Algorithmic Lower Bounds - Assignment 3

Professor: Mohammad T. Hajiaghayi

Problem 1. Feige (via PCP) proved unless NP C DTIME(n'°81°8™) there is no approxi-
mation algorithm for set cover with approximation factor within (1 — €)lnn for any € > 0.
Now consider the problem of maximum coverage, in which the input is the same as set
cover (with all sets having cost 1) and an additional integer k£ and the goal is to find k sets
with maximum size union. Via a gap-preserving reduction from set cover prove that unless
NP C DTIME(n'&!#") there is no approximation algorithm for maximum coverage with
an approximation factor within (1 — 1/e — ¢€) for any € > 0.

Solution. We will show that maximum coverage problem even with unit cost cannot be
approximated within (1 — % — 5) unless, NP C DTIM E(n'°9'9™). To prove we use Feige
theorem mentioned in the statement of the problem. Consider a unit cost set-cover. Weight
of each element is one.
Say there is an algorithm A with an approximation factor a > 1 — 1/e.
We guess the number of the sets in the optimal solution of set-cover. Let it be k. Since the
number of sets in the optimal solution is k, it is possible to cover all the elements using at
most k sets.

New algorithm for the set-cover:

o Run A with limit L = k. It will cover at least o n elements.
e Choose sets for this cover C of an elements.
e Remove C and elements which are covered.

e [terate by running A in the reduced set.

Analysis: Let n; denote the number of the uncovered elements at the start of the i
iteration. Since, A covers at least an; at iteration i we have n;,; < n;(1 — «).

Suppose we iterate L + 1 times for n;, > 1
1<np<npi(l—a)<np(1—a)?< - <n(l-a)k

Therefore,
In n
L < —
In (1)
In n
kL < k———
In (=)
— opt In n
In (%)

fa>1- % then, ﬁ > e therefore, lnﬁ > 1. This is contradiction to the Feige
theorem.

Problem 2. Prove there is a parameterized reduction from dominating set to set cover.

Solution.

Let (G, k) be an instance of DOMINATING SET. We create an instance
(F,U, k) of SET COVER as follows. We let U := V(&) and for every v € V(G),
we introduce the set Ng[v] (the closed neighborhood of v) into F. Suppose
that D is a dominating of size k in G. Then the union of the corresponding
k sets of F covers U: an uncovered element would correspond to a vertex of
(¢ not dominated by D. Conversely, if the union of £ sets in F is U, then the
corresponding k vertices of G dominate every vertex: a vertex not dominated
in G would correspond to an element of U not covered by the £ sets. O

Problem 3. Connected dominating set is a dominating set which induces a connected graph
on vertices in the dominating set.

(a) Prove there is a parameterized reduction from dominating set to connected dominating
set.

(b) Prove connected dominating set is in W[2] by creating an instance of Weighted Circuit
Satisfiability with weft two for it.

(c) Prove that connected dominating set is W[2]-complete.

Solution. (a)

Let (G, k) be an instance of DOMINATING SET. We construct a graph
G’ the following way.

(i) For every vertex v € V((), we introduce two adjacent vertices vy, vs.
(ii) We make the set {v1; : v € V(G)} a clique K of size |V(G)|.
(iii)) We make v; and uy adjacent if v and u are adjacent in G.

We claim that (G, k) is a yes-instance of DOMINATING SET if and only if
(G, k) is a yes-instance of CONNECTED DOMINATING SET. Suppose first
that S = {v',...,v*} is a dominating set of size k in G. Then we claim that
S" = {vi,...,v}} is a connected dominating set of size k in G’. Clearly, G’[S']
is a clique and hence it is connected. To see that S’ is a dominating set in
G, observe that v{ dominates K, and if u is dominated by v’ in G, then us
is dominated by v} in G.

