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1 Overview

Many algorithms have been shown to be NP-complete. Most computer scientists
believe that P 6= NP, and that therefore all of these problems have no polynomial
time algorithm. However, nobody has found any algorithm for any of these
problems which runs in much better than exponential time. This has prompted
the Exponential Time Hypothesis, that NP-complete problems take exponential
time to run on a deterministic turing machine.

2 Exponential Time Hypothesis

In order to show that P 6= NP, all that one has to do is show that any problem
in NP takes longer than polynomial time to run. However, in reality it is
strongly believed that ALL NP-complete problems take exponential time to run.
Variations of SAT are often used as an NP complete problem. The following
results for algorithms for SAT have been found:

• Makino et al. [?] found a deterministic O(1.3303n) algorithm for 3SAT

• Hertli [?] found a randomized O(1.308n) time algorithm for 3SAT

• Dantsin et al. [?] found a O((2− 1
k+1 )

n) time deterministic algorithm for
kSAT.

• Paturi et al. [?] found a O(2n−(n/k)) time randomized algorithm for
kSAT.

It is believed to be possible that the 3SAT will be solved in O(αn) for
some 1 < α < 1.3. However, it is conjectured that the runtime will always be
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exponential. It is possible for SAT to have runtimes that are very slightly less
that exponential.

Definition 1 sk = inf{s : there is an O(2sn) algorithm for kSAT }

All of the algorithms for kSAT mentioned in the bulleted list above have
time complexity of the form 2cn. Also, it seems that as k increases, so does c
become closer to 1. Impagliazzo and Paturi conjectured the following:

conjecture 1 • Exponential Time Hypothesis (ETH): For all k ≥ 3, sk >
0. Because s3 ≤ s4 ≤ ..., this can be stated more simply as s3 > 0. This
is in turn equivalent to that 3SAT takes 2Ω(n) time.

• Strong Exponential Time Hypothesis (SETH): The sequence s3, s4, s5, s6, s7, ...
converges to 1.

n is the number of variables. Suppose instead that we want to classify SAT
problems by the length of the input. Impagliazzo et al. [?] towards that end
proved this lemma:

Lemma 1 (The Sparsification Lemma) Let k ∈ N and ε > 0. Then there
exists a constant c and an algorithm which does the following:

• Inputs a k-CNF formula

• Outputs t k-CNF formulas f1, ...ft and t ≤ 2εn, and each fi has ≤ cn
clauses.

• f ∈ SAT iff there is some i such that fi inSAT

• The algorithm runs in time O(2εnp(n)) for some polynomial p.

Exercise: Show that changing ETH so that n is the length of the input
rather than the number of clasuses is equivalent to the given statement of ETH.

Note that ETH is much stronger than P 6= NP. Therefore, proving the
hypothesis is at least as hard as proving that P 6= NP. However, it is strongly
believed to be true. We will use it as an assumption to prove lower bounds on
other problems.

Definition 2 The blowup of a reduction is the size of the output problem as a
function of the size of the input problem.

Suppose that A ≤p B via f

• f has a linear blowup if |f(x)| ≤ O(|x|)

• f has quadratic blowup if |f(x)| = Θ(|x|2)

Exercise: Derive the following results assuming ETH:
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• Suppose that 3SAT ≤p B1 ≤p B2 ≤p ... ≤p BL, where each reduction has

linear blowup. Show that for each i Bi runs in 2Ω(
√

(n))

• Suppose that 3SAT ≤p B1 ≤p B2 ≤p ... ≤p BL. One of the reductions is
quadratic, but the rest are linear.

• Would it be possible to derive anything useful if all of the reductions were
quadratic?

By assuming that P 6= NP, if we can reduce from some NP complete problem
to some other problem with polynomial blowup, we can show the other problem
is not in P.

If we assume ETH and use a reduction with quadratic blowup, we can get a
O(2Ω(n)) time lower bound.

