
The Complexity of Grid Coloring

Daniel Apon ∗

Univ. of MD at College Park

William Gasarch †

Univ. of MD at College Park

Kevin Lawler ‡

Permanent

September 14, 2021

Abstract

A c-coloring of the grid GN,M = [N]× [M] is a mapping of GN,M

into [c] such that no four corners forming a rectangle have the same
color. In 2009 a challenge was proposed via the internet to find a 4-
coloring [17]× [17]. Though a coloring was produced, finding it proved
to be difficult. We present three results that indicate that finding grid
colorings is hard. (1) Given a partial c-coloring of the GN,M grid,
can it be extended to a full c-coloring? We show this problem is NP-
complete. (2) The statement GN,M is c-colorable can be expressed
as a Boolean formula GRID(n,m, c) with nmc variables. We show
that if the GN,M is not c-colorable then any tree resolution proof that
GRID(n,m, c) is not satisfiable is of size 2Ω(c). We then generalize this
result for other monochromatic shapes. (3) We show that any tree-like
cutting planes proof that c+1 by c

(
c+1

2

)
+1 is not c-colorable must be

of size 2Ω(c3/ log2 c). Note that items (2) and (3) yield statements from
Ramsey Theory which are of size polynomial in their parameters and
require exponential size in various proof systems.

∗University of Maryland,College Park, MD 20742. dapon.crypto@gmail.com
†University of Maryland, College Park, MD 20742. gasarch@cs.umd.edu
‡Permanent, Berkeley, CA 94710. kevin@permanentco.com

1

1 Introduction

Notation 1.1

1. If x ∈ N then [x] denotes the set {1, . . . , x}. GN,M is the set [N]× [M].

2. If X is a set and k ∈ N then
(
X
k

)
is the set of all size-k subsets of X.

Def 1.2 A rectangle of GN,M is a subset of the form {(a, b), (a+ c1, b), (a+
c1, b+ c2), (a, b+ c2)} for some a, b, c1, c2 ∈ N. Note that we are only looking
at the four corners of the rectangle—nothing else. A grid GN,M is c-colorable
if there is a function χ : GN,M → [c] such that there are no rectangles with
all four corners the same color. In other words, a grid GN,M is c-colorable
if there is a function χ : GN,M → [c] such that there are no monochromatic
rectangles.

Fenner et al. [2] explored the following problem:
Which grids are c-colorable for a given fixed c?

We state some of their results.

1. For all c ≥ 2, Gc+1,(c+1
2)+1 is not c-colorable

2. For all c there exists a finite number of grids such that GN,M is c-
colorable iff it fails to contain any one of those grids. This set of grids
is called the obstruction set and is denoted by OBSc.

3. OBS2 = {G3,7, G5,5, G7,3}. This was obtained without the aid of a
computer program.

4. OBS3 = {G19,4, G16,5, G13,7, G11,10, G10,11, G7,13, G5,16, G4,19}. A com-
puter aided search was used to find a 3-coloring of G10,10.

5.

OBS4 = {G41,5, G31,6, G29,7, G25,9, G23,10, G22,11, G21,13, G19,17}
⋃

{G17,19, G13,21, G11,22, G10,23, G9,25, G7,29, G6,31, G5,41}
The authors were stuck for a long time trying to find a 4-coloring
of G17,17. William Gasarch put a bounty of 172 = 289 dollars for a

2

4-coloring of G17,17 and posted this challenge to ComplexityBlog [3].
Bernd Steinbach and Christian Posthoff [12, 13, 14, 4] found a 4-
coloring of G17,17 and also of G18,18, which completed the problem.
They used a rather sophisticated SAT solver that was tuned to grid
coloring problems.

6. Finding OBS5 seems to be beyond current technology.

The difficulty of 4-coloring G17,17 and pinning down OBS5 raise the fol-
lowing question: is the problem of grid coloring hard? In this paper we
formalize and prove three different results that indicate grid coloring is hard.
We will also give a fixed parameter tractable approach which may make the
problem more tractable.

1.1 Grid Coloring Extension is NP-Complete

Def 1.3 Let N,M, c ∈ N.

1. A partial mapping χ of GN,M to [c] is a mapping of a subset of GN,M

to [c]. See Figure 1 for an example.

2. If χ is a partial mapping of GN,M to [c] then χ′ is an extension of χ
if χ′ is a partial mapping of GN,M to [c] which (1) is defined on every
point that χ is defined, (2) agrees with φ on those points, and (3) may
be defined on more points .

3. A partial mapping χ of GN,M to [c] is a mapping of GN,M to [c]. This
would normally just be called a mapping, but we use the term total to
distinguish it from a partial mapping.

Def 1.4 Let c,N,M ∈ N. A partial coloring χ of GN,M to [c] is extendable
to a c-coloring if there is an extension of χ to a total mapping which is a
c-coloring of GN,M . We will use the term extendable if the c is understood.

Def 1.5 Let
GCE = {(N,M, c, χ) : χ is extendable}.

GCE stands for Grid Coloring Extension.

3

R
R
B R
R R
R B
R

R R R R R R R R R

Figure 1: Example of a partial coloring

We show that GCE is NP-complete. This result may explain why the
original 17 × 17 challenge was so difficult. Then again—it may not. GCE
with parameter c is Fixed Parameter Tractable.

There is another reason the results obtained may not be the reason why
the 17 × 17 challenge was hard. The 17 × 17 challenge can be rephrased as
proving that (17, 17, 4, χ) ∈ GCE where χ is the empty partial coloring. This
is a special case of GCE since none of the spots are pre-colored. It is possible
that the case where χ is the empty coloring is easy. While we doubt this is
true, we note that we have not eliminated the possibility.

One could ask about the problem

GC = {(n,m, c) : GN,M is c-colorable }.

However, if n,m are in unary, then GC is a sparse set. By Mahaney’s
Theorem [9, ?] if a sparse set is NP-complete then P = NP. If n,m are in
binary, then we cannot show that GC is in NP since the obvious witness is
exponential in the input. This formulation does not get at the heart of the
problem, since we believe it is hard because the number of possible colorings
is large, not because n,m are large. It is an open problem to find a framework
within which a problem like GC can be shown to be hard.

