
Succinctness of Regular Expressions with
Interleaving, Intersection and Counting

Wouter Gelade?

Hasselt University and Transnational University of Limburg
School for Information Technology

wouter.gelade@uhasselt.be

Abstract. Studying the impact of operations, such as intersection and
interleaving, on the succinctness of regular expressions has recently re-
ceived renewed attention [12–14]. In this paper, we study the succinctness
of regular expressions (REs) extended with interleaving, intersection and
counting operators. We show that in a translation from REs with inter-
leaving to standard regular expressions a double exponential size increase
can not be avoided. We also consider the complexity of translations to
finite automata. We give a tight exponential lower bound on the transla-
tion of REs with intersection to NFAs, and, for each of the three classes
of REs, we show that in a translation to a DFA a double exponential
size increase can not be avoided. Together with known results, this gives
a complete picture of the complexity of translating REs extended with
interleaving, intersection or counting into (standard) regular expressions,
NFAs, and DFAs.

1 Introduction

Regular expressions are used in many applications such as text processors, pro-
gramming languages [30], and XML schema languages [5, 28]. These applications,
however, usually do not restrict themselves to the standard regular expression
using disjunction (+), concatenation (·) and star (∗), but also allow the use of
additional operators. Although these operators mostly do not increase the ex-
pressive power of the regular expressions, they can have a drastic impact on
succinctness, thus making them harder to handle. For instance, it is well known
that expressions extended with the complement operator can describe certain
languages non-elementary more succinct than standard regular expressions or
finite automata [29].

In this paper, we study the succinctness of regular expressions extended with
counting (RE(#)), intersection (RE(∩)), and interleaving (RE(&)) operators.
The counting operator allows for expressions such as a[2,5], specifying that there
must occur at least two and at most 5 a’s. These RE(#)s are used in egrep [16]
and Perl [30] patterns and in the XML schema language XML Schema [28]. The
class RE(∩) is a well studied extension of the regular expressions, and is often

? Research Assistant of the Fund for Scientific Research - Flanders (Belgium)

referred to as the semi-extended regular expressions. The interleaving operator
allows for expressions such as a & b & c, specifying that a, b, and c may occur in
any order, and is used, for instance, in the XML schema language Relax NG [5].

A problem we consider, is the translation of extended regular expressions
into (standard) regular expressions. For RE(#) and RE(∩) the complexity of
this translation has already been settled and is exponential [18] and double ex-
ponential [12], respectively. We show that also in constructing an expression for
the interleaving of a set of expressions (an hence also for an RE(&)) a double
exponential size increase can not be avoided. This is the main technical result
of the paper. Apart from a pure mathematical interest, the latter result has two
important consequences. First, it prohibits an efficient translation from Relax
NG (which allows interleaving) to XML Schema Definitions (which does not).
However, as XML Schema is the widespread W3C standard, and Relax NG is
a more flexible alternative, such a translation would be more than desirable. A
second consequence concerns the automatic discovery of regular expression de-
scribing a set of given strings. The latter problem occurs in the learning of XML
schema languages [1–3]. At present these algorithms do not take into account
the interleaving operator, but for Relax NG this would be wise as this would
allow to learn significantly smaller expressions.

We recently learned that Gruber and Holzer independently obtained a similar
result [Personal communication]. They show that any regular expression defining
the language (a1b1)∗&· · ·&(anbn)∗ must be of size at least double exponential in
n. Compared to the result in this paper, this gives a tighter bound (22Ω(n)

instead
of 22Ω(

√
n)

), and shows that the double exponential size increase already occurs
for very simple expressions. On the other, the alphabet of the counterexamples
grows linear with n, whereas the alphabet size is constant for the languages in
this paper. Hence, the two results nicely complement each other.

We also consider the translation of extended regular expressions to NFAs.
For the standard regular expressions, it is well known that such a translation
can be done efficiently [4]. Therefore, when considering problems such as mem-
bership, equivalence, and inclusion testing for regular expressions the first step
is almost invariantly a translation to a finite automaton. For extended regular
expressions, such an approach is less fruitful. We show that an RE(&,∩,#) can
be translated in exponential time into an NFA. However, it has already been
shown by Kilpelainen and Tuhkanen [18] and Mayer and Stockmeyer [20] that
such an exponential size increase can not be avoided for RE(#) and RE(&),
respectively. For the translation from RE(∩) to NFAs, a 2Ω(

√
n) lower bound is

reported in [25], which we here improve to 2Ω(n).
As the translation of extended regular expressions to NFAs already involves

an exponential size increase, it is natural to ask what the size increase for DFAs
is. Of course, we can translate any NFA into a DFA in exponential time, thus
giving a double exponential translation, but can we do better? For instance,
from the results in [12] we can conclude that given a set of regular expressions,
constructing an NFA for their intersection can not avoid an exponential size
increase. However, it is not too hard to see that also a DFA of exponential size

2

accepting their intersection can be constructed. In the present paper, we show
that this is not possible for the classes RE(#), RE(∩), and RE(&). For each
class we show that in a translation to a DFA, a double exponential size increase
can not be avoided. An overview of all results is given in Figure 1(a).

NFA DFA RE

RE(#) 2Ω(n) [18] 22Ω(n)
(Th. 3) 2θ(n) [18]

RE(∩) 2Ω(n) (Pr. 2) 22Ω(n)
(Th. 4) 22Ω(

√
n)

[12]

RE(&) 2Ω(n) [20] 22Ω(
√

n)
(Th. 5) 22Ω(

√
n)

(Th. 6)

RE(&,∩, #) 2O(n) (Pr. 1) 22O(n)
(Pr. 3) 22O(n)

(Pr. 4)

(a)

RE

RE ∩ RE 2Ω(n) [13]T
RE 22Ω(

√
n)

[12]

RE & RE 2Ω(n) [13]

(b)

Fig. 1. Table (a) gives the complexity of translating extended regular expressions into
NFAs, DFAs, and regular expressions. Proposition and theorem numbers are given in
brackets. Table (b) lists some related results obtained in [12] and [13]

Related work. The different classes of regular expressions considered here
have been well studied. In particular, the RE(∩) and its membership [17, 19,
25] and equivalence and emptiness [10, 24, 26] problems, but also the classes
RE(#) [18, 23] and RE(&) [11, 20] have received interest. Succinctness of reg-
ular expressions has been studied by Ehrenfeucht and Zeiger [8] and, more re-
cently, by Ellul et. al [9], Gelade and Neven [12], Gruber and Holzer [13, 14],
and Gruber and Johannsen [15]. Some relevant results of these papers are listed
in Figure 1(b). Schott and Spehner give lower bounds for the translation of the
interleaving of words to DFAs [27]. Also related, but different in nature, are
the results on state complexity [32], in which the impact of the application of
different operations on finite automata is studied.

Outline. In Section 2 we give the necessary definitions and present some
basic results. In Sections 3, 4, and 5 we study the translation of extended regular
expressions to NFAs, DFAs, and regular expressions, respectively. A version of
this paper containing all proofs is available from the webpage of the author.

2 Definitions and Basic Results

2.1 Regular Expressions

By N we denote the natural numbers without zero. For the rest of the paper,
Σ always denotes a finite alphabet. A Σ-string (or simply string) is a finite
sequence w = a1 · · · an of Σ-symbols. We define the length of w, denoted by |w|,
to be n. We denote the empty string by ε. The set of positions of w is {1, . . . , n}
and the symbol of w at position i is ai. By w1 ·w2 we denote the concatenation of
two strings w1 and w2. As usual, for readability, we denote the concatenation of
w1 and w2 by w1w2. The set of all strings is denoted by Σ∗. A string language is a

3

subset of Σ∗. For two string languages L,L′ ⊆ Σ∗, we define their concatenation
L · L′ to be the set {ww′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times)
by Li. By w1 & w2 we denote the set of strings that is obtained by interleaving
w1 and w2 in every possible way. That is, for w ∈ Σ∗, w & ε = ε & w = {w},
and aw1 & bw2 = ({a}(w1 & bw2)) ∪ ({b}(aw1 & w2)). The operator & is then
extended to languages in the canonical way.

