
Investigating Optimal Choice of Adversary in Deep Q Learning Using Nim With
Cash

Joshua Twitty supervised by William Gasarch 1

Abstract
The use of computers for two-player zero-sum
games has been a subject of interest since the con-
cept of Artificial Intelligence was first posited,
with early focus being on programs able to play
Chess. Today, many strategies exist for creating
programs for such games. One such method is
framing the problem of playing a game as a rein-
forcement learning problem and then employing
techniques from that field to design a game play-
ing agent. In doing so, the problem of where to
source the training data arises. In the case where
the game in question has a computable optimal
strategy, one could create training data by having
the agent train against an opponent employing
this optimal strategy, though this introduces an
exploitation vs. exploration problem between the
agent learning how to beat a player employing the
optimal strategy and being able to beat players
using diverse strategies. This paper explores the
effects of varying training adversaries in the novel
domain of Nim with Cash on a neural network
player trained using Deep Q Learning.

1. Introduction
1.1. Nim With Cash

Nim With Cash is a variant of the combinatorial game Nim
that was proposed by Gasarch in (Gasarch et al., 2015)

In regular Nim, there is a pile of n stones in the board. Each
player alternates turns by removing a number of stones
(traditionally 1, 2, or 3) stones from the pile. The first player
that is unable to remove a stone due to the number of stones
on the pile being less than the smallest number of stones
they are allowed to move loses. (Another variant of the
game has the player who is forced to take the last stone
losing, but this version of the paper does not discuss this
version.)

If the number of stones the players are allowed to move from
the tile are 1, 2, or 3, there is a known dominant strategy
for this version of Nim for a player who has a turn where

the pile has a number of stones that is 0 ̸≡ mod 4. If the
number of stones in the pile is congruent to m ∈ {1, 2, 3},
then the strategy is to remove m stones. As a consequence,
in a Nim game with optimal players, player 1 wins a game
of Nim if and only if the number of stones in the pile at the
start is not congruent to 0 mod 4.

Nim with Cash is a variant of Nim where each player is
given a finite integer (cash) of stones that they are allowed
to remove over the course of the game. An additional loss
condition is added wherein if a player cannot move due to
lack of cash they will lose. The amount of cash that each
player has need not be symmetric. With enough money
for both players, this game devolves into Nim, and with
very little money the best strategy is to simply remove as
few stones as possible per turn so as to save cash. In the
in-between cases, the strategy becomes more varied. The
function W (N, a, b) representing the winner of a game of
Nim with Cash where player 1 has a cash and player 2 has
b cash can be computed via the following relationship:


1 W (N − a1, b, a− a1) = 2,

W (N − a2, b, a− a2) = 2,

W (N − a3, b, a− a3) = 2

2 O.W.

Where a1, a2, and a3 are integers representing the amount
of stones a player is allowed to take from the pile in a turn.
Using this observation, one can determine the winner of a
game given the current state and also identify what move
the winner needs to take to achieve victory.

1.2. Reinforcement Learning and Deep Q-Learning

Reinforcement Learning is a setting in machine learning
wherein one attempts to teach an autonomous agent to per-
form some task in an environment by utilizing a reward
system that biases it towards rewarding actions and shifts it
away from actions that are unrewarding or penalizing. Rein-
forcement learning is done over an environment referred to
as a Markov Decision Process (MDP), consisting of a set of
states S, a set of actions in each state As, and a transition
function Pa : S × As → S that determines the resulting
state after an action is taken (and can be stochastic), and

Investigating Effects of Adversary Choice in Deep Q Learning

a reward function Ra : S × As → R that determines the
reward that is given for transitioning from a state s to state
s′ given action a.

The function that an agency uses to select an action given
a state is called the policy and is traditionally denoted by
π : S → A (this function need not be deterministic). Re-
inforcement Learning algorithms typically seek to find a
policy that maximizes the total reward across some finite
time horizon, called an episode. For a two-player zero-sum
game like Nim or Nim with Cash, the natural episode is just
a single game. The reward function that we will use will
dispense a reward for each move the player takes- which
will be a reward of 1 if an action results in winning the game,
a -1 if it loses the game, and 0 if the game is not over.

Q-learning is a basic Reinforcement Learning algorithm that
functions by approximating the state-action value function
Q : S ×As → R. The Q function is defined as

Q(s, a) = R(s, a) + γ max
a∈As′

Q(s′, a)

where s′ is the state that is landed in after executing action
a at state s (if this could result in different states due to the
environment being stochastic, then this becomes an expec-
tation over all of those states) and γ ∈ [0, 1] is known as a
discounting factor that constrains the function to focusing
on more immediate rewards. Intuitively, the recursively-
defined Q(s, a) can be thought of as the expected reward
if one chooses action a in state s plus the (discounted) ex-
pected reward if one picks the action that results in the
highest future rewards from the state that action lands the
agent in. With access to the Q function, one could maxi-
mize the reward over an episode by following a policy that
greedily selecting the action that maximizes the Q value at
the given state.

