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Abstract This article is based on the series of lectures on the interaction of Fourier
analysis and geometric combinatorics delivered by the author in Padova
at the Minicorsi di Analisi Matematica in June, 2002.

This paper is based on the lectures the author gave in Padova at the
Minicorsi di Analisi Matematica in June, 2002. The author wishes to
thank the organizers, the participants, and the fellow lecturers for many
interesting and useful remarks. The author also wishes to thank Georgiy
Arutyunyants, Leonardo Colzani, Julia Garibaldi, Derrick Hart, and Bill
McClain for many useful comments and suggestions about the content
and style of the paper.

The main theme of this paper is an old and beautiful subject of ge-
ometric combinatorics. We will not even attempt to cover anything re-
sembling a significant slice of this broad and influential discipline. See,
for example, [22] for a thorough description of this subject. The pur-
pose of this article is to describe Szekely’s [28] beautiful and elementary
proof of the Szemeredi-Trotter incidence theorem ([26]), a result that
found a tremendous number of applications in combinatorics, analysis,
and analytic number theory. We shall describe some of the consequences
of this seminal result and its interaction with problems and techniques
of Fourier analysis and additive number theory.

Definition 0.1. An incidence of a point and a line is a pair (p, l), where
p is a point, l is a line, and p lies on l.
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Theorem 0.2 (Szemeredi-Trotter). Let I denote the number of in-
cidences of a set of n points and m lines (or m strictly convex closed
curves). Then

I . n + m + (nm)
2

3 , (0.1)

where here and throughout the paper, A . B means that there exists a
positive constant C such that A ≤ CB.

Quite often in applications, one uses the following ”weighted” version
the the Szemeredi-Trotter theorem due to L. Szekely ([28]).

Theorem 0.2’. Given a set of n points and m simple (no self-intersec-
tions) curves in the plane, such that any two curves intersect in at most
α points and any two points belong to at most β curves, the number of

incidences is at most C(αβ)
1

3 (nm)
2

3 + m + 5βn.

The probabilistic proof of Theorem 0.2 (due to Szekely) given below,
can be modified (as it is done in [28], Theorem 8) to yield Theorem
0.2’. We outline these modifications at the end of Section I below where
we also briefly describe some of the applications of weighted incidence
theory to the theory of diophantine equations.

Corollary 0.3. Let S be a subset of R
2 of cardinality n. Let ∆(S) =

{|x − y| : x, y ∈ S}, where | · | denotes the Euclidean norm. Then

#∆(S) & n
2

3 . (0.2)

This estimate is not sharp. It is conjectured to hold with the exponent
1 in place of 2

3 . For the best known exponents to date (around .86), see
[23] and [24]. However, Corollary 0.3 is still quite useful as we shall see
in the final section of this paper.

Corollary 0.4. Let A be a subset of R of cardinality n. Then either
A + A = {a + a′ : a, a′ ∈ A} or A · A = {aa′ : a, a′ ∈ A} has cardinality

& n
5

4 .

This estimate has been recently improved in a number of ways by
several authors. See, for example, [3] and references contained therein.

1. Proof of Theorem 0.2, Corollary 0.3 and
Corollary 0.4

We shall deduce Theorem 0.2 from the following graph theoretic result
due to Ajtai et al ([1]), and, independently, to Leighton. Note that for
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the purposes of this paper, a pair of vertices in a graph can be connected
by at most one edge.

Definition 1.1. The crossing number of a graph, cr(G), is the minimal
number of crossings over all the possible drawings of this graph in the
plane. A crossing is an intersection of two edges not at a vertex.

Definition 1.2. We say that a graph G is planar if there exists a draw-
ing of G in the plane without any crossings.