The set of regular expressions over Σ, denoted by RE, is defined in the usual
way: ∅, ε, and every Σ-symbol is a regular expression; and when r1 and r2 are
regular expressions, then r1 · r2, r1 + r2, and r∗1 are also regular expressions.
By RE(&,∩,#) we denote the class of extended regular expressions, that is, REs
extended with interleaving, intersection and counting operators. So, when r1 and
r2 are RE(&,∩,#)-expressions then so are r1 & r2, r1 ∩ r2, and r

[k,`]
1 for k, ` ∈ N

with k ≤ `. By RE(&), RE(∩), and RE(#), we denote RE extended solely with
the interleaving, intersection and counting operator, respectively.

The language defined by an extended regular expression r, denoted by L(r),
is inductively defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r1r2) =
L(r1) ·L(r2); L(r1 + r2) = L(r1)∪L(r2); L(r∗) = {ε}∪

⋃∞
i=1 L(r)i; L(r1 & r2) =

L(r1) & L(r2); L(r1 ∩ r2) = L(r1) ∩ L(r2); and L(r[k,`]) =
⋃`

i=k L(r)i.
By r+,

⋃k
i=1 ri, and rk, with k ∈ N, we abbreviate the expression rr∗, r1 +

· · ·+ rk, and rr · · · r (k-times), respectively. For a set S = {a1, . . . , an} ⊆ Σ, we
abbreviate by S the regular expression a1 + · · · + an. When r[k,l] is used in a
standard regular expression, this is an abbreviation for rk(r + ε)l−k.

We define the size of an extended regular expression r over Σ, denoted by |r|,
as the number of Σ-symbols and operators occurring in r plus the sizes of the
binary representations of the integers. Formally, |∅| = |ε| = |a| = 1, for a ∈ Σ,
|r1r2| = |r1 ∩ r2| = |r1 + r2| = |r1 & r2| = |r1| + |r2| + 1, |r∗| = |r| + 1, and
|r[k,`]| = |r|+ dlog ke+ dlog `e.

Intuitively, the star height of a regular expression r, denoted by sh(r) equals
the number of nested stars in r. Formally, sh(∅) = sh(ε) = sh(a) = 0, for a ∈ Σ,
sh(r1r2) = sh(r1 + r2) = max {sh(r1), sh(r2)}, and sh(r∗) = sh(r) + 1. The star
height of a regular language L, denoted by sh(L), is the minimal star height
among all regular expressions defining L.

The latter two concepts are related through the following theorem due to
Gruber and Holzer [13], which will allow us to reduce our questions about the
size of regular expressions to questions about the star height of regular languages.

Theorem 1 ([13]). Let L be a regular language. Then any regular expression
defining L is of size at least 2

1
3 (sh(L)−1) − 1.

2.2 Finite Automata and Graphs

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F) where
Q is the set of states, q0 is the initial state, F is the set of final states and
δ ⊆ Q×Σ×Q is the transition relation. As usual, we denote by δ∗ ⊆ Q×Σ∗×Q
the reflexive-transitive closure of δ. Then, w is accepted by A if (q0, w, qf) ∈ δ∗

4

for some qf ∈ F . The set of strings accepted by A is denoted by L(A). The size
of an NFA is |Q|+|δ|. An NFA is deterministic (or a DFA) if for all a ∈ Σ, q ∈ Q,
|{(q, a, q′) ∈ δ | q′ ∈ Q}| ≤ 1.

A state q ∈ Q is useful if there exist strings w,w′ ∈ Σ∗ such that (q0, w, q) ∈
δ∗, and (q, w′, qf) ∈ δ∗, for some qf ∈ F . An NFA is trim if it only contains
useful states. For q ∈ Q, let symbols(q) = {a | ∃p ∈ Q, (p, a, q) ∈ δ}. Then,
A is state-labeled if for any q ∈ Q, |symbols(q)| ≤ 1, i.e., all transitions to a
single state are labeled with the same symbol. In this case, we also denote this
symbol by symbol(q). Further, A is non-returning if symbols(q0) = ∅, i.e., q0 has
no incoming transitions. A language L is bideterministic if there exists a DFA
A, accepting L, such that the inverse of A is again deterministic. That is, A
may have at most one final state and the automaton obtained by inverting every
transition in A, and exchanging the initial and final state, is again deterministic.

A (directed) graph G is a tuple (V,E), where V is the set of vertices and
E ⊆ V × V is the set of edges. A graph (U,F) is a subgraph of G if U ⊆ V and
F ⊆ E. For a set of vertices U ⊆ V , the subgraph of G induced by U , denoted
by G[U], is the graph (U,F), where F = {(u, v) | u, v ∈ U ∧ (u, v) ∈ E}.

A graph G = (V,E) is strongly connected if for every pair of vertices u, v ∈ V ,
both u is reachable from v, and v is reachable from u. A set of edges V ′ ⊆ V is
a strongly connected component (SCC) of G if G[V ′] is strongly connected and
for every set V ′′, with V ′ (V ′′, G[V ′′] is not strongly connected.

We now introduce the cycle rank of a graph G = (V,E), denoted by cr(G),
which is a measure for the structural complexity of G. It is inductively defined
as follows: (1) if G is acyclic or empty, then cr(G) = 0, otherwise (2) if G is
strongly connected, then cr(G) = minv∈V cr(G[V \ {v}]) + 1, and otherwise (3)
cr(G) = maxV ′ SCC of G cr(G[V ′]).

Let A = (Q, q0, δ, F) be an NFA. The underlying graph G of A is the graph
obtained by removing the labels from the transition edges of A, or more formally
G = (Q,E), with E = {(q, q′) | ∃a ∈ Σ, (q, a, q′) ∈ δ}. In the following, we often
abuse notation and for instance say the cycle rank of A, referring to the cycle
rank of its underlying graph.

There is a strong connection between the star height of a regular language,
and the cycle rank of the NFAs accepting it, as witnessed by the following the-
orem. Theorem 2(1) is known as Eggan’s Theorem [7] and proved in its present
form by Cohen [6]. Theorem 2(3) is due to McNaughton [21].

Theorem 2. For any regular language L,

1. sh(L) = min {cr(A) | A is an NFA accepting L}. [7, 6].
2. sh(L)·|Σ| ≥ min {cr(A) | A is a non-returning state-labeled NFA accepting L}.
3. if L is bideterministic, then sh(L) = cr(A), where A is the minimal trim

DFA accepting L. [21]

5

3 Succinctness w.r.t. NFAs

In this section, we study the complexity of translating extended regular expres-
sions into NFAs. We show that such a translation can be done in exponential
time, by constructing the NFA by induction on the structure of the expression.

Proposition 1. Let r be a RE(&,∩,#). An NFA A with at most 2|r| states,
such that L(r) = L(A), can be constructed in time 2O(|r|).

This exponential size increase can not be avoided for any of the classes.
For RE(#) this is witnessed by the expression a[2n,2n] and for RE(&) by the
expression a1 & · · ·& an, as already observed by Kilpelainen and Tuhkanen [18]
and Mayer and Stockmeyer [20], respectively. For RE(∩), a 2Ω(

√
n) lower bound

has already been reported in [25]. The present tighter statement, however, will
follow from Theorem 4 and the fact that any NFA with n states can be translated
into a DFA with 2n states [31].

Proposition 2. For any n ∈ N, there exist an RE(#) r#, an RE(∩) r∩, and
an RE(&) r&, each of size O(n), such that any NFA accepting r#, r∩, or r&

contains at least 2n states.

4 Succinctness w.r.t. DFAs

In this section, we study the complexity of translating extended regular expres-
sions into DFAs. First, from Proposition 1 and the fact that any NFA with n
states can be translated into a DFA with 2n states in exponential time [31], we
can immediately conclude the following.

Proposition 3. Let r be a RE(&,∩,#). A DFA A with at most 22|r| states,
such that L(r) = L(A), can be constructed in time 22O(|r|)

.

We show that, for each of the classes RE(#), RE(∩), or RE(&), this double
exponential size increase can not be avoided. For RE(#), this is witnessed by
the expression (a + b)∗a(a + b)[2

n,2n] which is of size O(n), but for which any
DFA accepting it must contain at least 22n

states.

Theorem 3. For any n ∈ N there exists an RE(#) rn of size O(n) such that
any DFA accepting L(rn) contains at least 22n

states.

We now move to regular expressions extended with the intersection operator.
The succinctness of RE(∩) with respect to DFAs can be obtained along the same
lines as the simulation of exponential space turing machines by RE(∩) in [10].

