The Muffin Problem

Guangi Cui - Montgomery Blair HS
John Dickerson - University of MD
Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD
Erik Metz - University of MD
Jacob Prinz - University of MD
Naveen Raman - Richard Montgomery HS
Daniel Smolyak - University of MD
Sung Hyun Yoo - Bergen County Academies (in NJ)
How it Began

A Recreational Math Conference
(Gathering for Gardner)
May 2016

I found a pamphlet:
The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles
Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?
Five Muffins, Three Students, Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{1}{3}$
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

YES WE CAN!
Five Muffins, Three People–Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{5}{12}$
Can We Do Better?

The smallest piece in the above solution is \(\frac{5}{12} \).

Is there a procedure with a larger smallest piece?
Can We Do Better?

The smallest piece in the above solution is \(\frac{5}{12} \).

Is there a procedure with a larger smallest piece?

NO WE CAN’T!
There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.

(*Henceforth:* All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$.

(*Henceforth:* All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: Someone gets ≥ 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}$$

Great to see $\frac{5}{12}$
$f(m, s)$ be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide m muffins among s students so that everyone gets $\frac{m}{s}$.

We have shown $f(5, 3) = \frac{5}{12}$ here.

We have shown $f(m, s)$ exists, is rational, and is computable using a Mixed Int Program (in paper).
Amazing Results! / Amazing Theorems!

1. \(f(43, 33) = \frac{91}{264} \).
2. \(f(52, 11) = \frac{83}{176} \).
3. \(f(35, 13) = \frac{64}{143} \).

All done by hand, no use of a computer by Co-author Erik Metz is a muffin savant!

Have General Theorems from which upper bounds follow. Have General Procedures from which lower bounds follow.
Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?
Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?

$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$
2. Divide 1 muffin $[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]$
3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
4. Give 1 student $(\frac{6}{20}, \frac{6}{20})$
$f(3, 5) \geq \frac{1}{5}$.

Can we get $f(3, 5) > \frac{1}{5}$?

$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$

2. Divide 1 muffin $[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]$

3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$

4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

Can we do better?
Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?

$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 student $\left(\frac{6}{20}, \frac{6}{20}\right)$

Can we do better?

NO
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \([\frac{5}{12}, \frac{7}{12}]\)
2. Divide 1 muffin \([\frac{6}{12}, \frac{6}{12}]\)
3. Give 2 students \((\frac{6}{12}, \frac{7}{12}, \frac{7}{12})\)
4. Give 1 students \((\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})\)
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \(\left[\frac{5}{12}, \frac{7}{12} \right] \)
2. Divide 1 muffin \(\left[\frac{6}{12}, \frac{6}{12} \right] \)
3. Give 2 students \(\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12} \right) \)
4. Give 1 students \(\left(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12} \right) \)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \(\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20} \right] \)
2. Divide 1 muffin \(\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20} \right] \)
3. Give 4 students \(\left(\frac{5}{20}, \frac{7}{20} \right) \)
4. Give 1 students \(\left(\frac{6}{20}, \frac{6}{20} \right) \)
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \([\frac{5}{12}, \frac{7}{12}]\)
2. Divide 1 muffin \([\frac{6}{12}, \frac{6}{12}]\)
3. Give 2 students \((\frac{6}{12}, \frac{7}{12}, \frac{7}{12})\)
4. Give 1 student \((\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})\)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \([\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]\)
2. Divide 1 muffin \([\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]\)
3. Give 4 students \((\frac{5}{20}, \frac{7}{20})\)
4. Give 1 student \((\frac{6}{20}, \frac{6}{20})\)

\[f(3, 5) \text{ proc is } f(5, 3) \text{ proc but swap Divide/Give and mult by } 3/5. \]
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \[\left[\frac{5}{12}, \frac{7}{12} \right] \]
2. Divide 1 muffin \[\left[\frac{6}{12}, \frac{6}{12} \right] \]
3. Give 2 students \(\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12} \right) \)
4. Give 1 students \(\left(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12} \right) \)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \[\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20} \right] \]
2. Divide 1 muffin \[\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20} \right] \]
3. Give 4 students \(\left(\frac{5}{20}, \frac{7}{20} \right) \)
4. Give 1 students \(\left(\frac{6}{20}, \frac{6}{20} \right) \)

\[f(3, 5) \text{ proc is } f(5, 3) \text{ proc but swap Divide/Give and mult by } \frac{3}{5}. \]

