$$f(m,3)$$
 to $f(m,9)$

Kenneth Tan

July 03, 2018

Muffins divided into pieces

Students get shares

FC thm:

$$f(m,s) \le \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}$$

We get our upper bounds in one of three ways:

- 1. From the FC thm with the min part and the upper bound is not $\frac{1}{3}$. This is most of our cases so we do not comment on it.
- 2. From the FC thm with upper bound from the $\frac{1}{3}$. We call these $\frac{1}{3}$ -exceptions (There is only one case where the min part equals $\frac{1}{3}$, thats f(4,3).) In this case the procedures we give below are not optimal so we give another one.
- 3. Using a technique that is not FC. These are called **exceptions**. We note them and state what techniques do give the upper bound and give the procedure. There should be a reason our formulas do not work (e.g., they involve giving someone -1 muffins).

1 f(m,3)

$1.1 \quad f(3k+1,3)$

$$f(3k+1,3) = \frac{3k-1}{6k}$$
 for $k \ge 1$:

- 1. 2k muffins divided $(\frac{3k-1}{6k}, \frac{3k+1}{6k})$
- 2. k+1 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 3. Give 1 student $\left[2k : \frac{3k+1}{6k}\right]$
- 4. Give 2 students $\left[k:\frac{3k-1}{6k}\right]$ and $\left[k+1:\frac{1}{2}\right]$

$1.2 \quad f(3k+2,3)$

$$f(3k+2,3) = \frac{3k+2}{6k+6}$$
 for $k \ge 1$:

- 1. 2k + 2 muffins divided $(\frac{3k+2}{6k+6}, \frac{3k+4}{6k+6})$
- 2. k muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 3. Give 1 student $[2k + 2 : \frac{3k+2}{6k+6}]$
- 4. Give 2 students $[k+1:\frac{3k+4}{6k+6}]$ and $[k:\frac{1}{2}]$

2 f(m,4)

$2.1 \quad f(4k+1,4)$

$$f(4k+1,4) = \frac{4k-1}{8k}$$
 for $k \ge 1$:

- 1. 4k muffins divided $(\frac{4k-1}{8k}, \frac{4k+1}{8k})$
- 2. 1 muffin divided $(\frac{1}{2}, \frac{1}{2})$
- 3. Give 2 students 2k shares of size $\frac{4k+1}{8k}$
- 4. Give 2 students 1 share of size $\frac{1}{2}$ and 2k shares of size $\frac{4k-1}{8k}$

$2.2 \quad f(4k+3,4)$

$$f(4k+3,4) = \frac{4k+1}{8k+4}$$
 for $k \ge 1$:

- 1. 4k + 2 muffins divided $(\frac{4k+1}{8k+4}, \frac{4k+3}{8k+4})$
- 2. 1 muffin divided $(\frac{1}{2}, \frac{1}{2})$
- 3. Give 2 students 2k + 1 shares of size $\frac{4k+3}{8k+4}$
- 4. Give 2 students 2k+1 shares of size $\frac{4k+1}{8k+4}$ and 1 share of size $\frac{1}{2}$

3 f(m,5)

$3.1 \quad f(5k+1,5)$

$$f(5k+1,5) = \frac{5k+1}{10k+5}$$
 for $k \ge 1, k \ne 2$:

If $k \equiv 0 \pmod{3}$:

- 1. 4k+2 muffins divided $(\frac{5k+1}{10k+5},\frac{5k+4}{10k+5})$
- 2. 2 muffins divided $(\frac{5k+2}{10k+5}, \frac{5k+3}{10k+5})$
- 3. k-3 muffins UNDIVIDED
- 4. Give 2 students $[2k+1: \frac{5k+1}{10k+5}]$
- 5. Give 2 students $\left[\frac{4k+3}{3}:\frac{5k+4}{10k+5}\right]$ and $\left[1:\frac{5k+2}{10k+5}\right]$ and $\left[\frac{k-3}{3}:1\right]$
- 6. Give 1 student $\left[\frac{4k}{3}:\frac{5k+4}{10k+5}\right]$ and $\left[2:\frac{5k+3}{10k+5}\right]$ and $\left[\frac{k-3}{3}:1\right]$

If $k \equiv 1 \pmod{3}$:

- 1. 4k + 2 muffins divided $\left[\frac{5k+1}{10k+5}, \frac{5k+4}{10k+5}\right]$
- 2. k-1 muffins UNDIVIDED
- 3. Give 2 students $[2k+1:\frac{5k+1}{10k+5}]$
- 4. Give 3 students $\left[\frac{4k+2}{3}:\frac{5k+4}{10k+5}\right]$ and $\left[\frac{k-1}{3}:1\right]$

If $k \equiv 2 \pmod{3}$ and $k \neq 2$:

- 1. 4k + 2 muffins divided $\left[\frac{5k+1}{10k+5}, \frac{5k+4}{10k+5}\right]$
- 2. 2 muffins divided $\left[\frac{5k+2}{10k+5}, \frac{5k+3}{10k+5}\right]$
- 3. k-3 muffins UNDIVIDED
- 4. Give 2 students $[2k+1:\frac{5k+1}{10k+5}]$
- 5. Give 2 students $\left[\frac{4k+1}{3}:\frac{5k+4}{10k+5}\right]$ and $\left[1:\frac{5k+3}{10k+5}\right]$ and $\left[\frac{k-2}{3}:1\right]$
- 6. Give 1 student $\left[\frac{4k+4}{3}:\frac{5k+4}{10k+5}\right]$ and $\left[2:\frac{5k+2}{10k+5}\right]$ and $\left[\frac{k-5}{3}:1\right]$ (Since $k\equiv 2\pmod 3$), $k=2,5,8,\ldots$ When k=2 step 6 involves -3 shares which is impossible.)

EXCEPTION: $f(11,5) = \frac{13}{30}$. Upper bound by HALF,INT,MID

- 1. 8 muffins divided $\left[\frac{13}{30}, \frac{17}{30}\right]$
- 2. 2 muffins divided $\left[\frac{14}{30}, \frac{16}{30}\right]$
- 3. 1 muffins divided $\left[\frac{15}{30}, \frac{15}{30}\right]$
- 4. Give 2 students $\left[\frac{14}{30}, \frac{13}{30}, \frac{13}{30}, \frac{13}{30}\right]$
- 5. Give 2 students $\left[\frac{15}{30}, \frac{17}{30}, \frac{17}{30}, \frac{17}{30}\right]$
- 6. Give 1 students $\left[\frac{16}{30}, \frac{16}{30}, \frac{17}{30}, \frac{17}{30}\right]$

$3.2 \quad f(5k+2,5)$

$$f(5k+2,5) = \frac{5k-2}{10k}$$
 for $k \ge 2$:

If k is odd and $k \geq 2$:

- 1. 2k muffins divided $\left(\frac{5k+2}{10k}, \frac{5k-2}{10k}\right)$
- 2. 2 muffins divided $(\frac{5k-1}{10k}, \frac{5k+1}{10k})$
- 3. 3k muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. Give 1 student $\left[2k : \frac{5k+2}{10k}\right]$
- 5. Give 2 students $\left[\frac{k+1}{2}:\frac{5k-2}{10k}\right]$, $\left[1:\frac{5k+1}{10k}\right]$ and $\left[\frac{3k-1}{2}:\frac{1}{2}\right]$
- 6. Give 2 student $\left[\frac{k-1}{2};\frac{5k-2}{10k}\right]$ and $\left[1:\frac{5k-1}{10k}\right]$ and $\left[\frac{3k+1}{2}:\frac{1}{2}\right]$

$\frac{1}{3}$ -EXCEPTION: $f(7,5) = \frac{1}{3}$. Upper bound by HALF, INT, MID

- 1. 3 muffins divided $\left[\frac{5}{15}, \frac{5}{15}, \frac{5}{15}\right]$
- 2. 2 muffins divided $\left[\frac{7}{15}, \frac{8}{15}\right]$
- 3. 2 muffins divided $\left[\frac{6}{15}, \frac{9}{15}\right]$
- 4. Give 2 students $\left[\frac{5}{15}, \frac{5}{15}, \frac{5}{15}, \frac{6}{15}\right]$
- 5. Give 1 students $\left[\frac{5}{15}, \frac{8}{15}, \frac{8}{15}\right]$
- 6. Give 2 students $\left[\frac{5}{15}, \frac{7}{15}, \frac{9}{15}\right]$

If k is even:

- 1. 2k muffins divided $\left(\frac{5k-2}{10k}, \frac{5k+2}{10k}\right)$
- 2. 3k + 2 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 3. Give 1 student $[2k : \frac{5k+2}{10k}]$
- 4. Give 4 students $[\frac{k}{2}:\frac{5k-2}{10k}]$ and $[\frac{3k+2}{2}:\frac{1}{2}]$

$3.3 \quad f(5k+3,5)$

$$f(5k+3,5) = \frac{5k+3}{10k+10}$$
 for $k \ge 1$:

If k is odd:

- 1. 4k + 4 muffins divided $(\frac{5k+3}{10k+10}, \frac{5k+7}{10k+10})$
- 2. k-1 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 3. 1 student gets $[2k+2:\frac{5k+3}{10k+10}]$
- 4. 4 students get $\left[\frac{k+1}{2}:\frac{5k+3}{10k+10}\right]$ and $\left[k+1:\frac{5k+7}{10k+10}\right]$ and $\left[\frac{k-1}{2}:\frac{1}{2}\right]$

If k is even:

- 1. 2k + 2 muffins divided $(\frac{5k+3}{10k+10}, \frac{5k+7}{10k+10})$
- 2. 2 muffins divided $(\frac{5k+4}{10k+10}, \frac{5k+6}{10k+10})$
- 3. 3k-1 muffins divided $(\frac{1}{2},\frac{1}{2})$
- 4. 1 student gets $[2k + 2 : \frac{5k+3}{10k+10}]$
- 5. 2 students get $\left[\frac{k+2}{2}:\frac{5k+7}{10k+10}\right]$ and $\left[1:\frac{5k+4}{10k+10}\right]$ and $\left[\frac{3k-2}{2}:\frac{1}{2}\right]$
- 6. 2 students get $\left[\frac{k}{2}: \frac{5k+7}{10k+10}\right]$ and $\left[1: \frac{5k+6}{10k+10}\right]$ and $\left[\frac{3k}{2}: \frac{1}{2}\right]$

$3.4 \quad f(5k+4,5)$

$$f(5k+4,5) = \frac{5k+1}{10k+5}$$
 for $k \ge 1$:

If $k \equiv 0 \pmod{3}$:

- 1. 4k + 2 muffins divided $(\frac{5k+1}{10k+5}, \frac{5k+4}{10k+5})$
- 2. 2 muffins divided $\left(\frac{5k+2}{10k+5}, \frac{5k+3}{10k+5}\right)$
- 3. k muffins UNDIVIDED
- 4. Give 2 students $[2k+1:\frac{5k+4}{10k+5}]$
- 5. Give 2 students $\left[\frac{4k+3}{3}:\frac{5k+1}{10k+5}\right]$ and $\left[1:\frac{5k+3}{10k+5}\right]$ and $\left[\frac{k}{3}:1\right]$
- 6. Give 1 student $\left[\frac{4k}{3}:\frac{5k+1}{10k+5}\right]$ and $\left[2:\frac{5k+2}{10k+5}\right]$ and $\left[\frac{k}{3}:1\right]$

If $k \equiv 1 \pmod{3}$:

- 1. 4k+2 muffins divided $(\frac{5k+1}{10k+5},\frac{5k+4}{10k+5})$
- 2. k + 2 muffins UNDIVIDED
- 3. Give 2 students $[2k+1: \frac{5k+4}{10k+5}]$
- 4. Give 3 students $\left[\frac{4k+2}{3} : \frac{5k+1}{10k+5}\right]$ and $\left[\frac{k+2}{3} : 1\right]$

If $k \equiv 2 \pmod{3}$:

- 1. 4k + 2 muffins divided $\left(\frac{5k+1}{10k+5}, \frac{5k+4}{10k+5}\right)$
- 2. 2 muffins divided $\left(\frac{5k+2}{10k+5}, \frac{5k+3}{10k+5}\right)$
- 3. k muffins UNDIVIDED
- 4. Give 2 students $\left[2k+1:\frac{5k+4}{10k+5}\right]$
- 5. Give 2 students $\left[\frac{4k+1}{3}:\frac{5k+1}{10k+5}\right]$ and $\left[1:\frac{5k+2}{10k+5}\right]$ and $\left[\frac{k+1}{3}:1\right]$
- 6. Give 1 student $\left[\frac{4k+4}{3}:\frac{5k+1}{10k+5}\right]$ and $\left[2:\frac{5k+3}{10k+5}\right]$ and $\left[\frac{k-2}{3}:1\right]$

4 f(m,6)

$4.1 \quad f(6k+1,6)$

$$f(6k+1,6) = \frac{6k+1}{12k+6}$$
 for $k \neq 1$:

- 1. 4k + 2 muffins divided $(\frac{6k+1}{12k+6}, \frac{6k+5}{12k+6})$
- 2. 2 muffins divided $(\frac{6k+2}{12k+6}, \frac{6k+4}{12k+6})$
- 3. 2k-3 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. Give 2 students $[2k+1:\frac{6k+1}{12k+6}]$
- 5. Give 2 students $[k+1:\frac{6k+5}{12k+6}]$ and $[1:\frac{6k+2}{12k+6}]$ and $[k-2:\frac{1}{2}]$ (If k=1 then this gives a k-2=-1 muffins which is impossible.)
 - 6. Give 2 students $[k:\frac{6k+5}{12k+6}]$ and $[1:\frac{6k+4}{12k+6}]$ and $[k-1:\frac{1}{2}]$

EXCEPTION: $f(7,6) = \frac{1}{3}$. Upper bound by HALF, INT, MID, EBM

- 1. 4 muffins divided $\left[\frac{2}{6}, \frac{2}{6}, \frac{2}{6}\right]$
- 2. 3 muffins divided $\left[\frac{3}{6}, \frac{3}{6}\right]$
- 3. Give 6 students $\left[\frac{3}{6}, \frac{2}{6}, \frac{2}{6}\right]$

$4.2 \quad f(6k+5,6)$

$$f(6k+5,6) = \frac{6k+1}{12k+6}$$
 for $k \ge 1$:

- 1. 4k + 2 muffins divided $(\frac{6k+1}{12k+6}, \frac{6k+5}{12k+6})$
- 2. 2 muffins divided $(\frac{6k+2}{12k+6}, \frac{6k+4}{12k+6})$
- 3. 2k+1 muffins divided $(\frac{1}{2},\frac{1}{2})$
- 4. Give 2 students $[2k+1:\frac{6k+5}{12k+6}]$
- 5. Give 2 students $[k+1:\frac{6k+1}{12k+6}]$ and $[1:\frac{6k+4}{12k+6}]$ and $[k:\frac{1}{2}]$
- 6. Give 2 students $[k:\frac{6k+1}{12k+6}]$ and $[1:\frac{6k+2}{12k+6}]$ and $[k+1:\frac{1}{2}]$

$5 \quad f(m,7)$

5.1 f(7k,7)

Give every student k whole muffins.

$5.2 ext{ } f(7k+1,7)$

$$f(7k+1,7) = \frac{7k+1}{14k+7}$$
 for $k \ge 2$:

If $k \equiv 0 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k 7 muffins UNDIVIDED
- 3. 6 muffins divided $(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7})$
- 4. Give 2 students $[2k+1:\frac{7k+1}{14k+7}]$
- 5. Give 2 students $\left[\frac{4k+5}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-10}{5}:1\right]$ and $\left[3:\frac{7k+3}{14k+7}\right]$
- 6. Give 3 students $\left[\frac{4k}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-5}{5}:1\right]$ and $\left[2:\frac{7k+4}{14k+7}\right]$

If $k \equiv 1 \pmod{5}$ and $k \geq 2$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k 5 muffins UNDIVIDED
- 3. 4 muffins divided $\left(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7}\right)$
- 4. Give 2 students $[2k+1:\frac{7k+1}{14k+7}]$
- 5. Give 4 students $\left[\frac{4k+1}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-3}{5}:1\right]$ and $\left[1:\frac{7k+4}{14k+7}\right]$
- 6. Give 1 student $\left[\frac{4k+6}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-13}{5}:1\right]$ and $\left[4:\frac{7k+3}{14k+7}\right]$ (Since $k\equiv 1\pmod{5},\ k=1,6,11,\ldots$ When k=1 step 6 involves 3k-13=-10, so this is impossible.)