Theorem 4. For any n ∈ N there exists an RE(∩) r∩n of size O(n) such that
any DFA accepting L(r∩n) contains at least 22n

states.

6

Proof. Let n ∈ N. We start by describing the language Gn which will be used
to establish the lower bound. This will be a variation of the following language
over the alphabet {a, b}: {ww | |w| = 2n}. It is well known that this language is
hard to describe by a DFA. However, to define it very succinct by an RE(∩), we
need to add some additional information to it.

Thereto, we first define a marked number as a string over the alphabet
{0, 1, 0̄, 1̄} defined by the regular expression (0+1)∗1̄0̄∗+ 0̄∗, i.e., a binary num-
ber in which the rightmost 1 and all following 0’s are marked. Then, for any
i ∈ [0, 2n − 1] let enc(i) denote the n-bit marked number encoding i. These
marked numbers were introduced by Fürer in [10], where the following is ob-
served: if i, j ∈ [0, 2n− 1] are such that j = i+1(mod 2n), then the bits of i and
j which are different are exactly the marked bits of j. For instance, for n = 2,
enc(1) = 01̄ and enc(2) = 1̄0̄ and they differ in both bits as both bits of enc(2)
are marked. Further, let encR(i) denote the reversal of enc(i).

Now, for a string w = a0a1 . . . a2n−1 define

enc(w) = encR(0)a0enc(0)$encR(1)a1enc(1)$ · · · encR(2n − 1)a2n−1enc(2n − 1)

and, finally, define

Gn = {#enc(w)#enc(w) | w ∈ L((a + b)∗) ∧ |w| = 2n}

For instance, for n = 2, and w = abba, enc(w) = 0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄
and hence #0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄#0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄ ∈ G2.

It can be shown that any DFA accepting Gn, the complement of Gn, must
contain at least 22n

states. Furthermore, we can construct an expression r∩n of
size O(n) defining Gn. Here, r∩n is the disjunction of many expressions, each
describing some mistake a string can make in order not to be in Gn. ut

We can now extend the results for RE(∩) to RE(&). We do this by using a
technique of Mayer and Stockmeyer [20] which allows, in some sense, to simulate
an RE(∩) by an RE(&). To formally define this, we need some notation. Let
w = a0 · · · an be a string over an alphabet Σ, and let c be a symbol not in Σ.
Then, for any i ∈ N, define pumpi(w) = ai

0c
iai

1c
i · · · ai

kci. Now, they proved the
following:

Lemma 1 ([20]). Let r be an RE(∩) containing k ∩-operators. Then, there
exists an RE(&) s of size at most |r|2 such that for any w ∈ Σ∗, w ∈ L(r) iff
pumpk(w) ∈ L(s).

That is, the expression s constructed in this lemma may define additional
strings, but the set of valid pumped string it defines, corresponds exactly to
L(r). Using this lemma, we can now prove the following theorem.

Theorem 5. For any n ∈ N there exists an RE(&) r&
n of size O(n2) such that

any DFA accepting L(r&
n) contains at least 22n

states.

7

5 Succinctness w.r.t. Regular Expressions

In this section, we study the translation of extended regular expressions to (stan-
dard) regular expressions. First, for the class RE(#) it has already been shown
by Kilpelainen and Tuhkanen [18] that this translation can be done in exponen-
tial time, and that an exponential size increase can not be avoided. Furthermore,
from Proposition 1 and the fact that any NFA with n states can be translated
into a regular expression in time 2O(n) [9] it immediately follows that:

Proposition 4. Let r be a RE(&,∩,#). A regular expression s equivalent to r

can be constructed in time 22O(|r|)

Furthermore, from the results in [12] (see also Figure 1(b)) it follows that in
a translation from RE(∩) to standard regular expressions, a double exponential
size increase can not be avoided.

Hence, it only remains to show a double exponential lower bound on the
translation from RE(&) to standard regular expressions, which is exactly what
we will do in the rest of this section. Thereto, we proceed in several steps and
define several families of languages. First, we introduce the family of languages
(Kn)n∈N, on which all following languages will be based, and establish its star
height. The star height of languages will be our tool for proving lower bounds
on the size of regular expressions defining these languages. Then, we define the
family (Ln)n∈N which is a binary encoding of (Kn)n∈N and show that these
languages can be defined as the intersection of small regular expressions.

Finally, we define the family (Mn)n∈N which is obtained by simulating the
intersection of the previously obtained regular expressions by the interleaving of
related expressions, similar to the simulation of RE(∩) by RE(&) in Section 4.
Bringing everything together, this then leads to the desired result: a double
exponential lower bound on the translation of RE(&) to RE.

As an intermediate corollary of this proof, we also obtain a double exponential
lower bound on the translation of RE(∩) to RE, similar to a result in [12]. We
note, however, that the succinctness results for RE(&) can not be obtained by
using the results in [12], and that, hence, the different lemmas which prove the
succinctness of RE(∩) are necessary to obtain the subsequent results on RE(&).

5.1 Kn: The Basic Language

We first introduce the family (Kn)n∈N defined by Ehrenfeucht and Zeiger over
an alphabet whose size grows quadratically with the parameter n [8]:

Definition 1 Let n ∈ N and Σn = {ai,j | 0 ≤ i, j ≤ n− 1}. Then, Kn contains
exactly all strings of the form a0,i1ai1,i2 · · · aik,n−1 where k ∈ N ∪ {0}.

An alternative definition of Kn is through the minimal DFA accepting it.
Thereto, let AKn = (Q, q0, δ, F) be defined as Q = {q0, . . . , qn−1}, F = {qn−1},
and for all i, j ∈ [0, n− 1], (qi, ai,j , qj) ∈ δ. That is, AKn is the complete DFA on
n states where the transition from state i to j is labeled by ai,j .

8

We now determine the star height of Kn. This is done by observing that Kn is
bideterministic, such that, by Theorem 2(3), sh(Kn) = cr(AKn), and subsequently
showing that cr(AKn) = n.

Lemma 2. For any n ∈ N, sh(Kn) = n.

5.2 Ln: Succinctness of RE(∩)

In this section we want to construct a set of small regular expressions such that
any expression defining their intersection must be large (that is, of double expo-
nential size). Ideally, we would like to use the family of languages (Kn)n∈N for
this as we have shown in the previous section that they have a large star height,
and thus by Theorem 1 can not be defined by small expressions. Unfortunately,
this is not possible as the alphabet of (Kn)n∈N grows quadratically with n.

Therefore, we will introduce in this section the family of languages (Ln)n∈N
which is a binary encoding of (Kn)n∈N over a fixed alphabet. Thereto, let n ∈ N
and recall that Kn is defined over the alphabet Σn = {ai,j | i, j ∈ [0, n − 1]}.
Now, for ai,j ∈ Σn, define the function ρn as

ρn(ai,j) = #enc(j)$enc(i)4enc(i + 1)4· · ·4enc(n− 1)4,

where enc(k), for k ∈ N, denotes the dlog(n)e-bit marked number encoding k as
defined in the proof of Theorem 4. So, the encoding starts by the encoding of
the second index, followed by an ascending sequence of encodings of all numbers
from the first index to n − 1. We extend the definition of ρn to strings in the
usual way: ρn(a0,i1 · · · aik−1,n−1) = ρn(a0,i1) · · · ρn(aik,n−1).

We are now ready to define Ln.

Definition 2 Let Σ = {0, 1, 0̄, 1̄, $,#,4}. For n ∈ N, Ln = {ρn(w) | w ∈ Kn}.

For instance, for n = 3, a0,1a1,2 ∈ K3 and hence ρ3(a0,1a1,2) = #01̄$0̄0̄401̄41̄0̄4
#1̄0̄$01̄41̄0̄4 ∈ L3. We now show that this encoding does not affect the star
height. This is done by observing that, due to the specific encoding of Kn, Ln is
still bideterministic. Then, we obtain the star height of Ln by determining the
cycle rank of the minimal DFA accepting it.

Lemma 3. For any n ∈ N, sh(Ln) = n.

Further, it can be shown that Ln can be described as the intersection of a
set of small regular expressions.

Lemma 4. For every n ∈ N, there are regular expressions r1, . . . , rm, with m =
4n + 3, each of size O(n), such that

⋂
i≤m L(ri) = L2n .