3 2Omega(n) lower bounds from ETH

To show a 2Ω(n) lower bound on a problem, all we need is a reduction from
ETH with lienar blowup. Many of these reductions have been done in class,
such as

• Linear blowup reduction from 3SAT to Vertex Cover

• Linear blowup reduction from 3SAT to 3COL

• Linear blowup reduction from VC to DOM

• Linear blowup reduction from 3SAT to CLIQ

• Linear blowup reduction from 3SAT to Hamiltonian Cycle.

4 2Ω(
√

(n)) Lower Bounds from ETH

In order to get a 2Ω(
√

(n)) lower bound for a problem with ETH, we need a
reduction from an NP-Complete problem with quadratic blowup.

Some reductions we did in class have quadratic blowup. For example, Planar
3-Coloring required crossover gadgets. The total number of these can in worst

case be proportional to n2. Using results like this, one can derive 2Ω(
√

(n))

bounds on the following problems:

• Planar 3-coloring

• Planar 3-coloring on graphs of degree 4.

• Dominating Set for planar graphs.

• Directed Hamiltonian Cycle for planar graphs.
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• Vertex Cover for planar graphs.

Note that although ETH is a hypothesis, we actually really do have an O(2n)
time algorithm for NP-Complete problems. Therefore, we really do have upper

bounds for all of the above problems which run in O(2
√

(n)) time. For the
details, see the theory of bidimensionality in the papers of Demaine et al. [?]
[?], or the slides of Marx [?].

5 Parametrized Complexity

Parametrized problems are problems with a fixed parameter k which is not
related to the size of the input n. From ETH, we can get 2Ω(k)n lower bounds.

Theorem 1 Assuming ETH, Vertex cover, Dominating Set, Clique, and Di-
rected Hamltonian Cycle all require 2Ω(k)nL time to solve.

Proof. As an example, this proof is for Vertex Cover.
We know that VC requires 2Ω(n) time. If VCk had an algorithm which ran

in 2o(k)nL time, the because k ≤ n we would get an 2o(n)nL time algorithm for
VC. But this violates the known bound from ETH.

6 f(k)nΩ(k) Lower Bounds from ETH

Theorem 2 Let f(k) be any function. The CLIQk and ISk require f(k)nΩ(k)

time.

Proof. By ETH, assume that 3COl requires 2Ω(n) time. The following is a
reduction from 3COL to CLIQk.

• Input a graph G = (V, E). Without loss of generality, we assume that k
divides n.

• Divide V into equally sized groups V1, ..., Vk.

• For each i, find all valid 3-colorings of Vi. Create a graph G ′, with one
new vertex for each of these valid 3-colorings. We have k3n/k new vertices.

• For any i 6= j, for each pair of compatible colorings between Vi and Vj,
add an edge between them

Then G has a 3-coloring if and only if G ′ has a k-clique. Let k be the largest
is can be so that f(k) ≤ n and kk/s(k) ≤ n. Then the algorithm runs in

f(k)((k3n/k)k/s(k)) ≤ nkk/s(k)3
n/s(k)

≤ n23n/s(k(n)) ≤ 2o(n)

Time.

Definition 3 Let A and B be any two k parametrized problems. A k-linear FPT
reduction from A to B is an FPT reduction such that when (x, k) is mapped to
(y, k ′), k ′ = O(k).
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7 Grid Tiling

Definition 4 (k-Grid Tiling Problem (GRIDk)) Given a k × k grid, and
n ∈ N. Each cell S(i, j) in the grid has associated with is a subset of {1, ..., n}×
{1, ..., n}. Is there a way to pick an ordered pair from each cell so that each
adjacent pair of cells horizontally shares their first coordinate, and each adjacent
pair of cells vertically shares the second coordinate?

Theorem 3 • There is a k-linear FPT reduction from CLIQk to GRIDk

• GRIDk is W[1]-hard.