Theorem 1.3. Let G be a graph with n vertices and e edges. Suppose
that e ≥ 4n. Then

cr(G) &
e3

n2
. (1.1)

Before proving Theorem 1.3, we show how it implies Theorem 0.2.
Take the points in the statement of the Theorem as vertices of a graph.
Connect two vertices with an edge if the two corresponding points are
consecutive on some line. It follows that

e = I − m. (1.2)

If e < 4n we get I < 4n + m, which is fine with us. If e ≥ 4n, we
invoke Theorem 1.3 to see that

cr(G) &
e3

n2
=

(I − m)3

n2
. (1.3)

Combining (1.3) with the obvious estimate cr(G) ≤ m2, we complete
the proof of Theorem 0.2. Observe that strictly speaking, we have only
proved Theorem 0.2 for lines and points. In order to extend the argument
to translates of the same strictly convex curve, one needs to replace (1.2)
with an (easy) estimate e & I.

We now turn our attention to the proof of Theorem 1.3. Let G be
a planar graph with n vertices, e edges, and f faces. Euler’s formula
(proved by induction) says that

n − e + f = 2. (1.4)

Combined with the observation that 3f ≤ 2e, we see that in such a
planar graph

e ≤ 3n − 6. (1.5)

It follows that if G is any graph, then

cr(G) ≥ e − 3n. (1.6)
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We now convert this linear estimate into the estimate we want by
randomization. More precisely, let G be as in the statement of Theorem
1.3 and let H be a random subgraph of G formed by choosing each vertex
with probability p to be chosen later. Naturally, we keep an edge if and
only if both vertices survive the random selection. Let E() denote the
usual expected value. An easy computation yields

E(vertices) = np, (1.7)

E(edges) = ep2, (1.8)

E(crossing number of H) ≤ p4cr(G). (1.9)

Observe that the inequality in (1.9) is due to the fact that the number
of avoidable crossings in G may decrease once a smaller random subset
is extracted.

It follows by linearity of expectation that

cr(G) ≥
e

p2
−

3n

p3
. (1.10)

Choosing p = 4n
e

we complete the proof of Theorem 1.3, and conse-
quently of Theorem 0.2. Theorem 0.2’ can be proved in a similar fashion.
First one shows that under the assumption that any two vertices are
connected by at most β edges, the conclusion of Theorem 1.3 becomes

cr(G) & e3

βn2 . Then, in the application of this estimate to incidences,

the upper bound on cr(G) is no longer m2, but rather m2α. Combining
this with the trivial estimates yields the conclusion of Theorem 0.2’.

Further developments in weighted incidence theory have recently led
to the following result proved in the case d = 2 by S. Konyagin ([20]),
and by Iosevich, Rudnev and Ten ([18]) for d > 2.

Theorem 1.4. Let {bj}
N
j=1 denote a strictly convex sequence of real

numbers (in the sense that vectors (j, bj) lie on a strictly convex curve).
Then the number of solutions of the equation

bi1 + · · · + bid = bj1 + · · · + bjd
(1.11)

is

. N2d−2+2−d

. (1.12)

Taking bj = j2, for example, shows that N 2d−2+2−d

in (1.12) cannot be
replaced by anything smaller than N 2d−2. We conjecture that O(N 2d−2)
is the right estimate, up to logarithms, for any strictly convex sequence
{bj}.



Fourier analysis and geometric combinatorics 5

2. Proof of Corollary 0.3

Draw a circle of fixed radius around each point in S. By Theorem

0.2, the number of incidences is . n
4

3 . This means that a single distance

cannot repeat more than ≈ n
4

3 times. It follows that there must be at

least ≈ n
2

3 distinct distances since the total number of distances is ≈ n2.
In other words, we just proved that ∆(S) & n

2

3 as promised.

2.1 Proof of Corollary 0.4

The choice of lines and points is less obvious here. Let P = (A+A)×
(A · A). Let L be the set of lines of the form {(ax, a′ + x) : a, a′ ∈ A}.
We have

#P = #(A + A) × #(A · A), (2.1)

#L = n2, (2.2)

while the number of incidences is clearly n × n2 = n3. It follows that

n3 . (#P )
2

3 n
4

3 , (2.3)

which means that

#P & n
5

2 . (2.4)

It follows that either #(A+A) or #(A·A) exceeds a constant multiple

of n
5

4 . This completes the proof of Corollary 0.4.