Although it is not our main interest, we can now obtain the following by
combining Theorem 1, and Lemmas 3 and 4.

Corollary 1. For any n ∈ N, there exists an RE(∩) r of size O(n2) such that
any (standard) regular expression defining L(r) is of size at least 2

1
3 (2n−1) − 1.

9

5.3 Mn: Succinctness of RE(&)

In this section we will finally show that RE(&) are double exponentially more
succinct than standard regular expressions. We do this by simulating the in-
tersection of the regular expressions obtained in the previous section, by the
interleaving of related expressions, similar to the simulation of RE(∩) by RE(&)
in Section 4. This approach will partly yield the following family of languages.
For any n ∈ N, define

Mn = {pump4dlog ne+3(w) | w ∈ Ln}

As Mn is very similar to Ln, we can easily extend the result on the star
height of Ln (Lemma 3) to Mn:

Lemma 5. For any n ∈ N, sh(Mn) = n.

However, the language we will eventually define will not be exactly Mn.
Therefore, we need an additional lemma, for which we first introduce some
notation. For k ∈ N, and an alphabet Σ, we define Σ(k) to be the language
defined by the expression (

⋃
σ∈Σ σk)∗, i.e., all strings which consist of a se-

quence of blocks of identical symbols of length k. Further, for a language L, de-
fine index(L) = max {i | i ∈ N ∧ ∃w,w′ ∈ Σ∗, a ∈ Σ such that waiw′ ∈ L}. No-
tice that index(L) can be infinite. However, we will only be interested in lan-
guages for which it is finite, as in the following lemma.

Lemma 6. Let L be a regular language, and k ∈ N, such that index(L) ≤ k.
Then, sh(L) · |Σ| ≥ sh(L ∩Σ(k)).

This lemma is proved by combining Theorem 2(2) with an algorithm that
transforms any non-returning state-labeled NFA A, with index(L(A)) ≤ k, into
an NFA accepting L(A) ∩Σ(k), without increasing its cycle rank.

Now, we are finally ready to prove the desired theorem:

Theorem 6. For every n ∈ N, there are regular expressions s1, . . . , sm, with
m = 4n+3, each of size O(n), such that any regular expression defining L(s1)&
L(s2) & · · ·& L(sm) is of size at least 2

1
24 (2n−8) − 1.

Proof. Let n ∈ N, and let r1, . . . , rm, with m = 4n+3, be the regular expressions
obtained in Lemma 4 such that

⋂
i≤m L(ri) = L2n .

Now, it is shown in [20], that given r1, . . . , rm, it is possible to construct
regular expressions s1, . . . , sm such that (1) for all i ∈ [1,m], |si| ≤ 2|ri|, and
if we define N2n = L(s1) & · · · & L(sm), then (2) index(N2n) ≤ m, and (3) for
every w ∈ Σ∗, w ∈

⋂
i≤m L(ri) iff pumpm(w) ∈ N2n . Furthermore, it follows

immediately from the construction in [20] that any string in N2n ∩ Σ(m) is of
the form am

1 cmam
2 cm · · · am

l cm, i.e., pumpm(w) for some w ∈ Σ∗.
Since

⋂
i≤m L(ri) = L2n , and M2n = {pumpm(w) | w ∈ L2n}, it hence

follows that M2n = N2n ∩ Σ(m). As furthermore, by Lemma 5, sh(M2n) = 2n

and index(N2n) ≤ m, it follows from Lemma 6 that sh(N2n) ≥ sh(M2n)
|Σ| = 2n

8 .

10

So, N2n can be described by the interleaving of the expressions s1 to sm, each
of size O(n), but any regular expression defining N2n must, by Theorem 1, be
of size at least 2

1
24 (2n−8) − 1. This completes the proof. ut

Corollary 2. For any n ∈ N, there exists an RE(&) rn of size O(n2) such that
any regular expression defining L(rn) must be of size at least 2

1
24 (2n−8) − 1.

This completes our paper. As a final remark, we note that all lower bounds
in this paper make use of a constant size alphabet and can furthermore easily
be extended to a 2-letter alphabet. For any language over an alphabet Σ =
{a1, . . . , ak}, we obtain a new language by replacing, for any i ∈ [1, k], every
symbol ai by bick−i+1. Obviously, the size of a regular expression for this new
language is at most k +1 times the size of the original expression, and the lower
bounds on the number of states of DFAs trivially carry over. Furthermore, it is
shown in [22] that this transformation does not affect the star height, and hence
the lower bounds on the sizes of the regular expression also carry over.

Acknowledgement. I thank Frank Neven and the anonymous referees for
helpful suggestions, and Hermann Gruber for informing me about their results
on the succinctness of the interleaving operator.

References

1. G. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning deterministic regular
expressions for the inference of schemas from XML data. In WWW, pages 825–834,
2008.

2. G. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs from
XML data. In VLDB, pages 115–126, 2006.

3. G. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema Definitions from
XML data. In VLDB, pages 998–1009, 2007.

4. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120(2):197–213, 1993.

5. J. Clark and M. Murata. RELAX NG Specification. OASIS, December 2001.
6. R. S. Cohen. Rank-non-increasing transformations on transition graphs. Informa-

tion and Control, 20(2):93–113, 1972.
7. L. C. Eggan. Transition graphs and the star height of regular events. Michigan

Mathematical Journal, 10:385–397, 1963.
8. A. Ehrenfeucht and H. Zeiger. Complexity measures for regular expressions. Jour-

nal of Computer and System Sciences, 12(2):134–146, 1976.
9. K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New results and

open problems. Journal of Automata, Languages and Combinatorics, 10(4):407–
437, 2005.

10. M. Fürer. The complexity of the inequivalence problem for regular expressions
with intersection. In ICALP, pages 234–245, 1980.

11. W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML:
Numerical constraints and interleaving. In T. Schwentick and D. Suciu, editors,
ICDT, volume 4353 of LNCS, pages 269–283. Springer, 2007.

11

12. W. Gelade and F. Neven. Succinctness of the complement and intersection of
regular expressions. In STACS, pages 325–336, 2008.

13. H. Gruber and M. Holzer. Finite automata, digraph connectivity, and regular
expression size. In ICALP, 2008. To Appear.

14. H. Gruber and M. Holzer. Language operations with regular expressions of poly-
nomial size. In DCFS, 2008. To Appear.

15. H. Gruber and J. Johannsen. Optimal lower bounds on regular expression size using
communication complexity. In Roberto M. Amadio, editor, FoSSaCS, volume 4962
of LNCS, pages 273–286. Springer, 2008.

16. A. Hume. A tale of two greps. Software, Practice and Experience, 18(11):1063–
1072, 1988.

17. T. Jiang and B. Ravikumar. A note on the space complexity of some decision
problems for finite automata. Information Processing Letters, 40(1):25–31, 1991.

18. P. Kilpeläinen and R. Tuhkanen. Regular expressions with numerical occurrence
indicators — preliminary results. In SPLST 2003, pages 163–173, 2003.

19. O. Kupferman and S. Zuhovitzky. An improved algorithm for the membership
problem for extended regular expressions. In K. Diks and W. Rytter, editors,
MFCS, volume 2420 of LNCS, pages 446–458. Springer, 2002.

20. A. J. Mayer and L. J. Stockmeyer. Word problems-this time with interleaving.
Information and Computation, 115(2):293–311, 1994.

21. R. McNaughton. The loop complexity of pure-group events. Information and
Control, 11(1/2):167–176, 1967.

22. R. McNaughton. The loop complexity of regular events. Information Sciences,
1(3):305–328, 1969.

23. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In FOCS, pages 125–129, 1972.

24. H. Petersen. Decision problems for generalized regular expressions. In DCAGRS,
pages 22–29, 2000.

25. H. Petersen. The membership problem for regular expressions with intersection is
complete in LOGCFL. In Helmut Alt and Afonso Ferreira, editors, STACS, volume
2285 of LNCS, pages 513–522. Springer, 2002.

26. J. M. Robson. The emptiness of complement problem for semi extended regular
expressions requires cn space. Information Processing Letters, 9(5):220–222, 1979.

27. R. Schott and J. C. Spehner. Shuffle of words and araucaria trees. Fundamenta
Informatica, 74(4):579–601, 2006.

28. C.M. Sperberg-McQueen and H. Thompson. XML Schema.
http://www.w3.org/XML/Schema, 2005.

29. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In STOC, pages 1–9, 1973.