EXCEPTION: $f(8,7) = \frac{5}{14}$. Upper bound by HALF, INT, MID, EBM

- 1. 4 muffins divided $(\frac{5}{14}, \frac{9}{14})$
- 2. 2 muffins divided $(\frac{6}{14}, \frac{8}{14})$
- 3. 2 muffins divided $(\frac{7}{14}, \frac{7}{14})$
- 4. Give 2 students $\left[\frac{5}{14}, \frac{5}{14}, \frac{6}{14}\right]$
- 5. Give 4 students $\left[\frac{7}{14}, \frac{9}{14}\right]$
- 6. Give 1 students $\left[\frac{8}{14}, \frac{8}{14}\right]$

If $k \equiv 2 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k 1 muffins UNDIVIDED
- 3. Give 2 students $[2k+1: \frac{7k+1}{14k+7}]$
- 4. Give 5 students $\left[\frac{4k+2}{5} : \frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-1}{5} : 1\right]$

If $k \equiv 3 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k 5 muffins UNDIVIDED
- 3. 4 muffins divided $\left(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7}\right)$
- 4. Give 2 students $[2k+1:\frac{7k+1}{14k+7}]$
- 5. Give 4 students $\left[\frac{4k+3}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-4}{5}:1\right]$ and $\left[1:\frac{7k+3}{14k+7}\right]$
- 6. Give 1 student $\left[\frac{4k-2}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-9}{5}:1\right]$ and $\left[4:\frac{7k+4}{14k+7}\right]$

If $k \equiv 4 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k 7 muffins UNDIVIDED
- 3. 6 muffins divided $(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7})$
- 4. Give 2 students $[2k+1:\frac{7k+1}{14k+7}]$
- 5. Give 2 students $\left[\frac{4k-1}{5}: \frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-7}{5}: 1\right]$ and $\left[3: \frac{7k+4}{14k+7}\right]$
- 6. Give 3 students $\left[\frac{4k+4}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-7}{5}:1\right]$ and $\left[2:\frac{7k+3}{14k+7}\right]$

5.3 f(7k+2,7)

$$f(7k+2,7) = \frac{7k-2}{14k}$$
 for $k \ge 1$:

If k is odd:

- 1. 6k muffins divided $(\frac{7k-2}{14k}, \frac{7k+2}{14k})$
- 2. 2 muffins divided $(\frac{7k-1}{14k}, \frac{7k+1}{14k})$
- 3. k muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. 3 students get $[2k:\frac{7k+2}{14k}]$
- 5. 2 students get $\left[\frac{3k+1}{2}:\frac{7k-2}{14k}\right]$ and $\left[1:\frac{7k+1}{14k}\right]$ and $\left[\frac{k-1}{2}:\frac{1}{2}\right]$
- 6. 2 students get $\left[\frac{3k-1}{2}:\frac{7k-2}{14k}\right]$ and $\left[1:\frac{7k-1}{14k}\right]$ and $\left[\frac{k+1}{2}:\frac{1}{2}\right]$

If k is even:

- 1. 6k muffins divided $(\frac{7k-2}{14k}, \frac{7k+2}{14k})$
- 2. k+2 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 3. 3 students get $[2k:\frac{7k+2}{14k}]$
- 4. 4 students get $\left[\frac{3k}{2}:\frac{7k-2}{14k}\right]$ and $\left[\frac{k+2}{2}:\frac{1}{2}\right]$

$5.4 \quad f(7k+3,7)$

$$f(7k+3,7) = \frac{7k-3}{14k}$$
 for $k \neq 1$:

If k is odd and $k \neq 1$:

- 1. 2k muffins divided $(\frac{7k-3}{14k}, \frac{7k+3}{14k})$
- 2. 2k muffins divided $(\frac{7k-1}{14k}, \frac{7k+1}{14k})$
- 3. 3k + 3 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. 1 student gets $[2k : \frac{7k+3}{14k}]$
- 5. 2 students get $\left[\frac{k+1}{2}:\frac{7k-3}{14k}\right]$ and $\left[\frac{k+3}{2}:\frac{7k+1}{14k}\right]$ and $\left[k-1:\frac{1}{2}\right]$
- 6. 2 students get $\left[\frac{k-1}{2}:\frac{7k-3}{14k}\right]$ and $\left[\frac{k-3}{2}:\frac{7k+1}{14k}\right]$ and $\left[k+3:\frac{1}{2}\right]$
- 7. 2 students get $[k:\frac{7k-1}{14k}]$ and $[k+1:\frac{1}{2}]$

If k=1 then the above procedure gives $f(10,7) \geq \frac{2}{7}$ which is true but we can do better.

$\frac{1}{3}\text{-EXCEPTION:}\ f(10,7) = \frac{1}{3}\text{.}\ \text{Upper bound by FC, EBM}$

- 1. 4 muffins divided $(\frac{7}{21}, \frac{7}{21}, \frac{7}{21})$
- 2. 3 muffins divided $(\frac{9}{21}, \frac{12}{21})$
- 3. 3 muffins divided $(\frac{10}{21}, \frac{11}{21})$
- 4. Give 3 students $\left[\frac{7}{21}, \frac{7}{21}, \frac{7}{21}, \frac{9}{21}\right]$
- 5. Give 3 students $\left[\frac{7}{21}, \frac{11}{21}, \frac{12}{21}\right]$
- 6. Give 1 students $\left[\frac{10}{21}, \frac{10}{21}, \frac{10}{21}\right]$

If k is even:

1. 2k muffins divided $(\frac{7k-3}{14k}, \frac{7k+3}{14k})$

2. 3k + 3 muffins divided $(\frac{1}{2}, \frac{1}{2})$

3. 2k muffins divided $(\frac{7k-1}{14k}, \frac{7k+1}{14k})$

4. 1 student gets $[2k:\frac{7k+3}{14k}]$

5. 4 students get $\left[\frac{k}{2}:\frac{7k-3}{14k}\right]$ and $\left[k+1:\frac{1}{2}\right]$ and $\left[\frac{k}{2}:\frac{7k+1}{14k}\right]$

6. 2 students get $[k:\frac{7k-1}{14k}]$ and $[k+1:\frac{1}{2}]$

5.5 f(7k+4,7)

$$f(7k+4,7) = \frac{7k+4}{14k+14}$$
 for $k \ge 1$:

If k is odd:

- 1. 2k + 2 muffins divided $(\frac{7k+4}{14k+14}, \frac{7k+10}{14k+14})$
- 2. 3k muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 3. 2k + 2 muffins divided $(\frac{7k+6}{14k+14}, \frac{7k+8}{14k+14})$
- 4. 1 student gets $[2k + 2 : \frac{7k+4}{14k+14}]$
- 5. 4 students get $\left[\frac{k+1}{2}:\frac{7k+10}{14k+14}\right]$ and $\left[k:\frac{1}{2}\right]$ and $\left[\frac{k+1}{2}:\frac{7k+6}{14k+14}\right]$
- 6. 2 students get $[k+1:\frac{7k+8}{14k+14}]$ and $[k:\frac{1}{2}]$

If k is even:

- 1. 2k + 2 muffins divided $(\frac{7k+4}{14k+14}, \frac{7k+10}{14k+14})$
- 2. 2k + 2 muffins divided $(\frac{7k+6}{14k+14}, \frac{7k+8}{14+14})$
- 3. 3k muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. 1 student gets $[2k+2:\frac{7k+4}{14k+14}]$
- 5. 2 students get $\left[\frac{k+2}{2}:\frac{7k+10}{14k+14}\right]$ and $\left[\frac{k+4}{2}:\frac{7k+6}{14k+14}\right]$ and $\left[k-2:\frac{1}{2}\right]$
- 6. 2 students get $\left[\frac{k}{2}:\frac{7k+10}{14k+14}\right]$ and $\left[\frac{k-2}{2}:\frac{7k+6}{14k+14}\right]$ and $\left[k+2:\frac{1}{2}\right]$
- 7. 2 students get $[k+1:\frac{7k+8}{14k+14}]$ and $[k:\frac{1}{2}]$

$5.6 \quad f(7k+5,7)$

$$f(7k+5,7) = \frac{7k+5}{14k+14}$$
 for $k = 1$ and $k \ge 3$:

If k is odd:

- 1. 6k + 6 muffins divided $(\frac{7k+5}{14k+14}, \frac{7k+9}{14k+14})$
- 2. k-1 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 3. 3 students get $[2k+2:\frac{7k+5}{14k+14}]$
- 4. 4 students get $[\frac{3k+3}{2}:\frac{7k+9}{14k+14}]$ and $[\frac{k-1}{2}:\frac{1}{2}]$

If k is even and $k \geq 4$:

- 1. 6k + 6 muffins divided $\left(\frac{7k+5}{14k+14}, \frac{7k+9}{14k+14}\right)$
- 2. 2 muffins divided $\left(\frac{7k+6}{14k+14}, \frac{7k+8}{14k+14}\right)$
- 3. k-3 muffins divided $(\frac{1}{2},\frac{1}{2})$
- 4. 3 students get $[2k+2:\frac{7k+5}{14k+14}]$
- 5. 2 students get $\left[\frac{3k+4}{2}:\frac{7k+9}{14k+14}\right]$ and $\left[1:\frac{7k+6}{14k+14}\right]$ and $\left[\frac{k-4}{2}:\frac{1}{2}\right]$ (Since k is even, $k=2,4,6,\ldots$ When k=2 step 5 involves k-4=-2 shares which is impossible.)
 - 6. 2 students get $\left[\frac{3k+2}{2}:\frac{7k+9}{14k+14}\right]$ and $\left[1:\frac{7k+8}{14k+14}\right]$ and $\left[\frac{k-2}{2}:\frac{1}{2}\right]$

EXCEPTION: $f(19,7) = \frac{25}{56}$. Upper bound by HALF, INT, MID.