3. Application to Fourier analysis

Definition 3.1. We say that a domain Ω ⊂ R
d is spectral if L2(Ω) has

an orthogonal basis of the form {e2πix·a}a∈A.

The following result is due to Fuglede ([8]). It was also proved in
higher dimensions by Iosevich, Katz and Pedersen ([12]).

Theorem 3.2. A disc, D = {x ∈ R
2 : |x| ≤ r}, is not spectral.

Proof of Theorem 3.2. Let A denote a putative spectrum. We need the
following basic lemmas:

Lemma 3.3. A is separated in the sense that there exists c > 0 such
that |a − a′| ≥ c for all a, a′ ∈ A.

Lemma 3.4. There exists s > 0 such that any square of side-length s
contains at least one element of A.
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For a sharper version of Lemma 3.4 see [16].
The proof of Lemma 3.3 is straightforward. Orthogonality implies

that
∫

D

e2πix·(a−a′)dx = 0, (3.1)

whenever a 6= a′ ∈ A. Since
∫
D

dx = 2πr and the function
∫
D

e2πix·ξdx is
continuous, the left hand side of (3.1) would have to be strictly positive
if |a − a′| were small enough. This implies that |a − a′| can never be
smaller than a positive constant depending on r.

The proof of Lemma 3.4 is a bit more interesting. By Bessel’s inequal-
ity we have

∑

A

|χ̂D(ξ + a)|2 ≡ |D|2, (3.2)

for almost every ξ ∈ R
d, since the left hand side is a sum of squares of

Fourier coefficients of the exponential with the frequency ξ with respect
to the putative orthogonal basis {e2πix·a}a∈A. We have

∑

Aξ

|χ̂D(a)|2 =
∑

Aξ∩Qs

+
∑

Aξ∩Qc
s

= I + II, (3.3)

where Aξ = A − ξ and Qs is a square of side-length s centered at the
origin.

We invoke the following basic fact. See, for example, [25]. We have

|χ̂D(ξ)| . |ξ|−
3

2 . (3.4)

It follows that

II .
∑

Aξ∩Qc
s

|a|−3 . s−1. (3.5)

Choosing s big enough so that s−1 << |D|2, we see that I 6= 0, and,
consequently, that Aξ ∩ Qs is not empty. This completes the proof of
Lemma 3.4.

We are now ready to complete the proof of Theorem 3.2. Intersect A
with a large disc of radius R. By Lemma 3.3 and Lemma 3.4, this disc
contains ≈ R2 points of A. We need another basic fact about χ̂D(ξ),
that it is radial, and in fact equals, up to a constant, to |ξ|−1J1(2π|ξ|),
where J1 is the Bessel function of order 1. We also need to know that
zeros of Bessel functions are separated in the sense of Lemma 3.3. This
fact is contained in any text on special functions. See also [29].
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With this information in tow, recall that orthogonality implies that
|a − a′| is a zero of J1. Since the largest distance in the disc of radius
R is 2R and zeros of J1 are separated, we see that the total number
of distinct distances between the elements of A in the disc or radius R
is at most ≈ R. This is a contradiction since Corollary 0.3 says that

R2 points determine at least R
4

3 distinct distances. This completes the
proof of Theorem 3.2.

It turns out that not only does L2(D) not possess an orthogonal basis
of exponentials, the numbers of exponentials orthogonal with respect
to D is in fact finite. This is a theorem due to Fuglede ([9]) which
was extended to all sufficiently smooth well-curved symmetric convex
domains by Iosevich and Rudnev ([17]). The latter paper is based on
the generalization of the following beautiful geometric principle due to
Erdos ([5]).

Theorem 3.5 (Erdos integer distance principle). Let S be an in-
finite subset of R

d such that the distance between any pair of points in
S is an integer. Then S is a subset of a line.

4. Applications to convex geometry

The following result is due to Andrews ([2]).

