BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!!
Lower Bounds on Approx Clique Via PCP and Gaps
If G is a graph then

$$\omega(G) = \text{the size of the max clique in } G.$$
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions
1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?
 - NO. this is an easy exercise.
2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?
 - NO. this is an easy exercise.
3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?
 - YES. This is silly. Always output 1.
4. Is there an alg that, given G, output a number $\geq \log n \omega(G)$?
 - YES. This is known. This is pathetic. Can we do better?
5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1/2}} \omega(G)$?
 - No. We will not quite show this but will show something close.
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2}\omega(G)$?

No. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$?

No. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$?

Yes. This is silly. Always output 1.

4. Is there an alg that, given G, output a number $\geq \log n\omega(G)$?

Yes. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$?

No. We will not quite show this but will show something close.
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?
 NO. this is an easy exercise.
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?
 NO. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?
We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2}\omega(G)$?
 No. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$?
 No. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$?
 Yes. This is silly. Always output 1.

4. Is there an alg that, given G, output a number $\geq \log n \omega(G)$?
 Yes. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1/2}}\omega(G)$?
 No. We will not quite show this but will show something close.
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2}\omega(G)$?
 NO. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$?
 NO. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$?
 YES. This is silly. Always output 1.

4. Is there an alg that, given G, output a number $\geq \log n \omega(G)$?
 YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$?
 No. We will not quite show this but will show something close.
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?
 NO. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?
 NO. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?
 YES. This is silly. Always output 1.
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2}\omega(G)$?
 NO. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84}\omega(G)$?
 NO. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n}\omega(G)$?
 YES. This is silly. Always output 1.

4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n}\omega(G)$?
 No. We will not quite show this but will show something close.
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?
 NO. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?
 NO. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?
 YES. This is silly. Always output 1.

4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$?
 YES. This is known. This is pathetic. Can we do better?
CLIQUE and APPROX

We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?
 NO. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?
 NO. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?
 YES. This is silly. Always output 1.

4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$?
 YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1/2}} \omega(G)$?
We assume $P \neq NP$.

Given G, want to obtain $\omega(G)$.

Questions

1. Is there an alg that, given G, output a number $\geq \frac{1}{2} \omega(G)$?
 NO. this is an easy exercise.

2. Is there an alg that, given G, output a number $\geq \frac{1}{84} \omega(G)$?
 NO. this is an easy exercise.

3. Is there an alg that, given G, output a number $\geq \frac{1}{n} \omega(G)$?
 YES. This is silly. Always output 1.

4. Is there an alg that, given G, output a number $\geq \frac{\log n}{n} \omega(G)$?
 YES. This is known. This is pathetic. Can we do better?

5. Is there an alg that, given G, output a number $\geq \frac{1}{n^{1/2}} \omega(G)$?
 No. We will not quite show this but will show something close.
Thm \((\exists \delta < 1)\) st if there is an alg that, on input \(G\), output a number \(\geq \frac{1}{n^\delta} \omega(G)\) then \(P = NP\).
Thm \((\exists \delta < 1) \) st if there is an alg that, on input \(G \), output a number \(\geq \frac{1}{n^\delta} \omega(G) \) then \(P = NP \).

We will pick \(\delta \) later.
Thm \((\exists \delta < 1) \text{ st if there is an alg that, on input } G, \text{ output a number } \geq \frac{1}{n^\delta} \omega(G) \text{ then } P = NP.\)

We will pick \(\delta\) later.
Assume \(\text{CLIQ}\) has such an alg. We call it the approx.
Thm \((\exists \delta < 1) \text{ st if there is an alg that, on input } G, \text{ output a number } \geq \frac{1}{n^{\delta}} \omega(G) \text{ then } P = NP.\)

We will pick \(\delta\) later.

Assume CLIQ has such an alg. We call it the approx.

We will derive a value of \(\delta\) that gives \(P = NP.\)
Thm \((\exists \delta < 1) \) st if there is an alg that, on input \(G \), output a number \(\geq \frac{1}{n^\delta} \omega(G) \) then \(P = NP \).

We will pick \(\delta \) later.

Assume CLIQ has such an alg. We call it **the approx**.

We will derive a value of \(\delta \) that gives \(P = NP \).

