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1 Overview

In complexity theory, one often deals with large classes of time complexity, like
P, the set of all polynomial time functions. However, in some applications, one
may want to deal with more specific time complexity classes. In this section,
we present the All Pairs Shortest Path problem. This problem is known to be
able to be solved in cubic time. It has been shown to be equivalent to a number
of other problems. None of these problems has a known solution in sub-cubic
time (which we will define in this section). Therefore, we conjecture that APSP,
and therefore many other problems, can not be solved in sub-cubic time. One
may then use this assumption to demonstrate the hardness of other problems
by reducing them to APSP.

2 All Pairs Shortest Path

Definition 1 (Graph Notation) A Graph is defined as a triple (V, E,w), where
w : V × E→ Z is the weight function. n = |V |, and m = |E|.

Definition 2 (Shortest Path) Given a graph G = (V, E,w), with weights in
N, if x, y ∈ G, then distG(x, y) is the length of the shortest path between x and
y.

Definition 3 (All Pairs Shortest Path (APSP)) In a graph G = (V, E,w),
compute distG(x, y) for all x, y ∈ V.

Note that for the purpose of finding the time complexity of algorithms in
this section, we consider arithmetic operations to have unit cost.
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There is a well-known algorithm due to Floyd and Warshall which runs in
O(n3) time.

• for all x ∈ V, y ∈ V, z ∈ V, do

– if dist(y, z) > dist(x, y) + dist(x, z), then

∗ dist(y, z)← dist(x, y) + dist(x, z)

One can also use Dijkstra’s algorithm on each vertex, for the same worst
case time complexity.

A natural question is if there is an algorithm for APSP which is better than
cubic. The following are known:

• Due to Fredman [?], we have an algorithm that runs in O(n
3(log logn)1/3

(logn)1/3
)

• Due to Williams [?] we have an algorithm that runs in O( n3

2Ω(
√

logn) )

• Due to Zwick [?] we have a good approximation. For all ε > 0, there
exists a (1 + ε) approximation to APSP that runs in O(n

ω

ε
), where ω is

the exponent of the best known matrix multiplication algorithm, which is
currently 2.3728659.

None of the above algorithms, however, meet the following criteria:

Definition 4 (subcubic time) An algorithm runs in subcubic time if there
exists ε > 0 such that it runs in time O(n3−ε)

Nobody has ever been able to find a subcubic algorithm for ASPS.

3 APSS Hardness

Conjecture 1 There is no subcubic time algorithm for APSP.

Definition 5 If A and B are decision problems, then A ≤sc B means that if
there is a subcubic time algorithm for B then there is a subcubic time algorithm
for A. Typically, this is just a direct reduction of A to B¿

Definition 6 A ≡sc B iff A ≤sc B and B ≤sc A. We say that A and B are
subcubic equivalent.

Definition 7 (ASPS-hard) • A is ASPS-hard if ASPS ≤sc A

• A is ASPS-complete if A is ASPS-hard and A ≤sc APSP

Because of the conjecture, we believe that problems which are APSP- hard
have no subcubic algorithm.
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4 Centrality Measures

There is a collection of measurements on graphs called Centrality Measures.
These measurements have real world uses, like measusring properties of social
or transportation networks. It is an important open problem to show that they
are APSP-hard. However, this is an open problem. Instead, we will reduce some
problems to some other problems.

Definition 8 Let G be a weighted directed graph. Let v be a vertex in G. Let
αv = maxv ′dist(v, v ′).

Definition 9 (Center and Radius of graph) The center of a graph is the
vertex with minimum vα. This value is the radius of the graph.

Definition 10 (Diameter (DIAM)) The diameter of a graph G is the max-
imum distance between any two vertices.

Definition 11 (Median) The median of a graph is minx
∑
y dist(x, y)

The following measurement will be helpful to determine how useful a vetex
is to a shortest path in a graph.

Definition 12 (Betweenness Centrality (BC)) BCs,t(x) is the fraction of
shortest paths between s and t which pass through x.