Theorem 4.1. Let Q be a convex polygon with n integer vertices. Then

n . |Q|
1

3 .

4.1 Proof of Theorem 4.1

Let C denote a strictly convex curve running through the vertices of
Q. Let Ω denote the convex domain bounded by C. Let L denote the set
of strictly convex curves obtained by translating C by every lattice point
inside Ω. Let P denote the set of lattice points contained in the union of
all those translates. By Theorem 0.2 the number incidences between the

elements of P and elements of L is . |Ω|
4

3 since #L ≈ #P ≈ |Ω|. Since
each translate of C contains exactly the same number of lattice points,

#C ∩ Z
2 .

|Ω|
4

3

|Ω|
= |Ω|

1

3 . (4.1)

This completes the proof of Theorem 4.1. Observe that proof implies
the following (easier) estimate.
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Lemma 4.2. Let Γ be a closed strictly convex curve in the plane. Then

#{RΓ ∩ Z
2} . R

2

3 . (4.2)

What sort of an incidence theorem would be required to prove a more
general version of this result?

Definition 4.3. We say that A ⊂ R
d is well-distributed if the conclu-

sions of Lemma 3.3 and Lemma 3.4 hold for A.

Let A be a well-distributed set, and let AR denote the intersection
of A and the ball of radius R centered at the origin. Observe that
#AR ≈ Rd. Let U be a strictly convex hyper-surface contained in the
unit ball. Suppose we had a theorem which said that the number of
incidences between A5R and a family of hyper-surfaces {RU + x}x∈AR

is

. Rdα. Repeating the argument above, we would arrive at the conclusion
that if P is a convex polyhedron with N lattice vertices, then

|P | & N
1

α−1 . (4.3)

However, a higher dimensional version of the aforementioned theorem
of Andrews says that

|P | & N
d+1

d−1 . (4.4)

This leads us to conjecture that the putative incidence theorem de-
scribed above should hold with α = 2 − 2

d+1 , which was recently proved
in [15] under additional smoothness assumptions. This result is sharp in
view of (3.3) and the following result due to Barany and Larman ([4]).

Theorem 4.4. The number of vertices of PR, the convex hull of the
lattice points contained in the ball of radius R >> 1 centered at the

origin is ≈ Rd d−1

d+1 .

5. Higher dimensions

Theorem 5.1. If R > 0 is sufficiently large, then

#(∆(A ∩ [−R,R]d) & R2− 1

d . (5.1)

This result was recently proved in a more general setting, using dif-
ferent methods, by Solymosi and Vu ([27]).

Corollary 5.2. The ball Bd = {x : |x| ≤ 1} is not spectral in any
dimension greater than 1.
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Corollary 4.2 follows from Theorem 5.1 in the same way as Theorem
3.2 follows from Corollary 0.3. Lemma 3.3 and Lemma 3.4 go through
without change except that in R

d,

|χ̂Bd
(ξ)| . |ξ|−

d+1

2 , (5.2)

χ̂Bd
(ξ) is a constant multiple of

|ξ|−
d
2 J d

2

(2π|ξ|), (5.3)

and the zeroes of J d
2

are still separated.

See [25], [29] and/or any text on special functions for the details.
We are left to prove Theorem 5.1. Since A is well-distributed, there is

s > 0 such that every cube of side-length s contains at least one point of
A. Without loss of generality let s = 1. Since A is well-distributed, we
can find points P1, P2, . . . , Pd, such that |Pi −Pj| ≤ 10 and such that for
any sequence R1, R2, . . . , Rd >> 1 with |Ri − Rj| ≤ 10, the intersection
of d spheres centered at each Pi or radius Ri is transverse. Let O be
the center of mass of the polyhedron with vertices given by the points
P1, . . . , Pd. Construct a system of annuli centered at O of width 10, with
the first annulus of radius ≈ R. Construct ≈ R such annuli.