Let \(A \in NP \).
Thm \((\exists \delta < 1) \text{ st if there is an alg that, on input } G, \text{ output a number } \geq \frac{1}{n^\delta} \omega(G) \text{ then } P = NP.\)

We will pick \(\delta\) later.

Assume CLIQ has such an alg. We call it the approx.

We will derive a value of \(\delta\) that gives \(P = NP\).

Let \(A \in NP\).

By PCP Theorem there exists \(c, d \in \mathbb{N}\) such that

\[A \in \text{PCP}(c \lg n, d \lg n, \frac{1}{n}). \]
Thm \((\exists \delta < 1)\) st if there is an alg that, on input \(G\), output a number \(\geq \frac{1}{n^{\delta}} \omega(G)\) then \(P = NP\).

We will pick \(\delta\) later.

Assume CLIQ has such an alg. We call it **the approx**.

We will derive a value of \(\delta\) that gives \(P = NP\).

Let \(A \in NP\).

By PCP Theorem there exists \(c, d \in \mathbb{N}\) such that \(A \in \text{PCP}(c \lg n, d \lg n, \frac{1}{n})\).

We use the following in a poly time program for \(A\):

1. The approx which gives \(\geq n^{-\delta} \omega(G)\).
2. The \((c \lg n, d \lg n, \frac{1}{n})\) PCP for \(A\).
Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits. Let $\sigma \in \{0, 1\}^{c \lg n}$. We use these as answers to queries. Let $\tau \in \{0, 1\}^{d \lg n}$. We use these as random bits. Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ. Simulate PCP on x with $\sigma \tau$ and $\sigma' \tau'$. Either 1) (\exists) a query that they answer differently. Inconsistent 2) (\forall) queries in common they answer the same. Consistent
Preparation for Algorithm for \(A \)

Let \(x \in \{0, 1\}^n \).

We can simulate PCP on \(x \) given query answers and random bits.
Let \(x \in \{0, 1\}^n \).

We can simulate PCP on \(x \) given query answers and random bits.

Let \(\sigma \in \{0, 1\}^{c \lg n} \). We use these as answers to queries.
Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits.

Let $\sigma \in \{0, 1\}^{c \lg n}$. We use these as answers to queries.

Let $\tau \in \{0, 1\}^{d \lg n}$. We use these as random bits.
Let $x \in \{0, 1\}^n$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in \{0, 1\}^{c \lg n}$. We use these as answers to queries.
Let $\tau \in \{0, 1\}^{d \lg n}$. We use these as random bits.
Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.
Let $x \in \{0, 1\}^n$.

We can simulate PCP on x given query answers and random bits.

Let $\sigma \in \{0, 1\}^{c \lg n}$. We use these as answers to queries.

Let $\tau \in \{0, 1\}^{d \lg n}$. We use these as random bits.

Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.

Simulate PCP on x with $\sigma \tau$ and $\sigma' \tau'$. Either
Let $x \in \{0, 1\}^n$. We can simulate PCP on x given query answers and random bits.

Let $\sigma \in \{0, 1\}^{c \lg n}$. We use these as answers to queries.

Let $\tau \in \{0, 1\}^{d \lg n}$. We use these as random bits.

Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.

Simulate PCP on x with $\sigma \tau$ and $\sigma' \tau'$. Either

1) (\exists) a query that they answer differently. **Inconsistent**
Let $x \in \{0, 1\}^n$.
We can simulate PCP on x given query answers and random bits.
Let $\sigma \in \{0, 1\}^{c \lg n}$. We use these as answers to queries.
Let $\tau \in \{0, 1\}^{d \lg n}$. We use these as random bits.
Can simulate PCP on x with $\sigma \tau$. Will ACC or REJ.

Simulate PCP on x with $\sigma \tau$ and $\sigma' \tau'$. Either
1) (\exists) a query that they answer differently. **Inconsistent**
2) (\forall) queries in common they answer the same. **Consistent**
Algorithm for A

1. Input x. We assume $|x|$ is a power of 2.

2. Form a graph G:
 1) $V = \sigma \tau \in \{0, 1\}^{c \cdot \lg n + d \cdot \lg n}$. So $|V| = n^{c + d}$.
 2) $(\sigma \tau, \sigma' \tau') \in E$ if both accept and pair is consistent.