2 GCE is NP-complete

Theorem 2.1 GCE is NP-complete.

Proof:
Clearly GCE ∈ NP. Let φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm be a 3-CNF

4

formula with n free variables and m clauses. We determine N,M, c and a
partial c-coloring χ of GN,M such that

φ ∈ 3-SAT iff (N,M, c, χ) ∈ GCE.

We visualize the full grid as a core subgrid with additional entries to the
left and below. These additional entries are there to enforce that some colors
in the core grid occur only once. Clauses will correspond to groupings of
columns inside the core grid, and free variables to groupings of rows.

The colors will be T, F , and some of the (i, j) ∈ GN,M . We use (i, j) to
denote a color for a particular position.

We label the colors using the literals T, F and values of (i, j) ∈ GN,M .
Syntactically T, F are different from all of the (i, j).

The construction is in four parts. We summarize the four parts here
before going into details.
Part One

We will often set χ(i, j) to (i, j) and then never reuse (i, j) in the core
grid. By doing this, we make having a monochromatic rectangle rare and
have control over when that happens.

We show how to color the cells that are not in the core grid to achieve
this. We show this final step of the construction first.

Part Two
The core grid will have 2nm + 1 rows. In the first column we have 2nm

blank spaces and the space (1, 2nm+ 1) colored with (1, 2nm+ 1). The 2nm
blank spaces will be forced to be colored T or F . We think of the column
as being in n blocks of 2m spaces each. In the ith block the coloring will be
forced as follows:

1. If xi is to be set to F then the column is colored:

T
F
...
T
F

5

(2, 4)
(2, 4)
(2, 4)
(2, 4)
T (2, 4)

(2, 4)

(2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)

Figure 2: Cell (2, 4) is colored (2, 4) and nothing else can be

2. if xi is to be set to T then the column is colored:

F
T
...
F
T

Part Three
For each clause C there will be two columns. The coloring χ will be

defined on most of the cells in these columns. However, the coloring will
extend to these two columns iff one of the literals in C is colored T in the
first column.

Part Four
We set the number of colors properly so that the T and F will be forced

to be used in all blank spaces.
We now go into detail.

Part One: Forcing a color to appear only once in the core grid.
Say we want the cell (2, 4) in the core grid to be colored (2, 4) and we

do not want this color appearing anywhere else in the core grid. We can do
the following: add a column of (2, 4)’s to the left end (with one exception)
and a row of (2, 4)’s below. See Figure 2. In this can all later figures the left
bottom cell of the core grid is indexed (1, 1).

(The double lines are not part of the construction. They are there to
separate the core grid from the rest.)

It is easy to see that in any coloring of the above grid the only cells
that can have the color (2, 4) are those shown to already have that color.

6

(5, 3) (2, 4)
(5, 3) (2, 4)
(5, 3) T (2, 4)
T (2, 4) (5, 3)

(5, 3) (2, 4)
(5, 3) (2, 4)

(5, 3) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)
(5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3)

Figure 3: (2, 4) and (5, 3)

It is also easy to see that the color T we have will not help to create any
monochromatic rectangles since there are no other T ’s in its column. The T
we are using is the same T that will later mean true. We could have used
F . We do not want to use new colors since we would have no control over
where else they could be used.

What if some other cell needs to have a unique color? Let’s say we also
want to color cell (5, 3) in the core grid with (5, 3) and do not want to color
anything else in the core grid (5, 3). Then we use the grid in Figure 3

It is easy to see that in any coloring of the above grid the only cells that
can have the color (2, 4) or (5, 3) are those shown to already have those colors.

For the rest of the construction we will only show the core grid. If we
denote a color as D (short for Distinct) in the cell (i, j) then this means that
(1) cell (i, j) is color (i, j) and (2) we have used the above gadget to make
sure that (i, j) does not occur as a color in any other cell of the core grid.
Note that when we have D in the (2, 4) cell and in the (5, 3) cell, they denote
different colors.

Part Two: Forcing (x, x) to be colored (T, F) or (F, T).
There will be one column with cells labeled by literals. The cells are

uncolored. We will call this row the literal column. We will put to the left
of the literal column, separated by a triple line, the literals whose values we
intend to set. These literals are not part of the construction; they are a visual
aid. The color of the literal-labeled cells will be T or F . We need to make
sure that all of the xi have the same color and that the color is different than
that of xi.

7

x1 T F
x1 T F

Figure 4: Forcing x1 and x1

D D D D D D D D D D D
x1 D D D D D D D D T F
x1 D D D D D D T F T F
x1 D D D D T F T F D D
x1 D D T F T F D D D D
x1 T F T F D D D D D D
x1 T F D D D D D D D D

Figure 5: Forcing when need three copies of x1 or x1

Figure 4 is an example which shows how we can force (x1, x1) to be colored
(T, F) or (F, T).

We will actually need (at most) m copies of x1 and m copies of x1. We
will also put a row of D’s on top which we will use later. Figure 2 illustrates
how to do this when you need 3 copies of x1 or x1.

We leave it as an exercise to prove that

• If the bottom x1 cell is colored T then (1) all of the x1 cells are colored
T , and (2) all of the x1 cells are colored F .

• If the bottom x1 cell is colored F then (1) all of the x1 cells are colored
F , and (2) all of the x1 cells are colored T .

Note that (1) if we want one literal-pair (that is x1, x1) then we use two
columns, (2) if we want two literal-pairs then we use six columns, and (3)
if we want three literal-pairs then we use ten columns. We leave it as an
exercise to generalize the construction to m literal-pairs using 2 + 4(m− 1)
columns.

We will need m copies of x1, x1, x2 and x2. We illustrate how do to this
in Figure 6. We use double lines in the picture to clarify that the x1 and the
x2 variables are not chained together in any way.

