These corrections are from
steven.brown.math@gmail.com.

1. Page 1. Abstract: Say W is in N_+
 I JUST MADE IT N

2. Page 6. equation may be
 $a(j - 1) + 1 - (a(i - 1) + 1) = a(j - i)$
 missing brackets DONE

3. Page 7. the title Upper Bounds on $W(ax; 2)$ could be changed. You
 actually prove all cases of linear polynomial. DONE

4. Page 8. I would suggest writing
 $3(a + b), 3(4a + 2b), 9a + 3b$
 for clarity that you use the $3d$ forbidden distance argument
 DONE- but a bit diff from what you suggest.

5. Page 10. I would remove the sentence
 We needed $y \leq 2a - 1$ since we needed $y + (6a - 2) \leq 8a - 3$.
 The key argument in my opinion is the one exposed below:
 $2a - 1$ is a forbidden distance.
 IT IS IMPORTANT THAT $y \leq 2a - 1$. EVEN SO, I NEED TO SAY
 WHY ITS IMPORTANT. SO I MODIFIED THIS- TAKE A LOOK.

6. Theorem 5.2. I would add that because $1^2 = 1$ you can never find two
 consecutive numbers mapped with the same colour.
 An argument that is used namely in ”19:” the argument here could be
 more detailed:
 $19 - 18 = 1^2$ IMPLIES COL(19) is not B
 $19 - 10 = 3^3$ IMPLIES COL(19) is not R
 therefore COL(19)=G
 DONE, THOUGH WORDED A BIT DIFF. TAKE A LOOK.

in (c) I would write
\[1 + b \leq x \]
instead of \(b < x \) (although it is the same!) for consistency with (a) and (b) where you never use \(i \).

DONE

8. Page 15; Lemma 6.3.

\[s + 2b + 1 \leq n \]
is a typo. Should be
\[s + 2b + 1 < w \]
I think. That can’t be true therefore
\[s + 2b + 1 \geq w. \]

THIS LEAD TO A MINOR COSMETIC CHANGE IN OTHER PARTS OF THE PAPER BUT THEN ALSO A PROBLEM.

COSMETIC: I WAS SOMETIMES USING [\(n \)]. THIS IS BAD - I KNOW ALWAYS USE [\(w \)]

PROBLEM: I REWROTE THE PROOF TO MAKE IT CLEARER BUT THEN AN ODD THING HAPPENED. ITS LOOKS LIKE I CAN GET \(w \leq s + 2b \). PLEASE TAKE A LOOK AND SEE WHAT YOU THINK. I DONT THINK THIS IS POSSIBLE.

9. Page 17: By Lemma 6.2b, \(2p(x_0) + p(y) \ldots \) y should be \(y_0 \). DONE.

10. Page 17, end of proof Theorem 6.5.

(a) one-sided boundary condition \(2(p(x_0) + p(y_0)) = \bigtriangledown (a^5b^2) \).
I suggest removing = \(\bigtriangledown (a^5b^2) \); it is not needed there.
DONE

(b) So \(W(p(x); 3) \leq \ldots \)
I am guessing that lemma 6.3 is used here
if this is the case that should be said; and all conditions of its application should be checked. That said, shouldn’t it be \(W(p(x); 3) \leq p(db) + 2 \cdot 2(p(x_0) + p(y_0)) + 1? \)
(application of lemma 6.3) and then
\[p(db) + 2 \cdot 2(p(x_0) + p(y_0)) + 1 = \bigtriangledown (a^5b^2). \]
doesn’t change the conclusion. (also to add the argument that if you have a one-sided boundary condition then you obviously have a two sided boundary condition) * if this is not the case; the actual argument should be given

\[\text{and hence is } \leq d; \]

in between wording and math. \textit{and hence is less than d}

DISAGREE. I would need to write \textit{and hence is less-than-or-equal to d}. I do not mind mixing the math when needed.

12. Page 18. Claim. First of all I want to say that I haven’t checked these results

(*) Just looking at 2. 3. and 4. seems strange to me.

4. says for all \(a \), \(gcd(2a + 1, 2a^2 + 1) = 1 \)

3. says if \(a = 1 \pmod{3} \) then \(gcd(2a + 1, 2a^2 + 1) = 3 \)

Then 3. seems to be in contradiction with 4.

13. Page 19,

(a) \textit{that the gcd is } \leq \text{ should be written that the greatest common divisor is less}

(b) Why not give the linear combinations here? That would help the reader, especially in light of (12) otherwise the reader may doubt the accuracy of the results. I believe that is all correct but maybe requires more evidence.

For example \(gcd(2a + 1, a + 1) = 1 \) because \(2(a + 1) - (2a + 1) = 1 \) and Theorem de Bachet Bezout.

(c) By the claim: for all \(a, binZ, gcd(\ldots) \leq 6 \) brackets are missing

14. Page 20,

"Each equation is a Pythagorean triple"… Not in the way that the system is written. I suggest removing the equations involving \(w \) and to replace them by the actual Pythagorean equations Would be nice to say and to show in the graphic that we actually impose \(x < y < z < w \)
\[c^2 + f^2 = e^2 \]
\[b^2 + f^2 = d^2 \]
\[a^2 + c^2 = b^2 \]

is my guess to replace equations with \(w \).

15. Thinking about theorem 5.2 \(W(x^2; 3) = 29 \). I think there is also a \textsc{force-five} argument for values between 4 and 19.

Indeed
\[9 = 4 + 1 + 4. \quad (3^2 = 2^2 + 1^2 + 2^2) \]

Therefore
If we write this sequence to fix ideas
\[X \ X+1 \ X+2 \ X+3 \ X+4 \ X+5 \ X+6 \ X+7 \ X+8 \ X+9 \]
If \(X \) is R and \(X+9 \) is B (Arbitrarily) then \(X+4 \) is G or B and \(X+5=X+9-4 \) is G or R. But \(X+4 \) and \(X+5 \) are different they can’t be both G. There should be \(X+4 \) is B and \(X+5 \) is R and we get the \textsc{force-five}.

SEE MY COMMENT ON ONE-PAGE DOCUMENT forcefive.pdf and forcefive.tex.