In this chapter we show that if \(m \geq s \), then \(f(m, s) \geq \frac{1}{3} \).

1.1 Example: \(f(19, 17) \geq \frac{1}{3} \)

We express \(\frac{19}{17} \) as \(\frac{57}{51} \) since other fractions will have a denominator of 51.

We initially divide all 19 muffins \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \). There are now 57 pieces \(\frac{1}{3} \)-pieces. Since

\[
\frac{1}{3} \times 3 < \frac{19}{17} < \frac{1}{3} \times 4
\]

- The max number of pieces someone can get and have \(< \frac{19}{17} \) is 3.
- The min number of pieces someone can get and have \(> \frac{19}{17} \) is 4.

Hence we will give everyone either 3 or 4 \(\frac{1}{3} \)-pieces (which we will denote by \(W = 3 \) in the general technique). The only way to distribute 57 pieces so that everyone gets 3 or 4 pieces is to give 11 students 3 pieces and 6 students 4 pieces \((s_W = s_3 = 11 \text{ and } s_{W+1} = s_4 = 6 \text{ in the general technique}) \). As usual a student who gets 3 (4) shares is called a 3-student (4-student).

We describe a process whereby students give pieces of muffins, called gifts, to other students so that, in the end, all students
have \(\frac{57}{51} \). Each gift leads to a change in how the muffins are cut in the first place; however, there will never be a muffin of size \(< \frac{1}{3} \).

Each 4-student has \(\frac{4}{3} = \frac{68}{51} \) and hence has to give (perhaps in several increments) \(\frac{68}{51} - \frac{57}{51} = \frac{11}{51} \) to get down to \(\frac{57}{51} \). Realize that if a 4-student gives \(\frac{11}{51} \) to a 3-student, then the 3-student now has \(\frac{51}{51} + \frac{11}{51} = \frac{62}{51} > \frac{57}{51} \).

Each 3-student has \(\frac{51}{51} \) and hence has to receive \(\frac{57}{51} - \frac{51}{51} = \frac{6}{51} \) to get up to \(\frac{57}{51} \).

Call the 11 3-students \(g_1, \ldots, g_{11} \).

Call the 6 4-students \(f_1, \ldots, f_6 \).

Notation 1.1. \(x(f_1 \rightarrow g_1) \) means the following: \(f_1 \) gives \(x \) to \(g_1 \) by taking two \(\frac{1}{3} \)-pieces, combining them, cutting off a piece of size \(x \), giving it to \(g_1 \) while keeping the rest. \(g_1 \) takes the piece given to him and combines it with a \(\frac{1}{3} \) piece. Notice that in terms of pieces we are taking three pieces of size \(\frac{1}{3} \) (2 from \(f_1 \) and 1 from \(g_1 \)) and turning them into 1 piece of size \(\frac{2}{3} - x \) and one of size \(\frac{1}{3} + x \). Hence we can easily rearrange how the muffins are cut.

We need to make sure this procedure never results in a piece that is \(< \frac{1}{3} \). In the above example (1) \(f_1 \) now has a piece of size \(\frac{2}{3} - x \), hence we need \(x \leq \frac{1}{3} \), (2) \(g_1 \) now has a piece of size \(\frac{1}{3} + x \), which is clearly \(\geq \frac{1}{3} \). Hence the only restriction is \(x \leq \frac{1}{3} \).

(1) \(\frac{1}{3}(f_1 \rightarrow g_1) \). Now \(f_1 \) has \(\frac{57}{51} \). YEAH. However, \(g_1 \) has \(\frac{52}{51} \).

(2) \(\frac{5}{51}(g_1 \rightarrow g_2) \). Now \(g_1 \) has \(\frac{57}{51} - \frac{5}{51} = \frac{52}{51} \). YEAH. However, \(g_2 \) has \(\frac{51}{51} + \frac{5}{51} = \frac{56}{51} \).

(3) \(\frac{1}{51}(f_2 \rightarrow g_2) \). Now \(g_2 \) has \(\frac{57}{51} \). YEAH. However, \(f_2 \) has \(\frac{58}{51} \).

(4) \(\frac{10}{51}(f_2 \rightarrow g_3) \). Now \(f_2 \) has \(\frac{57}{51} \). YEAH. However, \(g_3 \) has \(\frac{61}{51} \).

