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Let G be a (k + I)-graph (a hypergraph with each hyperedge of size k + 1) with 
n vertices and average degree t. Assume k Q t Q n. I f  G is uncrowded (contains no 
cycle of size 2, 3, dr 4) then there exists an independent set of size c,(n/t)(ln t)‘lk. 

Let G be a graph with n vertices and average valence t. Turan’s theorem 
implies a(G) > n/(t + 1). (See Section 1 for notation.) Fix k > 1. Let G be a 
(k + 1)-graph with n vertices and average valence tk(k4 t + n). It is known 
that a(G) 2 en/t. A hypergraph is called uncrowded if it contains no cycles 
of length 2, 3, or 4. We prove that if G is an uncrowded (k + 1)-graph with n 
vertices and average degree tk, then a(G) > (cn/t)(ln t)‘lk. 

The case k = 1 has been studied in [ 1,2] and the case k = 2 in [3]. In 
these papers various applications are discussed. 

Notation, a description of the basic transformation, and two technical 
lemmas are given in Section 1. The reader is advised to skim this section and 
use it as a reference when examining the proof. The heart of the paper is 
Section 2. The proof is given with certain details left out. The formal proof is 
given in Section 3. 

1. PRELIMINARIES 

Hypergraphs 

A hypergraph is a pair (I’, G), where G is a family of nonempty subsets of 
V. The x E V are called vertices, the E E G are called hyperedges. 
Throughout this paper k is an arbitrary but fixed positive integer. We assume 
(tacitly) that all E E G satisfy 

2<1El,<k+ 1. 
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If all IE] = k+ 1 then (V,G) is a (k + 1)-graph. When k = 1 this 
corresponds to the usual notion of graph. For x E V we set 

Fx= (Ec V- {x}:Eu {x) E G}. 

That is, XX is the family of hyperedges containing x, with x deleted. We set 

deg,(x)=I{EEjrx:(E(=i}l. 

Note that deg,(x) is the number of hyperedges of size (i + 1) containing x. 
We say (V, G) is regular if for 1 < i < k, deg,(x) = degi(y) for all x, y E V. 
The neighborhood of x, denoted by N(x), is defined by 

N(x) = u E. 
EEYx 

Thus, y E: N(x) iff x, y lie on a common hyperedge. For convenience, we set 

Nf (x) = {x) u N(x). 

The t-neighborhood N’(x) is defined inductively by 

2 E N’(x) iff 2 E N(y) for some y E N’- ’ (x), 

and the distance metric p(x, y) is that minimal t so that y E N’(x). 
A set I E V is independent if Z contains no hyperedges E E G. The 

restriction of (V, G) to a subset W c V, denoted by G Iw, is given by 
( W, G) w), where G 1 w  = (E E G: E E W). We call (V, G) uncrowded if for all 
x E V, the following hold: 

(i) The sets E E ;T, are pairwise disjoint (i.e., IE, n E,I < 1 for all 
E,,E,E ‘3. 

(ii) Let y E N(x), E E FY with x @ E. Then En N(x) = 0. 
(iii) Lety,zEN(x),EE.~~,FE.~,x~E,x~F.ThenEnF=0. 

In usual hypergraph terminology, (V, G) is uncrowded iff it has no cycles 
of length 2, 3, or 4. When (V, G) is uncrowded and regular, the restriction to 
N*(x) is known precisely. (See Fig. 1.) 

When p(x, y) = 1, we let E,, be the unique set in 3, that contains y (i.e., 
E,.. is the common hyperedge with x deleted). 

The Transformation 

Fix a hypergraph (V, G) and a vertex set C E V. The 2, E C are called 
chosen. We set 

D= (vE V:EzCfor some EE&}. 
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FIG. I. N*(x). 

