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640 WALTER STROMQUIST [October

lines is not acute; we may take this angle a to be at a vertex (4,k) in the first quadrant. Then
a > /2 implies that A+ k <2, and this in turn implies that the area of C in the first quadrant
does not exceed 1. Hence A(C) < 4.

B-6. (22,4,3,0,0,0, 1, 0, 10, 4, 42, 119)

Let X =(x,,...,x,) and Y=(y,,...,y,). Also let a+ bi be either square root of z2+ - - - + z2. Then
ab=X-Y=x,y,+ -+ +x,, and
=B =X P Y= (x4 +32) = (4 +32).

The Cauchy-Schwarz inequality tells us that |X-Y|<|X|-||Y| and hence |a|-]|b| <
IX]I-|Y]l. Therefore, the assumption that |a|>| X | would imply that |b|<| Y |. This and
a’=|X|>—| Y|*+ b*> would yield @< ||X|| and thus the contradiction |a|<||X||. Hence the
assumption is false and r=|a| < || X||. Since || X|><(x,|+ -+ +]|x,])% this implies the desired
r< x4 %,

MATHEMATICAL NOTES

EDITED BY DEBORAH TEPPER HAIMO AND FRANKLIN TEPPER HAIMO

Material for this department should be sent to Professor Deborah Tepper Haimo, Department of Mathematical
Sciences, University of Missouri, St. Louis, MO 63121.

HOW TO CUT A CAKE FAIRLY

WALTER STROMQUIST
Daniel H. Wagner Associates, Station Square One, Paoli, PA 19301

In this note we prove that a cake can be divided fairly among n people, although each may
have a different opinion as to which parts of the cake are most valuable. It can be done even if
“fair” means that all people must receive their first choices!

In a simpler version of the problem, a division is regarded as “fair” if all people (“players™)
are satisfied that each has received at least 1/n of the cake. For this version, there is a simple
and practical solution, attributed by Steinhaus [1] to Banach and Knaster. Martin Gardner
describes the case n=3 in his newest book [2]:

“One person moves a large knife slowly over a cake. The cake may be any shape, but the knife must
move so that the amount of cake on one side continuously increases from zero to the maximum amount. As
soon as any one of the three believes that the knife is in a position to cut a first slice equal to 1/3 of the
cake, he/she shouts ‘Cut!’ The cut is made at that instant, and the person who shouted gets the pigce. Since
he/she is satisfied that he/she got 1/3, he/she drops out of the cutting ritual. In case two or all three shout
‘Cut!” simultaneously, the piece is given to any one of them.

“The remaining two persons are, of course, satisfied that at least 2/3 of the cake remain. The problem is
thus reduced to the previous case . . .

“This clearly generalizes to n persons.”

Gardner then describes the more difficult version of the problem, in which a division is
regarded as “fair” only if all players consider their own pieces to be at least as valuable as any of
the others—essentially, all players get their first choices. The procedure described above doesn’t
always meet this test, because the player who claims the first piece may have a change of mind
after seeing the remaining pieces. When n=3, we propose a new procedure to meet this
objection:
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1980] MATHEMATICAL NOTES 641

A referee moves a sword from left to right over the cake, hypothetically dividing it into a small left piece
and a large right piece. Each player holds a knife over what he considers to be the midpoint of the right
piece. As the referee moves his sword, the players continually adjust their knives, always keeping them
parallel to the sword (see Fig. 1). When any player shouts “cut,” the cake is cut by the sword and by
whichever of the players’ knives happens to be the middle one of the three.

ne

FiG. 1.

The player who shouted “cut” receives the left piece. He must be satisfied, because he knew what all
three pieces would be when he said the word. Then the player whose knife ended nearest to the sword, if he
didn’t shout “cut,” takes the center piece; and the player whose knife was farthest from the sword, if he
didn’t shout “cut,” takes the right piece. The player whose. knife was used to cut the cake, if he hasn’t
already taken the left piece, will be satisfied with whichever piece is left over. If ties must be broken—either
because two or three players shout simultaneously or because two or three knives coincide—they may be
broken arbitrarily.

This procedure does not generalize to larger n. John Selfridge, John Conway, and Richard
Guy, in their research on the fair division of wine, have discovered a more elegant algorithm for
n=3, but it, too, fails to generalize. In this note we shall be content with a nonconstructive
existence theorem valid for all n.

One existence theorem, operating on quite different principles, has already appeared in this
MoNTHLY [3]. Dubins and Spanier (in an article with the same title as this note) assumed that
each player’s preferences are defined by a nonatomic measure over the cake. They proved that,
given any finite number of measures (including those of the players and those of the kibitzers as
well), there is a partition of the cake into n parts that are equal according to all of the m=asures.
This was one of several results illustrating the power of Lyapunov’s Theorem and other
measure-theoretic techniques. Unfortunately, their result depends on a liberal definition of a
“piece” of cake, in which the possible pieces form an entire g-algebra of subsets. A player who
hopes only for a modest interval of cake may be presented instead with a countable union of
crumbs.