(5) \(\frac{2}{51}(g_3 \rightarrow g_4) \). Now \(g_3 \) has \(\frac{57}{51} \). YEAH. However, \(g_4 \) has \(\frac{55}{51} \).

(6) \(\frac{2}{51}(f_3 \rightarrow g_4) \). Now \(g_4 \) has \(\frac{57}{51} \). YEAH. However, \(f_3 \) has \(\frac{66}{51} \).
\[m \geq s \text{ then } f(m, s) \geq \frac{1}{3} \]

(7) \(\frac{9}{51} (f_3 \to g_5) \). Now \(f_3 \) has \(\frac{57}{51} \). YEAH. However, \(g_5 \) has \(\frac{60}{51} \).

(8) \(\frac{3}{51} (g_5 \to g_6) \). Now \(g_5 \) has \(\frac{57}{51} \). YEAH. However, \(g_6 \) has \(\frac{54}{51} \).

(9) \(\frac{3}{51} (f_4 \to g_6) \). Now \(g_6 \) has \(\frac{57}{51} \). YEAH. However, \(f_4 \) has \(\frac{55}{51} \).

(10) \(\frac{4}{51} (f_4 \to g_7) \). Now \(f_4 \) has \(\frac{57}{51} \). YEAH. However, \(g_7 \) has \(\frac{50}{51} \).

(11) \(\frac{2}{51} (g_7 \to g_8) \). Now \(g_7 \) has \(\frac{57}{51} \). YEAH. However, \(g_8 \) has \(\frac{53}{51} \).

(12) \(\frac{7}{51} (f_5 \to g_9) \). Now \(f_5 \) has \(\frac{57}{51} \). YEAH. However, \(g_9 \) has \(\frac{58}{51} \).

(13) \(\frac{4}{51} (g_9 \to g_{10}) \). Now \(g_9 \) has \(\frac{58}{51} \). YEAH. However, \(g_{10} \) has \(\frac{52}{51} \).

(14) \(\frac{7}{51} (f_6 \to g_{10}) \). Now \(g_{10} \) has \(\frac{57}{51} \). YEAH. However, \(f_6 \) has \(\frac{63}{51} \).

(15) \(\frac{9}{51} (f_6 \to g_{11}) \). Now \(g_{11} \) has \(\frac{57}{51} \). YEAH. However, \(g_{11} \) has \(\frac{57}{51} \).

OH. thats a good thing!

YEAH- we are done.

Note that the first \(x \) was \(\frac{11}{51} \leq \frac{1}{3} \) and the remaining \(x \) were all \(\leq \frac{11}{51} \leq \frac{1}{3} \). Hence all pieces in the final procedure are \(\geq \frac{1}{3} \).

End of Example

Theorem 1.2. For all \(m \geq s \), \(f(m, s) \geq \frac{1}{3} \).

Proof. Divide all the muffins into \(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \). Let \(W \) be such that

\[
\frac{1}{3} \times W \leq \frac{m}{s} \leq \frac{1}{3} (W + 1).
\]

Give some students \(W \frac{1}{3} \)-pieces and some \((W + 1) \frac{1}{3}\)-pieces. How many students? Let \(s_W \) \((s_{W+1}) \) be the number of students who get \(W \) \((W + 1) \frac{1}{3}\)-pieces. Then:

\[
W s_W + (W + 1) s_{W+1} = 3m \]

\[s_W + s_{W+1} = s \]

These equations have a unique solution and unique value of \(W \) if \(s \) does not divide \(3m \). If \(s \) does divide \(3m \) there will be more than one possible value of \(W \); however, we can pick one arbitrarily. So we give \(s_W \) students \(W \frac{1}{3} \)-pieces and \(s_{W+1} \) students \(W + 1 \frac{1}{3} \)-pieces.
By the definition of W:

$$0 \leq \frac{m}{s} - \frac{W}{3} \leq \frac{1}{3} \quad (1.1)$$

$$0 \leq \frac{W + 1}{3} - \frac{m}{s} \leq \frac{1}{3} \quad (1.2)$$

Now we will need to smooth out the distribution so that everyone receives $\frac{m}{s}$. We will do this by a sequence of moves of the form $x(f_i \rightarrow g_j)$ or $x(g_i \rightarrow g_j)$, as defined in the example.