3. $x \in A \rightarrow$ (exists) a consistent way to answer queries $\forall \tau \in \{0, 1\}^{d \cdot \lg n}$, so $\omega(G) \geq 2^{d \cdot \lg n} = n^{d}$.

4. Run the approx alg on G.
 1) $x \in A \rightarrow \omega(G) \geq 2^{d \cdot \lg n} = n^{d}$, so approx alg $\geq n^{d} |V| - \delta = n^{d} (n^{c + d}) - \delta = n^{d} - (c + d)\delta$.
 2) $x \not\in A \rightarrow \omega(G) \leq n^{d} - 1$, so approx alg $\leq n^{d} - 1$.

In order to make these two cases not overlap we need $d - 1 < d - (c + d)\delta$, or $\delta < \frac{1}{c + d}$.
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.
2. Form a graph G:
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.
2. Form a graph G:
 1) $V = \sigma \tau \in \{0, 1\}^{c \lg n + d \lg n}$. So $|V| = n^{c+d}$.
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.
2. Form a graph G:
 1) $V = \sigma \tau \in \{0, 1\}^{c \lg n + d \lg n}$. So $|V| = n^{c+d}$.
 2) $(\sigma \tau, \sigma' \tau') \in E$ if both accept and pair is consistent.
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.
2. Form a graph G:
 1) $V = \sigma \tau \in \{0, 1\}^{c \lg n + d \lg n}$. So $|V| = n^{c+d}$.
 2) $(\sigma \tau, \sigma' \tau') \in E$ if both accept and pair is consistent.
3. 3.1 $x \in A \rightarrow (\exists)$ a cons way to answer queries st
 $(\forall \tau \in \{0, 1\}^{d \lg n})$, PCP on (x, τ) ACC. So
 $\omega(G) \geq 2^{d \lg n} = n^d$.
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.
2. Form a graph G:
 1) $V = \sigma \tau \in \{0, 1\}^{c \log n + d \log n}$. So $|V| = n^{c + d}$.
 2) $(\sigma \tau, \sigma' \tau') \in E$ if both accept and pair is consistent.
3. 3.1 $x \in A \rightarrow (\exists)$ a cons way to answer queries st
 $(\forall \tau \in \{0, 1\}^{d \log n})$, PCP on (x, τ) ACC. So $\omega(G) \geq 2^{d \log n} = n^d$.
 3.2 $x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of the $\tau \in \{0, 1\}^{d \log n}$ acc. So $\omega(G) \leq n^{d-1}$.
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.

2. Form a graph G:
 1) $V = \sigma \tau \in \{0, 1\}^{c \lg n + d \lg n}$. So $|V| = n^{c+d}$.
 2) $(\sigma \tau, \sigma' \tau') \in E$ if both accept and pair is consistent.

3. 3.1 $x \in A \rightarrow (\exists)$ a cons way to answer queries st
 $(\forall \tau \in \{0, 1\}^{d \lg n})$, PCP on (x, τ) ACC. So
 $\omega(G) \geq 2^{d \lg n} = n^d$.

 3.2 $x \not\in A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of
 the $\tau \in \{0, 1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.

4. Run the approx alg on G.
Algorithm for A

1. Input x. We assume $|x|$ is power of 2.

2. Form a graph G:
 1) $V = \sigma \tau \in \{0, 1\}^{c \lg n + d \lg n}$. So $|V| = n^{c+d}$.
 2) $(\sigma \tau, \sigma' \tau') \in E$ if both accept and pair is consistent.

3. 3.1 $x \in A \rightarrow (\exists)$ a cons way to answer queries st
 $(\forall \tau \in \{0, 1\}^{d \lg n})$, PCP on (x, τ) ACC. So
 $\omega(G) \geq 2^{d \lg n} = n^d$.
 3.2 $x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of
 the $\tau \in \{0, 1\}^{d \lg n}$ acc. So $\omega(G) \leq n^{d-1}$.

4. Run the approx alg on G.
 4.1 $x \in A \rightarrow \omega(G) \geq 2^{d \lg n} = n^d$, so approx alg
 $\geq n^d |V|^{-\delta} = n^d (n^{(c+d)})^{-\delta} = n^d - (c+d)\delta$.