In this note we shall adhere more closely to the original model by imposing a rigid structure
on the ways in which the cake may be cut. In particular, we shall insist that it be cut by (n—1)

“planes, each parallel to a given plane. The possible cuts can then be represented by numbers in
the interval [0, 1]; and the possible divisions of the cake, by vectors x =(x;,x5,...,x,_,) such that
0<x,<xy<+++ <x,_,<1. By convention let x,=0 and x,=1, so that the ith piece is the
interval [x;_;,x;]. The possible divisions form a compact set in R*~!, which we call the division
simplex,

S={(X1-0,%,-1)|0<x; <+ -+ <X, <1}
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642 WALTER STROMQUIST [October

See Fig. 2. S has the shape of an (n—1)-simplex with vertices at ov,=(1,1,...,1),0,=
©,1,...,D,...,0,=(0,0,...,0). The vertex v; represents the division in which the ith piece is the
whole cake, and the face opposite v;, which we shall call S;, consists of divisions for which the ith
piece is empty.

0,=(0,1) S, v,=(1,1)

'-73 = (09 0)

FiG. 2. When n=3,S C R2. F1G. 3. Preferences of the jth player.

We allow great generality in the player’s preferences. We assume that the choice for the jth
player is based on a real-valued evaluation function f, which gives the value of the ith piece in
terms of x,,...,x,_; (and {). Thus the value of the ith piece to the jth player is denoted by f(x, ).
Intuitively, one expects f(x,i) to depend only on x;_; and x;, but the added generality comes at
no extra cost.

For a given x, we say that player j prefers the ith piece if f(x,i) >f(x,k) for all k. For some
divisions a player may be indifferent to two or more “preferred” pieces. The division is fair if
each player can be given a preferred piece.

We assume that each f; is a continuous function of x. We must also assume that no player
ever prefers an empty piece of cake.

THEOREM. Under these assumptions, there is a division x and a way to assign the pieces to the
players such that all players prefer their assigned pieces.

Proof. For each i,j, let 4; be the set of divisions x € § for which the jth player prefers the ith
piece. From the continuity of the functions f; we know that each 4, is closed. For each j, the sets
Ay cover S. The assumption that no player prefers an empty piece implies that 4; has empty
intersection with the face §; for each i,j. The sets 4; provide all the information we need about
the players’ preferences, so we shall not refer again to the functions f. See Fig. 3.

Define B;= N _.;(S — Ay). Thus B;; is the set of divisions for which the jth player prefers only
the ith piece. Typically B; is the interior of 4; but that is not necessary. Each B; is open
(relative to S). Note that, for a given j, the sets B; do not cover §; the uncovered part
(S — U,;By) consists of divisions for which the jth player is indifferent to two or more acceptable
pieces.

Now define U;= U;B;. Thus U is the set of divisions for which some player prefers only the
ith piece. Note that each U is open (as always, relative to .S) and that U; does not intersect S;.
We now divide the proof into two cases.

Usual Case: The sets U, cover S. In this case we rely on a topological lemma.

LEMMA. Suppose an (n—1)-simplex S is covered by n open sets U,,...,U,, such that no U,
intersects the corresponding face S;. Then the common intersection of U,,..., U, is nonempty.

To see how this lemma proves the theorem (in the usual case), choose a division x in the
common intersection of the U’s. Since x& U; for each i, every piece will be the unique
acceptable piece for some player. Since there are exactly enough pieces to go around, all players
can take their own first-choice pieces.
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Proof of Lemma. We continue to regard S as a subset of the vector space R"~!, and use v;
and S; as before. Write S for the boundary of S. For each i, and for each x € S, let di(x) be the
distance from x to the closed set (S— U,), and define D(x)=ZX;d(x). Since x € U; for some i,
some d;(x) is positive and so is D(x). We may therefore define f:S—S by

_5 4(x)
f(x)_ 2 D(x) b;.

i

The restriction of f to 8S is a function f,: 9S—dS that takes each face S; to itself. Hence we
may define maps f, : 3S—3S by f,(x)= tx +(1— #)f(x). These maps define a homotopy between f,
and the identity on 9S. Therefore f, cannot be extended to a map from S to 9S. In particular,
since f is an extension of f,, its image must intersect the interior of S.

Finally, if x is any point in f~! (int S), then x is in each U,.

Unusual Case: The sets U, do not cover S. This case is unusual because it depends on a
coincidence: if x is not in any U, then it is not in any Bj for any j, so it must leave every player
indifferent to two or more acceptable pieces. But this is not impossible. For example, if all
players have identical preferences, the “coincidence™ is certain to occur.