The u E D are called discarded. We set Z = 6f-7 c and call the Y E Z 
isolated. We set V* = fin C and call the u E V* remaining. We define a 
hypergraph (V*, G*) by letting E' E G* iff E' = E n V*, where E E G and 
E s V* u C and En V* # 0. Our definitions ensure 

a(G) > 111 + a(G*). (*I 

For if EEG and EsD=ZUV*, then EnV*EG*. Thus if J is 
independent in (V*, G*), there can be no E E G with E E ZU J so Z U J is 
independent. (G* was defined so as to give the forbidden sets on V* and to 
give (*).) (See Fig. 2.) 

Remark. G* was defined so that (*) would be satisfied. In fact G* 
contains more hyperedges than we need. Suppose {x, y, z} E G and y, z E V* 
and x E C n D. Then {x, y} E G* even though x has been discarded. These 
“additional” hyperedges allow us to check if { y, z) E G* without examining 
the neighbors of x to see if x E D. 

Remark. One could similarly replace (*) by a(G) > a(Glc) + a(G*). 

Remark. (V*, G*) includes GI,, . Moreover, (V*, G*) contains no 
additional hyperedges of size (k + 1). (V*, G*) contains no singletons 
E’={v}sincethenuEE~(u}UCsov@V*. 

Let x E V, E E Xx. If E c CU V* we say E is transformed into 
E’ = En V*. If E c C U V* we say E is discarded. We set ST,* equal to 
those E’ = En V* where E z C U V* and E E XX. We set deg,?(x) equal to 
the number of E’ E Yz with 1 E' I= i. We set deg:(x) equal to the number of 
E E SrX with IE I =j such that E is transformed to E’ E ST; with IE’ I = i. 
When x E V*, Fz and deg,*(x) give analogues to XX and degi(x) for the 
graph (V*, G*). (Wh en x & V* we might think of X: as being what Xz 

FIG. 2. The transformation. 
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would have been had x been in V*. The defining of Sr: and deg,?(x) in these 
cases is only a technical convenience.) 

Remark. Essentially we will find an independent set in (V, G) by 
selecting C so that Z is reasonably large and then examining (V*, G*). 

We give a technical lemma here. 

ALMOST REGULAR LEMMA. Let (V, G) be uncrowded, / VI = n such that 
for all x E V 

Then there exists G’ Z? G so that (lefting deg + represent degree in 

V’, G+)) 

(i) (V, Gf ) is uncrowded. 

(ii) deg:(x) < ai, 1 < i < k, all x. 

(iii) Set B = {x: deg:(x) # ai, some i}. Then JBJ Q k*b*, where 
b= 1 +Cf=,iai. 

ProoJ Let Gt be a maximal set so that G+ 2 G and (i), (ii) are 
satisfied. Set Bi = {x: deg:(x) < ai} so that B = uf=, Bi. Suppose jBil > ib’. 
Select X1 ,..., Xi+ 1 E B inductively, letting xj be an arbitrary element not in 
N’(x,) for s <j. (This is possible as (N’(x)/ < b’.) Add (x, ,..., xi+ ,} to G+. 
Condition (ii) remains satisfied since all degi(xj) < a,. No crowding is 
created since that would imply x, E N’(xJ for some s, t. This is a 
contradiction. Thus lBi( Q ib’ and (BI < 2 (B,I so (iii) is satisfied. 

Remark. In application, the ai will be functions of a parameter t and we 
will write 1 B / < 7, where f is a function of t. We will need only t& n. 

Probability 

The statement “C has distribution V(p)” means that C is a random 
variable whose values are subsets of V such that for every u E V 

Pr{v E C} =p 

and these probabilities are mutually independent. We may think of C as the 
result of a coin flipping experiment. Note that Z, V*, G*, deg,*(x), degiyx), 
being dependent on C, also become random variables. 

We give one more technical lemma here. 
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ALMOST INDEPENDENT LEMMA. Let X, ,..., X,,, be random variables 
assuming values 0, 1 with Pr (Xi = 1) = p. Assume that for each i, Xi and Xj 
are independent for all but at most s J-S. Set Y = Cy!, Xi. Then 

ProoJ Var(Y) = Czj=, COV(Xi,xj). 
The covariance is zero for all but at most ms pairs. In those cases 

COV(Xi, Xj)=E[XiXj] -p2 ~p(l -p). 