- 1. 12 muffins divided $(\frac{25}{56}, \frac{31}{56})$
- 2. 6 muffins divided $(\frac{26}{56}, \frac{30}{56})$
- 3. 1 muffins divided $(\frac{28}{56}, \frac{28}{56})$
- 4. Give 3 students $\left[\frac{25}{56}, \frac{25}{56}, \frac{25}{56}, \frac{25}{56}, \frac{26}{56}\right]$
- 5. Give 2 students $\left[\frac{28}{56}, \frac{31}{56}, \frac{31}{56}, \frac{31}{56}, \frac{31}{56}\right]$

5.7 f(7k+6,7)

$$f(7k+6,7) = \frac{7k+1}{14k+7}$$
 for $k \ge 1$:

If $k \equiv 0 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k 2 muffins UNDIVIDED
- 3. 6 muffins divided $(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7})$
- 4. Give 2 students $[2k+1:\frac{7k+6}{14k+7}]$
- 5. Give 2 students $\left[\frac{4k+5}{5}:\frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k-5}{5}:1\right]$ and $\left[3:\frac{7k+4}{14k+7}\right]$
- 6. Give 3 students $\left[\frac{4k}{5} : \frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k}{5} : 1\right]$ and $\left[2 : \frac{7k+3}{14k+7}\right]$

If $k \equiv 1 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k muffins UNDIVIDED
- 3. 4 muffins divided $(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7})$
- 4. Give 2 students $[2k+1:\frac{7k+6}{14k+7}]$
- 5. Give 4 students $\left[\frac{4k+1}{5}:\frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k+2}{5}:1\right]$ and $\left[1:\frac{7k+3}{14k+7}\right]$
- 6. Give 1 student $\left[\frac{4k+6}{5}:\frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k-8}{5}:1\right]$ and $\left[4:\frac{7k+4}{14k+7}\right]$

If $k \equiv 2 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k + 4 muffins UNDIVIDED
- 3. Give 2 students $[2k+1:\frac{7k+6}{14k+7}]$
- 4. Give 5 students $\left[\frac{4k+2}{5}:\frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k+4}{5}:1\right]$

If $k \equiv 3 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k muffins UNDIVIDED
- 3. 4 muffins divided $\left(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7}\right)$
- 4. Give 2 students $[2k+1:\frac{7k+6}{14k+7}]$
- 5. Give 4 students $\left[\frac{4k+3}{5}:\frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k+1}{5}:1\right]$ and $\left[1:\frac{7k+4}{14k+7}\right]$
- 6. Give 1 student $\left[\frac{4k-2}{5}:\frac{7k+6}{14k+7}\right]$ and $\left[\frac{3k-4}{5}:1\right]$ and $\left[4:\frac{7k+3}{14k+7}\right]$

If $k \equiv 4 \pmod{5}$:

- 1. 4k + 2 muffins divided $(\frac{7k+1}{14k+7}, \frac{7k+6}{14k+7})$
- 2. 3k-2 muffins UNDIVIDED
- 3. 6 muffins divided $(\frac{7k+3}{14k+7}, \frac{7k+4}{14k+7})$
- 4. Give 2 students $[2k+1:\frac{7k+6}{14k+7}]$
- 5. Give 2 students $\left[\frac{4k-1}{5}:\frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k-2}{5}:1\right]$ and $\left[3:\frac{7k+3}{14k+7}\right]$
- 6. Give 3 students $\left[\frac{4k+4}{5}:\frac{7k+1}{14k+7}\right]$ and $\left[\frac{3k-2}{5}:1\right]$ and $\left[2:\frac{7k+4}{14k+7}\right]$

6 f(m,8)

$6.1 \quad f(8k+1,8)$

$$f(8k+1,8) = \frac{8k+1}{16k+8}.$$

- 1. 4k + 2 muffins divided $\left(\frac{8k+1}{16k+8}, \frac{8k+7}{16k+8}\right)$
- 2. 4k 4 muffins divided $(\frac{8k+3}{16k+8}, \frac{8k+5}{16k+8})$
- 3. 3 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. Give 2 students $[2k+1:\frac{8k+1}{16k+8}]$
- 5. Give 4 students $[k-1:\frac{8k+3}{16k+8}]$ and $[k:\frac{8k+7}{16k+8}]$ and $[1:\frac{1}{2}]$
- 6. Give 2 students $[2k-2:\frac{8k+5}{16k+8}]$ and $[1:\frac{8k+7}{16k+8}]$ and $[1:\frac{1}{2}]$

6.2 f(8k+3,8)

$$f(8k+3,8) = \frac{8k-3}{16k}$$
 for $k \neq 1$:

- 1. 4k muffins divided $(\frac{8k-3}{16k}, \frac{8k+3}{16k})$
- 2. 4k 8 muffins divided $(\frac{8k-1}{16k}, \frac{8k+1}{16k})$
- 3. 4 muffins divided $\left(\frac{8k-2}{16k}, \frac{8k+2}{16k}\right)$
- 4. 7 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 5. Give 2 students $[2k : \frac{8k+3}{16k}]$
- 6. Give 4 students $[k:\frac{8k-3}{16k}]$ and $[k-2:\frac{8k+1}{16k}]$ and $[1:\frac{8k+2}{16k}]$ and $[2:\frac{1}{2}]$
- 7. Give 2 students $[2:\frac{8k-2}{16k}]$ and $[2k-4:\frac{8k-1}{16k}]$ and $[3:\frac{1}{2}]$

If k=1 then line 6 says to give a student k-2=-1 shares and Line 7 says to give a student 2k-4=-2 shares. Hence the procedure does not work when k=1. The formula gives the bound $f(11,8)=\frac{5}{16}$. Actually we can do better.

$\frac{1}{3}$ -EXCEPTION: $f(11,8) = \frac{1}{3}$. Upper bound by FC, EBM.

- 1. 2 muffins divided $(\frac{8}{24}, \frac{8}{24} \frac{8}{24})$
- 2. 6 muffins divided $(\frac{11}{24}, \frac{13}{24})$
- 3. 3 muffins divided $(\frac{12}{24}, \frac{12}{24})$
- 4. Give 2 students $\left[\frac{11}{24}, \frac{11}{24}, \frac{11}{24}\right]$
- 5. Give 6 students $\left[\frac{8}{24}, \frac{12}{24}, \frac{11}{24}\right]$

6.3 f(8k+5,8)

$$f(8k+5,8) = \frac{8k+5}{16k+16}$$
 for $k \ge 1$:

- 1. 4k + 4 muffins divided $\left(\frac{8k+5}{16k+16}, \frac{8k+11}{16k+16}\right)$
- 2. 4k 4 muffins divided $(\frac{8k+7}{16k+16}, \frac{8k+9}{16k+16})$
- 3. 4 muffins divided $(\frac{8k+6}{16k+16}, \frac{8k+10}{16k+16})$
- 4. 1 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 5. Give 2 students $[2k+2:\frac{8k+5}{16k+16}]$
- 6. Give 4 students $[k+1:\frac{8k+11}{16k+16}]$ and $[k-1:\frac{8k+7}{16k+16}]$ and $[1:\frac{8k+6}{16k+16}]$
- 7. Give 2 students $[2:\frac{8k+10}{16k+16}]$ and $[2k-2:\frac{8k+9}{16k+16}]$ and $[1:\frac{1}{2}]$

$6.4 \quad f(8k+7,8)$

$$f(8k+7,8) = \frac{8k+1}{16k+8}$$
 for $k \ge 1$:

- 1. 4k + 2 muffins divided $(\frac{8k+1}{16k+8}, \frac{8k+7}{16k+8})$
- 2. 4k-4 muffins divided $(\frac{8k+3}{16k+8}, \frac{8k+5}{16k+8})$
- 3. 9 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. Give 2 students $\left[2k+1:\frac{8k+7}{16k+8}\right]$
- 5. Give 4 students $[k-1:\frac{8k+5}{16k+8}]$ and $[k:\frac{8k+1}{16k+8}]$ and $[3:\frac{1}{2}]$
- 6. Give 2 students $[2k-2:\frac{8k+3}{16k+8}]$ and $[1:\frac{8k+1}{16k+8}]$ and $[3:\frac{1}{2}]$

$7 \quad f(m,9)$

7.1 f(9k+1,9)

$$f(9k+1,9) = \frac{9k+1}{18k+9}$$
 for $k \ge 2$:

If $k \equiv 0 \pmod{7}$:

- 1. 4k+2 muffins divided $(\frac{9k+1}{18k+9},\frac{9k+8}{18k+9})$
- 2. 10 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. 5k 11 muffins UNDIVIDED
- 4. Give 2 students $\left[2k+1:\frac{9k+1}{18k+9}\right]$
- 5. Give 5 students $\left[\frac{4k}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[2:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-7}{7}:1\right]$
- 6. Give 2 students $\left[\frac{4k+7}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[5:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-21}{7}:1\right]$

If $k \equiv 1 \pmod{7}$ and $k \geq 2$:

- 1. 4k + 2 muffins divided $(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9})$
- 2. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. 5k 7 muffins UNDIVIDED
- 4. Give 2 students $[2k+1:\frac{9k+1}{18k+9}]$
- 5. Give 6 students $\left[\frac{4k+3}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-5}{7}:1\right]$
- 6. Give 1 student $\left[\frac{4k-4}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[6:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-19}{7}:1\right]$ Since $k\equiv 1\pmod{7},\ k=1,8,15,\ldots$ If k=1 then step 6 involves 5k-19=-14 shares which is impossible.

