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1. Introduction

We propose in this paper an approach to the class-
ification of automata, grammars, and related formal
systems which has until now received little explicit
attention, Our aim is to analyse the size of systems
for specifying mathematical objects as opposed to the
power of such systems.

As an illustration of the kind of investigations
we propose, consider the following assortment of formal
systems for specifying regular sets:

13
heterninl gtie 1) finite automata

2) two-way finite automata14

and 5
Nondetermin- 3) one pebble finite automata
istic 4) linear-time one-tape off-line

Turing machines7

5) regular expressions9
6) extended regular expressions
(allowing set complementation),

7) right linear grammars.

Each of these systems is equally powerful in the
sense that the class of sets of words specifiable by
any one of them is precisely the regular sets. Never-
theless, specification of regular sets may be much
more economical in one system than another. A famil-
iar example of this point is the contrast between
deterministic and nondeterministic finite automata.

It is well known that nondeterministic automata can be
‘exponentially more succinct. In the next section we
show that the gain in economy achievable by nondeter-
ministic compared to deterministic finite automata can
be exactly determined.

Analysis of the size of systems provides a new
outlook for comparing and explaining the utility of
different systems. Context-free grammars are a good
example. The widespread use of context-free grammars
for describing programming languages seems almost
paradoxical when one surveys the large collection of
theoretical results (for example, inherent ambiguity

and slow recognition times 6) which suggest that
context-free languages are poor models for programming
languages. The power of context-free grammars is
actually a disadvantage in specifying efficient parser-
compilers. A good deal of recent effort has been spent
in finding methods for transforming grammars of more

or less general appearance into equivalent special form

grammars for efficient parsing 1’19 Nevertheless the
reason for using general context-free grammars even

for specifying fairly special kinds of languages 1is
obvious. The general grammars are usually much shorter,

*Work reported herein was conducted at Project MAC and
at the Artificial Intelligence Laboratory, M.I.T.
research programs supported in part by the Advanced
Research Projects Agency of the Department of Defense
under the Office of Naval Research Contracts Numbers
N00014-70-A-0362-0001 and -0002.
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easier to understand, and easier to write than restric-
ted form grammars. Our goal is to prove mathematically
this observation that general grammars are better at
describing simple languages, and moreover to quantify
the advantage that general grammars provide. As a
preliminary step in this program we describe in section
three some results about the size of general context-
free grammars, deterministic grammars, and finite
automata for describing finite sets and regular sets.

By the size of an automaton or grammar we mean,
roughly speaking, the number of symbols needed to
specify it. Thus the number of productions in a
grammar is an unrealistic size measure, since a single
production might be enormously large. We define
instead the size of a grammar to be the sum of the
lengths of the productions. Similarly the number of
states in an automaton may be a poor measure, and we
use instead the number of arcs in the state diagram.

This research is still in its preliminary state.
The proofs below are incomplete, and we expect that
all of our results can be significantly sharpened with
further effort. Two theorems are labelled "strong
conjectures" because we have not yet had time to carry
out what we expect to be a routine but tedious formal
verification. Our techniques are familiar in automata
theory with the emphasis diverted to obtain results
about size instead of power of formal systems.

2. Size of Finite Automata

We begin by comparing the size of deterministic
and nondeterministic finite automata. The standard
subset construction shows for any n-state nondetermin-

. istic automaton, there exists an equivalent determin-

istic automaton with at most 2" states. The following

example shows that this bound is optimal.

Proposition 1.
*
Rn C (0,1} such that the reduced finite automaton

For every n > 0, there is a regular set

accepting Rn has exactly 2" states (and size 2n+1)’ but
there is an n-state nondeterministic finite automaton
of size 3n-2 accepting Rn' Moreover, the reversal of

Rn is recognizable by a 2n-state deterministic machine

(of size 4nmn).

Proof. The nondeterministic machine for Rn has states
{0,1,...,n-1}). 1Input 1 takes state i to state (i+l)

mod n. Input O takes state i to itself and to state O
for 1 ¥ 0. State 0 is both start and final state. O

(As far as we know the optimality of the subset con-
struction for comverting from nondeterministic to
deterministic finite automata has not appeared in the

literature. Rabin12 mentions this as an open problem.
Our example is & simplification of an example in an
unpublished report by G. Ott. We subsequently noted
that this example for n = 4 appears as an exercise in

Henniee.