We leave it as an exercise to prove that, for all i ∈ {1, 2}:

8

D D D D D D D D D D D D D
x2 D D D D D D D D D D T F
x2 D D D D D D D D T F T F
x2 D D D D D D T F T F D D
x2 D D D D D D T F D D D D

x1 D D D D T F D D D D D D
x1 D D T F T F D D D D D D
x1 T F T F D D D D D D D D
x1 T F D D D D D D D D D D

Figure 6: Two x1’s, x1’s, x2, and x2

• If the bottom xi cell is colored T then (1) all of the xi cells are colored
T , and (2) all of the x1 cells are colored F .

• If the bottom xi cell is colored F then (1) all of the xi cells are colored
F , and (2) all of the x1 cells are colored T .

An easy exercise for the reader is to generalize the above to a construction
with n variables with m literal-pairs for each variable. This will take n(2 +
4(m− 1)) columns.

For the rest of the construction we will only show the literal column and
the clause columns (which we define in the next part). It will be assumed
that the D’s and T ’s and F ’s are in place to ensure that all of the xi cells
are one of {T, F}, and the xi cells are the other color.

Part Three: How we force the coloring to satisfy a single clause
Say one of the clauses is C1 = L1 ∨ L2 ∨ L3 where L1, L2, and L3 are

literals. Pick an L1 row, an L2 row, and an L3 row. We will also use the top
row, as we will see. For other clauses you will pick other rows. Since there
are m copies of each variable and its negation, this is easy to do.

The two T ’s in the top row in the next picture are actually in the very
top row of the grid.

We put a C1 over the columns that will enforce that C1 is satisfied. We
put L1, L2, and L3 on the side to indicate the positions of the variables.
These C1 and the Li outside the triple bars are not part of the grid. They
are a visual aid.

This is the partially colored grid used for the clause L1 ∨ L2 ∨ L3.

9

C1 C1

D T T
L3 D F
L2

L1 F D

Claim 1: If χ′ is a 2-coloring of the blank spots in this grid (with colors T
and F) then it cannot have the L1, L2, L3 spots all colored F .
Proof of Claim 1:

Assume, by way of contradiction, that that L1, L2, L3 are all colored F .
Then this is what it looks like:

C1 C1

D T T
L3 F D F
L2 F
L1 F F D

The two blank spaces are both forced to be T since otherwise you get a
monochromatic rectangle of color F . Hence we have

C1 C1

D T T
L3 F D F
L2 F T T
L1 F F D

This coloring has a monochromatic rectangle which is colored T . This
contradicts χ′ being a 2-coloring of the blank spots.
End of Proof of Claim 1

We leave the proof of Claim 2 below to the reader.
Claim 2: If χ′ colors L1, L2, L3 anything except F, F, F then χ′ can be
extended to a coloring of the grid shown.
Upshot: A 2-coloring of the grid is equivalent to a satisfying assignment of
the clause.

Note that each clause will require 2 columns to deal with. So there will
be 2m columns for this.

10

Part Four: Putting it all together
Recall that φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm is a 3-CNF formula. We first

define the core grid and later define the entire grid and N,M, c. The core
grid will have 2nm + 1 rows and n(4m − 2) + 2m + 1 columns. The first
n(4m− 2) + 1 columns are partially colored using the construction in Part 2.
This will establish the literal column. We will later set the number of colors
so that the literal column must use the colors T and F .

For each of the m clauses we pick a set of its literals from the literals
column. These sets-of-literals are all disjoint. We can do this since we have
m copies of each literal-pair. We then do the construction in Part 3. Note
that this uses two columns. Assuming that all of theD’s are colored distinctly
and that the only colors left are T and F , this will ensure that the core grid
is c-colorable iff the formula is satisfiable.

The core grid is now complete. For every (i, j) that is colored (i, j), we
perform the method in Part 1 to make sure that (i, j) is the only cell with
color (i, j). Let the number of such (i, j) be C. The number of colors c is
C + 2.

3 An Example

We can make the construction slightly more efficient (and thus can actually
work out an example). We took m pairs {xi, xi}. We don’t really need all
m. If xi appears in a clauses and xi appears in b clauses then we only need
max{a, b} literal-pairs. If a 6= b then we only need max{a, b}− 1 literal-pairs
and one additional literal. (This will be the case in the example below.)

With this in mind, we will do an example—though we will only show the
core grid.

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

We only need

• one (x1, x1) literal-pair,

• one (x2, x2) literal-pair,

• one (x3, x3) literal-pair,

• one additional x3,

11

C1 C1 C2 C2 C3 C3

D D D D D D D D D D D T T T T T T
x4 D D D D D D D D T F D D D D D F
x4 D D D D D D D D T F D D D F D D
x3 D D D D D D T F D D D D D D D D
x3 D D D D T F T F D D D D D D
x3 D D D D T F D D D D D F D D
x2 D D T F D D D D D D D D F D D D
x2 D D T F D D D D D D D D D D
x1 T F D D D D D D D D D D D D F D
x1 T F D D D D D D D D F D D D D D

Figure 7: Example with (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

• one (x4, x4) literal-pair.

See Figure 3 for the core grid.

4 Fixed Parameter Tractability

The 17× 17 problem only involved 4-colorability. Does the result that GCE
is NP-complete really shed light on the hardness of the 17× 17 problem?

Consider the problem where the number of colors is fixed at some c. We
will see that this problem is Fixed Parameter Tractable.

Def 4.1 Let c ∈ N. Let

GCEc = {(N,M,χ) : χ can be extended to a c-coloring of GN,M }.

Clearly GCEc ∈ DTIME(cO(NM)). Can we do better? Yes. We will show
that GCE is in time O(N2M2 + 2O(c4)).

Lemma 4.2 Let n,m, c be such that c ≤ 2nm. Let χ be a partial c-coloring of
Gn,m. Let U be the uncolored grid points. Let |U | = u. There is an algorithm
that will determine if χ can be extended to a full c-coloring that runs in time
O(cnm22u).

12

Proof: For S ⊆ U and 1 ≤ i ≤ c let

f(S, i) =

{
YES if χ can be extended to color S using only colors {1, . . . , i};
NO if not.

(1)
We assume throughout that the coloring χ has already been applied.
We are interested in f(U, c); however, we use a dynamic program to

compute f(S, i) for all S ⊆ U and 1 ≤ i ≤ c. Note that f(∅, i) = YES.
We describe how to compute f(S, i). Assume that for all S ′ such that

|S ′| < |S|, for all 1 ≤ i ≤ c, f(S ′, i) is known.