30. L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, third edition,
2000.

31. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
formal languages, volume 1, chapter 2, pages 41–110. Springer, 1997.

32. S. Yu. State complexity of regular languages. Journal of Automata, Languages
and Combinatorics, 6(2):221–234, 2001.

12

Appendix

For the convenience of the reader we give the full proofs of those theorems which
only have partial proofs. The point where the proof in the main text ended is
indicated by · · · .

Before giving the proofs, we introduce an additional lemma. Thereto, we
say that a graph H is a minor of a graph G if H can be obtained from G by
removing edges, removing vertices, and contracting edges. Here, contracting an
edge between two vertices u and v, means replacing u and v by one new vertex,
which inherits all incoming and outgoing edges of u and v.

Lemma 7. If a graph H is a minor of a graph G, then cr(H) ≤ cr(G).

Proof. It suffices to show that if H is obtained from G by applying only one
operation, then cr(H) ≤ cr(G), as the statement then remains to hold after
applying multiple operations. For the operations deleting a vertex or deleting an
edge, observe that H is a subgraph of G. Now, it has been shown by Cohen [6]
that in this case cr(H) ≤ cr(G). For the case of an edge contraction, we apply an
old result of McNaughton [21]. He shows that if there exists a so-called pathwise
homomorphism from G to H, then cr(H) ≤ cr(G). Without going into detail, we
note that such a pathwise homomorphism from G to H can easily be constructed
if H is obtained from G by contracting an edge. ut

Proofs for Section 2

Proof of Theorem 2(2): For any regular language L,

sh(L) · |Σ| ≥ min {cr(A) | A is a non-returning state-labeled NFA accepting L}

Proof. Let L be a regular language over an alphabet Σ. By Eggan’s Theorem
(Theorem 2(1)), we know that there exists an NFA A, with L(A) = L and
cr(A) = sh(L). We show that, given A, we can construct a non-returning state-
labeled NFA Bsl equivalent to A such that cr(A) · |Σ| ≥ cr(Bsl) from which the
theorem follows.

Let A = (Q, q0, δ, F) be an NFA over Σ, we construct Bsl in two steps. First,
we construct a non-returning NFA B = (QB , qB , δB , FB), with L(B) = L(A),
as follows: QB = Q ∪ {qB}, δB = δ ∪ {(qB , a, q) | q ∈ Q, a ∈ Σ, (q0, a, q) ∈ δ},
and FB = F if q0 /∈ F , and FB = F ∪ {qB}, otherwise. Intuitively, B is A
extended with a new initial state which only inherits the outgoing transitions of
the old initial state. It should be clear that B is non-returning and L(B) = L(A).
Furthermore, cr(B) = cr(A) because qB has no incoming transitions and it thus
forms a separate strongly connected component in B whose cycle rank is 0. From
the definitions it then follows that cr(B) = cr(A).

From B, we now construct the non-returning state-labeled NFA Bsl such that
cr(Bsl) ≤ cr(B) · |Σ| = cr(A) · |Σ|. Let Bsl = (Qsl, qsl

0 , δsl, F sl) be defined as

13

– Qsl = {qa | q ∈ QB , a ∈ Σ};
– qsl

0 = qa
B , for some a ∈ Σ;

– δsl = {(qa, b, pb) | q, p ∈ QB , a, b ∈ Σ, (q, b, p) ∈ δB}; and
– F sl = {qa | q ∈ FB , a ∈ Σ}

That is, Bsl contains |Σ| copies of every state q of B, each of which captures
all incoming transitions of q for one alphabet symbol. Obviously, Bsl is a non-
returning state-labeled NFA with L(B) = L(Bsl).

We conclude by showing that cr(B) · |Σ| ≥ cr(Bsl). In the following, we
abuse notation and, for a set of states P , write B[P] for the subautomaton of
B induced by P , defined in the obvious way. Now, for a set of states P of B,
let P sl = {qa | q ∈ P, a ∈ Σ}, and observe that (B[Q \ P])sl = Bsl[Qsl \ P sl]
always holds. We now show cr(B) · |Σ| ≥ cr(Bsl) by induction on the number
of states of B. If |QB | = 1 then either the single state does not contain a
loop, such that cr(B) = cr(Bsl) = 0, or the single state contains a self loop,
in which case cr(B) = 1, and as |Qsl| = |Σ|, cr(Bsl) ≤ |Σ| holds, and hence
cr(B) · |Σ| ≥ cr(Bsl).

For the induction step, if B is acyclic, then, again, cr(B) = cr(Bsl) = 0.
Otherwise, if B is strongly connected, then cr(B) = cr(B[Q \ {q}]) + 1, for some
q ∈ QB . Then, cr(B) · |Σ| = cr(B[Q \ {q}]) · |Σ| + |Σ|, which by the induction
hypothesis gives us cr(B) · |Σ| ≥ cr(Bsl[Qsl \ {q}sl]) + |Σ|. Finally, it is shown in
[13] that removing a set of states P from a graph can never decrease its cycle rank
by more than |P |. Therefore, as |{q}sl| = |Σ|, cr(Bsl[Q \ {q}sl]) + |Σ| ≥ cr(Bsl),
and hence cr(B) · |Σ| ≥ cr(Bsl).

Otherwise, if B consists of several strongly connected components Q1, . . . , Qk,
with k ≥ 2, then cr(B) = maxi≤k cr(B[Qi]). But now, by construction, every
strongly connected component V of Bsl is contained in Qsl

i , for some i ∈ [1, k].
Then, Bsl[V] is a minor of Bsl[Qsl

i], and hence it follows from Lemma 7 that
cr(Bsl) = maxV SCC of Bsl cr(Bsl[V]) ≤ maxi≤k cr(Bsl[Qsl

i]). Now, by induc-
tion, cr(B[Qi]) · |Σ| ≥ cr(Bsl[Qsl

i]) for all i ∈ [1, k], from which it follows that
cr(B) · |Σ| ≥ cr(Bsl).

Proofs for Section 3

Proof of Proposition 1: Let r be a RE(&,∩,#). An NFA A with at most 2|r|

states, such that L(r) = L(A), can be constructed in time 2O(|r|).

Proof. We construct A by induction on the structure of the formula. For the
base cases, r = ε, r = ∅, and r = a, for a ∈ Σ, and the induction cases r = r1r2,
r = r1 + r2, and r∗1 this can easily be done using standard constructions. We
give the full construction for the three special operators:

– If r = r1 ∩ r2, for i ∈ [1, 2], let Ai = (Qi, qi
0, δ

i, F i) accept L(ri). Then,
A = (Q, q0, δ, F) is defined as Q = Q1 ×Q2, q0 = (q1

0 , q2
0), F = F1 × F2, and

δ = {((q1, q2), a, (p1, p2)) | (q1, a, p1) ∈ δ1 ∧ (q2, a, p2) ∈ δ2}.

14

– If r = r1 & r2, then A is defined exactly as for r1 ∩ r2, except for δ which
now equals {((q1, q2), a, (p1, q2)) | (q1, a, p1) ∈ δ1} ∪ {((q1, q2), a, (q1, p2)) |
(q2, a, p2) ∈ δ2}.

– If r = r
[k,`]
1 , let A1 accept L(r1). Then, let B1 to B` be ` identical copies of A1

with disjoint sets of states. For i ∈ [1, `], let Bi = (Qi, qi
0, δ

i, F i). Now, define
A = (Q, q0

0 , δ, F) accepting r
[k,`]
1 as follows: Q =

⋃
i≤` Qi, F =

⋃
k≤i≤` F i,

and δ =
⋃

i≤` δi∪{(qi, a, qi+1
0) | qi ∈ Qi∧∃pi ∈ F i such that (qi, a, pi) ∈ δi}.

We note that the construction for the interleaving operator comes from [20],
where it was already used for a translation from RE(&) to NFAs. We argue that
A contains at most 2|r| states. For r = r1 ∩ r2 or r = r1 & r2, by induction A1

and A2 contain at most 2|r1| and 2|r2| states and, hence, A contains at most
2|r1| · 2|r2| = 2|r1|+|r2| ≤ 2|r| states. For r = r

[k,`]
1 , similarly, A contains at most

` · 2|r1| = 2|r1|+log ` ≤ 2|r| states. Furthermore, as the intermediate automata
never have more than 2|r| states and we have to do at most |r| such constructions,
the total construction can be done in time 2O(|r|).