Algorithm for A

1. Input x. We assume $|x|$ is power of 2.

2. Form a graph G:
 1) $V = \sigma\tau \in \{0, 1\}^{c\lg n + d\lg n}$. So $|V| = n^{c+d}$.
 2) $(\sigma\tau, \sigma'\tau') \in E$ if both accept and pair is consistent.

3. 3.1 $x \in A \rightarrow (\exists)$ a cons way to answer queries st
 $(\forall\tau \in \{0, 1\}^{d\lg n})$, PCP on (x, τ) ACC. So
 $\omega(G) \geq 2^{d\lg n} = n^d$.

 3.2 $x \notin A \rightarrow$ any cons way to answer the queries will make $\leq \frac{1}{n}$ of
 the $\tau \in \{0, 1\}^{d\lg n}$ acc. So $\omega(G) \leq n^{d-1}$.

4. Run the approx alg on G.
 4.1 $x \in A \rightarrow \omega(G) \geq 2^{d\lg n} = n^d$, so approx alg
 $\geq n^d |V|^{-\delta} = n^d (n^{(c+d)})^{-\delta} = n^{d-(c+d)\delta}$.

 4.2 $x \notin A \rightarrow \omega(G) \leq n^{d-1}$, so approx alg $\leq n^{d-1}$.
Algorithm for \(A \)

1. Input \(x \). We assume \(|x|\) is power of 2.

2. Form a graph \(G \):
 1) \(V = \sigma \tau \in \{0, 1\}^{c \log n + d \log n} \). So \(|V| = n^{c+d}\).
 2) \((\sigma \tau, \sigma' \tau') \in E\) if both accept and pair is consistent.

3. 3.1 \(x \in A \rightarrow (\exists) \) a cons way to answer queries st
 \((\forall \tau \in \{0, 1\}^{d \log n})\), PCP on \((x, \tau)\) ACC. So
 \(\omega(G) \geq 2^{d \log n} = n^d\).
 3.2 \(x \notin A \rightarrow \) any cons way to answer the queries will make \(\leq \frac{1}{n}\) of
 the \(\tau \in \{0, 1\}^{d \log n}\) acc. So \(\omega(G) \leq n^{d-1}\).

4. Run the approx alg on \(G \).
 4.1 \(x \in A \rightarrow \omega(G) \geq 2^{d \log n} = n^d\), so approx alg
 \(\geq n^d |V|^{-\delta} = n^d (n^{(c+d)})^{-\delta} = n^d - (c+d)\delta\).
 4.2 \(x \notin A \rightarrow \omega(G) \leq n^{d-1}\), so approx alg \(\leq n^{d-1}\).

In order to make these two cases not overlap we need

\[d - 1 < d - (c + d)\delta \]

\[\delta < \frac{1}{c + d} \]
Finishing Up The Algorithm

And now back to our alg.

5. If the approx alg outputs a number $\geq n d - (c + d) \delta$ then output YES.

2. If the approx alg outputs a number $< n d - 1$ then output NO.

3. By our comments, no other case will occur.
And now back to our alg.

5.
 1. If the approx alg outputs a number $\geq n^d-(c+d)\delta$ then output YES.
And now back to our alg.

5. If the approx alg outputs a number $\geq n^d - (c+d)\delta$ then output \textbf{YES}.

2. If the approx alg outputs a number $< n^{d-1}$ then output \textbf{NO}.
Finishing Up The Algorithm

And now back to our alg.

5.
 1. If the approx alg outputs a number $\geq n^{d-(c+d)\delta}$ then output YES.
 2. If the approx alg outputs a number $< n^{d-1}$ then output NO.
 3. By our comments, no other case will occur.
More is Known

We proved **Thm** $(\exists \delta < 1)$ st if CLIQ is n^δ-approx then $P = NP$.
More is Known

We proved **Thm** $(\exists \delta < 1)$ st if CLIQ is n^δ-approx then $P = NP$.

What is δ? One could dig through the PCP machinery to find it.
More is Known

We proved \textbf{Thm} \((\exists \delta < 1)\) st if CLIQ is \(n^\delta\)-approx then \(P = NP\).

What is \(\delta\)? One could dig through the PCP machinery to find it.