Theorem: \[f(m, s) = \frac{m}{s} f(s, m). \]
Floor-Ceiling Thm (FC Thm) Generalizes $f(5, 3) \leq \frac{5}{12}$

$$f(m, s) \leq FC(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Someone gets $\left\lfloor \frac{2m}{s} \right\rfloor$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

Someone gets $\left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\geq \frac{m}{s} \left\lfloor \frac{1}{2m/s} \right\rfloor = \frac{m}{s \lfloor 2m/s \rfloor}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s \lceil 2m/s \rceil}$.
THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

\[f(1, 3) = \frac{1}{3} \]

\[f(3k, 3) = 1. \]

\[f(3k + 1, 3) = \frac{3k-1}{6k}, \quad k \geq 1. \]

\[f(3k + 2, 3) = \frac{3k+2}{6k+6}. \]

Note: A Mod 3 Pattern.

Theorem: For all \(m \geq 3 \), \(f(m, 3) = FC(m, 3) \).
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

\[f(4k, 4) = 1 \text{ (easy)} \]
\[f(1, 4) = \frac{1}{4} \text{ (easy)} \]
\[f(4k + 1, 4) = \frac{4k-1}{8k}, \ k \geq 1. \]
\[f(4k + 2, 4) = \frac{1}{2}. \]
\[f(4k + 3, 4) = \frac{4k+1}{8k+4}. \]

Note: A Mod 4 Pattern.

Theorem: For all \(m \geq 4 \), \(f(m, 4) = FC(m, 4) \).

FC-Conjecture: For all \(m, s \) with \(m \geq s \), \(f(m, s) = FC(m, s) \).
CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For \(k \geq 1 \), \(f(5k, 5) = 1 \).

For \(k = 1 \) and \(k \geq 3 \), \(f(5k + 1, 5) = \frac{5k+1}{10k+5} \cdot f(11, 5) \)?

For \(k \geq 2 \), \(f(5k + 2, 5) = \frac{5k-2}{10k} \). \(f(7, 5) = FC(7, 5) = \frac{1}{3} \)

For \(k \geq 1 \), \(f(5k + 3, 5) = \frac{5k+3}{10k+10} \)

For \(k \geq 1 \), \(f(5k + 4, 5) = \frac{5k+1}{10k+5} \)

Note: A Mod 5 Pattern.

Theorem: For all \(m \geq 5 \) except \(m=11 \), \(f(m, 5) = FC(m, 5) \).
What About FIVE students, ELEVEN muffins?

1. We have a procedure which shows \(f(11, 5) \geq \frac{13}{30} \).

2. \(f(11, 5) \leq \max\{\frac{1}{3}, \min\{\frac{11}{5\lceil 22/5 \rceil}, 1 - \frac{11}{5\lfloor 22/5 \rfloor}\}\} = \frac{11}{25} \).

So
\[
\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff= 0.006666...}
\]

If \(f(5, 11) < \frac{11}{25} \) then FC-conjecture is false!
1. We have a procedure which shows $f(11, 5) \geq \frac{13}{30}$.
2. $f(11, 5) \leq \max\{\frac{1}{3}, \min\{\frac{11}{5\lceil 22/5 \rceil}, 1 - \frac{11}{5\lfloor 22/5 \rfloor}\}\} = \frac{11}{25}$.

So

$$\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666\ldots$$

If $f(5, 11) < \frac{11}{25}$ then FC-conjecture is false!

WE SHOW: $f(11, 5) = \frac{13}{30}$
There is a procedure for 11 muffins, 5 students where each student gets \(\frac{11}{5} \) muffins, smallest piece \(N \). We want \(N \leq \frac{13}{30} \).

Case 0: Some muffin is uncut. Cut it \(\left(\frac{1}{2}, \frac{1}{2} \right) \) and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into \(\geq 3 \) pieces. \(N \leq \frac{1}{3} < \frac{13}{30} \).

(\textbf{Negation of Case 0 and Case 1:} All muffins cut into 2 pieces.)
\(f(11, 5) = \frac{13}{30}, \) Easy Case Based on Students

Case 2: Some student gets \(\geq 6 \) pieces.

\[
N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.
\]

Case 3: Some student gets \(\leq 3 \) pieces.