We will assume s_{W+1} and s_W are relatively prime (this only comes up in Claim 3 below). This is fine because if they have a common factor d, we can just use the procedure for the $\frac{s_{W+1}}{d}$, $\frac{s_W}{d}$ case repeated d times.

Call the s_W W-students g_1, \ldots, g_{s_W}.

Call the s_{W+1} $(W + 1)$-students $f_1, \ldots, f_{s_{W+1}}$.

Claim 1:

(1) If $s_{W+1} < s_W$ then $\frac{W + 1}{3} - \frac{m}{s} > \frac{m}{s} - \frac{W}{3}$.

(2) If $s_W < s_{W+1}$ then $\frac{W + 1}{3} - \frac{m}{s} > \frac{m}{s} - \frac{W}{3}$.

Proof of Claim 1:

$$s_{W+1} \times \frac{W + 1}{3} + s_W \times \frac{W}{3} = m$$

$$s_{W+1} \times \left(\frac{m}{s} + \frac{W + 1}{3} - \frac{m}{s}\right) + s_W \left(\frac{m}{s} + \frac{W}{3} - \frac{m}{s}\right) = m$$

$$\left(s_{W+1} + s_W\right) \frac{m}{s} + s_{W+1} \left(\frac{W + 1}{3} - \frac{m}{s}\right) + s_W \left(\frac{W}{3} - \frac{m}{s}\right) = m$$

$$s \frac{m}{s} + s_{W+1} \left(\frac{W + 1}{3} - \frac{m}{s}\right) + s_W \left(\frac{W}{3} - \frac{m}{s}\right) = m$$

$$\frac{W + 1}{3} - \frac{m}{s} = \frac{s_{W+1}}{s_W} \left(\frac{m}{s} - \frac{W}{3}\right)$$
Both parts follow.

End of Proof of Claim 1

We give the procedure to obtain \(f(m, s) \leq \frac{1}{3} \). There are two cases.

Case 1: \(s_{W+1} < s_W \). Hence by Claim 1 \(\frac{W+1}{3} - \frac{m}{s} > \frac{m}{s} - \frac{W}{3} \).

1. Let \(x = \frac{W+1}{3} - \frac{m}{s} \). Note that \(x \leq \frac{1}{3} \). Do \(x(f_1 \rightarrow g_1) \). Now \(f_1 \) has \(\frac{m}{s} \). YEAH. However, \(g_1 \) has \(\frac{W}{3} + \frac{W+1}{3} - \frac{m}{s} > \frac{m}{s} \). (This is where we use \(s_{W+1} < s_W \), or more accurately the consequence of that from Claim 1.)

2. Let \(x = \frac{2W+1}{3} - 2 \times \frac{m}{s} \). Do \(x(g_1 \rightarrow g_2) \). Now \(g_1 \) has \(\frac{m}{s} \). YEAH.

3. If \(g_2 \) has \(> \frac{m}{s} \) then \(g_2 \) gives enough to \(g_3 \) so that \(g_2 \) has \(\frac{m}{s} \). Keep up this chain of \(g_1, g_2, g_3, \ldots \) until there is a \(g_i \) such that \(g_i \) end up with \(< \frac{m}{s} \) (though more than the \(\frac{W}{3} \) that \(g_i \) had originally). This happens because \(g_{i-1} \) gives \(g_i \) what it can, so \(g_{i-1} \) ends with exactly \(\frac{m}{s} \), but its just not enough for \(g_i \) to have \(\frac{m}{s} \) as well :-(

4. Do \(x(f_2 \rightarrow g_i) \) where \(x \) is such that \(g_i \) will now have \(\frac{m}{s} \).

5. Do \(x(f_2 \rightarrow g_{i+1}) \) where \(x \) is such that \(f_2 \) will now have \(\frac{m}{s} \).

Repeat the above steps until you are done.

We need to show that (1) there is never a piece of size \(< \frac{1}{3} \), and (2) the process ends with every student getting \(\frac{m}{s} \).

Claim 2: The first gift is \(\leq \frac{1}{4} \) and no gift is larger.

Proof of Claim 2: Let \(C = \frac{W+1}{3} - \frac{m}{s} \) which is the size of the first gift. By equation (2) \(C \leq \frac{1}{4} \).