1. For all nonempty 1-colorable T ⊆ S do the following (Note that there
are at most 2u sets T .)

(a) If f(S − T, i) = NO then f(S, i) = NO.

(b) If f(S − T, i− 1) = YES then determine if coloring T with i will
create a monochromatic rectangle. If not then f(S, i) = YES.
Note that this takes O(nm).

2. We now know that for all 1-colorable T ⊆ S (1) f(S−T, i) = YES, and
(2) either f(S− T, i− 1) = NO or f(S− T, i− 1) = YES, and coloring
T with i creates a monochromatic rectangle. We will show that in this
case f(S, i) = NO.

Assume that, for all 1-colorable sets T ⊆ S: (1) f(S − T, i) = YES, and
(2) either f(S − T, i − 1) = NO or f(S − T, i − 1) = YES and coloring T
with i creates a rectangle with χ. Also assume, by way of contradiction, that
f(S, i) = YES. Let COL be an extension of χ to S. Let T be the set colored
i. Clearly f(S − T, i − 1) = YES. Hence the second clause of condition (2)
must hold. Hence coloring T with i creates a monochromatic rectangle. This
contradicts COL being a c-coloring.

The dynamic program fills in a table that is indexed by the 2u subsets of
S and the c colors. Each slot in the table takes O(nm2u) to compute. Hence
filling the entire table takes O(cnm22u) steps.

The following result is due to Fenner et al. [2].

Lemma 4.3 Assume c + 1 ≤ N and c
(
c+1

2

)
< M . Then GN,M is not c-

colorable. Hence, for any χ, (N,M,χ) /∈ GCEc.

13

Proof: Assume, by way of contradiction, that there is a c-coloring of
GN,M . Since every column has at least c + 1 elements the following map-
ping is well defined: map every column to the least ({i, j}, a) such that the
{i, j} ∈

(
[c+1]

2

)
and both the ith and the jth row of that column are colored

a. The codomain of this function has more than c
(
c+1

2

)
elements. Hence

some element of the codomain is mapped to at least twice. This yields a
monochromatic rectangle.

Lemma 4.4 Assume N ≤ c and M ∈ N. If χ is a partial c-coloring of GN,M

then (N,M,χ) ∈ GCEc.

Proof: The partial c-coloring χ can be extended to a full c-coloring as
follows: for each column use a different color for each blank spot, making
sure that all of the new colors in that column are different from each other.

Theorem 4.5 GCEc ∈ DTIME(N2M2 + 2O(c6)) time.

Proof:

1. Input (N,M,χ).

2. If N ≤ c or M ≤ c then test if χ is a partial c-coloring of GN,M . If so
then output YES. If not then output NO. (This works by Lemma 4.4.)
This takes time O(N2M2). Henceforth we assume c+ 1 ≤ N,M .

3. If c
(
c+1

2

)
< M or c

(
c+1

2

)
< N then output NO and stop. (This works

by Lemma 4.3.)

4. The only case left is c + 1 ≤ N,M ≤ c
(
c+1

2

)
. By Lemma 4.2 we can

determine if χ can be extended in time O(2NM) = O(2c
6
).

Step 2 takes O(N2M2), and Step 4 takes time 2O(c6)). Hence the entire
algorithm takes time O(N2M2 + 2O(c6)).

Can we do better? Yes, but it will require a result from Fenner et al. [2].

Lemma 4.6 Let 1 ≤ c′ ≤ c− 1.

14

1. If N ≥ c+ c′ and M > c
c′

(
c+c′

2

)
then GN,M is not c-colorable.

2. If N ≥ 2c and M > 2
(

2c
2

)
then GN,M is not c-colorable. (This follows

from a weak version of the c′ = c− 1 case of Part 1.)

Theorem 4.7 GCEc ∈ DTIME(N2M2 + 2O(c4)) time.

Proof:

1. Input (N,M,χ).

2. If N ≤ c or M ≤ c then test if χ is a partial c-coloring of GN,M . If so
then output YES. If not then output NO. (This works by Lemma 4.4.)
This takes time O(N2M2).

3. For 1 ≤ c′ ≤ c− 1 we have the following pairs of cases.

(a) If N = c + c′ and M > c
c′

(
c+c′

2

)
, then output NO and stop. (This

works by Lemma 4.6.)

(b) N = c+ c′ and M ≤ c
c′

(
c+c′

2

)
. By Lemma 4.2 we can determine if

χ can be extended to a total c-coloring in time 2O(NM). Note that
MN ≤ (c+c′) c

c′

(
c+c′

2

)
. On the interval 1 ≤ c′ ≤ c−1 this function

achieves its maximum when c′ = 1. Hence this case takes 2O(c4).

Henceforth we assume 2c ≤ N,M .

4. If M > 2
(

2c
2

)
or N > 2

(
2c
2

)
then output NO and stop. (This works by

Lemma 4.6.)

5. The only case left is 2c ≤ N,M ≤ 2
(

2c
2

)
. By Lemma 4.2 we can

determine if χ can be extended in time 2O(NM) ≤ 2O(c4).

Step 2 and Step 4 together take time O(N2M2 + 2O(c4)).

Even for small c the additive term 2O(c4) is the real timesink. A cleverer
algorithm that reduces this term is desirable. By Theorem 2.1 this term
cannot be made polynomial unless P=NP.

15

5 Lower Bound on Tree Res

For n,m, c we define a Boolean formula GRID(n,m, c) such that

Gn,m is c-colorable iff GRID(n,m, c) ∈ SAT.

• The variables are xijk where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ c. The
intention is that, for all (i, j), there is a k such that xijk is true. We
interpret k to be the color of (i, j).

• For all (i, j) we have the clause

c∨
k=1

xijk.

These clauses ensure that every (i, j) has at least one color.

• For all 1 ≤ i < i′ ≤ n and 1 ≤ j < j′ ≤ m we have the clause

c∨
k=1

¬xijk ∨ ¬xi′jk ∨ ¬xij′k ∨ ¬xi′j′k.