In some environments, the actual value of Q for each state-
action pair can be computed using dynamic programming.
In larger environments, it becomes more practical to com-
pute an approximation of the Q function. The best known
algorithm for doing so is named Q-learning. Q-learning
approximates the function Q by storing an approximation of
it as a lookup table using a representation of the current state
and the action in question as the key and the current approx-
imation of Q for that state-action pair as a value. Initially,
this table might be initialized with all zeroes, but by simu-
lating an episode in the environment and observing rewards,
the values in this table can be updated via the equation

Q∗
new(s, a) = Q∗

old(s, a) + α(r + γ max
a∈As

Q∗(s′, a))

where Q∗ is the table’s current estimation of the Q value
and α ∈ [0, 1] is the learning rate, a hyperparameter that
controls how much the agent’s evaluation of action choice
in a given state should change based off the observations

from simulating one episode. Intuitively, a high learning
rate makes the network learn faster but be more unstable
due to changing its value evaluations heavily based off little
data, while a lower learning rate makes the agent learn a
policy more slowly, requiring more training, but potentially
landing on a better policy due to improved stability.

When training an agent using Q-learning, the agent learns
through exploring the environment. As such, the agent re-
quires a policy to use as it explores during training. It is
desirable to have an agent that learns every iteration of train-
ing and iterates on past successes, but also one that tries out
new strategies that may prove to be more effective than the
ones it has already found success with. This introduces a
conflict between exploring the environment and finding new
strategies and exploiting strategies that are already known
to be good. This is known as the Exploration/Exploitation
trade-off. In order to handle this trade-off, the policy that is
typically used during training for Q-learning is the ϵ-greedy
policy. Parameterized by ϵ ∈ [0, 1], this policy allows the
balances exploration and exploitation during training. De-
noting the ϵ-greedy policy as πϵ, it is defined as follows:

πϵ(s) =

{
maxa∈As Q

∗(s, a) Pr(1− ϵ)

Uniformly at random select action Pr(ϵ)

Where Q∗ is the current approximation of Q at any particu-
lar step of training. ϵ can be understood as a hyperparameter
that controls how often the agent explores during training
versus choosing actions it knows to be good, with a high
value of ϵ causing the agent to select more actions randomly
and thus explore more, and a lower value biasing the agent
towards actions it has already found to be good.

Deep Q-learning simply replaces the lookup table in Q-
learning (which can get very big) with a neural network
that can approximate Q instead. These neural networks can
take in a representation of the state in the form of an array
or tensor and then output an array the size of the number
of actions available, with the iith entry in the output array
representing the approximation of the Q value for the ith
action. The network is trained using backpropagation using
the disparity between observed Q value of a state and the
network’s prediction of those rewards from each state as the
loss. While in this case we could compute the true value of
Q using a lookup table, in this experiment we are interested
in the algorithm’s ability to compute the Q through playing
the game and the effects on changing the opponent it trains
against. To this end, the target value of Q(s, a) is

r + max
a∈As′

Q∗(s′, a)

where Q∗ is the network’s current prediction of Q and r is
the reward the agent received from the environment upon

Investigating Effects of Adversary Choice in Deep Q Learning

picking action a in state s. Empirically it has been observed
that using the network’s own prediction of Q for the loss
creates instability in training due to the function it is meant
to learn changing every iteration, so in this paper a sepa-
rate network called the target network is used for Q∗. The
network representing the agent’s policy is then referred to
as the policy network. The target network has the same
parameters as the policy network did some number of steps
ago, making the function the network is meant to predict
slightly more stationary. After training is over, the agent
makes decisions by taking the state as an input to the neural
network, then choosing the action with the highest predicted
Q-value in the output array.

1.3. Nim with Cash as an MDP

A two-player zero-sum game can be cast as an MDP by
creating an opponent and having the agent play the role of
the player playing against that opponent. The state space
is the state of the game, the action space is the set of legal
moves in a space, the transition function can be simulated
by having the agent take the action it selected, having the
opponent take its turn afterwards, and then returning the
resulting state. As discussed before, the reward function can
simply return a 1 for moves resulting in winning states and
a -1 for moves resulting in losing states.

