G with k terminal vertices, find a minimum set of edges whose removal pairwise separates the terminals from each other. k is the parameter. Marx et al. [8] showed that, (1) assuming ETH, for all computable f there is no $f(k) \cdot n^{o(\sqrt{k})}$, time algorithm for this problem and (2) this problem is W[1]-hard.
- 2. FIREFIGHTER PROBLEM: Consider the following model of how fires spread. A graph G = (V, E) and a vertex $s \in V$ are given. At time t = 0 vertex s ignites. Firefighters then protect one node from being burned. At time t = 1 all of the neighbors of s that are not protected ignite. Firefighters then protect one node. At time t all unprotected neighbors of burning vertices ignite, and the firefighters protect one vertex. The process continues until the fire can no longer spread. The problem is to to find a strategy for the firefighters that minimizes the number of burned vertices. This problem is NP-hard. (It is not known to be in NP.) Bazgan et al. [1] showed that if you take the parameter to be either the number of saved vertices, the number of burned vertices, or the number of protected vertices, then the problem is W[1]-hard.

1.2 Restrictions on Graphs

Some graph problems are in FPT if the graphs are restricted. Courcelle [5] and independently Borie et al. [3] showed the following: Let \mathcal{P} be some graph property that is definable in Monadic Second Order Logic, Let $k \in \mathbb{N}$. There is a linear time algorithm for \mathcal{P} restricted to graphs of treewidth $\leq k$. (See Flum & Grohe [6] for a complete treatment of Courcelle's theorem and its applications.) From this theorem the following problems are FPT with the parameter being the tree-width.

- 1. Given a Boolean Circuit, is it satisfiable?
- 2. Given a graph G and a number k, is G k-colorable?
- 3. Given a graph G and a number k, does G gave an Independent set of size k?

4. Given a graph G and a number k, is the crossing number of $G \leq k$? (This one has parameter k + Treewidth.)

These results raised the question of whether bounding the clique width can also be used to put a problem into FPT.

Let f be any computable function. Let t bound the clique number. Assume ETH. Fomin et al. [7] showed that the following problems cannot be solved in time $f(t)n^{o(t)}$.

- 1. EDGE DOMINATION SET: Given a graph G = (V, E) and a $k \in \mathbb{N}$ is there a set $E' \subseteq E$ such that (a) $|E| \leq k$, and (b) every $e \in E$ is either in E' or shares a vertex with some $e' \in E'$.
- 2. MAX-CUT: Given a graph G, find the largest cut of edges such that the graph on these edges form a bipartite graph.
- 3. MAXIMUM BISECTION: Given graph G and integer k, decide if there exists a cut of G into two equally sized vertex sets such that the cut has size at least k.

1.3 Problems From Computational Geometry

Bonnet & Miltzow [2] showed the following.

- 1. POINT GUARD ART GALLERY: Given a simple polygon \mathcal{P} on n vertices, two points are visible if the line segment between them is in \mathcal{P} . Find the minimum set S such that every point in \mathcal{P} is visible from a point in S. Bonnet & Miltzow [2] showed the following: (1) assuming ETH, for any computable function f, this problem has no algorithms in time $f(k)n^{o(k/\log k)}$ (2) with parameter |S|, this problem is W[1]-hard.
- 2. THE VERTEX GUARD ART GALLERY: The same problem as Point Guard Art Gallery but S is now a subset of \mathcal{P} . Bonnet & Miltzow [2] showed the following: (1) assuming ETH, for any computable function f, this problem has no algorithms in time $f(k)n^{o(k/\log k)}$ (2) with parameter |S|, this problem is W[1]-hard.
- 3. HYPERVOLUME INDICATOR: is a measure for the quality of a set of n solutions in \mathbb{R}^d . The parameter is d. Bringmann & Friedrich [4] showed the following: (1) assuming ETH the problem has no algorithm in time

 $n^{o(d)}$, (2) the problem is W[1]-hard (3) there is an average case FPT algorithm.

References

- Cristina Bazgan, Morgan Chopin, Marek Cygan, Michael R. Fellows, Fedor V. Fomin, and Erik Jan van Leeuwen. Parameterized complexity of firefighting. J. Comput. Syst. Sci., 80(7):1285–1297, 2014. https://doi.org/10.1016/j.jcss.2014.03.001.
- [2] Edouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. ACM Trans. Algorithms, 16(4):42:1-42:23, 2020. https://doi.org/10.1145/3398684.
- [3] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. *Algorithmica*, 7(5&6):555-581, 1992. https://doi.org/10.1007/BF01758777.
- [4] Karl Bringmann and Tobias Friedrich. Parameterized average-case complexity of the hypervolume indicator. In Christian Blum and Enrique Alba, editors, Genetic and Evolutionary Computation Conference, GECCO '13, Amsterdam, The Netherlands, July 6-10, 2013, pages 575–582. ACM, 2013. https://doi.org/10.1145/2463372.2463450.
- [5] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen, editor, *Handbook of Theoretical Computer Science*, *Volume B: Formal Models and Semantics*, pages 193–242. Elsevier and MIT Press, 1990. https://doi.org/10.1016/b978-0-444-88074-1.50010-x.
- [6] Jörg Flum and Martin Grohe. *Parameterized Complexity Theory*. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006.
- [7] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Algorithmic lower bounds for problems parameterized with clique-width. In Moses Charikar, editor, *Proceedings of the Twenty-First*

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 493–502. SIAM, 2010. https://doi.org/10.1137/1.9781611973075.42.

[8] Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 677–688. Springer, 2012. https://doi.org/10.1007/978-3-642-31594-7_57.