These clauses ensure there are no monochromatic rectangles.

We do not use clauses to ensure that every (i, j) has at most one color.
This is because if the formula above is satisfied then one can extract out of
it a c-coloring of Gn,m by taking the color of (i, j) to be the least k such that
xijk is true.

We show that if Gn,m is not c-colorable then any tree resolution proof of
GRID(n,m, c) /∈ SAT requires size 2Ω(c).

5.1 Background on Tree Resolution and the Prover-
Delayer Game

The definitions of Resolution and Tree Resolution are standard; however, we
define them for completeness. Prover-Delayer games were first defined by
Pudlak and Impagliazzo [10], however we use the asymmetric version which
was first defined by Beyersdorff et al. [1]. See also the book by Jukna [6].

16

Def 5.1 Let ϕ = C1 ∧ · · · ∧ CL be a CNF formula. A Resolution Proof that
ϕ /∈ SAT is a sequence of clauses such that on each line you have one of the
following:

1. One of the C’s in ϕ (called an AXIOM).

2. A ∨B where on prior lines you had A ∨ x and B ∨ ¬x.

3. The last line has the empty clause.

4. For every resolution proof there is a graph: at the top there are nodes
C1, . . . , CL, and when step 2 above is applied you have edges from A∨x
and B ∨ ¬x to A ∨B.

It is easy to see that if there is a resolution proof that ϕ /∈ SAT then indeed
ϕ /∈ SAT. The converse is also true though slightly harder to prove.

Def 5.2 The size of a resolution proof is the number of nodes in the graph.

Def 5.3 A Tree Resolution proof is one whose graph is a tree.

Def 5.4 The Prover-Delayer Game has parameters (1) a, b ∈ (1,∞), such
that 1

a
+ 1

b
= 1, (2) p ∈ R+, and (3) a CNF-formula

ϕ = C1 ∧ · · · ∧ CL /∈ SAT.

The game is played as follows until a clause is proven false:

1. The Prover picks a variable x that was not already picked.

2. The Delayer either

(a) Sets x to T or F .

(b) Defers to the Prover.

i. If the Prover sets x to F then the Delayer gets lg a points.

ii. If the Prover sets x to T then the Delayer gets lg b points.

When some clause has all of its literals set to false the game ends. At that
point, if the Delayer has p points then he wins; otherwise the Prover wins.

17

We assume that the Prover and the Delayer play perfectly.

1. The Prover wins means the Prover has a winning strategy.

2. The Delayer wins means the Delayer has a winning strategy.

Lemma 5.5 Let a, b ∈ (1,∞) such that 1
a

+ 1
b

= 1, p ∈ R+, ϕ /∈ SAT, ϕ in
CNF -form. If the Delayer wins (by always getting ≥ p points) then every
Tree Resolution proof for ϕ has size ≥ 2p.

Note that the lower bound in Lemma 5.5 is 2p, not 2Ω(p).

5.2 Lower Bound on Tree Resolution

Theorem 5.6 Let n,m, c be such that Gn,m is not c-colorable and c ≥ 9288.
Any tree resolution proof of GRID(n,m, c) /∈ SAT requires size 2Dc where
D = 0.836.

Proof:
By Lemma 5.5 it will suffice to show that there exists a, b ∈ (1,∞) with

1
a

+ 1
b

= 1, such that the Delayer wins the Prover-Delayer game with param-
eters a, b,Dc, and GRID(n,m, c). We will determine a, b later. We will also
need parameter r ∈ (0, 1) to be determined.

Here is the Delayers strategy: Assume xijk was chosen by the Prover.

1. If coloring (i, j) with color k will create a monochromatic rectangle
then the Delayer will NOT let this happen—he will set xijk to F . The
Delayer does not get any points but he avoids the game ending. (For-
mally: if there exists i′, j′ such that xi′jk = xij′k = xi′j′k = T then
the Delayer sets xijk to F .) Otherwise he goes to the next step of the
strategy.

2. The Delayer is concerned that if none of the xij∗ are set to T and many
are set to F then the game may be over soon. But he is reluctant to set
xijk to T . Hence he will do it only if Prover has already set many vars
to F , hence Delayer has already gotten lots of points. We now proceed
formally. If there are at least rc values k′ where the Prover has set xijk′
to F , and there are no xijk′ that have been set to T (by anyone) then
Delayer sets xijk to T . Note that this cannot form a monochromatic
rectangle since in step 1 of the strategy xijk would have been set to F .

18

3. In all other cases the Delayer defers to the Prover.

For the analysis we need two real parameters: q ∈ (0, 1) and s ∈ (0, 3−3q).
Since we need 1

a
+ 1

b
= 1 we set b = a

a−1
.

We now show that this strategy guarantees that the Delayer gets at least
Dc points. Since the Delayer will never allow a monochromatic rectangle the
game ends when there is some i, j such that

xij1 = xij2 = · · · = xijc = F.

Who set these variables to F? Either at least qc were set to F by the
Prover or at least (1−q)c were set to F by the Delayer. This leads to several
cases.

1. At least qc were set to F by the Prover. The Delayer gets at least
qc lg a points.

2. At least (1 − q)c were set to F by the Delayer. For every k such that
the Delayer set xijk to F there is an (i′, j′) (with i 6= i′ and j 6= j′) such
that xi′jk, xij′k, and xi′j′k were all set to T (we do not know by who).
Consider the variables we know were set to T because Delayer set xijk
to F . These variables all have the last subscript of k. Therefore these
sets-of-three variables associated to each xijk are disjoint. Hence there
are at least 3(1 − q)c = (3 − 3q)c variables that were set to T . There
are two cases. Recall that s ∈ (0, 3− 3q).

(a) The Prover set at least sc of them to T . Then the Delayer gets at
least sc lg(b) = sc lg(a/(a− 1)) points.

(b) The Delayer set at least (s− (3− 3q))c = (s+ 3q− 3)c of them to
T . If the Delayer is setting some variable xi′j′k to T it’s because
the Prover set rc others of the form xi′j′k′ to F . These sets-of-
rc-variables are all disjoint. Hence the Prover set at least (s +
3q − 3)rc2 variables to F . Therefore the Delayer gets at least
(s+ 3q − 3)rc2 lg a points.