For the proof of the reverse direction of the equivalence, let S’ be a con-
nected dominating set of size k in G’. Let v be in S if at least one of v; and
v9 is in S’; clearly, |S| < |S’| = k. We claim that S is a dominating set of G.
Consider any vertex u € V(G). Vertex us of G’ is dominated by some vertex
v1 or vy that belongs to S’. Then v is in S and, by the construction of G, it
dominates u in G, as required. O

(b) Given an instance (G, k) of CONNECTED DOMINATING SET, we con-
struct an equivalent instance (C, k) of WEIGHTED CIRCUIT SATISFIABILITY.
Let vy, ..., v, be the vertices of GG. The input nodes of the constructed circuit
are r; ; for 1 < ¢ < £k, 1 < j < n. The interpretation of z; ; = 1 is that the
i-th vertex of the solution is v;.

(i) For 1 < i < k, node z; is the disjunction of {z;; : 1 < j < n}
and Oy is the conjunction of all the z;-s. Then O; = 1 expresses the
requirement that there are integers sy, ..., s such that @1 5, ..., .5,
are exactly the input nodes with value 1, describing a tuple (v, , ..., vs,)
of k vertices.

(ii) For 1 < j < i, node w; expresses that vertex v; is dominated in the
solution: it is the disjunction of the input nodes {z; j; : 1 <i < k,v;r €
Nv;]}-

(iii) Node O, expresses that the inputs represents a dominating set: it is the
conjunction of w; for every 1 < j <n.

(iv) For every P such that) C P C [k], node cp expresses that there is an
edge between {vs, : i € P} and {vs, : i & P}. For every iy € P,
iz € [k] \ P, and pair (v;,,v;,) of adjacent or equal vertices in G, we
introduce a node ep;, i, j,.j, that is the conjunction of x;, ;, and @, j,:
the node cp is the disjunction of all these nodes.

(v) Node O3 expresses that (vs,,...,vs,) induces a connected graph: it is
the conjunction of all the nodes cp.

(vi) The output node is the conjunction of 01, Oz, and O3 (more precisely,
there is a small node O’ that the conjunction of O; and Os, and the
output node is a small node that is the conjunction of O" and Os).

Observe that the constructed circuit C' has constant depth (independent of
k) and weft 2: a path from an input to the output contains either

e a large node z; and the large node Oy,
e or a large node w; and the large node Os,
e or a large node cp and the large node Os.

It is easy to see that if (vs,....,vs,) is a connected dominating set, then
setting o1 5,, ..., Tx s, to 1 satisfies the circuit. In particular, as (vs,,....vs,)
induces a connected graph, for every) C P C [k| there has to be an iy € P
and i € [k] \ P such that vy, and v, are adjacent. This means that the
node €;, 4,5, .s;, has value 1, implying that cp is 1 as well.

The reverse direction is also easy to show: it is clear that any satisfying as-
signment describes a k-tuple (vg, , ..., v,) of vertices (possibly with repeated
vertices) that forms a dominating set of the graph. If these vertices did not
induce a connected graph, then they can be partitioned into two disconnected
parts, that is, there is a) C P C [k] such that there is no edge between v;,
and v;, for any iy € P and is € [k] \ P. Then c¢p has value 0, implying that
O3 has value 0, and hence the output has value 0 as well. O

(c) Since dominating set is W/[2]-complete (as mentioned in the class), Part (a) proves
connected dominating set is W[2]-hard. Part (b) proves that indeed connected dom-
inating set is in W[2]. Thus by the definition of completeness, connected dominating
set is W[2]-complete.

Problem 4. In the strongly connected Steiner subgraph problem, the input is a directed
graph G, a set K C V(G) of terminals, and an integer [; the goal is to find a strongly-
connected subgraph of G with at most [vertices that contains every vertex of K. Prove
that strongly connected Steiner subgraph is W[1]-hard by a parameterized reduction from
multi-colored clique.

Solution.