An even simpler example suggested by Paterson is
close to optimal: let R' C {0,1]* be the set of
strings whose nth from t:e last digit is 1. Then R;
is recognized by an n+l state nondeterministic machine,

the reduced deterministic machine has 27 states, and
the reduced machine for the reversal of R; has n+2

states. Moreover, R. N (0,13°(0,1,A,1" is a firite

event with simflar properties.

As an immediate consequence of the observation
about reversal we note that two-way finite automata
are exponentially more succinct than finite automata
for two (or three depending on conventions about end-
of-tape markers) symbol regular events. Moreover, an
n+4 state two-way automaton for R; can accept and

reject strings of length & in only £+2n steps, so that
in this case there is essentially no sacrifice in
processing time for the sake of program size economy.
This is an improvement over a similar example recently

published by Barnesa.
Shepherdson14 shows that any n-state two-way
finite automaton is equivalent to a finite automaton

with at most (n+2)n+1 states. The next result shows
that an economy of roughly this kind can actually be
achieved.

Proposition 2.
*
set Fn < {0,1,2} which can be recognized by a two-way

For every n > 1, there is a regular

finite automaton with at most 5n+5 states, but the
n
reduced finite automaton accepting Fn has at least n

states. Moreover Fn is a finite set.

o 4

i i
Let F_= (0 " 10 n ok gk

Proof. 18010 2°0 |

l1<sk<nand 1< ij <nfor j=1,...,n.

Meyer's proof that two-way deterministic one-
pebble automata recognize only regular sets” actually
reveals that any such n-state automaton is equivalent

n
to a finite automaton with roughly n" states. That
at least a doubly exponential improvement is possible
follows from

Proposition 3.
*
event Pn € (0,1,2) which is recognizable by a deter-

For each n > 0 there is a regular

ministic one pebble automaton with at most 3In+5 states.

The reduced finite automaton accepting Pn has at least
n

2 states. Moreover, Pn is finite.

= n
Proof. P {x12x22...2xk22xi | xj € {0,1) " for 1 <
j sk, 1 £k, and regarded as binary integer xj < xj+1
for 1 < j <KkJ. d

Such improvements are not possible for singleton
sets.

Proposition 4. For any language consisting of a

single word of length n, the reduced finite automaton
accepting it has n+2 states and every nondeterministic
finite automaton accepting it has at least ntl states.

Strong Conjecture. For languages consisting of a
single word, the improvement of each of the systems
(1)-(7) mentioned in the introduction over determinis-
tic finite automata is at most exponential. For sing-
leton languages over a one symbol alphabet, there is
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essentially no improvement.

3. Context-free Grammars and Pushdown Automata

One can convert between nondeterministic pushdown
machines and context-free grammars, and between
deterministic pushdown store machines and LR(1)
grammars with a change in size bounded by a linear
factor. Hence the results below about size of machines
carry over to grammars directly.

Proposition 5. 1If a finite set is recognized by a
deterministic (nondeterministic) pushdown automaton
with n states and s pushdown store symbols, then it
can be recognized by a deterministic (nondeterministic)

(sn)z).

finite automaton with 0(s
Proof. Using an argument similar to the proof of the
xuwvy pumping lemma for context free grammars <, one
can show that the length of the store cannot be greater

2
than (sn) in accepting computations by the pushdown
automaton, if the automaton accepts only finitely many

2
inputs. A finite automaton with s(sn) states can
therefore '"remember" the symbols on the store and
simulate the pushdown automaton. 0

Thus the gain in economy of pushdown automata over
finite automata for describing finite sets is at most
roughly exponential. Simple examples such as the
length n palindromes show that this much economy can be
approximately achieved. Rather suprisingly the situa-
tion for infinite regular sets is drastically changed.

First we note the deep results of Stearns that if
a deterministic pushdown automaton with n states and
s pushdown symbols accepts a regular set, then the
regular set is acceptable gy a deterministic finite
n
automaton with at most s" states15 Whether this
bound is achievable remains open, but we can show

Proposition 6. For each n > 0 there is an infinite
regular set In whose reduced finite automaton contains
n
2

at least 2= states, but In can be recognized by a
deterministic pushdown store machine of size O(na).