Proofs for Section 4

Proof of Theorem 3: For any n ∈ N there exists an RE(#) rn of size O(n)
such that any DFA accepting L(rn) contains at least 22n

states.

Proof. Let n ∈ N and define rn = (a + b)∗a(a + b)[2
n,2n]. Here, rn is of size O(n)

since the integers in the numerical predicate are stored in binary. We show that
any DFA A = (Q, q0, δ, F) accepting L(rn) has at least 22n

states. Towards a
contradiction, suppose that A has less than 22n

states and consider all strings of
length 2n containing only a’s and b’s. As there are exactly 22n

such strings, and
A contains less than 22n

states, there must be two different such strings w,w′

and a state q of A such that both (q0, w, q) ∈ δ∗ and (q0, w
′, q) ∈ δ∗. But now,

as w 6= w′, there exists some i ∈ [1, 2n] such that the ith position of w contains
an a, and the ith position of w′ contains a b (or the other way around, but that
is identical). Therefore, wai ∈ L(rn), and w′ai /∈ L(rn) but wai and w′ai are
either both accepted or both not accepted by A, and hence L(rn) 6= L(A), which
gives us the desired contradiction.

Proof of Theorem 4: For any n ∈ N there exists an RE(∩) r∩n of size O(n)
such that any DFA accepting L(r∩n) contains at least 22n

states.

Proof. Let n ∈ N. We start by describing the language Gn which will be used
to establish the lower bound. This will be a variation of the following language
over the alphabet {a, b}: {ww | |w| = 2n}. It is well known that this language is
hard to describe by a DFA. However, to define it very succinct by an RE(∩), we
need to add some additional information to it.

15

Thereto, we first define a marked number as a string over the alphabet
{0, 1, 0̄, 1̄} defined by the regular expression (0+1)∗1̄0̄∗+ 0̄∗, i.e., a binary num-
ber in which the rightmost 1 and all following 0’s are marked. Then, for any
i ∈ [0, 2n − 1] let enc(i) denote the n-bit marked number encoding i. These
marked numbers were introduced in [10], where the following is observed: if
i, j ∈ [0, 2n − 1] are such that j = i + 1(mod 2n), then the bits of i and j which
are different are exactly the marked bits of j. For instance, for n = 2, enc(1) = 01̄
and enc(2) = 1̄0̄ and they differ in both bits as both bits of enc(2) are marked.
Further, let encR(i) denote the reversal of enc(i).

Now, for a string w = a0a1 . . . a2n−1 define

enc(w) = encR(0)a0enc(0)$encR(1)a1enc(1)$ · · · encR(2n − 1)a2n−1enc(2n − 1)

and, finally, define

Gn = {#enc(w)#enc(w) | w ∈ L((a + b)∗) ∧ |w| = 2n}

For instance, for n = 2, and w = abba, enc(w) = 0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄
and hence #0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄#0̄0̄a0̄0̄$1̄0b01̄$0̄1̄b1̄0̄$1̄1a11̄ ∈ G2.

· · · Now, lets consider Gn, the complement of Gn. Using a standard argu-
ment, similar to the in one in the proof of Theorem 3, it is straightforward to
show that any DFA accepting Gn must contain at least 22n

states. We conclude
by showing that we can construct a regular expression r∩n of size O(n) defining
Gn.

Note that Σ = {0, 0̄, 1, 1̄, a, b, $,#}. We define N = {0, 0̄, 1, 1̄}, S = {a, b},
D = {$,#} and for any set U , and σ ∈ U , let Uσ = U \{σ}. Now, we construct a
set of expressions, each capturing a possible mistake in a string. Then, r∩n simply
is the disjunction of these expressions. The expressions are as follows.
All strings which do not start with #:

ε + Σ#Σ∗

All strings in which two symbols at a distance n + 1 do not match:

Σ∗(NΣn(S + D) + SΣn(S + N) + DΣn(D + N))Σ∗

All strings which do not end with enc(2n − 1) = 1n−11̄:

Σ∗(Σ1̄ + Σ1Σ
[1,n−1])

All strings in which # occurs before any other number than encR(0) or where $
occurs before encR(0):

Σ∗($0̄n + #(Σ[0,n−1]Σ0̄))Σ
∗

All strings which contain more or less than 2 #-symbols

Σ∗
#(# + ε)Σ∗

+ Σ∗#Σ∗#Σ∗#Σ∗

16

All strings which contain a (non-reversed) binary number which is not correctly
marked:

Σ∗SN∗((0 + 1)(0 + $ + #) + (0 + 1)N0)Σ
∗

All strings in which the binary encodings of two numbers surrounding an a or
b are not each others reverse. Thereto, we first define expressions ri, for all
i ∈ [0, n], such that L(ri) = {wσw′ | σ ∈ S ∧ w,w′ ∈ Σ∗ ∧ |w| = |w′| ∧ |w| ≤ i},
inductively as follows: r0 = S and for all j ∈ [1, n], rj = r0 +Σrj−1Σ. Then, the
following is the desired expression:

Σ∗(rn ∩
⋃

σ∈N

σΣ∗Σσ)Σ∗

All strings in which the binary encodings of two numbers surrounding a $ or #
do not differ by exactly one, i.e., there is a substring of the form enc(i)$encR(j)
or enc(i)#encR(j) such that j 6= i + 1(mod 2n). Exactly as above, we can
inductively define r′n such that L(r′n) = {wσw′ | σ ∈ D ∧ w,w′ ∈ Σ∗ ∧ |w| =
|w′| ∧ |w| ≤ n}. Then, we obtain:

Σ∗(r′n ∩ ((0 + 0̄)Σ∗(0̄ + 1) + (1 + 1̄)Σ∗(1̄ + 0)))Σ∗

All strings in which two a or b symbols which should be equal are not equal.
We now define expressions si, for all i ∈ [0, n] such that L(si) = {wu#vwR |
u, v, w ∈ Σ∗ ∧ |w| = i}. By induction, s0 = Σ∗#Σ∗, and for all i ∈ [1, n],
si = Σsi−1Σ ∩

⋃
σ∈Σ σΣ∗σ. Then, the following is the desired expression:

Σ∗(asnb + bsna)Σ∗

Now, a string is not in Gn iff it is accepted by at least one of the previous
expressions. Hence, r∩n , defined as the disjunction of all these expressions, defines
exactly Gn. Furthermore, notice that all expressions, including the inductively
defined ones, are of size O(n), and hence r∩n is also of size O(n). This concludes
the proof.

Proof of Theorem 5: For any n ∈ N there exists an RE(&) r&
n of size O(n2)

such that any DFA accepting L(r&
n) contains at least 22n

states.

Proof. Let n ∈ N and consider the expression r∩n of size O(n) constructed in
Theorem 4 such that any DFA accepting L(r∩n) contains at least 22n

states.
Now, let r&

n be the regular expression simulating r∩n obtained from Lemma 1,
such that for some k ∈ N and any w ∈ Σ∗, w ∈ L(r∩n) iff pumpk(w) ∈ L(r&

n).
Then, r&

n is of size O(n2) and, exactly as before, it is straightforward to show
that any DFA accepting L(r&

n) contains at least 22n

states.

17

Proofs and Figures for Section 5

Proof of Lemma 2: For any n ∈ N, sh(Kn) = n.

Proof. We start by observing that, for any n ∈ N, the language Kn is bideter-
ministic. Indeed, the inverse of the DFA AKn accepting Kn is again deterministic
as every transition is labeled with a different symbol. Furthermore, AKn is the
minimal trim DFA accepting Kn. Hence, by Theorem 2(3), sh(Kn) = cr(AKn).
We conclude by showing that, for any n ∈ N, cr(AKn) = n.

Thereto, first observe that the graph underlying AKn is the complete graph
(including self-loops) on n nodes, which we denote by Kn. We proceed by in-
duction on n. For n = 1, the graph is a single node with a self loop and hence
by definition cr(K1) = 1. For the inductive step, suppose that cr(Kn) = n and
consider Kn+1 with node set Vn+1. Since Vn+1 consists of only one strongly con-
nected component, cr(Kn+1) = 1 + minv∈Vn+1{cr(Kn+1[Vn+1 \ {v}])}. However,
for any v ∈ Vn+1, Kn+1[Vn+1\{v}] = Kn, and hence by the induction hypothesis
cr(Kn+1) = n + 1.

q0

q1

q2

a1,2

a0,0

a1,1

a2,2

a0,2

a1,0

a2,1

a0,1

a2,0

Fig. 2. The DFA AK3 , accepting K3.