Proof. We present a parameterized reduction from MULTICOLORED CLIQUE.
Let (G.E, (Vi,...,V})) be an instance of of MULTICOLORED CLIQUE. Let E; ;

be the set of edges between V; and V;. We construct an instance (G, K, () of
STRONGLY CONNECTED STEINER SUBGRAPH as follows (see Fig. 13.5).

(i) G’ contains all the vertices of G, a vertex x, vertices y; ; (1 <i < j <k),
and a vertex w, for every e € E(G). We define E} ; = {w. : ¢ € E; ;}
for 1 <i<j<Ek.

(i) Let K := {z}U{y,; : 1<i<j<k}andlet £:=Fk+1+2(}) =
K| +k+ (5).

(iii) For every 1 <i < k and v € V;, we introduce the edges (z,v) and (v, x).
(iv) Forevery 1 <i < j <k and e € Ej; j, we introduce the edges (y; j, w.)
and (we, yi ;).

(v) Forevery 1 < i< j<kandeec £ ;, if a €V, and b € V, are the
endpoints of e, then we introduce the edges (a, w.) and (we,b).

The intuitive idea of the reduction is the following. The solution can
afford to select only one vertex from each of Vi, ..., Vi (“vertex gad-
gets” describing k vertices of &) and one vertex from each E ; (“edge

gadgets” describing (4) edges of G). Each vertex w. in E;; has only
one inneighbor and one outneighbor different from y; ;, thus if w. is
part of the solution, then those two vertices have to be selected as well.
Therefore, the state of each edge gadget forces a state on two vertex
gadgets, implying that the k-vertex gadgets describe a k-clique in G.

Formally, let v; € Vi, ..., v, € V}, be a k-clique in G and let ¢; ; be the
edge between v; and v;. We claim that the set S == K U{v; : 1 <i <

Y12 Y1.3 Y14 Y2.3 Y24 Y3 4

Fig. 13.5: An overview of the reduction in the proof of Theorem The
circled vertices are the terminals and the red edges show a possible solution.
For clarity, we show only those edges of the graph between the V;’s and L ;
that are in the solution.

kyudfe;; : 1 <i < j <k} induces a strongly connected subgraph G’[S];
note that [S| = (. For every 1 < i < j < k, if ¢ is the edge (v;.v;), then the
directed closed walk rv;w.y; jw.v;r uses only vertices of S. Moreover, these

(;“) directed closed walks cover every vertex of S, hence G’[S] is strongly
connected.

For the reverse direction, let S be a set of size at most / such that & C
S C V(G') and G’[S] is strongly connected. Clearly, such a set has to include
at least one outneighbor of each vertex in K, which means that S contains
at least one vertex of I} ; for every 1 < i < j < k. All the inneighbors of
L ; U{yij} are in Vi, while all the outneighbors are in Vj, hence each of V;
and V; has to contain at least one vertex of the solution. Taking into account
the quota of £ = |K |+ k+ (g) on the size of the solution, this is only possible
if S contains exactly one vertex v; € V; for every 1 < i < k and exactly one
vertex we, ; € E;J for every 1 < i < j < k. We claim that vy € Vi, ...,
v, € Vi is a k-clique in G and e; ; is the edge between v; and v;. Suppose
that v; is not an endpoint of ¢; ;. Then v; is not an inneighbor of w, ;. The
only other inneighbor of we, ; is y; ; and the only inneighbor of y; ; in S is
we, , itself. Therefore, the strongly connected component of G'[S] containing
we, , consists of only y; ; and w,, ,, a contradiction. The argument is similar
if v; is not an endpoint of ¢; ;. Therefore, ¢, ; is the edge between v; and v,
hence {vy,..., v} indeed induces a clique in G. O

Problem 5. Tree-diam(k), for & > 3, is the problem of deciding whether the diameter of an
input graph G which is a tree is at least k. Prove that any single-pass streaming algorithm
for Tree-diam (k) needs at least Q(n) memory. *

Solution.