One of the pieces is

\[
\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.
\]

Look at the muffin it came from to find a piece that is

\[
\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.
\]

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)
Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- s_4 is number of students who get 4 pieces
- s_5 is number of students who get 5 pieces

\[
4s_4 + 5s_5 = 22 \\
\quad \quad \quad s_4 + s_5 = 5
\]

$s_4 = 3$: There are 3 students who have 4 shares.
$s_5 = 2$: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share. We call a share that goes to a person who gets 5 shares a 5-share.
Case 4.1: is $\leq \frac{1}{2}$. Then there is a piece

$$\geq \frac{(11/5) - (1/2)}{3} = \frac{17}{30}.$$

The other piece from the muffin is

$$\leq 1 - \frac{17}{30} = \frac{13}{30} \quad \text{Great to see } \frac{13}{30}.$$

Case 4.2: All 4-shares are $> \frac{1}{2}$. So there are $4s_4 = 12$ 4-shares. There are ≥ 12 pieces $> \frac{1}{2}$. Can’t occur.
1. Every muffin cut into two pieces.
2. Find L such that some students get either L or $L + 1$ pieces.
3. Find how many students get $L (L + 1)$ pieces.
4. Find intervals that these pieces must be in.
5. Find how many pieces are in an interval
6. Get a contradiction out of this.

Note: Can turn Interval Theorem into a function INT such that $f(m, s) \leq INT(m, s)$.
FC Conjecture Still Sort of True

FC Conj: For all $m \geq s$, $f(m, s) = FC(m, s)$. FALSE

Theorem: For fixed s, for $m \geq \frac{s^3+2s^2+s}{2}$ $f(m, s) = FC(m, s)$.

Statistics: For $3 \leq s \leq 50$, $s + 1 \leq m \leq 59$:

- $f(m, s) = FC(m, s)$ in 683 cases
- $f(m, s) = INT(m, s)$ in 194 cases

Still 108 cases left. Need new technique!
The Buddy-Match Method! (BM)

Can FC and INT do everything?
No.
They are very good when $\frac{2m}{s} > 3$ but NOT so good otherwise.
We do a concrete example of The Buddy-Match Method

$$f(43, 39) \leq \frac{53}{156}$$

(We have matching lower bound also)

Definition: Assume we have a protocol where all students get 2 or 3 shares. If x is a 2-share then the other share that student has is the shares match. Note that $M(x) = \frac{m}{s} - x$.

Warning: We will apply M to intervals. These intervals have to have only 2-shares in them! But they will!
Theorem \(f(43, 39) \leq \frac{53}{156} \) (≥ also known).
Assume there is an \((43, 39)\)-procedure with smallest piece > \(\frac{53}{156} \).
Can assume all muffins cut in 2 pieces, all students get ≥ 2 shares.

Case 1: A student gets ≥ 4 shares. Some share ≤ \(\frac{43}{39 \times 4} < \frac{53}{156} \).

Case 2: A student gets ≤ 1 shares. Can’t occur.

Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The total number of shares is 86.
How Many Students get Two Shares? Three Shares?

Let s_2 (s_3) be the number of 2-students (3-students).

$$2s_2 + 3s_3 = 86$$
$$s_2 + s_3 = 39$$

Get $s_2 = 31$ and $s_3 = 8$

Case 3.1, 3.2, 3.3, 3.4:

(\exists) 3-share $\geq \frac{66}{156}$. Rm. Now 2-shares $\geq \frac{43}{39} - \frac{66}{156} = \frac{53}{78}$.

So some share $\leq \frac{53}{156}$.

By similar reasoning (Case 3.2, 3.3, 3.4) we have:

\[
\begin{pmatrix}
\frac{53}{156} & 24 & 3\text{-shs} & \frac{66}{156} & 0 & \text{shs} & \frac{69}{156} & 62 & 2\text{-shs} & \frac{103}{156}
\end{pmatrix}
\]
The Buddy-Match Method

\[
(\begin{array}{c}
53 \\
66 \\
69 \\
103 \\
\end{array}
\begin{array}{c}
156 \\
156 \\
156 \\
156 \\
\end{array}
\begin{array}{c}
24 \text{ 3-shs} \\
0 \text{ shs} \\
62 \text{ 2-shs} \\
- \\
\end{array}
\) \]

\[|\left(\frac{53}{156}, \frac{69}{156}\right)| = 24\]

\[|B\left(\frac{53}{156}, \frac{69}{156}\right)| = |\frac{87}{156}, \frac{103}{156}| = 24\]

\[|M\left(\frac{87}{156}, \frac{103}{156}\right)| = |\frac{69}{156}, \frac{85}{156}| = 24\]

\[|\left(\frac{53}{156}, \frac{69}{156}\right) \cup \left(\frac{69}{156}, \frac{85}{156}\right) \cup \left(\frac{87}{156}, \frac{103}{156}\right)| = 24 \times 3 = 72\]

\[|\left(\frac{85}{156}, \frac{87}{156}\right)| = 86 - 72 = 14.\]
More Buddy-Match Method

\[|(\frac{85}{156}, \frac{87}{156})| = 14. \text{ Buddy-Match yields } |(\frac{53}{156}, \frac{55}{156})| = 14 \]

\[|[\frac{66}{156}, \frac{69}{156}]| = 0. \text{ Buddy-Match yields } |[\frac{55}{156}, \frac{58}{156}]| = 0. \]