Proof of Lemma 3: For any n ∈ N, sh(Ln) = n.

Proof. Let n ∈ N. We first show that sh(Ln) ≤ n. By Lemma 2, sh(Kn) = n, and
hence there exists a regular expression rK, with L(rK) = Kn and sh(rK) = n.
Let rL be the regular expression obtained from rK by replacing every symbol
ai,j by ρn(ai,j). Obviously, L(rL) = Ln and sh(rL) = n, and hence sh(Ln) ≤ n.

We now show that sh(Ln) ≥ n. The proof is along the same lines as the proof
of Lemma 2. We first show that Ln is bideterministic and can then determine
its star height by looking at the minimal DFA accepting it. In fact, the reason
for the slightly involved encoding of Kn is precisely the bideterminism property.

To show that Ln is bideterministic, we now construct the minimal DFA ALn
accepting Ln. Here, ALn will consist of n identical subautomata B0

n to Bn−1
n

defined as follows. For any i ∈ [0, n − 1], Bi
n = (Qi, qi

n, δi, F
i) is the smallest

automaton for which Qi contains distinct states qi
0, . . . , q

i
n and pi

0, . . . , p
i
n−1 such

that for any j ∈ [0, n− 1],

18

– (qi
j , enc(j)4, qi

j+1) ∈ δ∗i , and for all w 6= enc(j)4, (qi
j , w, qi

j+1) /∈ δ∗i ; and
– (qi

n,#enc(j), pi
j) ∈ δ∗i , and for all w 6= #enc(j), (qi

n, w, pi
j) /∈ δ∗i .

As an example, Figure 3 shows B2
3 . Now, ALn = (Q, q0

n, δ, F) is defined as
Q =

⋃
i<n Qi, F = {qn−1

n } and δ =
⋃

i<n δi ∪ {(pi
j , $, qj

i) | i, j ∈ [0, n − 1]}.
Figure 4 shows AL3 .

q2
0 q2

1 q2
2 q2

3

p2
0

p2
1

p2
2

0̄ 0̄ 4 0 1̄ 4 1̄ 0̄ 4 #

0̄

0

1

0̄

1̄

0̄

Fig. 3. The automaton B2
3 .

To see that ALn indeed accepts Ln, notice that after reading a substring
#enc(i), for some i, the automaton moves to sub-automaton Bi

n. Then, after
passing through Bi

n which ends by reading a new substring #enc(j), the automa-
ton moves to state qj

i of sub-automaton Bj
n. This ensures that the subsequent

ascending sequence of numbers starts with enc(i). Hence, the automaton checks
correctly whether the numbers which should be equal, are equal.

Furthermore, ALn is bideterministic and minimal. To see that it is bideter-
ministic, notice that all states except the qi

j only have one incoming transition.
Furthermore, the qi

j each have exactly two incoming transitions, one labeled with
$ and one labeled with 4. Minimality then follows immediately from the fact
that ALn is both trim and bideterministic.

Now, since Ln is bideterministic and ALn is the minimal trim DFA accepting
Ln, it follows from Theorem 2(3) that sh(Ln) = cr(ALn). Therefore, it suffices to
show that cr(ALn) ≥ n. Thereto, observe that AKn , the minimal DFA accepting
Kn, is a minor of ALn . Indeed, we can easily contract edges and remove nodes from
AKn such that the only remaining nodes are q0

n to qn−1
n , and such that they form

a complete graph. Now, since it is shown in Lemma 2 that cr(AKn) = n and by
Lemma 7 and the fact that AKn is a minor of ALn , we know that cr(ALn) ≥ cr(AKn),
it follows that sh(Ln) = cr(ALn) ≥ n. This completes the proof.

Proof of Lemma 4: For every n ∈ N, there are regular expressions r1, . . . , rm,
with m = 4n + 3, each of size O(n), such that

⋂
i≤m L(ri) = L2n .

Proof. Let n ∈ N, and recall that L2n is defined over the alphabet Σ = {0, 1, 0̄, 1̄,
$,#,4}. Let N = {0, 1, 0̄, 1̄}, D = {$,#,4} and for any σ ∈ Σ, let Σσ =
Σ \ {σ}. The expressions are as follows.

19

q0
0 q0

1 q0
2 q0

3

p0
0

p0
1

p0
2

0̄0̄4 01̄4 1̄0̄4 #01̄

#0̄0̄

#1̄0̄

q1
0 q1

1 q1
2 q1

3

p1
0

p1
1

p1
2

0̄0̄4 01̄4 1̄0̄4 #01̄

#0̄0̄

#1̄0̄

q2
0 q2

1 q2
2 q2

3

p2
0

p2
1

p2
2

0̄0̄4 01̄4 1̄0̄4 #01̄

#0̄0̄

#1̄0̄

$ $

$

$

$ $

$ $

$

B0
3

B1
3

B2
3

Fig. 4. The DFA AL3 , accepting L3.

The format of the string has to be correct:

(#Nn$Nn4(Nn4)+)+

Every number should be properly marked:

(D+((0 + 1)∗1̄0̄∗ + 0̄∗))∗

Every number before a $ should be equal to the number following the next $.
We define two sets of regular expressions. First, for all i ∈ [0, n−1], the (i+1)th
bit of the number before an even $ should be equal to the (i + 1)th bit of the
number after the next $.

(#N i
⋃

σ∈N

(σΣ∗
$$Σ∗

$$N iσ)Σ∗
#)∗(ε + #Σ∗

#)

Second, for all i ∈ [0, n − 1], the (i + 1)th bit of the number before an odd $
should be equal to the (i + 1)th bit of the number after the next $.

#Σ∗
#(#N i

⋃
σ∈N

(σΣ∗
$$Σ∗

$$N iσ)Σ∗
#)∗(ε + #Σ∗

#)

Every two (marked) numbers surrounding a 4 should differ by exactly one.
Again, we define two sets of regular expressions. First, for all i ∈ [0, n− 1], the

20

(i+1)th bit of the number before an even 4 should properly match the (i+1)th
bit of the next number:

(#Σ∗
$ ((4+$)Σi((0+0̄)Σn

#(1̄+0)+(1+1̄)Σn
#(0̄+1))Σn−i−1)∗((4+$)Σn+ε)4)∗

Second, for all i ∈ [0, n − 1], the (i + 1)th bit of the number before an odd 4
should properly match the (i + 1)th bit of the next number:

(#Σ∗
$$Σn(4Σi((0 + 0̄)Σn

#(1̄ + 0) + (1 + 1̄)Σn
#(0̄ + 1))Σn−i−1)∗(4Σn + ε)4)∗

Every ascending sequence of numbers should end with enc(2n − 1) = 1n−11̄:

(#Σ∗
#1n−11̄4)∗

Proof of Corollary 1: For any n ∈ N, there exists an RE(∩) r of size O(n2)
such that any (normal) regular expression defining L(r) is of size at least 2

1
3 (2n−1)−

1.

Proof. Let n ∈ N. By Lemma 4 there exists a linear number of regular expressions
of linear size, such that their intersection defines L2n . Hence, there also exists
an RE(∩) r of size O(n2) defining L2n . Furthermore, by Lemma 3, sh(L2n) = 2n

and therefore by Theorem 1 any regular expression defining L2n is of size at
least 2

1
3 (2n−1) − 1.

Proof of Lemma 5: For any n ∈ N, sh(Mn) = n.

Proof. The proof is along the same lines as the proof of Lemma 3. Again, Mn

is bideterministic as witnessed by the minimal DFA AMn accepting Mn. In fact,
AMn is simply obtained from ALn by replacing each transition over a symbol a
by a sequence of states reading amcm, with m = 4dlog ne+ 3. Some care has to
be taken, however, for the states qi

j , as these have two incoming transitions: one
labeled with $ and one labeled with 4. Naively creating these two sequences
of states leading to qi

j , we obtain a non-minimal DFA. However, if we merge
the last m states of these two sequences (the parts reading cm), we obtain the
minimal trim DFA AMn accepting Mn. Then, the proof proceeds exactly as the
proof of Lemma 3.