We need to set a ∈ (1,∞), q, r ∈ (0, 1), and s ∈ (0, 3 − 3q) to maximize
the minimum of

1. qc lg a

19

2. sc lg(a/(a− 1))

3. (s+ 3q − 3)rc2 lg a

We optimize our choices by setting qc lg a = sc lg(a/(a − 1)) (approxi-
mately) and thinking (correctly) that the c2 term in (s+ 3q−3)rc2 will force
this term to be large when c is large. To achieve this we take

• q = 0.56415. Note that 3− 3q = 1.30755.

• s = 1.30754. Note that s ∈ (0, 3− 3q).

• r = 0.9. Note that (s + 3q − 3)r = (0.00001) ∗ 0.9 = 0.00009. (Any
value of r ∈ (0, 1) would have sufficed.)

• a = 2.793200

• b = a/(a− 1) = 1.557662 (approximately)

Using these values we get qc lg a, sc lg(a/(a− 1)) ≥ 0.836. We want

(0.00009c2) ≥ 0.836c

(0.00009c) ≥ 0.836

c ≥ 9288

With this choice of parameters, for c ≥ 9288, the Delayer gets at least
0.836c points. Hence any tree resolution proof of GRID(n,m, c) must have
size at least 20.836c.

Note 5.7 The proof of Theorem 5.6 did not really use that the shape was a
rectangle. We leave it to the reader to generalize the proof to other shapes.
The resulting theorems will have other constants; however, the size will still
have an exponential lower bound.

20

6 Lower Bounds on CP-Tree Res for GRID(c+

1, c
(
c
2

)
+ 1, c)

By Lemma 4.3 the formula GRID(c+1, c
(
c
2

)
+1, c) /∈ SAT. Note that it’s just

barely not satisfiable since GRID(c + 1, c
(
c
2

)
, c) ∈ SAT. In this section we

show that any Cutting Plane Tree Resolution proof that GRID(c+ 1, c
(
c
2

)
+

1, c) /∈ SAT requires size 2Ω(c3/ log2 c).

Def 6.1 Let A be an integer valued matrix and ~b be an integer valued vector
such that there is no 0-1 vector ~x with A~x ≤ ~b. We refer to this as A~x ≤ ~b /∈
SAT.

Any CNF-formula can be phrased in this form with only a linear blowup
in size. For every variable x we have variables x and x and the inequalities

x+ x ≤ 1
−x− x ≤ −1

If C is a clause with literals L1, . . . , Lk then we have the inequality

L1 + · · ·+ Lk ≥ 1

In particular, the formulas GRID(n,m, c) can be put in this form.

6.1 Background on CP-Tree Resolution and Link to
Communication Complexity

The definitions of Cutting Plane Proofs and Tree Cutting Plane Proofs are
standard; however, we include them for completeness. The connection to
communication complexity (Lemma 6.7) is by Impagliazzo et al. [5] (see also
the book by Jukna [6] Lemmas 19.7 and 19.11).

Def 6.2 A Cutting Planes Proof that A~x ≤ ~b /∈ SAT (henceforth CP Proof)
is a sequence of linear inequalities such that on each line you have either

1. One of the inequalities in A~x ≤ ~b (called an AXIOM).

2. If ~ai · ~x ≤ ci and ~aj · ~x ≤ cj are on prior lines then (~ai +~aj) · ~x ≤ ci + cj
can be on a line.

21

3. If ~a · ~x ≤ c is on a prior line and d ∈ N then d(~a · ~x) ≤ dc can be on a
line. (Also if d ∈ Z− N then reverse the inequality.)

4. If c(~a · ~x) ≤ d is on a prior line then ~a · ~x ≤
⌊
d
c

⌋
can be on a line.

5. The last line is an arithmetically false statement (e.g., 1 ≤ 0).

6. For every Cutting Plane Proof there is a graph: (1) at the top there
are the inequalities, ~ai · · · ~x ≤ ci, (2) when step 2 above is applied
you have edges from inequalities, ~ai · · · ~x ≤ ci and ~aj · · · ~x ≤ cj to
(~ai + ~aj) · ~x ≤ c1 + c2. (3) for the other steps there will be one edge in
the obvious way.

It is easy to see that if there is a cutting planes proof that A~x ≤ ~b /∈ SAT
then indeed A~x ≤ ~b /∈ SAT. The converse is also true though slightly harder
to prove.

Def 6.3 The size of a Cutting Plane Proof is the number of nodes in the
graph.

Def 6.4 A Tree-like CP proof is one whose graph is a tree.

We will connect the size of a Tree-like CP to communication complexity.
Hence we need the following definition.

Def 6.5 1. For a communication problem P , D(P) denotes the deter-
ministic communication complexity of P and Rε(P) denotes the ran-
domized public coin communication complexity of P with error ≤ ε.
Recall that such a protocol has both parties flip private coins and has
probability of error ≤ ε.

Def 6.6 Let A be an integer valued matrix and ~b be an integer valued vector
such that A~x ≤ ~b /∈ SAT. Let P1, P2 be a partition of the variables in ~x.
The Communication Complexity problem FI(A,~b, P1, P2) is as follows. (FI
stands for Find Inequality.)

1. For every variable in P1 Alice is given a value (0 or 1).

2. For every variable in P2 Bob is given a value (0 or 1).

22

3. These assignments constitute an assignment to all of the variables which
we denote ~x.

4. Alice and Bob need to determine an inequality in A~x ≤ ~b that is not
true.

Lemma 6.7 Let A be an integer valued matrix and ~b be an integer val-
ued vector such that A~x ≤ ~b /∈ SAT. Let n be the number of variables
in ~x. If there is a partition P1, P2 of the variables such that, for all ε,
Rε(FI(A,~b, P1, P2)) = Ω(t) then any tree-like CP proof of A~x ≤ ~b requires
size 2Ω(t/ log2 n).