The following picture captures what we know so far about 3-shares.

\[
\begin{pmatrix}
53 & 14 & \frac{53}{156} \\
55 & 0 & \frac{55}{156} \\
58 & 10 & \frac{58}{156} \\
66 & \frac{66}{156}
\end{pmatrix}
\]
Big Shares and Small Shares

\[
\begin{pmatrix}
\frac{53}{156} & 14 & 0 & \frac{58}{156} \\
\frac{55}{156} & 0 & 10 & \frac{66}{156}
\end{pmatrix}
\]

- Shares in \(\left(\frac{53}{156}, \frac{55}{156}\right)\) are small shares;
- Shares in \(\left(\frac{58}{156}, \frac{66}{156}\right)\) are large shares;

Notation \(d_i\) is numb of students who have \(i\) small shares (3 – \(i\) large shares).

\[d_0 = 0 \text{ since } 3 \times \frac{58}{156} = \frac{174}{156} > \frac{172}{156} = \frac{43}{39}.
\]

\[d_3 = 0 \text{ since } 3 \times \frac{55}{156} = \frac{165}{156} < \frac{172}{156} = \frac{43}{39}.
\]

SO there are NO \(d_0\)-students or \(d_3\)-students.
d_1 and d_2 Students Cause a Gap!

\[
\begin{pmatrix}
\frac{53}{156} & 14 & \frac{0}{156} \\
\frac{58}{156} & 55 & \frac{10}{156}
\end{pmatrix}
\]

d_1: If a d_1-student has a large shares $\geq \frac{61}{156}$ then he will have

\[
> \frac{53}{156} + \frac{58}{156} + \frac{61}{156} = \frac{172}{156} = \frac{43}{39}.
\]

Upshot: Large shares of d_1-student are in $(\frac{58}{156}, \frac{61}{156})$.

d_2: If a d_2-student has a large shares $\leq \frac{62}{156}$ then he will have

\[
< \frac{55}{156} + \frac{55}{156} + \frac{62}{156} = \frac{172}{156} = \frac{43}{39}.
\]

Upshot: Large shares of a d_2-student are in $(\frac{62}{156}, \frac{66}{156})$.

Upshot Upshot: There are NO shares in $[\frac{61}{156}, \frac{62}{156}]$.

Even More Buddy Match

The following picture captures what we know so far about 3-shares.

\[
\begin{pmatrix}
14 & 0 \\
53/156 & 55/156
\end{pmatrix}
\begin{pmatrix}
x \\
58/156 \\
61/156 \\
62/156 \\
66/156
\end{pmatrix}
\]

Use Buddy-Match to show that \(|(\frac{61}{156}, \frac{62}{156})| = |(\frac{62}{156}, \frac{63}{156})| \). So:

\[
\begin{pmatrix}
14 & 0 \\
53/156 & 55/156
\end{pmatrix}
\begin{pmatrix}
x \\
58/156 \\
61/156 \\
63/156 \\
66/156
\end{pmatrix}
\]

\[x + y = 10.\]

Use Buddy-Match to show that \(|(\frac{58}{156}, \frac{61}{156})| = |(\frac{63}{156}, \frac{66}{156})| \) so they are both 5.
Only the d_2-students use \(\left(\frac{63}{156}, \frac{66}{156}\right)\). Every d_2 student uses one share from that interval:

\[
d_2 = 5.
\]

Each d_i student uses i shares from \(\left(\frac{53}{156}, \frac{55}{156}\right)\):

\[
1 \times d_1 + 2 \times d_2 = 14 \quad \text{So} \quad d_1 = 4
\]

There are 8 3-students:

\[
d_1 + d_2 = 8 \quad \text{So} \quad 5 + 4 = 8.\text{CONTRADICTION!}
\]
The Essence of The Buddy-Match Method

1. Works when \(\lceil \frac{2m}{s} \rceil = 3 \): Just 2-shares and 3-shares.
2. \(2m \) pieces, \(s_2 \) students get 2 shares, \(s_3 \) students get 3 shares.
3. Find a GAP
4. Using BM Sequence on 3-shares-interval find intervals that cover almost the entire interval. Missing an interval \((a, b)\).
5. Use BM on \((a, b)\) to get info on an initial interval of 3-shares.
6. Use BM on GAP to get GAPs within the 3-shares.
7. Set up linear equations relating intervals and types of students.
8. Show that system has no solution in \(\mathbb{N} \).