Proof of Lemma 6: Let L be a regular language, and k ∈ N, such that
index(L) ≤ k. Then, sh(L) · |Σ| ≥ sh(L ∩Σ(k)).

Proof. Let L be a regular language, and k ∈ N, such that index(L) ≤ k. We
show that, given any non-returning state-labeled NFA A accepting L, we can
can construct an NFA B such that L(B) = L ∩Σ(k) and B is a minor of A.

We show how this implies the lemma. Let A be any non-returning state-
labeled NFA of minimal cycle rank accepting L, and let B be as constructed
above. First, since B is a minor of A it follows from Lemma 7 that cr(B) ≤

21

cr(A). Furthermore, by Eggan’s Theorem (Theorem 2(1)), cr(B) ≥ sh(L(B)) =
sh(L ∩Σ(k)), and hence cr(A) ≥ sh(L ∩Σ(k)). Now, since A is a non-returning
state-labeled NFA of minimal cycle rank, we can conclude from Theorem 2(2)
that sh(L) · |Σ| ≥ cr(A), and thus sh(L) · |Σ| ≥ sh(L ∩Σ(k)).

We conclude by giving the construction of B. Thereto, let A = (Q, q0, δ, F)
be a non-returning state-labeled NFA. Now, for any q ∈ Q, and a ∈ Σ, define
the function ina(q) as follows:

ina(q) = max{i | i ∈ N ∪ {0} ∧ ∃w ∈ Σ∗ such that (q0, wai, q) ∈ δ∗}

Notice that as i can equal zero and index(L) is finite, ina(q) is well defined for
any state which is not useless. Intuitively, ina(q) represents the maximal number
of a symbols which can be read when entering state q.

Now, the following algorithm transforms A, accepting L, into B, accepting
L(A) ∩Σ(k). Repeat the following two steps, until no more changes are made:

1. Apply one of the following rules, if possible:
(a) If exists q, q′ ∈ Q, a ∈ Σ, with (q, a, q′) ∈ δ, such that ina(q′) > ina(q)+1

⇒ remove (q, a, q′) from δ.
(b) If exists q, q′ ∈ Q, a ∈ Σ, with (q, a, q′) ∈ δ and q 6= q0, such that

insymbol(q)(q) < k and symbol(q) 6= a ⇒ remove (q, a, q′) from δ.
(c) If exists q ∈ F , q 6= q0, such that insymbol(q)(q) < k ⇒ make q non-final,

i.e., remove q from F .
2. Remove all useless states from A, and recompute ina(q) for all q ∈ Q, a ∈ Σ.

It remains to show that B, the automaton obtained when no more rules can
be applied, is the desired automaton. That is, that B is a minor of A and that
L(B) = L(A)∩Σ(k). It is immediate that B is a minor of A since B is obtained
from A by only removing transitions or states.

To show that L(B) = L(A) ∩Σ(k), we first proof that L(A) ∩Σ(k) ⊆ L(B).
Thereto, let A1, . . . , An, with A1 = A and An = B, be the sequence of NFAs
produced by the algorithm, where each Ai is obtained from Ai−1 by applying
exactly one rule and possibly removing useless states. It suffices to show that for
all i ∈ [1, n−1], L(Ai)∩Σ(k) ⊆ L(Ai+1)∩Σ(k), as L(A)∩Σ(k) ⊆ L(B)∩Σ(k) ⊆
L(B) then easily follows.

Before proving L(Ai) ∩Σ(k) ⊆ L(Ai+1) ∩Σ(k), we introduce some notation.
For any q ∈ Q, a ∈ Σ, we define

outa(q) = max{i | i ∈ N ∪ {0} ∧ ∃w ∈ Σ∗, qf ∈ F such that (q, aiw, qf) ∈ δ∗}

Here, outa(q) is similar to ina(q) and represents the maximal number of a’s which
can be read when leaving q. Since of course L(Ai) ⊆ L(A) holds for all i ∈ [1, n]
it also holds that index(Ai) ≤ k. Therefore, for any Ai, any state q of Ai and
any a ∈ Σ, it holds that

ina(q) + outa(q) ≤ k (1)

We are now ready to show that L(Ai)∩Σ(k) ⊆ L(Ai+1)∩Σ(k). Thereto, we
prove that for any w ∈ L(Ai) ∩ Σ(k), any accepting run of Ai on w is still an

22

accepting run of Ai+1 on w. More precisely, we prove for every rule separately
that if Ai+1 is obtained from Ai by applying this rule, then the assumption that
the removed state or transition is used in an accepting run of Ai on w leads to
a contradiction.

For rule (1a), suppose transition (q, a, q′) is removed but (q, a, q′) occurs in
an accepting run of Ai on w, i.e., w = uav for u, v ∈ Σ∗, (q0, u, q) ∈ δ∗ and
(q′, v, qf) ∈ δ∗, for some qf ∈ F . Since w ∈ Σ(k), there exists a j ∈ [0, n − 1]
and u′, v′ ∈ Σ∗ such that u = u′aj and v = ak−j−1v′. It immediately follows
that ina(q) ≥ j, and outa(q′) ≥ k − j − 1. Then, since ina(q′) > ina(q) + 1, also
ina(q′) + outa(q′) > j + k − j − 1 + 1 = k. However, this contradicts equation
(1).

For rules (1b) en (1c), we describe the obtained contradictions less formal.
For rule (1b), if the transition (q, a, q′), with symbol(q) 6= a is used in an accept-
ing run on w, then q is entered after reading k symbol(q) symbols, and hence
insymbol(q)(q) ≥ k. Contradiction. For rule (1c), again, if q is the accepting state
of some run on w, then q must be preceded by k symbol(q) symbols, and hence
insymbol(q)(q) ≥ k, contradiction.

We now show L(B) ⊆ L(A) ∩ Σ(k). Thereto, let B = (QB , qB
0 , δB , FB) and

first consider the following observation. Let (q, a, q′) be a transition in δB . Since
B does not contain useless states, it is easy to see that ina(q′) ≥ ina(q) + 1 . As
rule (1a) can not be applied to transition (q, a, q′), we now obtain the following
equality:

For q, q′ ∈ QB , a ∈ Σ, with (q, a, q′) ∈ δB : ina(q) + 1 = ina(q′) (2)

We are now ready to show that L(B) ⊆ L(A) ∩ Σ(k). Since L(B) ⊆ L(A)
definitely holds, it suffices to show that L(B) = L(B)∩Σ(k), i.e., B only accepts
strings in Σ(k).

Towards a contradiction, suppose that B accepts a string w /∈ Σ(k). Then,
there must exist i ∈ [1, k − 1], a ∈ Σ, u ∈ L(ε + Σ∗(Σ \ {a})) and v ∈ L(ε +
(Σ \ {a})Σ∗), such that w = uaiv. Furthermore, as w ∈ L(B), there also exist
states p0, . . . , pi, such that (q0, u, p0) ∈ δ∗B , (pi, v, qf) ∈ δ∗B for some qf ∈ F , and
(pi, a, pi+1) ∈ δB for all i ∈ [0, i− 1].

We first argue that ina(pi) = k. By equation (1) it suffices to show that
ina(pi) ≥ k. Notice that, as i > 0, symbol(pi) = a. We consider two cases. If
v = ε, then pi ∈ F and hence by rule (1c) ina(pi) ≥ k. Otherwise, v = bv′

for b ∈ Σ, b 6= a and v′ ∈ Σ∗ and hence pi must have an outgoing b-labeled
transition, with b 6= a = symbol(pi). By rule (1b), ina(pi) ≥ k must hold.

Now, by repeatedly applying equation (2), we obtain ina(pj) = k − (i − j),
for all j ∈ [0, i] and, in particular, ina(p0) = k − i > 0. This gives us the desired
contradiction. To see why, we distinguish two cases. If u = ε, then p0 = q0. As A
was non-returning and we didn’t introduce any new transitions, B is also non-
returning and hence ina(q0) = 0 should hold. Otherwise, if u = u′b for u′ ∈ Σ∗

and b 6= a, then p0 has an incoming b transition. As B is state-labeled, p0 does

23

not have an incoming a transition, and hence, again, ina(p0) = 0 should hold.
This concludes the proof.

24