Definition 13 BC(x) =
∑
s,t BCs,t(x)

Definition 14 (Positive Betweenness Centrality) PBC(x) = Is BC(x) >
0?

Definition 15 (Negative Triangle (NEGTRI)) Given a weighted directed
graph G = (V, E,w) with weights in {−M, ...,M}, is there a triangle with negative
sum of weights?

5 Subcubic Equivalence

Clearly, all of the problems in the previous section are ≤sc APSP and therefore
in O(n3). Can one make a subcubic algorithm?

Theorem 1 RADIUS, MEDIAN, BC, and NEGTRI are all APSP-complete
[?].

There is good evidence for the following conjecture:

Conjecture 2 DIAM is APSP-complete

Due to Abboud et al. [?] and Williams and Williams [?], we knowo that all
of the problems mentioned in the above theorem are APSP-complete.
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6 DIAM and PBC

Theorem 2 DIAM ≤sc PBC

Given a graph G, create a new graph GD which is G ∪ {x}, with an edge of
weight D

2
between x and each other vertex.

If the betweeness centrality of x is positive, then that means thatD is smaller
than the shortest path between some two points in G. If it is zero, then D is
larger than the longest shortest path between some two points.

So, do I binary search on D to find the diameter of the graph.

Theorem 3 PBC ≤sc DIAM

Given a graph G = (V, E) and x ∈ V create a new graph G ′ = (V ′, E ′) with
V ′ = V∪Va∪Vb. Let M be the largest weight, and let W = 3M|V | Let E ′ = E∪
the following edges:

• For each v ∈ V − {x}, an edge (va, v,W − distG(v, x)) and (v, vb,W −
distG(x, v))

• For each v ∈ V, edges (v, va, 0) and (vb, v, 0).

Note that we can compute all of the dists in subcubic time with Dijkstra’s
algorithm.

Then, PBC(x) = 1 iff distG ′(sa, tb) = 2W.

Theorem 4 NEGTRI ≤sc RADIUS

Input a weighted directed graph G = (V, E < w) with weights in {−M, ...,M}.
Let Q = 3M. Then, construct G ′ weighted undirected for input into RADIUS.

• Let V ′ = {x} ∪ Va ∪ Vb ∪ Vc ∪ Vd four copies of V.

• Make an edge of weight 2Q+M between (x, va) for each va ∈ Va.

• for each edge (u, v) ∈ E, put an edge of weight 2Q between (ua, vd).

• for each (u, v,w) ∈ E, put three edges in G ′: (ua, vb, Q+w), (ub, vc, Q+
w), (uc, vd, Q+w).

Now, if there is a negative triangle, then the radius will be 9M. If not, then
the radius will be ≥ 9M.

7 Connection to the Strong Exponential Time
Hypothesis

The Strong Exponential Time Hypothesis (SETH) says that for any δ < 1, SAT
can’t be solved in O(2δn) time.

Roditty and Williams [?] found a lower bound of the complexity of DIAM-
ETER given SETH.
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Theorem 5 • There is a probabalistic algorithm with expected runtime O(m
√
n)

for a 1.5-approximation of DIAMETER.

• Assuming SETH, there is no ε such that there is an O(m2−ε) time 1.5-
approximation algorithm for DIAMETER.

8 Open Problems

Here are some open problems in this area:

• Are DIAM and APSP subcubic equivalent?

• Is it possible to get a lower bound for approximating RADIUS and ME-
DIAN similar to the one for DIAMETER?

• Does there exist a sub-cubic time algorithm for APSP?

9 Extra Related Problems

• Bringmann, Gawrychowski, Mozes, and Weimann [?] show the APSP-
hardness of the problem of tree-edit distance. Tree edit distace is the
problem of given two trees, how many changes must be made to get from
one tree to the other in the shortest way?

• Boroujeni, Dehghani, Ehsani, HajiAghayi, and Seddighin showed that Ra-
dius, Median, and Betweeness Centrality are all subcubic-equivalent.

• Boroujeni et. al. Also showed that Reach Centrality is subcubic equivalent
to Diameter.