EXCEPTION: $f(10,9) = \frac{1}{3}$. Upper bound by INT, EBM, MID.

- 1. 4 muffins divided $(\frac{3}{9}, \frac{3}{9}\frac{3}{9})$
- 2. 6 muffins divided $(\frac{4}{9}, \frac{5}{9})$
- 3. Give 6 students $\left[\frac{3}{9}, \frac{3}{9}, \frac{4}{9}\right]$
- 4. Give 3 students $\left[\frac{5}{9}, \frac{5}{9}\right]$

If $k \equiv 2 \pmod{7}$:

- 1. 4k + 2 muffins divided $\left(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9}\right)$
- 2. 3 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 3. 6 muffins divided $(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9})$
- 4. 5k 10 muffins UNDIVIDED
- 5. Give 2 students $[2k+1:\frac{9k+1}{18k+9}]$
- 6. Give 3 students $\left[\frac{4k+6}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[1:\frac{9k+2}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-10}{7}:1\right]$
- 7. Give 3 students $\left[\frac{4k-1}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[2:\frac{9k+4}{18k+9}\right]$ and $\left[1:\frac{9k+7}{18k+9}\right]$ and $\left[\frac{5k-10}{7}:1\right]$
- 8. Give 1 student $\left[\frac{4k-1}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[3:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-10}{7}:1\right]$

If $k \equiv 3 \pmod{7}$:

- 1. 4k + 2 muffins divided $(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9})$
- 2. 5k 1 muffins UNDIVIDED
- 3. Give 2 students $[2k+1: \frac{9k+1}{18k+9}]$
- 4. Give 7 students $\left[\frac{4k+2}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[\frac{5k-1}{7}:1\right]$

If $k \equiv 4 \pmod{7}$:

- 1. 4k + 2 muffins divided $\left(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9}\right)$
- 2. 3 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 3. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 4. 5k 10 muffins UNDIVIDED
- 5. Give 2 students $[2k+1:\frac{9k+1}{18k+9}]$
- 6. Give 3 students $\left[\frac{4k-2}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[1:\frac{9k+7}{18k+9}\right]$ and $\left[\frac{5k-6}{7}:1\right]$
- 7. Give 3 students $\left[\frac{4k+5}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[1:\frac{9k+2}{18k+9}\right]$ and $\left[2:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-13}{7}:1\right]$
- 8. Give 1 student $\left[\frac{4k+5}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[3:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-13}{7}:1\right]$

If $k \equiv 5 \pmod{7}$:

- 1. 4k + 2 muffins divided $\left(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9}\right)$
- 2. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. 5k 7 muffins UNDIVIDED
- 4. Give 2 students $[2k+1:\frac{9k+1}{18k+9}]$
- 5. Give 6 students $\left[\frac{4k+1}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-4}{7}:1\right]$
- 6. Give 1 student $\left[\frac{4k+8}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[6:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-25}{7}:1\right]$

If $k \equiv 6 \pmod{7}$:

- 1. 4k + 2 muffins divided $\left(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9}\right)$
- 2. 10 muffins divided $(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9})$
- 3. 5k 11 muffins UNDIVIDED
- 4. Give 2 students $[2k + 1 : \frac{9k+1}{18k+9}]$
- 5. Give 5 students $\left[\frac{4k+4}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[2:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-9}{7}:1\right]$
- 6. Give 2 students $\left[\frac{4k-3}{7}:\frac{9k+8}{18k+9}\right]$ and $\left[5:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-16}{7}:1\right]$

7.2 f(9k+2,9)

$$f(9k+2,9) = \frac{9k+2}{18k+9}$$
 for $k \le 1, 3, 4, 5$

If $k \equiv 0 \pmod{5}$ and $k \neq 5$:

- 1. 8k + 4 muffins divided $\left(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9}\right)$
- 2. 4 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. k-6 muffins UNDIVIDED
- 4. Give 4 students $\left[2k+1:\frac{9k+2}{18k+9}\right]$
- 5. Give 4 students $\left[\frac{8k+5}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{k-5}{5}:1\right]$
- 6. Give 1 student $\left[\frac{8k}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[4:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k-10}{5}:1\right]$ (Since $k\equiv 0\pmod 5$), $k=5,10,\ldots$ When k=5 this step involves k-10=-5 shares which is impossible.)

EXCEPTION: $f(47,9) = \frac{37}{78}$. Upper Bound by INT.

- 1. 40 muffins divided $(\frac{111}{234}, \frac{123}{234})$
- 2. 4 muffins divided $(\frac{112}{234}, \frac{122}{234})$
- 3. 2 muffins divided $(\frac{115}{234}, \frac{119}{234})$
- 3. 1 muffins divided $(\frac{117}{234}, \frac{117}{234})$
- 4. Give 4 students $[10:\frac{111}{234} || 1:\frac{112}{234}]$
- 5. Give 2 students $\left[\frac{117}{234}, \frac{122}{234}, \frac{122}{234}, \mid\mid 7: \frac{123}{234}\right]$
- 6. Give 1 students $[\frac{119}{234}, \frac{129}{234}, \ || \ 8 : \frac{123}{234}]$
- 7. Give 2 students $\left[\frac{115}{234}, \mid\mid 9:\frac{123}{234}\right]$

If $k \equiv 1 \pmod{5}$ and $k \neq 1$:

- 1. 8k + 4 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 2. 2 muffins divided $(\frac{9k+3}{18k+9}, \frac{9k+6}{18k+9})$
- 3. 2 muffins divided $(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9})$
- 4. k-6 muffins UNDIVIDED
- 5. Give 4 students $[2k+1:\frac{9k+2}{18k+9}]$
- 6. Give 2 students $\left[\frac{8k+7}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[1:\frac{9k+3}{18k+9}\right]$ and $\left[\frac{k-6}{5}:1\right]$
- 7. Give 2 students $\left[\frac{8k+2}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[1:\frac{9k+6}{18k+9}\right]$ and $\left[\frac{k-6}{5}:1\right]$
- 8. Give 1 student $\left[\frac{8k+2}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[2:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k-6}{5}:1\right]$ (Since $k\equiv 1\pmod 5$), $k=1,6,11,\ldots$ If k=1 then the steps 7 and 8 involve k-6=-5 pieces which is impossible.)

EXCEPTION: $f(11,9) = \frac{13}{36}$. Upper Bound by INT, EBM, MID.

- 1. 4 muffins divided $(\frac{13}{36}, \frac{23}{36})$
- 2. 2 muffins divided $(\frac{14}{36}, \frac{22}{36})$
- 3. 4 muffins divided $(\frac{15}{36}, \frac{21}{36})$
- 3. 1 muffins divided $(\frac{18}{36}, \frac{18}{36})$
- 4. Give 2 students $\left[\frac{13}{36}, \frac{13}{36}, \frac{18}{36}\right]$
- 5. Give 2 students $\left[\frac{14}{36}, \frac{15}{36}, \frac{15}{36}\right]$
- 6. Give 1 students $\left[\frac{21}{36}, \frac{23}{36}\right]$
- 7. Give 4 students $\left[\frac{22}{36}, \frac{22}{36}\right]$

If $k \equiv 2 \pmod{5}$:

- 1. 8k + 4 muffins divided $\left(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9}\right)$
- 2. k-2 muffins UNDIVIDED
- 3. Give 4 students $\left[2k+1:\frac{9k+2}{18k+9}\right]$
- 4. Give 5 students $\left[\frac{8k+4}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[\frac{k-2}{5}:1\right]$

If $k \equiv 3 \pmod{5}$ and $k \neq 3$:

- 1. 8k + 4 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 2. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. k-8 muffins UNDIVIDED
- 4. Give 4 students $[2k+1:\frac{9k+2}{18k+9}]$
- 5. Give 3 students $\left[\frac{8k+6}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[2:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{k-8}{5}:1\right]$
- 6. Give 2 students $\left[\frac{8k+1}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[3:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k-8}{5}:1\right]$

EXCEPTION: $f(29,9) = \frac{41}{90}$. Upper Bound by HALF, INT, MID.