Our strategy in this case is to modify the players’ preferences. We will approximate the sets
A; by sets Aj, which are more orderly and for which the “coincidence” does not occur. By
applying the lemma we shall find a division that would be fair, if the players’ preferences were
described by the sets A/. As the approximations improve, these approximate solutions will
converge to a division that is fair according to the actual preferences.

We start by choosing irrational numbers aj,...,a,, one for each player, that are linearly
independent over the rationals. We say that a number is related to o; if its difference from o; is
rational. Numbers related to a; are dense in R, but no number can be related to both a; and a if
Jj#k.

Let M be a (large) integer.

For each j, construct 4/ as follows. Divide S into cells by all planes of the form {x|x,=
(L/M)+a;} for k=1,...,n and for all integers L. A cell, together with its boundary, is part of
Aj; if i is the smallest subscript for which 4 intersects the cell. See Fig. 4.

v, v,

F1G. 4. Approximating the preferences.

The important properties of 4 are (1) every point on the boundary of A4; has some
coordinate related to o, and (2) 4;; approximates 4 in the sense that every point 4;; is within
Vn /M of some point of 4.

Now for each i,j, define Bj= N;_.,(S— A;;)—this is equal to the interior of 4j;—and define
U/ = U, B;. As before, the sets U/ are open and (if M has been chosen large enough) U; does not
intersect S;. To prove that the sets U; cover S, note that if x is not in any U}, it must not be in
any By, so it must be on the boundary of some 4 for every j. That means that x must have a
coordinate related to each of the a;’s. But this is impossible, because x has only (n—1)
coordinates, and each may be related to only one a;.
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Therefore, we may apply the lemma to find a point in the common intersection of the sets U;.
We call it x,,. If the cake is divided according to x,,, the pieces can be assigned to the players in
such a way that if the jth player receives the ith piece, then x,, is contained in 4;; and is within
Vn /M of 4.

As M increases, we can generate a sequence of divisions {x,,}. Since S is compact, we can
find a subsequence that converges to some division x€S; and by reducing to another
subsequence if necessary, we can guarantee that the assignment of pieces to players is the same
for each division x,, in the subsequence. Cut the cake according to x and assign the pieces to the
players as for these x,,. Then if the jth player receives the ith piece, x must be arbitrarily close to

Aj. Since A;; is closed, this implies that x € 4;, and the jth player prefers the assigned piece.

References

1. H. Steinhaus, Sur la division pragmatique, Econometrica (supplement), 17 (1949) 315-319.
2. Martin Gardner, aha! Insight, Scientific American/W. H. Freeman, San Francisco, 1978, p. 124.
3. L. E. Dubins and E. H. Spanier, How to cut a cake fairly, this MONTHLY, 68 (1961) 1-17.

NAPOLEON’S THEOREM AND THE PARALLELOGRAM INEQUALITY FOR
AFFINE-REGULAR POLYGONS

LEON GERBER
Department of Mathematics and Computer Science, St. John’s University, Jamaica, NY 11439

A well-known theorem, first proved in [2] but credited to Napoleon, reads as follows:

Construct equilateral triangles outwardly on the sides of any triangle. Their centers form the
vertices of an equilateral triangle.

A lesser-known theorem of Thébault [11] (which is easily obtained as a corollary of Van
Aubel’s theorem [6],[1]) states:

Construct squares outwardly on the sides of any parallelogram. Their centers form the vertices of
a square.

Clearly these theorems are related, and we may conjecture that they are part of a sequence of
theorems leading from some m-gons to regular m-gons. In what sense, however, is a parallelo-
gram, rather than the general quadrilateral, the successor of an arbitrary triangle? An answer to
this question is provided by the following observations:

(a) Any triangle is the image of an equilateral triangle under an affine transformation.

(b) A quadrilateral is a parallelogram if and only if it is the affine image of a square.

These suggest the following result, which, in spite of its simplicity, appears to be new for
m >3, since even Thébault’s result is not mentioned in survey articles [1], [7], [8], and [9].
Throughout the paper all subscripts will be taken modulo m.

THEOREM 1. Let @ = PyP,--- P, _, be a simple plane m-gon and construct regular m-gons on
the sides of &, one set outwardly and one set inwardly. Their centers form the vertices of m-gons 9%
and ', and the centroids of ?, 2 and 2’ coincide. If 9 is the affine image of a regular m-gon,
then:

1. The m-gons 2 and Q' are regular.

2. The difference of the areas of 2 and Q' is 4cos*(w/m) times the area of ¥ .

3. The sum of the squares of the edges of 2 and 2’ is 4cos’(w/m) times the sum of the squares
of the edges of ?.

Conversely, if 2 (or 2') is regular, then 9 is affine-regular.
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