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1 Comments for Improvements on the Chapter

1.1 Regarding Theorem 8.1.1

When going through the proof, I understood it but I believe it can be slightly
modified without becoming more complicated, to be more easily understood by
the reader.
Specifically, I think that points 3 and 4. of the proof are not very clear. For
example, point 3. might never be satisfied, since there might be a VC of size
< k. I believe that point 3. should be:
“3. Keep doing this until either the tree is of height k or there are no edges left
in the set G− R, where R ⊆ G is the set of vertices removed by this path of the
algorithm’s tree so far.”
Similarly, point 4. should be:
“If one of the leaves’ graph G− R contains no edges, then R is a vertex cover of
size ≤ k. If not, then there is not.”

1.2 Chapter Bugs/Improvements

Since some improvements I suggest can be also considered bugs, I added this
section, where I explain them.

1. On page 213, in the proof of Theorem 8.2.1, on step 3, it should be ”If
there is a vertex v of degree at least L + 1 . . . ”. The algorithm does not
work properly with the exact value.

2. On page 214, Theorem 8.2.1 should be denoted Theorem 8.2.4.
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3. Page 215, Ch.8.5, question mark missing in first sentence of second para-
graph.

2 Improving Figure 9.1

Using Tikz, I improved Figure 9.1, which is also now easy to modify further in
case the authors later want to use it in the book with some changed parame-
ters/notation within the Figure.
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3 Additional Problems/Results

Bichromatic Closest Pair (BCP): Given two sets A and B, of points in some
space, find a ∈ A and b ∈ B such that ‖a − b‖ is as small as possible (assume
l1 norm).

Suppose |A| = |B| = n. The result of [2] gives a lower bound on the time
complexity of BCP assuming SETH:

THEROEM
Assume SETH. Then for all ε > 0, solving BCP requires Ω(n2−ε) time.
END THEOREM

Offline Nearest Neighbor (OffNN): Given a set of points A in some space
and a set of query points B, for each query point b ∈ B find the point a ∈ A
that is closest to b and the distance between a and b.

LEMMA
Assume SETH. Then for all ε > 0, solving OffNN requires Ω(n2−ε) time.
END LEMMA
Derived directly from Theorem 1.

Online Nearest Neighbor (OnNN): Given a set of points A in some space,
preprocess A. Then, for each incoming query point b from a set of query points
B that is provided online, find the point a ∈ A that is closest to b and the
distance between a and b.

Suppose |A| = |B| = n. Then [3] gives teh following hardness result for
OnNN assuming SETH:

THEOREM
Assume SETH. Let δ, c > 0. Assume algorithm Alg that is allowed O(nc)

preprocessing time for input set A. Alg requires Ω(n1−δ) time to answer each
online NN query b ∈ B.

END THEOREM
Dominating Set (DOM): The following result for DOM found in [5] uses a
different reduction to the one mentioned in the book:

THEOREM
Assuming the ETH, there is some δ > 0 such that q−Dominating Set has

no O(nδq)-time algorithms for all sufficiently large q.
END THEOREM
The proof uses a very interesting reduction from k-SAT to q-DOM.

Also, similar to Theorem 9.4.2 in the book, we can have teh following result
for DOM with respect to SETH, the proof of which is in [5].

THEOREM
Let q ≥ 3 and ε > 0. There is no q-Dominating Set algorithm running in

time O(nq− ε) unless SETH fails.
END THEOREM
Finally, another interesting exercise for this chapter could be to show that

assuming ETH, Subset Sum has no 2o(n) time algorithm.
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