Thus, 

Var(Y) < msp(1 -p) < msp 

and the lemma follows from Chebyschev’s Inequality. 

Remark. In applications s will be small relative to m and we will say, 
roughly, T- mp almost always. When s = I, Y is the Binomial Distribution. 
In this case Chebyschev’s Inequality is quite weak but we do need stronger 
methods. 

2. THE PROOF (DETAILS OMI~ED) 

We assume k 6 t 4 n tacitly throughout this section. 
Let (V, G) be a regular uncrowded (k + I)-graph with n vertices and 

valence tk. Let Cc V have distribution V(p), where p = l/t. The set C 
detines 1, (V*, G*) by the transformation of Section 1. 

Let x E V. For each E E.Fx, Pr {E c C} =pk. Since the sets E are 
disjoint, these events are mutually independent and 

Pr(x@D}=Pr{E@Cfor all EELFx} 

= n Pr{E&C} 
EETx 

= (1 -pk)‘twexp[-pktk] =e-‘. 

The events x E D, x E C are independent so 

Pr{xEI) =Pr{x& D} Pr{xE C} - I/et, 

Pr{xE v*}=Pr{x@D}Pr{x&C}-(1 -p)e-l-e-‘. 
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If p(x, y) > 2, the events x E Z, y E Z are independent, as are the events 
x E V*, y E V*. Apply the Almost Independent Lemma, 

111 - n/et almost always, 

IV*I-n/e almost always. 

Note we have already shown that for some specific C, )I( - n/et so that 
a(G) > n/et. 

Remark. We may modify this argument so as not to use the assumption 
that (V, G) is uncrowded. Set p = ft, 

so 

Pr{xED]< K’ Pr{EcC}<tkpk=2-k, 
ESx 

and 

where c = (1 - 2-k)/2. This result is, up to a constant factor, best possible. 
Let (V, G) be the union of n/t disjoint omplete (k + 1)-graphs, each on t 
points. Then each point has valence ctk (c = l/k!) and a(G) N c, n/t 
(cl=k- 1). 

Let x E V. The event x E V* depends only on which points of N(x) are 
chosen. If p(x, y) > 2, then N(x) n N(y) = 0 and the events x E V*, y E V* 
are independent. 

Let z, ,..., zI be distinct elements of N(x). The events zi E V* depend only 
on which points of Nt(zi) are chosen. Here is the central idea of the proof: 
Since (V, G) is uncrowded, the sets N(zi) are “nearly” disjoint so the events 
zi E V* are nearly mutually independent. 

We remove the “nearly” by conditioning on x 6? C. Then, for z E N(x), the 
event z E V* depends on which points of N(x) - EZ, are chosen. These sets 
are disjoint so the events zi E V* are mutually independent. The event z E Z 
also depends only on N(z) -E,,. In general, when y, ,..., ys, z, ,..., zI are 
distinct elements of N(x), the events yr E Z, 1 < i < s; zj E V*, 1 <j < t, are, 
conditional on x 6 C, mutually independent. 

Let xE V, EEFI, E’GE, IE’I=i. Then E’EZJ iff ~EC for all 
y E E-E’ and z E V* for all z E E’. Then mutual independence gives 

Pr(E’E&*Ix&C}= n Pr{yEC(x&C} n Pr(zEV*Jx@C}. 
YEE-E’ LEE’ 
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Clearly, 

Pr{yECIx&C}=Pr{yEC}=p. 

Now 

Pr(z6ZDlx&C}= n Pr{E&ClxEC}. 
EE.Fz 

For E#E,,, Pr{E&Clx6$C}=Pr{E@C}. For E=E,,, Pr{E@C}= 
1 -pk but Pr{E@ Clx& C) = 1. Thus 

Pr{.z 6Z Dlx 6Z C} = Pr{z 6? D}/(l -pk) 

and so 

(That is, the effect of x & C is negligible.) Hence 

pr{E’ EST,*Iz & C} -pIEmE’I(eml)IE’I =pkmiePi. 