\textbf{Do not bother!} The following is known.
We proved **Thm** \((\exists \delta < 1) \) st if CLIQ is \(n^\delta \)-approx then \(P = NP \).

What is \(\delta \)? One could dig through the PCP machinery to find it.

Do not bother! The following is known.

Thm \((\forall \delta < 1) \) if CLIQ is \(n^\delta \)-approx then \(P = NP \).
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq NP$.

1) Yeah Very close upper and lower bounds!
2) Boo $(\log n)$ $O(1)$ n-approx still open.
3) Further evidence that $P \neq NP$ has great explanatory power.
4) Is this a basic problem, like SAT? Can we use $CLIQ$ to get other problems not approx? Alas NO, I do not know of any such results.
5) We now turn to a SAT-like non-approx result.
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq NP$.
Some thoughts on the pair of results:
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq NP$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.

 Yeah Very close upper and lower bounds!
 Boo $(\log n) O(1)$ n-approx still open.

3) Further evidence that $P \neq NP$ has great explanatory power.

4) Is this a basic problem, like SAT? Can we use CLIQ to get other problems not approx?

 Alas NO, I do not know of any such results.

5) We now turn to a SAT-like non-approx result.
On this slide we assume $P \neq NP$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^\delta} \omega(G)$.
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq NP$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^\delta} \omega(G)$.

1) **Yeah** Very close upper and lower bounds!
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq \text{NP}$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^\delta} \omega(G)$.

1) **Yeah** Very close upper and lower bounds!
2) **Boo** $\frac{(\log n)^{O(1)}}{n}$-approx still open.
Clique is Hard to Approximate: Now What?

On this slide we assume $\mathsf{P} \neq \mathsf{NP}$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.

1) **Yeah** Very close upper and lower bounds!
2) **Boo** $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.
Clique is Hard to Approximate: Now What?

On this slide we assume \(P \neq \text{NP} \).

Some thoughts on the pair of results:

1. There exists an alg \(A \) such that \(A(G) \geq \frac{\log n}{n} \omega(G) \).
2. For all \(\delta > 0 \) there is no alg \(A \) with \(A(G) \geq \frac{1}{n^\delta} \omega(G) \).

1) **Yeah** Very close upper and lower bounds!
2) **Boo** \(\frac{(\log n)^{O(1)}}{n} \)-approx still open. Nobody cares.
3) Further evidence that \(P \neq \text{NP} \) has great explanatory power.
On this slide we assume $P \neq NP$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^{\delta}} \omega(G)$.

1) **Yeah** Very close upper and lower bounds!
2) **Boo** $\frac{\log n}{n} O(1)$-approx still open. Nobody cares.
3) Further evidence that $P \neq NP$ has great explanatory power.
4) Is this a basic problem, like SAT?
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq NP$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^\delta} \omega(G)$.

1) **Yeah** Very close upper and lower bounds!
2) **Boo** $(\log n)^{O(1)}$-approx still open. Nobody cares.
3) Further evidence that $P \neq NP$ has great explanatory power.
4) Is this a basic problem, like SAT?
 Can we use CLIQ to get other problems not approx?

Alas NO, I do not know of any such results.
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq NP$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^\delta} \omega(G)$.

1) **Yeah** Very close upper and lower bounds!

2) **Boo** $\frac{(\log n)^{O(1)}}{n}$-approx still open. Nobody cares.

3) Further evidence that $P \neq NP$ has great explanatory power.

4) Is this a basic problem, like SAT? Can we use CLIQ to get other problems not approx?

Alas **NO**, I do not know of any such results.
Clique is Hard to Approximate: Now What?

On this slide we assume $P \neq NP$.

Some thoughts on the pair of results:

1. There exists an alg A such that $A(G) \geq \frac{\log n}{n} \omega(G)$.
2. For all $\delta > 0$ there is no alg A with $A(G) \geq \frac{1}{n^\delta} \omega(G)$.

1) **Yeah** Very close upper and lower bounds!
2) **Boo** $(\log n)^{O(1)} \over n$-approx still open. Nobody cares.
3) Further evidence that $P \neq NP$ has great explanatory power.
4) Is this a basic problem, like SAT?
 Can we use CLIQ to get other problems not approx?
 Alas **NO**, I do not know of any such results.
5) We now turn to a SAT-like non-approx result.