* n
a0,

pushdown store machine

Proof. In consists of words in {(0,1,a

accepted by a deterministic
which operates as follows:

1) Copy the input onto the store until input &

If a

is encountered. 1

does not occur, reject

the input.

2) Set i = 2.

3) 1If the next inmput is zero, pop the store until
the first occurrence of a . If the next input

is a one, pop the store to the second occurr-
ence of a . If any other imput is encountered,

or the occurrences of a, are not found, reject
the input. b

4) Increment i by one.

5) If i £ n, repeat step (3).

6) 1f the digit on top of the store is 1 and
there are no more input symbols, accept the
input. Otherwise reject the input.

The deterministic pushdown automaton described above
has roughly n states, n pushdown symbols and n inputs,

. . . 3
and so is of size propostional to n".



Consider the set An of reverse Polish prefix

L3
expressions of depth n involving binary operators

8y,...,8 over {0,1) generated by the grammar
s~ stza1
-+ =2,...
S ? SprSien®ie KT B
Sn+1-.0 | 1.

Each element of An corresponds in an obvious way to a

binary tree of depth n with leaf labels zero and one.
A particular leaf can be described by a binary word of
length n which describes the path from the root to the

leaf, where a zero or one in the ith digit of the
binary word indicates whether the path goes left or

right at the ith level.

Let B_= (xy | x €4, y€ (0,137, and the leaf

of x determined by y is labelled with 1}. It is easy

to see that a finite automaton accepting Bn requires
n

at least 22 states, since each word x € An must lead

to a different state in the course of accepting Bn-
B = n €
ut 1 is defined so that B In {xy | x An),

and it follows that a finite automaton for In must also
n

2
have 2° states because An is recognizable by a finite

automaton with approximately 2" states. We omit the

proof that In is in fact regular.

Thus Proposition 5 and 6 together show that the impro-
vement in size over finite automata provided by
deterministic pushdown store machines is still greater
on infinite regular sets than on finite sets.

Comparison of the size of finite automata and
general context-free grammars for infinite regular
sets reveals a qualitatively new phenomenon. The gain
in economy can be arbitrary.

Proposition 7. For any recursive function f and for
arbitrarily large integers n, there is a context-free
grammar of size n describing a regular (in fact co-
finite) set whose reduced finite automaton has at least
f(n) states.

Proof. Given any Turing machine T with states ql,...,

q and symbols XpseosXy which halts started on blank

tape started in state ;s let h(T) be the sequence of

successive instanteneous descriptions (id's) of the
computation of T on blank tape with successive id's
separated by $ and alternately reversed. That is h(T)
is of the form

i R i i R [ R] i
(id); $(id), $(id)4 $(id), $*+*5(id) $
where superscript "R" indicates reversal.

' It is not hard to show that {ql""’qk’xl""’xl‘
$) - (h(T)} is a context-free language definable by a
grammar of size approximately the same as T On the
other hand the minimum size finite automaton recogniz-
ing this language must have as many states as the
length of h(T). Since there is no recursive function
f bounding the length of h(T) and T, the proposition
follows. &

cf. Hartmanis‘6
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Finite automata can be regarded as a special case
of pushdown automaton, so finite automaton descriptions

#:>. of sets are never smaller than minimal descriptions by

pusdhown automata. However, pushdown automata are not
always more succinct than all the other systems for
regular sets mentioned in the introduction. In fact,
deterministic pushdown automata and one pebble finite
automata are exponentially more succinct than each
other on different classes of finite sets.

Strong Conjecture. The finite event P of Proposition 3

(which can be recognized by a one pebble automaton with
3n+5 states)cannot be recognized by any deterministic
pushdown store of size less than 0(2M). On the other

n

" hand the singleton lapguage {az } can be recognized by

a deterministic pushdown store automaton with size
0(n), but cannot be recognized by any one pebble auto-

n
maton of size less than 2.

4. Further Results

It is natural to consider context-sensitive
grammars and Turing machines next in our discussion.
We merely note here that context-sensitive grammars
may be arbitrarily more succinct (in the sense of
Proposition 7) than context-free grammars, and that
Turing machines may be arbitrarily more succinct than
context-sensitive grammars for describing finite sets.
The proofs of these observations use arguments of
recursive function theory rather than automata theory ’
11
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