Before proving the problem, we need to prove the following theorem.

Theorem (LSUBSEQ). Given a bit sequence x of size n, there is a single pass
streaming algorithm LSUBSEQ which uses O(lgn) bits of memory outputs and

(1, j) such that x;, = 0,Vk € [j,j+1—1] and there is nol' > | such that the previous
property holds. In case of multiple solutions the algorithms picks the minimal j.

Proof of Theorem . It’s quite easy to see how this problem can be solved by a
single pass algorithm which mantains 3 counters (one for the start of the best
sequence seen so far, one for length of the current subsequence of (’'s and one for
the best length seen so far). This requires O(lgn) bits of memory.

Now we are ready to prove the statement of the problem.

We propose the following protocol for solving INDEX (x.i): Alice starts with
a graph containing only the dummy vertex 0, that is Gy = (W, Ey) with V; =0
and Ey = 0. As she streams bit x;, she builds graph G; = (G, E;) with 2 choices
depending on x;:

e ifr;=0then V;=V,_jUiand E; = E;_,U (i — 1,1).

e ifr;=1thenV;=V,_,Uiand E; = E;_, U (0,1).

'Hint: For this problem read notes for streaming algorithms and their lower bounds in advance of the
class.

Intuitively, if z; = 0 she connects a new vertex to a previous chain. Else she
connects a new vertex to the dummy vertex 0. The resulting graph is a spider
graph having vertex 0 as the root. Assume WLOG that G, is not a chain (or
else the problem would be trivial). Also assume WLOG that z; = 1 (or else we
could stream the augmented bit string 1x of length n + 1). In parallel, Alice runs
algorithm LSUBSEQ(x). After streaming the whole input x, Alice sends the
resulting memory image Mem(G,,) of the graph constructed so far together with
the output of LSUBSEQ(x) (which takes only O(lgn) bits) to Bob. Given that we
want to prove a lower bound of O(n) bits we can afford the extra O(lgn) bits. Bob
receives the memory image of the graph streamed Mem(Gn) so far together with
the pair ([, j) which is the solution of LSUBSEQ(x). Bob uses TREE - DIAM({E)
to find the diameter of G,,. Note than in order for Bob to not alter his memory
image, he creates an auxiliary copy of the memory image he has so far and runs
TREE - DIAM(k) on it. Let the diameter that he finds be d (by iterating k over
all possible values). Given that G, is not a chain, the diameter of G,, would be
composed by adding the lengths of the 2 longest branches of G,,. We already know
[, which is the length of the longest branch of G,,. Therefore, we are able to get
I' = d — [which is the length of the second-longest branch of G,,. There are 3 cases
to consider:

e ifi € [j,j+1— 1] then clearly INDEX (x,i) = 0 (vertex i is strictly part of
a branch in G,,).

e if i = j — 1 then clearly INDEX (x,i) = 1 (vertex i is the start of a new
branch in G,,).

e we add a chain of length I’ — 1 to vertex i, in the same manner as for proving
the lower bound for Problem 4 .

For the third case, Bob runs TREE-DIAM(E) again to find the diameter for this
new graph. The key point to note is that the diameter increases iff INDEX (x,1) =
0. Note that if INDEX (x,i) = 1 then adding a chain of length I' =1 to vertex i will
not increase the diameter. Let ¢y be the end point of the chain added to vertex i,
and let ¢; be the last vertex on the branch containing ¢ (before the chain was added).
Clearly, dg;, (0,ep—y) = I'. Also, dg, (ei,el' = 1) = '=1+dg, (i,e;) < U'=14+1-1 < d.
On the other hand, if INDEX (x,i) = 0 then adding a chain of length I’ — 1 to i
would create a path of length dg, (0,¢0-y) =2 I'= 142 > I'+ 1 because dg, (0,1) > 2.
Given that there is another branch of length [in &,, (by assumption of the three
cases we considered) we would get a diameter of at least ' =142+ > U'+1+1 > d.
Therefore, we proved that we can use TREE-DIAM(k) to solve INDEX (x,i).
Therefore, Problem 5 has a lower bound of O(n) bits of working memory. |

BILL’S WRITEUP WITH QUESTIONS

10

Assume, by way of contradiction, that there is a streaming algorithm for Tree-diam(k)
with o(n) memory.