One choice that can be made during the training process
for Q-learning in such a game is how to source the training
data. As stated in the earlier section on the game, it is
possible to create a player that chooses the dominant strategy
whenever one is available using dynamic programming. One
possible way of producing training data for the agent is
simply having it play against the perfect player to generate
the data. However, depending on the goals of the agent,
this can potentially be another source of an exploitation
vs. exploration trade-off. If one’s goal is to create a player
that performs generally performs well against a variety of
players, then there are game states that it may not see and
create a value estimation for if it trains exclusively against
a deterministic player that picks the most optimal option at
each game state.

One possible solution for this problem is to borrow the
epsilon-greedy approach used for the agent’s training policy.
That is, the opponent will take their regular action with prob-
ability 1−ϵ and a random one with probability ϵ. Doing this
could expose the agent to more game states and makes the
environment it is learning stochastic, making the agent more
able to cope with opponents employing various strategies.
However, this also introduces yet another hyperparameter-
the choice of ϵ for the adversary. The primary goal of this
paper is to investigate the effects of the choice of ϵ when
this strategy is employed in the Nim with Cash domain.

2. Methodology
This experiment uses a two-layer, feedforward neural net-
work implemented using the Pytorch library. The input state
is a one-dimensional tensor of size 3 representing the game
state containing the number of stones in the pile, the agent’s
cash, and opponent’s cash respectively. The agent is then
trained using the Q-learning strategy described earlier in the
paper. The parameters used during training were:

α = 0.1

γ = 0.9

of training epochs = 5000

For the value of ϵ, a decaying value of ϵ(t) = 0.3+(0.7)e
t

200

was chosen in order to have the agent start off prioritizing ex-
ploration at the beginning of training and gradually switches
over to exploitation of known strategy as training proceeds.

The network was then trained against players equipped with
a lookup table for the optimal action that follow a variant of
the ϵ-greedy policy similar to the one described earlier:{

Take optimal action Pr = 1− ϵ

Take random action Pr = ϵ

The value of ϵ for these players was varied by incre-
ments of .20, with one agent trained per value. Trained
agents were then evaluated by how well they performed
against players following the strategy above for ϵ ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

Because the results of training were affected heavily by
randomness, several trials were conducted for each game
the network learned to play.

As a test to whether the observed results generalized to other
variants of Nim, the network was also trained in the same
fashion in the player 1 position of Nim with 101 stones.
After a few lackluster trials with the same architecture as
the Nim with Cash network, however, the architecture for
the network was thinned down to 30 neurons in the hidden
layer instead of 100.

3. Results
The results of the experiments can be viewed in the Ap-
pendix.

4. Discussion
In general, this environment appears to be an unstable one
for deep Q-learning and it is possibly for a training session
to result in a policy that performs worse than random, or
not much better than random (i.e. performance against a

Investigating Effects of Adversary Choice in Deep Q Learning

random player 50%). When this did not happen, the policy
the player converges to seems to defend on the value of
epsilon.

When the policy converged to a better-than-random value
when trained on an adversary with lower values of epsilon,
the agent was unable to perform very well against the agent
it trained against but could perform very well against op-
ponents with higher values of epsilon. This makes sense
intuitively, as higher values of epsilon result in a less optimal
opponent and should thus be easier. When choosing a higher
value of epsilon the effect where the agent would perform
better on downstream opponents is less pronounced, but
one can observe the agent performing worse against players
with lower values of epsilon. In general, it seems like a few
wins against adversaries with lower ϵ values leads to better
performance than winning against adversaries with higher
values of ϵ.

No agent was able to beat the perfect player in either in-
stance of Nim with Cash. For the (100,55,55) game this is
because player 2 has a dominant strategy in this instance.
For the (100,60,55) instance, I presume this is just because
the only policy which can do this is the optimal policy and
this was difficult for the algorithm to converge to.

As can be seen in Table 7, the algorithm seems to perform
worse on regular Nim than Nim with Cash- this is possibly
due to the state space being much simpler (one-pile Nim’s
state is just the number of stones on the pile) and thus having
less information for a neural network to work with. The
training never seemed to converge to anything better than
random.

5. Conclusion
In the Nim with Cash domain, the quality of an agent trained
using this strategy appears to be deeply sensitive to the
choice of ϵ for the adversary. In particular, adversaries with
lower values of epsilon produced agents that could defeat
values of higher epsilon (provided that the training did not
fail to converge). In the case of using Q-learning in this
domain, it appears that higher difficulty adversaries make
better training partners in general.

The Nim with Cash domain is difficult for an agent to learn
the optimal policy of using Q-learning, but it appears from
the results of these experiments that one can get a Q-learning
agent to perform better than random. The biggest issue Q-
learning faces in this domain is failing to converge, which it
seemed to do fairly often.