6.2 Lemmas on Communication Complexity

Def 6.8

1. The Hamming weight of a binary string x, denoted w(x), is the number
of 1’s in x.

2. The Hamming distance between two, equal-length, binary strings x and
y, denoted d(x, y), is the number of positions in which they differ.

Def 6.9 We define several communication complexity problems.

1. Let Σ = {1, . . . , 2n − 1}. PHPstrn: Alice gets a string x ∈ Σn, and
Bob gets a string y ∈ Σn. They are promised that, for all i 6= j, the
letters xi and xj (resp. yi and yj) are distinct. By the PHP, there must
exist at least one (i, j) ∈ [n]× [n] such that xi = yj. They are further
promised that (i, j) is unique. The goal is to find (i, j). (Alice learns i,
and Bob learns j.)

2. Let Σ = {1, . . . , 2n − 1}. PHPsetn: Alice gets a set x ∈
(

Σ
n

)
, and Bob

gets a set y ∈
(

Σ
n

)
. By the PHP, there must exist at least one σ ∈ Σ

such that σ ∈ x ∩ y. They are further promised that σ is unique. The
goal is to find σ. (Both learn σ.)

3. PrMeetn: Alice gets a string x ∈ {0, 1}n, and Bob gets a string y ∈
{0, 1}n with n = 2m−1. They are promised that (1) w(x) = w(y) = m,
(2) there is a unique i ∈ [n] such that xi = yi = 1, and (3) for all j 6= i,
(xj, yj) ∈ {(0, 1), (1, 0)}. The goal is to find i. (Both learn i.)

23

4. UMn: (called the universal monotone relation) Alice is given x ∈
{0, 1}n, and Bob is given y ∈ {0, 1}n. They are promised that there
exists i such that xi = 1 and yi = 0. The goal is to find some such i.
(Both learn i.)

5. PrUMn: This is a restriction of UMn. They are additionally promised
(1) n = 2m − 1 is odd, (2) w(x) = m, (3) w(y) = m − 1, and (4)
d(x, y) = 1. Hence (a) there is a unique index i ∈ [n] such that xi = 1
and yi = 0, (b) for all j 6= i, (xj, yj) ∈ {(0, 0), (1, 1)}, and moreover (c)
these (0, 0)’s and (1, 1)’s occur in an equal number. The goal is to find
i. (Both learn i.)

6. DISJn: Alice gets a string x ∈ {0, 1}n, and Bob gets a string y ∈ {0, 1}n.
They need to decide if x and y intersect (∃i where xi = yi).

7. PrDISJn: n = 2m+ 1 is odd. Alice gets a string x ∈ {0, 1}n, and Bob
gets a string y ∈ {0, 1}n. They are promised that w(x) = w(y) = m+1
and |x ∩ y| ≤ 1. They need to decide if x and y intersect (∃i where
xi = yi).

We will need the following notion of reduction.

Def 6.10 Let f, g be a communication problem. It can be a decision, a
function, and/or a promise problem.

1. f ≤cc g if there exists a protocol for f that has the following properties.

(a) The protocol may invoke a protocol for g once on an input of
length O(n).

(b) Before and after the invocation, the players may communicate
polylog bits.

The following lemma is obvious.

Lemma 6.11 If f ≤cc g and (∀ε)[Rε(f) = Ω(n)] then (∀ε)[Rε(g) = Ω(n)].

Lemma 6.12 For all ε, Rε(PrUMn) = Ω(n).

24

Proof: Kushilevitz and Nisan [8] (Page 76) present a proof that DISJn ≤cc

UMn. A closer examination of the proof shows that it also shows PrDISJn ≤cc

PrUMn.
Kalyanasundaram and Schnitger [7] showed that, for all ε, Rε(DISJn) =

Ω(n). Razborov [11] has a simpler proof where he only looks at inputs that
satisfy the promise of PrDISJn. Hence he showed that, for all ε, Rε(PrDISJn) =
Ω(n). From PrDISJn ≤cc PrUMn, Rε(PrDISJn) = Ω(n), and Lemma 6.11
the result follows.

Lemma 6.13

1.
PrUMn ≤cc PrMeetn ≤cc PHPset(n+1)/2.

(The last reduction only holds when n is odd.)

2.
PHPsetn ≤cc PHPstrn.

3. For all ε Rε(PHPstrn) = Ω(n). (This follows from parts 1,2 and Lem-
mas 6.11, 6.12.)

Proof:

PrUMn ≤cc PrMeetn: Map (x, y) to (x, y). It’s an easy exercise to see that
this works.

PrMeetn ≤cc PHPset(n+1)/2: If x ∈ {0, 1}n then SET(x) is the subset of

{1, . . . , n} that x represents as a bit vector. Map (x, y) to (SET(x), SET(y).
It’s an easy exercise to see that this works. Example which we will continue
in the next part: (11001, 10110) maps to ({1, 2, 5}, {1, 3, 4}).

PHPsetn ≤cc PHPstrn: Σ = {1, . . . , 2n − 1}. Alice gets x ∈
(

Σ
n

)
, Bob gets

y ∈
(

Σ
n

)
. The sets x, y satisfy the promise of PHPsetn.

Alice (Bob) forms the string x′ ∈ Σn (y′ ∈ Σn) which is the elements of x
(y) written in order. It’s an easy exercise to see that this works. Example:
{1, 2, 5}, {1, 3, 4} maps to (125, 134).

25

6.3 Lower Bound on CP-Tree Resolution for GRID(c+
1, c
(
c
2

)
+ 1, c)

Theorem 6.14 Let A~x ≤ ~b be the translation of GRID(c + 1, c
(
c
2

)
+ 1, c)

into an integer program. Any Tree-CP proof that A~x ≤ ~b /∈ SAT requires
2Ω(c3/ log2 c) size.

Proof: We do the case where c
(
c
2

)
+ 1 is even (so c ≡ 3 (mod 4)). The

other cases are similar but require slight variants of Lemma 6.13.
The variables in the equations A~x ≤ ~b are of the form xijk where 1 ≤ i ≤

c+ 1, 1 ≤ j ≤ c
(
c
2

)
+ 1 and 1 ≤ k ≤ c.