• Chan and Williams [?] found an algorithm for APSP in deterministic
n3/2Ω(EQUATION) time, matching the previous known randomized algo-
rithm.

• Bringmann, Kunnemann, Wegrzycki found an efficient algorithm for ap-
proximating APSP [?]. They designed an approximation scheme which
runs in

O(nω/εpolylog(n/ε))

References

[1] Bringmann, K., Gawrychowski, P., Mozes, S., & Weimann, O. (2020).
Tree Edit Distance Cannot be Computed in Strongly Subcubic Time
(Unless APSP Can). ACM Transactions on Algorithms, 16(4), 1–22.
https://doi.org/10.1145/3381878

5



Scribe:Jacob Prinz
Lecture 1b Date: 09/01/2010

[2] Mahdi Boroujeni, Sina Dehghani, Soheil Ehsani, MohammadTaghi Haji-
Aghayi, Saeed Seddighin Subcubic Equivalences Between Graph Central-
ity Measures and Complementary Problems SODA ’15: Proceedings of the
twenty-sixth annual ACM-SIAM symposium on Discrete algorithms

[3] Chan, T. M., & Williams, R. R. (2021). Deterministic APSP, Orthog-
onal Vectors, and More. ACM Transactions on Algorithms, 17(1), 1–14.
https://doi.org/10.1145/3402926

[4] Bringmann, K., Kunnemann, M., & Wegrzycki, K. (2019, June 23). Approx-
imating APSP without scaling: equivalence of approximate min-plus and ex-
act min-max. Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing. STOC ’19: 51st Annual ACM SIGACT Symposium
on the Theory of Computing. https://doi.org/10.1145/3313276.3316373

[5] Erik Demaine, William Gasarch, Mohammad Hajiaghayi Fun with Hardness:
Algorithmmic Lower Bounds. Not yet Published.

[6] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
Subcubic equivalences between graph centrality problems, APSP and di-
ameter. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 1681–1697. SIAM, 2015.
https://doi.org/10.1137/1.9781611973730.112.

[7] Mahdi Boroujeni, Sina Dehghani, Soheil Ehsani, Mohammad Taghi
Hajiaghayi, and Saeed Seddighin. Subcubic equivalences between
graph centrality measures and complementary problems, 2019.
http://arxiv.org/abs/1905.08127.

[8] Michael Fredmann. New bounds on the complexity of the short-
est path problem. SIAM Journal on Computing, 5(1):83–89, 1976.
https://epubs.siam.org/doi/pdf/10.1137/0205006.

[9] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algo-
rithms for the diameter and radius of sparse graphs. In Dan Boneh, Tim
Rough- garden, and Joan Feigenbaum, editors, Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 515–524. ACM, 2013. https://doi.org/10.1145/2488608.2488673.

[10] R. Ryan Williams. Faster all-pairs shortest paths via circuit
complexity. SIAM Journal on Computing, 47(5):1965–1985, 2018.
https://doi.org/10.1137/15M1024524.

[11] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equiv-
alences between path, matrix, and triangle problems. Journal of the
Association of Computing Machinery (JACM), 65(5):27:1–27:38, 2018.
https://doi.org/10.1145/3186893.

6



Scribe:Jacob Prinz
Lecture 1b Date: 09/01/2010

[12] UUri Zwick. All pairs shortest paths in weighted directed graph 34 ex-
act and almost exact algorithms. In 39th Annual Symposium on Foun-
dations of Com- puter Science, FOCS ’98, November 8-11, 1998, Palo
Alto, California, USA, pages 310–319. IEEE Computer Society, 1998.
https://doi.org/10.1109/SFCS.1998.743464.

[13] Liam Roditty and Virginia Vassilevska Williams. Fast approximational-
gorithms for the diameter and radius of sparse graphs. In Dan Boneh,Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theoryof Com-
puting Conference, STOC’13, Palo Alto, CA, USA, June 1-4,2013, pages
515–524. ACM, 2013.https://doi.org/10.1145/2488608.2488673.

7