- 1. 22 muffins divided $(\frac{41}{90}, \frac{49}{90})$
- 2. 3 muffins divided $(\frac{42}{90}, \frac{48}{90})$
- 3. 3 muffins divided $(\frac{44}{90}, \frac{46}{90})$
- 3. 1 muffins divided $(\frac{45}{90}, \frac{45}{90})$
- 4. Give 1 students $\left[\frac{41}{90}, \frac{41}{90}, \frac{41}{90}, \frac{41}{90}, \frac{41}{90}, \frac{41}{90}, \frac{41}{90}, \frac{44}{90}\right]$
- 5. Give 1 students $\left[\frac{41}{90}, \frac{41}{90}, \frac{41}{90}, \frac{41}{90}, \frac{42}{90}, \frac{42}{90}, \frac{42}{90}\right]$
- 6. Give 2 students $\left[\frac{45}{90}, \frac{49}{90}, \frac{49}{90}, \frac{49}{90}, \frac{49}{90}, \frac{49}{90}\right]$
- 7. Give 2 students $\left[\frac{46}{90}, \frac{48}{90}, \frac{49}{90}, \frac{49}{90}, \frac{49}{90}, \frac{49}{90}\right]$

If $k \equiv 4 \pmod{5}$ and $k \neq 4$:

- 1. 8k + 4 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 2. 1 muffin divided $(\frac{9k+3}{18k+9}, \frac{9k+6}{18k+9})$
- 3. 3 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 4. k-6 muffins UNDIVIDED
- 5. Give 4 students $[2k+1:\frac{9k+2}{18k+9}]$
- 6. Give 3 students $\left[\frac{8k+3}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k-4}{5}:1\right]$
- 7. Give 1 student $\left[\frac{8k+3}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[2:\frac{9k+4}{18k+9}\right]$ and $\left[1:\frac{9k+6}{18k+9}\right]$ and $\left[\frac{k-9}{5}:1\right]$
- 8. Give 1 student $\left[\frac{8k+8}{5}:\frac{9k+7}{18k+9}\right]$ and $\left[1:\frac{9k+3}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{k-9}{5}:1\right]$ (When k=4 steps 7 and 8 involve -5 shares which is impossible.)

EXCEPTION: $f(38,9) = \frac{59}{126}$. Upper Bound by HALF, INT.

- 1. 32 muffins divided $(\frac{59}{126}, \frac{67}{126})$
- 2. 4 muffins divided $(\frac{60}{126}, \frac{66}{126})$
- 3. 2 muffins divided $(\frac{63}{126}, \frac{63}{126})$
- 4. Give 4 students $\left[\frac{60}{126}, \mid\mid 8:\frac{59}{126}\right]$
- 5. Give 4 students $\left[\frac{63}{126}, \mid\mid 7:\frac{67}{126}\right]$
- 6. Give 1 students $[4:\frac{66}{126} || 4:\frac{67}{126}]$

7.3 f(9k+4,9)

$$f(9k+4,9) = \frac{9k-4}{18k}$$
 for $k \neq 1$:

If k is odd and $k \neq 1$:

- 1. 2k muffins divided $\left(\frac{9k-4}{18k}, \frac{9k+4}{18k}\right)$
- 2. 4k muffins divided $\left(\frac{9k-1}{18k}, \frac{9k+1}{18k}\right)$
- 3. 3k + 4 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. 1 student gets $[2k : \frac{9k+4}{18k}]$
- 5. 2 students get $\left[\frac{k+1}{2}:\frac{9k-4}{18k}\right]$ and $\left[k+2:\frac{9k+1}{18k}\right]$ and $\left[\frac{k-3}{2}:\frac{1}{2}\right]$
- 6. 2 students get $\left[\frac{k-1}{2}:\frac{9k-4}{18k}\right]$ and $\left[k-2:\frac{9k+1}{18k}\right]$ and $\left[\frac{k+7}{2}:\frac{1}{2}\right]$ (When k=1 step 6 involves -1 shares which is impossible.)
 - 7. 4 students get $[k:\frac{9k-1}{18k}]$ and $[k+1:\frac{1}{2}]$

$\frac{1}{3}$ -EXCEPTION: $f(13,9) = \frac{1}{3}$. Upper bound by FC, EBM.

- 1. 7 muffins divided $(\frac{3}{9}, \frac{3}{9} \frac{3}{9})$
- 2. 6 muffins divided $(\frac{4}{9}, \frac{5}{9})$
- 3. Give 6 students $\left[\frac{3}{9}, \frac{3}{9}, \frac{3}{9}, \frac{4}{9}\right]$
- 4. Give 3 students $\left[\frac{3}{9}, \frac{5}{9}, \frac{5}{9}\right]$

If k is even:

- 1. 2k muffins divided $(\frac{9k-4}{18k}, \frac{9k+4}{18k})$
- 2. 4k muffins divided $(\frac{9k-1}{18k}, \frac{9k+1}{18k})$
- 3. 3k + 4 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. 1 student gets $\left[2k:\frac{9k+4}{18k}\right]$
- 5. 4 students get $\left[\frac{k}{2}:\frac{9k-4}{18k}\right]$ and $\left[k:\frac{9k+1}{18k}\right]$ and $\left[\frac{k+2}{2}:\frac{1}{2}\right]$
- 6. 4 students get $\left[k:\frac{9k-1}{18k}\right]$ and $\left[k+1:\frac{1}{2}\right]$

7.4 f(9k+5,9)

$$f(9k+5,9) = \frac{9k+5}{18k+18}$$
 for $k \ge 1$:

If k is odd:

- 1. 2k + 2 muffins divided $(\frac{9k+5}{18k+18}, \frac{9k+13}{18k+18})$
- 2. 4k + 4 muffins divided $(\frac{9k+8}{18k+18}, \frac{9k+10}{18k+18})$
- 3. 3k-1 muffins divided $(\frac{1}{2},\frac{1}{2})$
- 4. 1 student gets $[2k+2:\frac{9k+5}{18k+18}]$
- 5. 4 students get $\left[\frac{k+1}{2}:\frac{9k+13}{18k+18}\right]$ and $\left[k+1:\frac{9k+8}{18k+18}\right]$ and $\left[\frac{k-1}{2}:\frac{1}{2}\right]$
- 6. 4 students get $[k+1:\frac{9k+10}{18k+18}]$ and $[k:\frac{1}{2}]$

If k is even:

- 1. 2k + 2 muffins divided $(\frac{9k+5}{18k+18}, \frac{9k+13}{18k+18})$
- 2. 4 muffins divided $(\frac{9k+7}{18k+18}, \frac{9k+11}{18k+18})$
- 3. 4k 4 muffins divided $(\frac{9k+8}{18k+18}, \frac{9k+10}{18k+18})$
- 4. 3k + 3 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 5. 1 student gets $[2k+2:\frac{9k+5}{18k+18}]$
- 6. 2 students get $\left[\frac{k+2}{2}:\frac{9k+13}{18k+18}\right]$ and $\left[2:\frac{9k+7}{18k+18}\right]$ and $\left[k-1:\frac{9k+8}{18k+18}\right]$ and $\left[\frac{k-2}{2}:\frac{1}{2}\right]$
 - 7. 2 students get $\left[\frac{k}{2}:\frac{9k+13}{18k+18}\right]$ and $\left[k-1:\frac{9k+8}{18k+18}\right]$ and $\left[\frac{k+4}{2}:\frac{1}{2}\right]$
 - 8. 4 students get $[k-1:\frac{9k+10}{18k+18}]$ and $[1:\frac{9k+11}{18k+18}]$ and $[k+1:\frac{1}{2}]$

7.5 f(9k+7,9)

$$f(9k+7,9) = \frac{9k+2}{18k+9}$$
 for $k \ge 1$:

If $k \equiv 0 \pmod{5}$:

- 1. 8k + 4 muffins divided $\left(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9}\right)$
- 2. 4 muffins divided $(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9})$
- 3. k-1 muffins UNDIVIDED
- 4. Give 4 students $[2k+1:\frac{9k+7}{18k+9}]$
- 5. Give 4 students $\left[\frac{8k+5}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k}{5}:1\right]$
- 6. Give 1 student $\left[\frac{8k}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[4:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{k-5}{5}:1\right]$

If $k \equiv 1 \pmod{5}$:

- 1. 8k + 4 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 2. 2 muffins divided $\left(\frac{9k+3}{18k+9}, \frac{9k+6}{18k+9}\right)$
- 3. 2 muffins divided $(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9})$
- 4. k-1 muffins UNDIVIDED
- 5. Give 4 students $[2k+1:\frac{9k+7}{18k+9}]$
- 6. Give 2 students $\left[\frac{8k+7}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[1:\frac{9k+6}{18k+9}\right]$ and $\left[\frac{k-1}{5}:1\right]$
- 7. Give 2 students $\left[\frac{8k+2}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[1:\frac{9k+3}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k-1}{5}:1\right]$
- 8. Give 1 student $\left[\frac{8k+2}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[2:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{k-1}{5}:1\right]$

If $k \equiv 2 \pmod{5}$:

- 1. 8k + 4 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 2. k + 3 muffins UNDIVIDED
- 3. Give 4 students $[2k+1: \frac{9k+7}{18k+9}]$
- 4. Give 5 students $\left[\frac{8k+4}{5} : \frac{9k+2}{18k+9}\right]$ and $\left[\frac{k+3}{5} : 1\right]$

If $k \equiv 3 \pmod{5}$:

- 1. 8k + 4 muffins divided $\left(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9}\right)$
- 2. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. k-3 muffins UNDIVIDED
- 4. Give 4 students $[2k+1:\frac{9k+7}{18k+9}]$
- 5. Give 3 students $\left[\frac{8k+6}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[2:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k-3}{5}:1\right]$
- 6. Give 2 students $\left[\frac{8k+1}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[3:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{k-3}{5}:1\right]$

If $k \equiv 4 \pmod{5}$:

- 1. 8k + 4 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 2. 1 muffins divided $(\frac{9k+3}{18k+9}, \frac{9k+6}{18k+9})$
- 3. 3 muffins divided $(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9})$
- 4. k-1 muffins UNDIVIDED
- 5. Give 4 students $[2k+1:\frac{9k+7}{18k+9}]$
- 6. Give 3 students $\left[\frac{8k+3}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{k+1}{5}:1\right]$
- 7. Give 1 student $\left[\frac{8k+3}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[1:\frac{9k+3}{18k+9}\right]$ and $\left[2:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{k-4}{5}:1\right]$
- 8. Give 1 student $\left[\frac{8k+8}{5}:\frac{9k+2}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[1:\frac{9k+6}{18k+9}\right]$ and $\left[\frac{k-4}{5}:1\right]$

7.6 f(9k+8,9)

$$f(9k+8,9) = \frac{9k+1}{18k+9}$$
 for $k \ge 2$:

If $k \equiv 0 \pmod{7}$:

- 1. 4k + 2 muffins divided $(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9})$
- 2. 10 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. 5k 4 muffins UNDIVIDED
- 4. Give 2 students $[2k + 1 : \frac{9k+8}{18k+9}]$
- 5. Give 5 students $\left[\frac{4k}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[2:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k}{7}:1\right]$
- 6. Give 2 students $\left[\frac{4k+7}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[5:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-14}{7}:1\right]$

If $k \equiv 1 \pmod{7}$ and $k \geq 2$:

- 1. 4k + 2 muffins divided $(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9})$
- 2. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. 5k muffins UNDIVIDED
- 4. Give 2 students $[2k+1:\frac{9k+8}{18k+9}]$
- 5. Give 6 students $\left[\frac{4k+3}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k+2}{7}:1\right]$
- 6. Give 1 student $\left[\frac{4k-4}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[6:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-12}{7}:1\right]$

If $k \equiv 2 \pmod{7}$:

- 1. 4k + 2 muffins divided $\left(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9}\right)$
- 2. 3 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 3. 6 muffins divided $(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9})$
- 4. 5k 3 muffins UNDIVIDED
- 5. Give 2 students $[2k+1:\frac{9k+8}{18k+9}]$
- 6. Give 3 students $\left[\frac{4k+6}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[1:\frac{9k+7}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-3}{7}:1\right]$
- 7. Give 3 students $\left[\frac{4k-1}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[2:\frac{9k+5}{18k+9}\right]$ and $\left[1:\frac{9k+2}{18k+9}\right]$ and $\left[\frac{5k-3}{7}:1\right]$
- 8. Give 1 student $\left[\frac{4k-1}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[3:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-3}{7}:1\right]$

If $k \equiv 3 \pmod{7}$:

- 1. 4k+2 muffins divided $(\frac{9k+1}{18k+9},\frac{9k+8}{18k+9})$
- 2. 5k + 6 muffins UNDIVIDED
- 3. Give 2 students $[2k + 1 : \frac{9k+8}{18k+9}]$
- 4. Give 7 students $\left[\frac{4k+2}{7} : \frac{9k+1}{18k+9}\right]$ and $\left[\frac{5k+6}{7} : 1\right]$

If $k \equiv 4 \pmod{7}$:

- 1. 4k + 2 muffins divided $\left(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9}\right)$
- 2. 3 muffins divided $(\frac{9k+2}{18k+9}, \frac{9k+7}{18k+9})$
- 3. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 4. 5k 3 muffins UNDIVIDED
- 5. Give 2 students $[2k+1:\frac{9k+8}{18k+9}]$
- 6. Give 3 students $\left[\frac{4k-2}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[1:\frac{9k+5}{18k+9}\right]$ and $\left[1:\frac{9k+2}{18k+9}\right]$ and $\left[\frac{5k+1}{7}:1\right]$
- 7. Give 3 students $\left[\frac{4k+5}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[1:\frac{9k+7}{18k+9}\right]$ and $\left[2:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-6}{7}:1\right]$
- 8. Give 1 student $\left[\frac{4k+5}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[3:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-6}{7}:1\right]$

If $k \equiv 5 \pmod{7}$:

- 1. 4k + 2 muffins divided $(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9})$
- 2. 6 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. 5k muffins UNDIVIDED
- 4. Give 2 students $[2k+1:\frac{9k+8}{18k+9}]$
- 5. Give 6 students $\left[\frac{4k+1}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[1:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k+3}{7}:1\right]$
- 6. Give 1 student $\left[\frac{4k+8}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[6:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-18}{7}:1\right]$

If $k \equiv 6 \pmod{7}$:

- 1. 4k + 2 muffins divided $\left(\frac{9k+1}{18k+9}, \frac{9k+8}{18k+9}\right)$
- 2. 10 muffins divided $\left(\frac{9k+4}{18k+9}, \frac{9k+5}{18k+9}\right)$
- 3. 5k-4 muffins UNDIVIDED
- 4. Give 2 students $[2k + 1 : \frac{9k+8}{18k+9}]$
- 5. Give 5 students $\left[\frac{4k+4}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[2:\frac{9k+5}{18k+9}\right]$ and $\left[\frac{5k-2}{7}:1\right]$
- 6. Give 2 students $\left[\frac{4k-3}{7}:\frac{9k+1}{18k+9}\right]$ and $\left[5:\frac{9k+4}{18k+9}\right]$ and $\left[\frac{5k-9}{7}:1\right]$

8 f(m,10)

$8.1 \quad f(10k,10)$

Give every student k whole muffins.

8.2 f(10k+1,10)

$$f(10k+1,10) = \frac{10k+1}{20k+10}$$
 for $k \ge 2$:

- 1. 4k + 2 muffins divided $(\frac{10k+1}{20k+10}, \frac{10k+9}{20k+10})$
- 2. 4k-4 muffins divided $(\frac{10k+3}{20k+10}, \frac{10k+7}{20k+10})$
- 3. 4 muffins divided $(\frac{10k+4}{20k+10}, \frac{10k+6}{20k+10})$
- 4. 2k-1 muffins divided $(\frac{1}{2},\frac{1}{2})$
- 5. Give 2 students $[2k+1:\frac{10k+1}{20k+10}]$
- 6. Give 4 students $[k:\frac{10k+9}{20k+10}]$ and $[k-1:\frac{10k+3}{20k+10}]$ and $[1:\frac{10k+4}{20k+10}]$
- 7. Give 2 students $[1:\frac{10k+9}{20k+10}]$ and $[1:\frac{10k+6}{20k+10}]$ and $[k-2:\frac{10k+7}{20k+10}]$ and $[k:\frac{1}{2}]$
- 8. Give 2 students $\left[1:\frac{10k+6}{20k+10}\right]$ and $\left[k:\frac{10k+7}{20k+10}\right]$ and $\left[k-1:\frac{1}{2}\right]$

EXCEPTION: $f(11, 10) = \frac{7}{20}$. Upper Bound by INT, EBM,MID.

- 1. 4 muffins divided $(\frac{7}{20}, \frac{13}{20})$
- 2. 2 muffins divided $(\frac{8}{20}, \frac{12}{20})$
- 3. 4 muffins divided $(\frac{11}{20}, \frac{11}{20})$
- 4. 1 muffins divided $(\frac{10}{20}, \frac{10}{20})$
- 5. Give 2 students $\left[2:\frac{7}{20},\ ||\ \frac{8}{20}\right]$
- 6. Give 4 students $\left[\frac{9}{20}, \frac{13}{20}\right]$
- 7. Give 2 students $\left[\frac{10}{20}, \frac{12}{20}\right]$
- 8. Give 2 students $\left[\frac{11}{20}, \frac{11}{20}\right]$

8.3 f(10k+3,10)

$$f(10k + 3, 10) = \frac{10k-3}{20k}$$
 for $k \ge 2$:

8.4 f(10k+7,10)

$$f(10k+7,10) = \frac{10k+7}{20k+20}$$
 for $k \ge 2$:

8.5 f(10k+9,10)

$$f(10k+9,10) = \frac{10k+1}{20k+10}$$
 for $k \ge 2$:

- 1. 4k+2 muffins divided $(\frac{10k+1}{20k+10}, \frac{10k+9}{20k+10})$
- 2. 4k 4 muffins divided $(\frac{10k+3}{20k+10}, \frac{10k+7}{20k+10})$
- 3. 4 muffins divided $(\frac{10k+4}{20k+10}, \frac{10k+6}{20k+10})$
- 4. 2k + 7 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 5. Give 2 students $[2k+1:\frac{10k+9}{20k+10}]$
- 6. Give 4 students $[k:\frac{10k+1}{20k+10}]$ and $[k-1:\frac{10k+7}{20k+10}]$ and $[1:\frac{10k+6}{20k+10}]$ and $[2:\frac{1}{2}]$
- 7. Give 2 students $[1:\frac{10k+1}{20k+10}]$ and $[1:\frac{10k+4}{20k+10}]$ and $[k-2:\frac{10k+3}{20k+10}]$ and $[k+2:\frac{1}{2}]$
- 8. Give 2 students $[1:\frac{10k+4}{20k+10}]$ and $[k:\frac{10k+3}{20k+10}]$ and $[k+1:\frac{1}{2}]$

9 f(m,11)

9.1 f(11k,11)

Give every student k whole muffins.