There are several future research directions that can continue
off this paper- include using more sophisticated reinforce-
ment learning algorithms, such as Actor-Critic methods.
Another direction would be performing this experiment and

looking at long-term data for how often training fails to
converge (i.e. maintains about or less than 50% win rate
against the fully random player) against each adversary.
This experiment didn’t collect such data, but it would ex-
pand conclusions about which adversary is best to train on if
there were some adversaries training was statistically more
likely to converge against. One could also check to see if
one can utilize techniques not used here, such as Experience
Replay (which is often talked about in Deep Q Learning
related literature and tutorials) to improve the likelihood of
training converging. Finally, one could also look at other
variants of Nim such as multi-pile Nim, multi-pile Nim with
Cash, or variants of Nim with different action spaces (e.g.
single-pile with removing 1, 3, or 5 stones instead of 1,2,
or 3 or multi-pile where each pile has a different number
of stones you can remove). One could check to see if the
patterns observed here carry over to these other games.

Investigating Effects of Adversary Choice in Deep Q Learning

References
Gasarch, W., Purtilo, J., and Ulrich, D. Nim with cash, 2015.

URL https://arxiv.org/abs/1511.04035.

6. Appendix

ϵ 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 41.5 92.0 99.9 100.0 100.0
0.2 0.0 0.3 5.5 21.3 38.0 51.2
0.4 0.0 0.0 0.0 0.0 0.0 0.9
0.6 0.0 0.0 0.0 0.0 0.0 0.7
0.8 0.0 0.0 0.0 0.0 0.0 0.4
1.0 0.0 36.2 94.5 99.9 100.0 100.0

Table 1. (100,55,55) Trial 1. The y-axis is the value of ϵ for the
adversary the agent trained against, while the x-axis is the value of
ϵ for the adversary fought against post-training. The numbers in
the cells represent the win% of the agent after 1000 games against
that opponent.

ϵ 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 36.1 93.4 100.0 100.0 100.0
0.2 0.0 33.7 95.0 100.0 100.0 100.0
0.4 0.0 0.0 1.0 13.4 35.7 53.9
0.6 0.0 0.0 1.3 14.4 37.8 54.3
0.8 0.0 23.5 45.2 82.8 96.3 99.9
1.0 0.0 0.1 6.5 21.6 35.8 49.7

Table 2. (100,55,55) Trial 2

ϵ 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 36.9 94.6 100.0 100.0 100.0
0.2 0.0 10.1 20.8 29.5 44.4 55.3
0.4 0.0 34.4 87.9 99.9 100.0 100.0
0.6 0.0 0.4 9.1 23.4 31.8 41.4
0.8 0.1 34.2 93.5 100.0 100.0 100.0
1.0 0.0 35.6 94.9 99.9 100.0 100.0

Table 3. (100,55,55) Trial 3

Investigating Effects of Adversary Choice in Deep Q Learning

ϵ 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 0.2 3.1 16.2 31.0 38.8
0.2 0.0 1.7 10.1 25.8 30.9 37.6
0.4 0.0 39.7 92.5 99.8 100.0 100.0
0.6 0.1 0.6 14.6 31.7 40.2 53.4
0.8 0.1 12.2 70.3 98.5 100.0 100.0
1.0 0.1 26.4 89.1 99.6 100.0 100.0

Table 4. (100,60,55) Trial 1

ϵ 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 1.9 10.4 21.7 32.2 49.3
0.2 0.0 0.0 0.1 0.3 4.5 16.6
0.4 0.0 1.8 17.1 31.4 44.2 53.2
0.6 0.1 4.8 16.0 25.8 37.7 66.9
0.8 0.0 1.3 15.9 31.8 39.7 52.8
1.0 0.0 35.6 93.8 99.9 100.0 100.0

Table 5. (100,60,55) Trial 2.

ϵ 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 6.8 14.5 28.9 40.8 53.2
0.2 0.0 1.7 15.9 30.4 40.7 53.2
0.4 0.0 0.0 0.0 0.6 3.9 17.9
0.6 0.0 2.0 16.3 28.4 38.8 57.7
0.8 0.0 3.0 16.1 25.0 39.1 53.7
1.0 0.0 30.7 36.4 63.3 91.1 99.7

Table 6. (100,60,55) Trial 3.

ϵ 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 16.3 31.9 43.8 53.9 66.7
0.2 0.0 11.0 19.5 26.4 35.8 43.5
0.4 0.0 9.1 23.6 33.3 44.2 52.2
0.6 0.0 7.9 17.7 27.3 31.0 35.9
0.8 0.0 10.7 18.2 27.3 30.6 37.2
1.0 0.0 9.5 17.7 27.5 33.6 39.0

Table 7. Regular Nim(101)