• For any f, assuming ETH, GRIDk requires f(k)nΩ(k) time.

Proof:

• Input a graph and parameter (G, k), where G = (V, E). V = {1, ..., n}. The
k for the output GRID problem will be k, and the n will be n. Below, we
build the grid.

• For i, j, define S(i, j) as:

– S(i, i) = {(a, a) : 1 ≤ a ≤ n}
– for i < j, S(i, j) = {(a, b) : {a, b} ∈ E}

o If G has a k-clique, {v1, ..., vk}, then there is a solution to the GRID problem:

• For each i, pick (vi, vi) from S(i, i)

• For each i < j, pick (vi, vj) out of S(i, j) and S(j, i).

Definition 5 (List Coloring Problem (LC)) Given a graph G = (V, E), and
for each v ∈ V, a subset Lv of colors {1, ..., n}. Is there a coloring of G where
each vertex v has a color in Lv? When this problem is restricted to planar
graphs, it is called PL− LCk.

Theorem 4 • There is a k-lienar FPT reduction from GRIDk to PL−LCk

• PL− LCk is W[1]-hard

• PL− LCk rerquires f(k)nΩ(k) time
Proof:

• Input a GRID problem, which consists of k, j and a k × k grid of cells
called S(i, j) which each have their set of ordered pairs.

• For each a 6= a ′, b, b ′ ∈ {1, ..., n}, create a vertex v with Lv = {(a, b), (a ′, b ′)}.
Call the set of these vertices X. Note that the size of X is n choose 2 times
n2.
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• For each i ≤ j, make a vertex vi,j with Lv(i,j) = S(i, j).

• Horizontal edges: for each i ≤ k − 1, 1,≤ j ≤ k, make a copy of X. Put
an edge between vi,j and each vertex in X, and also vi+1,j and each vertex
in X.

• Vertical edges: For each i ≤ k, and j ≤ k, make a copy of X. Put an edge
between vi,j and each vertex in X, and also vi+1,j and each vertex in X.

Definition 6 (k-Grid Tiling LE problem (GRINDLEk)) Again, we are given
a grid with ordered pairs at each cell. Is there a way to pick them so that this
time, adjacent cells are increasing in first coordinates on rows, and increasing
in second coordinates on columns?

Theorem 5 • There is a k-linear FPT reduction from GRIDk to GRINDLEk.

• GRINDLEk is W[1] hard

• If we assume ETH, then GRINDLEk requires f(k)nΩ(k) time.

Definition 7 (Scattered Set Problem (SCAT)) Given a graph G and num-
bers k, d, are there k vertices all pairwise distances ≥ d?

Theorem 6 • There is a k-linear FPT reduction from GRINDLEk to SCAT

• SCAT is W[1] hard

• If we assume ETH, the SCAT requires f(k)nΩ(k) time

Definition 8 (Unit Disk Graph Problem) Given P points in the plane, can
you select k of the points to center unit disks on without any of the disks inter-
secting?

8 Extra Related Problems

• Braverman, Kun Ko, and Weinstein showed that approximating the Nash
equilibrium of a game in nO(logn) time breaks the ETH [?]

• Cygan, Fomin, Golovnev, Kulikov, Mihajlin, Pachocki, and Socala showed
assuming ETH some lower boudns for some graph problems:

• Deciding if there is a homomorphism between two graphs can’t be done
in |V(H)O(|V(G)|) time

• There is no |V(H)O(|V(G)|) algorithm for deciding if one graph is a sub-
graph of another.

• Kowalik, Pilipczuk, Socala, and Wrochna found some lower bounds for
graph coloring problems assuming ETH:
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• an (a : b) coloring of a graph is a coloring where you assign b colors to
each vertex out of a total a colors, so that adjacent verticers have disjoint
sets of colors.

• Kowalik et. al. showed that assuming ETH, for any computable f, (a : b)
coloring doesn’t have an algorithm in O(f(b)c2(logb)cn)
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