Let E E ;T,. The events E’ E ;T,* for E’ E E are mutually disjoint so 

Pr{E is transformed to an i-set} - 
k 

( ) 
i pkwieCi, 

there being (f) possible i-sets. Now degjr(x) is simply the number of E E <Fx 
which transform to an i-set. There are tk potential E and the events “E is 
transformed to an i-set” are mutually independent. (Another critical use of 
the uncrowdedness assumption. ) Thus degT(x) has binomial distribution 

pk-‘e-‘1, 

and therefore, applying Chebyschev’s Inequality 

deg,*(x) z tk (:)p’-‘e-‘= ( :)(t/e)i, 

with probability almost unity. 
We may discard from (V*, G*) the few points x for which degjr(x) is 

much more than expected. Set n, = ne-‘, t, = te-‘. Then (V*, G*) has at 
least n,( 1 - E) points and 

deli* < t{(l + E), l<i<k, 
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for all x E I’*. Here E is a small error which we will ignore for the remainder 
of this section. 

Remark. In some sense we have shown that V* behaves like a random 
set with distribution V(e ‘). 

Remark. Let us ignore the (i + l)-sets, i < k, of G*. Then G* has the 
same edge density as G. Repeating our argument, we find n,/et., = n/et 
additional independent points and this continues at each iteration. In fact, the 
(i + 1 )-sets, i < k, of G* cannot be ignored. At the sth iteration we find 
(n/et)f(s) independent points where f(s) approaches zero. “Fortunately,” 
ES(s) diverges to prove our theorem. 

Now consider a more general stuation. Let (V, G) be a regular uncrowded 
hypergraph with n vertices and (applying with foresight a convenient 
parameterization) 

deg,(x) = cq t’, l<i<k, 

where a,, = 1. Let p = w/t and let C have distribution V(p). NOW 

Pr{x&D}= JJ Pr{E$C} 
EEYx 

= fi (1 -pi)=i(f)f’ - /3, 
i=l 

where we define 

We again deduce that almost always 

14 - npP= (n/t) w, 

IV*]-$3. 

Let E E XX, (El =j and let E’ c E, I E’ 1 = i. The probability that E is 
transformed to E’ is approximately p’-‘j?‘. 

Then degG(x), the number of such pairs E, E’, satisfies 

deg$(x) - [aj (J) t’]~)pj-i~i 
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almost always and so 

Set n * = $3, t* = r/3. Then (V*, G*) has n * vertices and 

degT(x) - a; 

where 

j-i w 7 l<i<k. 

The analysis is considerably simplified by the special nature of the above 
transformation. Observe that if 

ai = vkpi, l<i<k, 

then 
aj” = (v + w)k-i, l<i<k, 

and 

P=exp [-iIai (F) wi]=exp[-((u+w)X--vk)le 

Let (V, G) = (V,, G,) be an uncrowded (k + 1)-graph with n = n, vertices 
and deg,(x) = tk, where t = to. We find a large independent set by iteration 
of the above procedure, giving a sequence of hypergraphs (V,, G,). At each 
iteration there is a choice of the parameter w  = w,. We shall, for 
convenience, always choose w  so that /3=/I, - e-‘. At the sth stage there 
are parameters 

n, - ne-s, t, - tees, u, - s Ilk 

so that ) V,l - n, and all x E V, have degrees 

degi(x) = ai 
k 

( ) i 
ti, where ai = IJ-~, 

We then select 

w  = w, zz (s + l)“k - S”k 
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and continue by induction. In (V,, G,) we find an independent set I, with 

IIs I ‘v ws> Ps ws = (44 ws * 

We continue this procedure until t, = tees becomes small. We stop at 
s = 0.01 In t, yielding an independent set 

0.01 In I 
z= u IZSI 

s=O 

with 

a(G) > 14 = C 141 = (n/4 C w, 
= c(n/t)(ln t)‘lk. 