- 9.2 f(11k+1,11)
- 9.3 f(11k+2,11)
- 9.4 f(11k+3,11)
- 9.5 f(11k+4,11)
- $9.6 \quad f(11k+5,11)$

$$f(11k+5,11) = \frac{11k-5}{22k}$$
 for $k \ge 2$:

If k is odd and $k \geq 2$:

- 1. 2k muffins divided $\left(\frac{11k-5}{18k}, \frac{11k+5}{18k}\right)$
- 2. 6k 12 muffins divided $(\frac{11k-1}{22k}, \frac{11k+1}{22k})$
- 3. 6 muffins divided $(\frac{11k-2}{22k}, \frac{11k+2}{22k})$
- 4. 3k + 11 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 5. 1 student gets $[2k : \frac{11k+5}{22k}]$
- 6. 2 students get $\left[\frac{k+1}{2}:\frac{11k-5}{22k}\right]$ and $\left[\frac{3k-7}{2}:\frac{11k+1}{22k}\right]$ and $\left[3:\frac{11k+2}{22k}\right]$ and $\left[1:\frac{1}{2}\right]$
- 7. 2 students get $\left[\frac{k-1}{2}:\frac{11k-5}{22k}\right]$ and $\left[\frac{3k-5}{2}:\frac{11k+1}{22k}\right]$ and $\left[4:\frac{1}{2}\right]$
- 8. 6 students get $[1:\frac{11k-2}{22k}]$ and $[k-2:\frac{11k-1}{22k}]$ and $[k+2:\frac{1}{2}]$

If k is even:

- 1. 2k muffins divided $(\frac{11k-5}{22k}, \frac{11k+5}{22k})$
- 2. 6k muffins divided $(\frac{11k-1}{22k}, \frac{11k+1}{22k})$
- 3. 3k + 5 muffins divided $(\frac{1}{2}, \frac{1}{2})$
- 4. 1 student gets $[2k : \frac{11k+5}{22k}]$
- 5. 4 students get $\left[\frac{k}{2}:\frac{11k-5}{22k}\right]$ and $\left[\frac{3k}{2}:\frac{11k+1}{22k}\right]$ and $\left[1:\frac{1}{2}\right]$
- 6. 6 students get $[k:\frac{11k-1}{22k}]$ and $[k+1:\frac{1}{2}]$

$9.7 \quad f(11k+6,11)$

$$f(11k+6,11) = \frac{11k+6}{22k+22}$$
:

If k is odd:

$$9.8 \quad f(11k+7,11)$$

9.10 f(11k+9,11)

$$f(11k+9,11) = \frac{11k+2}{22k+11}$$
:

If $k \equiv 0 \pmod{7}$:

- 1. 8k + 4 muffins divided $(\frac{11k+2}{22k+9}, \frac{11k+9}{22k+11})$
- 2. 12 muffins divided $(\frac{11k+5}{22k+11}, \frac{11k+6}{22k+11})$
- 3. 3k 7 muffins UNDIVIDED
- 4. Give 4 students $[2k+1:\frac{11k+9}{22k+11}]$
- 5. Give 4 students $\left[\frac{8k+7}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[3:\frac{11k+6}{22k+11}\right]$ and $\left[\frac{3k-7}{7}:1\right]$
- 6. Give 3 students $\left[\frac{8k}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[4:\frac{11k+5}{22k+11}\right]$ and $\left[\frac{3k-7}{7}:1\right]$

If
$$k \equiv 1 \pmod{7}$$
:

If $k \equiv 2 \pmod{7}$:

- 1. 8k + 4 muffins divided $(\frac{11k+2}{22k+11}, \frac{11k+9}{22k+11})$
- 2. 2 muffins divided $(\frac{11k+4}{22k+11}, \frac{11k+7}{22k+11})$
- 3. 4 muffins divided $(\frac{11k+5}{22k+11}, \frac{11k+6}{22k+11})$
- 4. 3k 1 muffins UNDIVIDED
- 5. Give 4 students $[2k+1:\frac{11k+9}{22k+11}]$
- 6. Give 4 students $\left[\frac{8k+5}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[1:\frac{11k+6}{22k+11}\right]$ and $\left[\frac{3k+1}{7}:1\right]$
- 7. Give 2 students $\left[\frac{8k+5}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[2:\frac{11k+5}{22k+11}\right]$ and $\left[1:\frac{11k+7}{22k+11}\right]$ and

$\left[\frac{3k-6}{7}:1\right]$

8. Give 1 student $\left[\frac{8k-2}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[2:\frac{11k+4}{22k+11}\right]$ and $\left[\frac{3k+1}{7}:1\right]$

If $k \equiv 3 \pmod{7}$:

- 1. 8k + 4 muffins divided $(\frac{11k+2}{22k+11}, \frac{11k+9}{22k+11})$
- 2. 3k + 5 muffins UNDIVIDED
- 3. Give 4 students $[2k+1: \frac{11k+9}{22k+11}]$
- 4. Give 7 students $\left[\frac{8k+4}{7} : \frac{11k+2}{22k+11}\right]$ and $\left[\frac{3k+5}{7} : 1\right]$

If $k \equiv 4 \pmod{7}$:

- 1. 8k + 4 muffins divided $(\frac{11k+2}{22k+9}, \frac{11k+9}{22k+11})$
- 2. 2 muffins divided $(\frac{11k+4}{22k+11}, \frac{11k+7}{22k+11})$
- 3. 4 muffins divided $\left(\frac{11k+5}{22k+11}, \frac{11k+6}{22k+11}\right)$
- 4. 3k 1 muffins UNDIVIDED
- 5. Give 4 students $[2k+1:\frac{11k+9}{22k+11}]$
- 6. Give 4 students $\left[\frac{8k+3}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[1:\frac{11k+5}{22k+11}\right]$ and $\left[\frac{3k+2}{7}:1\right]$
- 7. Give 2 students $\left[\frac{8k+3}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[1:\frac{11k+4}{22k+11}\right]$ and $\left[2:\frac{11k+6}{22k+11}\right]$ and $\left[\frac{3k-5}{7}:1\right]$
 - 8. Give 1 student $\left[\frac{8k+10}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[2:\frac{11k+7}{22k+11}\right]$ and $\left[\frac{3k-5}{7}:1\right]$

If $k \equiv 5 \pmod{7}$:

- 1. 8k + 4 muffins divided $(\frac{11k+2}{22k+9}, \frac{11k+9}{22k+11})$
- 2. 2 muffins divided $(\frac{11k+3}{22k+11}, \frac{11k+8}{22k+11})$
- 3. 6 muffins divided $(\frac{11k+5}{22k+11}, \frac{11k+6}{22k+11})$
- 4. 3k 3 muffins UNDIVIDED
- 5. Give 4 students $[2k+1:\frac{11k+9}{22k+11}]$
- 6. Give 3 students $\left[\frac{8k+2}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[2:\frac{11k+5}{22k+11}\right]$ and $\left[\frac{3k-1}{7}:1\right]$

- 7. Give 2 students $\left[\frac{8k+2}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[1:\frac{11k+3}{22k+11}\right]$ and $\left[3:\frac{11k+6}{22k+11}\right]$ and $\left[\frac{3k-8}{7}:1\right]$
 - 8. Give 2 student $\left[\frac{8k+9}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[1:\frac{11k+8}{22k+11}\right]$ and $\left[\frac{3k-1}{7}:1\right]$

If $k \equiv 6 \pmod{7}$:

- 1. 8k + 4 muffins divided $(\frac{11k+2}{22k+9}, \frac{11k+9}{22k+11})$
- 2. 12 muffins divided $(\frac{11k+5}{22k+11}, \frac{11k+6}{22k+11})$
- 3. 3k 7 muffins UNDIVIDED
- 4. Give 4 students $[2k+1:\frac{11k+9}{22k+11}]$
- 5. Give 4 students $\left[\frac{8k-6}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[3:\frac{11k+5}{22k+11}\right]$ and $\left[\frac{3k-4}{7}:1\right]$
- 6. Give 3 students $\left[\frac{8k+1}{7}:\frac{11k+2}{22k+11}\right]$ and $\left[4:\frac{11k+6}{22k+11}\right]$ and $\left[\frac{3k-11}{7}:1\right]$