It follows from the assumption that A is well distributed that each
constructed annulus A has ≈ Rd−1 points of A. Let

∪d
i=1{|x − Pi| : x ∈ A} = {d1, . . . , dk}. (5.4)

Let

Al
j = {x ∈ A ∩ A : |x − Pl| = dj}. (5.5)

It is not hard to see that

Al
j = ∪1≤jm≤k ∪d−1

m=1 Al
j ∩l′ 6=l Al′

jm
. (5.6)

Taking unions of both sides in j and counting, we see that

Rd−1 . kd. (5.7)

This follows from the fact, which follows by a direct calculation, that
the intersection of d spheres in question consists of at most two points.
Taking d’th roots and using the fact that we have ≈ R annuli with
≈ Rd−1 point of A, we conclude that

#∆(A ∩ [−R,R]d) & R1+ d−1

d = R2− 1

d , (5.8)
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as desired.
Observe that while the intersection claim made above is not difficult

to verify for spheres, the situation becomes much more complicated for
boundaries of general convex bodies, even under smoothness and curva-
ture assumptions. This issue is partially addressed in [10].

Another point of view on distance set problems was recently pursued
by Iosevich and Laba ([13]) and, independently, by Kolountzakis ([21]).

Theorem 5.3. ([13] for d = 2 and [21] for d > 2). Let A be a well-
distributed subset of R

d, d ≥ 2. Let K be a symmetric bounded convex
set. Then ∆K(A) is separated only if K is a polyhedron with finitely
many vertices.

The more difficult question of which polyhedra can result in separated
distance sets is partially addressed in both aforementioned papers, but
the question is, in general, unresolved.

6. Some comments on finite fields

In this section we consider incidence theorems in the context of finite
fields. More precisely, let Fq denote the finite field of q elements. Let
F d

q denote the d-dimensional vector space over Fq. A line in F d
q is a set

of points {x + tv : t ∈ Fq} where x ∈ F d
q and v ∈ F d

q \ (0, . . . , 0). A

hyperplane in F d
q is a set of points (x1, . . . , xd) satisfying the equation

A1x1 + · · · + Adxd = D, where A1, . . . , Ad, D ∈ Fq and not all Aj ’s are
0.

It is clear that without further assumptions, the number of incidences
between n hyper-planes and n points is ≈ n2 and no better, since we
can take all n planes to be rotates of the same plane about a line where
all the points are located. We shall remove this ”difficulty” by operating
under the following non-degeneracy assumption.

Definition 6.1. We say that a family of hyperplanes in F d
q is non-

degenerate if the intersection of any d (or fewer) of the hyper-planes
in the family contains at most one point.

The main result of this section is the following:

Theorem 6.2. Suppose that a family F of n hyper-planes in F d
q is non-

degenerate. Let P denote a family of n points in F d
q . The the number of

incidences between the elements of F and P is . n2− 1

d . Moreover, this
estimate is sharp.

We prove sharpness first. Let F denote the set of all the hyper-planes
in F d

q and P denote the set of all the points in F d
q . It is clear that
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#F ≈ P ≈ qd. On the other hand, the number of incidences is simply
the number of hyper-planes times the number of points on each hyper-

planes, which is ≈ q2d−1. Since q2d−1 = (qd)
2− 1

d , the sharpness of the
Theorem 6.2 is proved.

We now prove the positive result. Consider an n by n matrix whose
(i, j) entry if 1 if i’th point lies on j’s line, and 0 otherwise. The non-
degeneracy condition implies that this matrix does not contain a d by 2
sub-matrix consisting of 1’s. Using Holder’s inequality we see that the
number of incidences,

I =
∑

i,j

Iij ≤




∑

i




∑

j

Iij




d



1

d

× n
d−1

d (6.1)

=


∑

i

∑

j1,...,jd

Iij1 . . . Iijd




1

d

× n
d−1

d . n × n
d−1

d = n2− 1

d , (6.2)

because when jk’s are distinct, Iij1 . . . Iijd
can be non-zero for at most one

value of i due to the non-degeneracy assumption. If jk’s are not distinct,
we win for the same reason. This completes the proof of Theorem 6.2.