Note: Can turn BM technique into a function \(BM(m, s) \) such that \(f(m, s) \leq BM(m, s) \).
Statistics

For $3 \leq s \leq 60$, $s + 1 \leq m \leq 70$, m, s rel prime:

$f(m, s) = FC(m, s)$ in 927 cases. $\sim 68\%$

$f(m, s) = INT(m, s)$ in 268 cases. $\sim 20\%$

$f(m, s) = BM(m, s)$ in 85 cases. $\sim 6\%$

$f(m, s) = ERIK(m, s)$ in 80 cases. $\sim 6\%$

All cases solved!
1) We suspected there was a constant X such that:

$$(\forall k \geq 1) \left[f(21k + 11, 21k + 4) \leq \frac{7k + X}{21k + 4} \right]$$

2) We knew that $f(11, 4) = \frac{9}{20}$ so we conjectured $X = \frac{9}{5}$.

3) We prove the result with $X = \frac{9}{5}$ and $k \geq 1$ using BM. We prove matching lower bound for several k.

4) But the proof for $f(11, 4)$ ($k = 0$) cannot use BM and is totally unrelated to the proof for $k \geq 1$.

Note: This technique always worked!
Another Guess that Works But we Don’t Know Why

Want to know \(f(41, 19) \). Can’t use BM.
41 – 19 = 22. So try to prove, diff \(d \) is always Mod 3\(d \) pattern.
Need \(X \):

\[
(\forall k \geq 1) \left[f(66k + 41, 66k + 19) \leq \frac{22k + X}{66k + 19} \right]
\]

Find \(X \) using BM and linear algebra (have program for that).
Get conj: \(f(41, 19) = \frac{X}{19} \).

Note: This seems to always work but have not been able to use to get new results yet.
Programs

We have a program that on input \((m, s)\):

1. We used FC, INT, BM to get upper bounds.
2. BM method is a theorem generator.
3. Use linear algebra to try to find a lower bound (a procedure).
Results

1. FC, INT, and BM upper bounds on $f(m, s)$
2. For fixed s, for $m \geq s^3$, $f(m, s) = FC(m, s)$.
3. For all $m \geq s$ $f(m, s) \geq \frac{1}{3}$.
4. For $1 \leq s \leq 7$ have proven formulas for $f(m, s)$. Mod s pattern
5. For $s = 8, \ldots, 100$ conjectures for $f(m, s)$. $f(m, s)$ seems to be a mod s pattern.
6. For $1 \leq d \leq 7$ have proven formulas for $f(s + d, s)$. Mod $3d$ pattern.
7. For all d conjecture that our Theorem Generator gives $f(s + d, s)$.
8. Conjecture that for all a, d there exists X such that

$$(\forall k \geq 0) \left[f(3dk + a + d, 3dk + a) \leq \frac{dk + X}{3dk + a} \right]$$
Consider:

Given m, s in binary, compute $f(m, s)$.

1. Is the problem in P? We keep on finding techniques that we think cover all cases (so it would be in P) but then finding a case not covered.
2. Is it in NP? The procedure might be very large compared to the input.
3. Is it NP-complete or NP-hard?
4. The problem IS in FPT: $(\forall m \geq s^3)[f(m, s) = FC(m, s)]$.
1. $f(m, s)$ has mod s pattern with a few exceptions (known for large m).
2. $f(s + d, s)$ has mod $3d$ pattern with no exceptions.
3. $f(m, s)$ only depends on m/s.
4. If $f(m, s) = \frac{a}{b}$ then s divides b.
Accomplishment I Am Most Proud of:

College students (Guang, Naveen, Sunny) and a professor (John D) have convinced me that the most important field of Mathematics is Muffinry.
Accomplishment I Am Most Proud of:

Convinced
- 4 High School students (Guang, Naveen, Naveen, Sunny)
- 3 college student (Erik, Jacob, Daniel)
- 1 professor (John D)

that the most important field of Mathematics is **Muffinry**.