Assume that all gifts so far have been \(\leq C \). We analyze the three kinds of gifts and show that in all cases the gift is \(\leq C \).

- \(x(f_i \rightarrow g_j) \) where (1) initially \(f_i \) has \(> \frac{m}{s} \), \(g_j \) has \(< \frac{m}{s} \), and (2) after the gift \(f_i \) has \(\frac{m}{s} \). When this occurs it is \(f_i \)'s first or second gift giving. (This happens in steps 1 and 5 above, and later as well.) Before the gift \(f_i \) has at least \(\frac{m}{s} \) but at
most \(\frac{W+1}{3} \), so this gift has size at most \(\frac{W+1}{3} - \frac{m}{s} = C \).

- \(x(g_i \to g_{i+1}) \) where (1) initially \(g_i \) has > \(\frac{m}{s} \), \(g_j \) has < \(\frac{m}{s} \), and (2) after the gift \(g_i \) has \(\frac{m}{s} \). When this occurs, \(g_i \) has received a gift once and this is \(g_i \)'s first time giving. (This happens in steps 2 and in the chain referred to in step 5.) Since \(g_i \) just received a gift of size \(\leq C \) she has \(\leq \frac{W}{3} + C \). Hence the gift is \(\leq \frac{W}{3} - \frac{m}{s} + C \leq C \).

- \(x(f_i \to g_j) \) where (1) initially \(f_i \) has > \(\frac{m}{s} \), \(g_j \) has < \(\frac{m}{s} \), and (2) after the gift \(g_j \) has \(\frac{m}{s} \). This will be \(f_i \)'s first time giving. (This happens in step 4 above.) Before the gift \(f_i \) has at least \(\frac{W}{3} \) but at most \(\frac{m}{s} \), so this gift has size at most \(\frac{m}{s} - \frac{W}{3} \leq C \) (by Claim 1).

Claim 3: If \(sW \) and \(sW+1 \) are relatively prime then the process terminates with all students having \(\frac{m}{s} \).

Proof of Claim 3:
In each step all of the \(f_i \) have at least \(\frac{m}{s} \). In each step the number of students who have the correct amount of muffin goes up. One may be worried that at some point we will try to do step 4 (for example) of the procedure and there will be no \(g_i \) left who need more muffin. But this is not possible because until the process terminates the \(f \)'s always have more muffins than they need, so there is always a \(g \) with less muffins than they need.

One may also be worried that eventually we will get all of the \(f \)'s to have \(\frac{m}{s} \), but the \(g \)'s will not all have \(\frac{m}{s} \). This is not possible either, because whenever we only make gifts from \(f \) to \(g \), there is no \(g \) with more than \(\frac{m}{s} \).

Finally, if \(sW \) and \(sW+1 \) are not relatively prime, it is possible that the procedure will terminate early because in step 5 the size of the donation \(x \) is 0. If this occurred it would mean that there is some subset of \(F \) \(f \)'s and \(G \) \(g \)'s each of which has exactly \(\frac{m}{s} \) and only made donations amongst themselves. But then \(\frac{\bar{N}}{\bar{N}} = \frac{sW+1}{sW} \), a contradiction.

End of Proof of Claim 3
\[m \geq s \text{ then } f(m, s) \geq \frac{1}{3} \]

Case 2: \(s_W < s_{W+1} \). This is similar to Case 1 except that instead of \(f_1 \) giving \(g_1 \) so that \(f_1 \) has \(\frac{m}{s} \), \(f_1 \) gives to \(g_1 \) so that \(g_1 \) has \(\frac{m}{s} \). Hence we have a chain of \(f_i \)'s instead of a chain of \(g_i \)'s.

1.2 Conjectures About Extensions

We first restate the main theorem:

Theorem 1.3. For all \(m \geq s \), if \(V \geq 3 \) then \(f(m, s) \geq \frac{1}{3} \).

What if \(V = 4 \)? \(V = 5 \)?

Conjecture 1.4. There exists a function \(a(V) \) such that the following is true: For all \(m \geq s \), if \(V \geq V \) then \(f(m, s) \geq a(V) \).

What might \(a(V) \) look like? We know that \(a(3) = \frac{1}{3} \) and empirically it seems that \(\lim_{V \to \infty} a(V) = \frac{1}{2} \). One candidate is

\[a(V) = \frac{V + 1}{2V + 6} \]