QUESTION ONE I first thought that for each k£ you could have a different algorithm.
From what you say later it seems as though you need to have the algorithm stream and store
the same thing in memory whether k=1ork=2o0r--- or k =n.

Recall the communication complexity problem INDFEX (z,4): Alice has z, a string of n
bits, Bob has i € {1,...,n}, Alice sends a message to Bob, and Bob then knows z;. It is
known that INDEX (z,i) requires > n bits of communication.

We show that if there is an o(n) streaming algorithm for Tree-diam(k) then there is an
o(n) commnication protocol for INDEX (x,1).

1.

2.

Alice gets z € {0,1}". Bob gets i € {1,...,n}

If x = 0™ then Alice sends 0. If x = 1" then Alice sends 1. (In all later steps we will
assume x ¢ {0",1"}.)

. Alice (who is all powerful) finds the longest string of 0’s in x (if there is a tie take the

one that appears earliers in z). Let the string be z;, 41, ..., 24,1 Note that j, ¢ are
of length 1gn (Alice will later tell them to Bob which is fine since they are very short).

QUESTION TWO You have Alice find (¢, j) by streaming z. This seems unneeded

since Alice is all powerful.

. Alice creates the graph G = (V, E) as follows.

(a) V.= {0,...,n}. We think of 0 as a dummy vertex and, for 1 < j < n, j is
associated to z;.

(b) For all 1 < j < nif z; =0 then put in edge (j — 1, j), else put in edge (0, j).

. Alice runs the Tree-diam streaming algorithm on G and notes the string y of length

o(n) which is in the memory at the end. Note that from y (1) one can find if the tree
diam is 1, 2,..., n, and hence can find the Tree-diam, and (2) one can add edges and
vertices to the graph and find the Tree-diam of the new graph.

. Alice gives Bob (¢, j,y). This is of length o(n).

Ifie{j,j+1,...,5+¢— 1} then Bob nows z; = 0.
Ifi=j5—1orj=j+/{then z; =1.

Bob uses y to compute the tree-diam of GG. Let it be d. Note that the longest path in
G is formed by the edges arising from the largest and second largest sequences of 0’s
in z. Lets see how long that is. We know the longest sequence is of length ¢. Lets say
it starts at z;. Sox; =0 and z;_; = 1.

Then we have the following edges

11

10.

11.

Lets say the second largest sequence of 0’s is of length ¢’ and begins with x;;. Then we
have the following edges:

0,7/ =1), (4= L7), ..., (¢’ +0 =25+ ¢ —1). (¢’ 41 edges)

If you put these together you get a path with £ + ¢/ + 2 edges.

So the diameter is d = ¢ + ¢’ + 2.

QUESTION THREE You have the diamter as ¢ + ¢'.

Since Bob knows d and ¢ he can compute ¢/ =d — { — 2.

Recall that Bob wants to know z;. Bob uses the y and the streaming algorithm to

find the diameter of the graph G’ which is G with a chain of length ¢ + X starting at
vertex 1.

QUESTION You have ¢/ — 1. I think ¢ 4 1 is correct. Read on and I will explain.

Case 1 xz; = 0. Then there is an edge from i — 1 to 7. Go back until you get to a 1, so
you will have edges

(0, k‘) (k?, k+ 1), ce (Z, Cl), ceey (Cg/+X_1, CE’—}-X)-
NOT GOING TO BOTHER, IT WORKS OUT.

and then a chain of length ¢/ + 1. There is also an edge from 0 to j and then a chain
of length ¢. Hence there is a path of length

12