To partition the variables we first partition the set of ordered pairs of the
first two coordinates.

Partition [c+ 1]× [c
(
c
2

)
+ 1] as follows:

Q1 =

{
(i, j) : (1 ≤ i ≤ c+ 1) ∧

(
1 ≤ j ≤ 1

2

(
c

(
c

2

)
+ 1

))}

Q2 =

{
(i, j) : (1 ≤ i ≤ c+ 1) ∧

(
1

2

(
c

(
c

2

)
+ 1

)
+ 1 ≤ j ≤ c

(
c

2

)
+ 1

)}
Partition the variables as follows.

P1 = {xijk : (i, j) ∈ Q1}

P2 = {xijk : (i, j) ∈ Q2}

We show that PHPstrn ≤cc FI(A,~b, P1, P2) where n = Θ(c3). Apply

Lemma 6.13 to obtain that, for all ε, Rε(FI(A,~b, P1, P2)) = Ω(c3). Note that

the number of variables in A~x ≤ ~b is Θ(c4). Hence we can apply Lemma 6.7

to obtain that any Tree-CP proof that A~x ≤ ~b /∈ SAT requires 2Ω(c3/ log2 c)

size.
We actually show that a restricted version of FI(A,~b, P1, P2) is the PHPstr

problem.
We restrict FI(A,~b, P1, P2) to the case where every column has c−1 colors

occurring once and the remaining color occurring twice. Hence one can view
a coloring as a string of length 2m = c

(
c
2

)
+1 over an alphabet of size n = c

(
c
2

)
.

26

Note that Alice and Bob each get a string of length m over an alphabet of
size n = 2m− 1.

In order to find which inequality is violated Alice and Bob need to find
which column they agree on (e.g., Alice’s column i is the same as Bob’s
column j). This is precisely problem PHPstr problem.

Lower bounds on Tree-CP proofs yield lower bounds on Tree-Resolution
(with a constant factor loss) (see Prop 19.4 of the book by Jukna [6]). Hence
we have the following.

Corollary 6.15 Any Tree-resolution proof of GRID(c+1, c
(
c
2

)
+1, c) /∈ SAT

requires 2Ω(c3/ log2 c) size.

7 Open Problems

1. Let T be a theorem in this paper that mentions rectangles. What
happens when rectangle is replaced with square in T?

2. Improve our FPT algorithm.

3. Prove that grid coloring extension problems starting with the empty
grid is NP-complete. This may be the wrong question. We may need
a new formalism for hardness.

4. Obtain exponential lower bounds for the size of resolution and cutting
plane proofs of GRID(n,m, c).

8 Acknowledgments

We thank Amy Apon, Doug Chen, Stasys Junka, Jon Katz, Clyde Kruskal,
Nathan Hayes, and Rishab Pallepati for proofreading and discussion.

We thank Stasys Jukna whose marvelous exposition of the Prover-Delayer
games and the tree-CP proofs inspired the second and third parts of this
paper.

We thank Wing Ning Li for pointing out that the case of n,m binary,
while it seems to not be in NP, is actually unknown.

We thank Daniel Marx for pointing out an improvement in the fixed
parameter algorithm which we subsequently used.

27

We thank Tucker Bane, Richard Chang, Peter Fontana, David Harris,
Jared Marx-Kuo, Jessica Shi, and Marius Zimand, for listening to Bill present
these results and hence clarifying them.

References

[1] O. Beyersdorrff, N. Galesi, and M. Lauria. A lower bound for the pi-
geonhole principle in the tree-like resolution asymmetric prover-delayer
games. Information Processing Letters, 110, 2010.
http://www.cs.umd.edu/~gasarch/resolution/resolution.html.

[2] S. Fenner, W. Gasarch, C. Glover, and S. Purewal. Rectangle free col-
orings of grids, 2012. http://arxiv.org/abs/1005.3750.

[3] W. Gasarch. The 17×17 challenge. Worth $289.00. This is not a joke,
2009. November 30, 2009 entry on ComplexityBlog (Google Fortnow
Blog).

[4] W. Gasarch. The 17×17 SOLVED! also 18×18, 2012. Feb 2, 2012 entry
on ComplexityBlog (Google Fortnow Blog).

[5] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds
for tree-like cutting planes proofs. In Proceedings of the Ninth Annual
IEEE Symposium on Logic in Computer Science, Paris, France, 1994.
http://www.cs.toronto.edu/~toni.

[6] S. Jukna. Boolean function complexity: advances and frontiers. Al-
gorithms and Combinatorics Vol 27. Springer, New York, Heidelberg,
Berlin, 2012.

[7] B. Kalyanasundaram and G. Schintger. The probabilistic communica-
tion complexity of set intersection. SIAM Journal on Discrete Mathe-
matics, 5:545–557, 1992.
https://epubs.siam.org/doi/pdf/10.1137/0405044.

[8] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, Cambridge, England, 1997.

28

[9] S. Mahaney. Sparse complete sets for NP: Solution to a conjecture of
Berman and Hartmanis. Journal of Computer and System Sciences,
25:130–143, 1982.

[10] P. Pudlak and R. Impagliazzo. A lower bound for DLL algorithms for
SAT. In Eleventh Symposium on Discrete Algorithms: Proceedings of
SODA ’00, 2000.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.

7363.

[11] A. Razborov. On the distributional complexity of disjointness. Theo-
retical Computer Science, 106:385–390, 1992.
https://www.sciencedirect.com/science/article/pii/

030439759290260M.

[12] B. Steinbach and C. Posthoff. Extremely complex 4-colored rectangle-
free grids: Solution of an open multiple-valued problem. In Proceedings
of the Forty-Second IEEE International Symposia on Multiple-Valued
Logic, 2012.

[13] B. Steinbach and C. Posthoff. The solution of ultra large grid problems.
In 21st International Workshop on Post-Binary USLI Systems, 2012.

[14] B. Steinbach and C. Posthoff. Utilization of permutation classes for solv-
ing extremely complex 4-colorable rectangle-free grids. In Proceedings
of the IEEE 2012 international conference on systems and informatics,
2012.

29