Why should the finite field case be different from the Euclidean case?
The proof of Szemeredi-Trotter theorem given above suggests that main
difference may be the notion of order. In the proof of Szemeredi-Trotter
we used the fact that points on a line may be ordered. However, no such
notion exists in a finite field. Nevertheless, Tom Wolff conjectured that
if q is a prime, then there exists ε > 0 such that the number of incidences

between n points and n lines in F 2
q should not exceed n

3

2
−ε for n ≈ q.

This fact has recently been proved by Bourgain, Katz, and Tao ([3]).

7. A Fourier approach

In this sections we briefly outline how some results in geometric com-
binatorics can be obtained using Fourier analysis. For a more complete
description, see, for example, [11], [14], and [15].

We could take a more direct approach, but we take advantage of this
opportunity to introduce the following beautiful problem in geometric
measure theory.

Falconer Distance Conjecture. Let E ⊂ [0, 1]d, d ≥ 2. Suppose that
the Hausdorff dimension of E is greater than d

2 . Then ∆(E) = {|x−y| :
x, y ∈ E} has positive Lebesgue measure.
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We shall not discuss the history and other particulars of the Falconer
Distance Problem in this paper. See, for example, [30] and references
contained therein for a thorough description of the problem and related
machinery. The main thrust of this section is to show that any non-trivial
theorem about the Falconer Distance Conjecture can be used to deduce
a corresponding ”discrete” result about distance sets of well-distributed
subsets of R

d.

Theorem 7.1. Let K be a bounded convex set in R
d, d ≥ 2, symmetric

with respect to the origin. Suppose that the Lebesgue measure of ∆K(E)

is positive whenever the Hausdorff dimension of E ⊂ [0, 1]d is greater
than s0, with 0 < s0 < d. Let A be a well-distributed subset of R

d. Then

#∆K(A ∩ [−R,R]d) ' R
d
s0 .

The following result is essentially proved in [7].

Theorem 7.2. Let E ⊂ [0, 1]d, d ≥ 2, of Hausdorff dimension greater
than d+1

2 . Suppose that K is a bounded convex set, symmetric with re-
spect to the origin, with a smooth boundary and everywhere non-vanishing
Gaussian curvature. Then the Lebesgue measure of ∆K(E) is positive.

Theorem 7.1 and 7.2 combine to yield the following ”discrete” theo-
rem.

Theorem 7.3. Let A be a well-distributed subset of R
d, d ≥ 2. Suppose

that K is a bounded convex set, symmetric with respect to the origin, with
a smooth boundary and everywhere non-vanishing Gaussian curvature.

Then #∆K(A ∩ [−R,R]d) ' R2− 2

d+1 .

Observe that while this result is not as strong as the one given by
Theorem 5.1, it is more flexible since it does not require K to be the
Euclidean ball.

Proof of Theorem 7.1. Let q1 = 2 and choose integers qi+1 > qi
i. Let

Ei = {x ∈ [0, 1]d : |xk − pk/qi| ≤ q
− d

s

i (7.1)

for some p = (p1, . . . , pd) ∈ A ∩ [0, qi]
d}.

Let E = ∩Ei. It follows from the proof of Theorem 8.15 in [6] that
the Hausdorff dimension of E is s. Suppose that there exists an infinite

subsequence of qis such that #∆K(A ∩ [0, qi]
d) . qβ

i for some β > 0.

Then we can cover ∆K(Ei) by . qβ
i intervals of length ≈ q

− d
s

i . If β < d
s
,

|∆K(Ei)| → 0 as i → ∞. It follows that ∆K(E) has Lebesgue measure
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0. However, by assumption, ∆K(E) is positive if s > s0. The conclusion
follows.

The proof of Theorem 7.1 suggests that one may be able to make
further progress on the Erdos Distance Conjecture for well-distributed
sets using Fourier methods by studying the Falconer Distance Conjecture
for special sets constructed in the previous paragraph.
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