All that remains is a careful examination of the “error terms” and a more 
formal proof. 

3. A MORE FORMAL PROOF 

Please, dear reader, read the previous sections first! We assume T, N are 
sufficiently large so that the inequalities we give (which are generally quite 
rough) will hold but we do not explicitly define suffkiently large. We will 
not concern ourselves with the nonintegrality of certain expressions. 

LEMMA. For T suflciently large (dependent on k) and N suflciently 
large (dependent on k, T) the following holds. Let 0 <s < 0.01 In T, s 
integral. Let 

w = (s + l)“k - S’lk, 

E = 10p6/ln T (the error term). 

Let 

eeSN/2 < n < e-“N, 

ems T/2 < t < eeST. 

Let (V, G) be an uncrowded hypergraph with n vertices and 

deg,(x) < s(k-i)/kfi 
3 1 Q i < k, all x. 
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Then there exists a set I and a hypergraph (V* *, G* *) such that 

0’1) a(G) 2 III+ a(G**), 

09) 111 2 (n/et)(O.W), 

(P3) 1 v**i > n”, 

(P4) degF(x) < (:)(s + l)(k-i)‘k(t*)i, 1 < i < k, all x E V*. 

Remark. Since t > e-“T/2 > P.99/2, t B k. Since n > ees.N/2 > 
NT-‘.“/2, n ti t. Also E = 10w6/ln T < 2 x 10e6/ln t and w  < 0.01 In 
T ( 0.01 In t. The variables N, T are useful only in proving the theorem 
following. 

Proof. Apply the Almost Regular Lemma and replace (V, G) by its 
extension. (This cannot increase the independence number.) Let B be those 
(bad) points x E-V so that some y E N+(x) does not have full degree. Then 
IB 1 < T, where T is independent of N. 

Remark. While adding edges to (V, G) would appear counterproductive 
we have not been able to remove the Almost Regular Lemma from our 
proof. 

Let C have distribution V(p), where p = w/t. Then D, I, V*, G*, deg,*(x), 
deg;(x) are defined as in Section 1. For every x E V 

pr(x @ D) = fi (1 -pi)(~)“‘k~i”k”, 
i=l 

Since p is sufficiently small 

exp[-p’(1 + s/10)] Q 1 -pi < exp[-pi]. 

Applying the upper estimate 

Pr(x@D}< exp -G [ in, (;) d-wpi] 

=e -1 

by the judicious choice of w. Thus 

e-‘e”‘” < Pr{x & D} <e-’ 

and therefore 

(w/et) e-“‘o < Pr{x E I} Q w/et 

(*) 
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and 

E(lZ(] > (n - F)(w/et) em”” 

2 (w/et) e-0.11’. 

If p(x, y) > 2 the events x E I, y E Z are independent. The Almost 
Independent Lemma implies 

Pr { (II > 0.99nw/et} > 0.99. (RI) 

Set Z equal to those x E V such that x 6$ B, x & C and 

degT(x) > 

for some 1 < i < k. (As a convenience we have allowed Z to contain points 
in D. However, Z will still be small.) Set 

V**= V-B-C-D-Z 

and let (V**, G*‘*) be the restriction of (V*, G*) to V**. This construction 
ensures (Pl), (P4), leaving only (P3) in doubt. We have immediately 

IBI < T< 10-“&n, 

Pr(lCI < 2nwJ > 0.99. 
(R-2) 

For p(x, y) > 4 the events x 66 D, y 4 D are mutually independent. The 
Almost Independent Lemma and (*) yield 

Pr{lV-B-DI>JV-Ble-‘ep~“f} >0.99. (R3) 

For 1 < i <j < k let Z, equal those x E V such that x & B, x & C and 

degi,?(x) > (1 + e) [(J)~Ik-“ikii][ii)~j-ie~i]. 

If x @ Z, for all i,j then 

(s + l)‘lk (f/e)’ 
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for all i and thus x 65 2. That is, 

2 C U Zij so lzl <C lzijI* 

Fixi,jwithl<i<j,<k.LetxEV-B.IfzEEESr,and\El=j,then 

Pr{z E Clx6? C) =p, 

Pr{z E V*(x& C} = Pr{z E V*}/(l -pj) 

as argued in Section 2. Applying (*) 

Pr{z E V*(z 6? C} <e-‘/(1 -pj) < e-les”ok, 

since p is sufficiently small. These probabilities are independent over distinct 
ZEN(X). For agivenE’EE, (E’)=i. 

Pr{E’E,YJxG C} =Pr{zE C/x& C}j-‘Pr{zE V*jx& C)’ 
<pj-ie-iee/10 

and thus 

Pr(E’ E&* for some E’ GE with IE’I =ilxtZ C} < 

These events are independent over the E E *FY, /El =j and deg$(x) counts 
the number of such events that occur so deg$(x) has distribution at most 

B[(F ) SCk-i)lktj, e,pj-ie-iedlO] 

so that 

Pr{x E ZijJx 6?G C) < ~lO-‘~/k*. 

Allowing i, j to range over 1 < i < j < k 

Pr{x E Zlx & C} < ~10-‘~. 

We remove the annoying condition by noting that if x E C then x 6?G Z by 
definition so 

Pr{xEZ} <Pr(xEZlx@C} <&lo-lo. 

The events x E Z, y E Z are independent when p(x, y) > 4 so using the 
Almost Independent Lemma 

Pr{(ZJ < 2elO-‘On} > 0.99. (R4) 
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Now (returning to reality) select a specific C so that the events (Rl), 
(R2), (R3), (R4) simultaneously occur. In that case (Pl), (P2), (P4) hold 
and 

giving (P3) as well and completing the lemma. 

THEOREM. For T sufJciently large (dependent on k) and N suflciently 
large (dependent on k, T) the following holds: If (V, G) is an uncrowded 
(k + I)-graph with N vertices and 

deg(x) < Tk 

for all x E V, then 

a(G) > c(N/T)(ln 7’)‘lk. 

Proof Applying the lemma, we find for 0 < s < lo-’ In T graphs 
(V,, G,) so that 

4Gs) 2 111 + a(G,+,h 

where 

emSN(l -&)S,<n,<e-“N, w, = (s + l)l’k - s”k, 

e-“T( 1 - E)~ < t, < epST 

and 

(since ns/ts > (NIq(O.99)). Thus 

proving the theorem for c = (0.98/e) 10m51k. 

COROLLARY. For T suflciently large (dependent on k) and N suficiently 
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large (dependent on k, lJ the following holds: If (V, G) is an uncrowded 
(k + I)-graph with N uertices and at most h’Tk hyperedges, then 

a(G) 2 c’(N/T)(ln T)ilk. 

Proof: The average valence is at most (k + 1) Tk. Deletion of those 
points of valence at most 2(k + 1) Tk yields a set V’ with / V’I > N/2. Set 
G’ = GI,,. Then for all x E V’ 

deg’(x) < 2(k t 1) Tk = (c, T)k, 

where c, = [2(k + l)] ‘lk. Then 

a(G) > 4G’) > c[(N/Wc, 771 WC, T)“k 

2 c’(N/T)(ln 7’)‘lk. 

Remark. It would be interesting to prove the corollary without first 
elimination of the vertices of high degree. 

Remark. A simple random graph theory argument shows that the 
corollary is best possible. Consider a random (k + I)-graph G with n vertices 
and hyperedge probability p = (t/n)k (k < t 4 n). Let x = c(n/t)(ln t)“k. The 
probability that a particular Z, 1Z1 =x is independent is approximately 
exp[-pxkff/(k t l)!]. The expected number of independent x-sets is then 

exp[-pxkf’/(k + I)!] < [(ne/x) exp[-pxk/(k t l)]]” 

for appropriately large c. On the other hand the expected number of cycles of 
order <4 in G is about (cn’k)p’k - ct4. Eliminating points in small cycles 
gives a hypergraph G’ with no small cycles and a(G’) <x. 
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