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PREFACE

The number field sieve is an algorithm for factoring integers that John Pollard
proposed in 1988. This volume contains six papers on the number field sieve.
They are preceded by an annotated bibliography, to which we refer for a brief
description of the contents of each individual paper.

We assume the reader to be familiar with the basic techniques that underlie

modern integer factoring methods. An introduction to these techniques is given
in:

A_K. Lenstra, H. W. Lenstra, Jr., M.S. Manasse, J. M. Pollard, The fac-
torization of the ninth Fermat number, Math. Comp. 61 (1993), to appear.

The same paper includes a discussion of tools from algebraic number theory that
the number field sieve depends on. Comprehensive accounts of older algorithms
for factoring integers and related problems, with extensive bibliographies, can
be found in:

A.K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, Chapter
12 in: J. van Leeuwen (ed.), Handbook of theoretical computer science,
Volume A, Algorithms and complexity, Elsevier, Amsterdam, 1990,

C. Pomerance {ed.), Cryptology and computational number theory, Proc.
Sympos. Appl. Math. 42, Amer. Math. Soc., Providence, 1990.

The developments leading up to the number field sieve are sketched on pp. 11-13
below. The annotated bibliography (pp. 1-3) tells, implicitly, the recent history
of the number field sieve itself.

We express our gratitude to the authors of the papers for contributing their
work to this volume. In particular we wish to thank Carl Pomerance for con-
ceiving the idea of a combined publication and for advising us in all stages of its
execution. In addition, we thank Henri Cohen, Dan Gordon, Andrew Odlyzko,
Jonathan Pila, and Tom Trotter for their assistance.

We gratefully acknowledge the use of the Ap4S-TEX typesetting package.

The editors
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THE NUMBER FIELD SIEVE:
AN ANNOTATED BIBLIOGRAPHY

H.W. LENSTRA, JR.

In the present bibliography I list, in approximately chronological order, all liter-
ature that is directly related to the number field sieve.

1. J.M. Pollard, Factoring with cubic integers, this volume, pp. 4-10; manu-
script, 6 pages, August 1988.

Pollard describes a new method for factoring integers of a special form, and
he illustrates it by means of the factorization of the seventh Fermat number
F7 = 21?8 4 1. He uses the ring of integers Z[¥/2] of the number field Q(+/2). No
sieving in the number field takes place, so the name number field sieve is less
appropriate for this early version of the method than for its descendants.

The manuscript was enclosed with a letter to A. M. Odlyzko, dated 31 August
1988, with copies to R.P. Brent, J. Brillhart, H. W. Lenstra, C. P. Schnorr, and
H. Suyama. In this letter, Pollard speculated: “If Fy is still unfactored, then it
might be a candidate for this kind of method eventually?” The answer is in [7].

2. J.M. Pollard, Factoring with cubic integers (2), unpublished manuscript,
3 pages, December 1988.

This forms a footnote to the previous paper. It reports on the factorization of
ol4d _ 3.

3. A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, J. M. Pollard, The num-
ber field sieve, this volume, pp. 11-42; extended abstract: Proc. 22nd An-
nual ACM Symp. on Theory of Computing (STOC), Baltimore, May 14-186,
1990, 564-572.

The authors describe the first large-scale implementation of Pollard’s new
method, with several improvements. The extended abstract contains a rough
outline of a heuristic complexity analysis, which indicates that the method is,
for the numbers that it applies to, faster than all other known factoring methods.
The last section of the extended abstract discusses an idea of Buhler and Pomer-
ance for extending the number field sieve to general integers, and it sketches a
solution to a problem that this extension gives rise to. The final version of the
paper addresses the same issues in a more detailed manner, and it mentions de-
velopments that took place since the extended abstract was written. (Note: the

The author thanks Johannes Buchmann, Don Coppersmith, Dan Gordon, and John Pollard
for their help. He was supported by NSF under Grant No, DMS8-9002939 and by NSA/MSP
under Grant No. MDA90-H-4043.



2 H.W. LENSTRA, JR.

terminology pf/fp used in the extended abstract has been switched in all later
papers, including the final version.)

4. D.M. Gordon, Discrete logarithms in GF(p) using the number field sieve,
SIAM J. Discrete Math. 6 (1993), 124-138; prepublication: 15 pages, April
27, 1990.

It is shown that the ideas underlying the number field sieve apply, in theory at
least, also to the discrete logarithm problem.

5.  L.M. Adleman, Factoring numbers using singular integers, Proc. 23rd An-
nual ACM Symp. on Theory of Computing (STOC), New Orleans, May
6-8, 1991, 64-71; prepublication: TR-20, Department of Computer Sci-
ence, University of Southern California, 8 pages, September 4, 1990.

Adleman suggests the use of quadratic characters in order to recognize squares
in the number field. This provides an alternative solution to the problem that
the idea of Buhler and Pomerance gives rise to, and it improves the conjectural
run time estimate for the number field sieve as it applies to integers that are not
of a special form.

6. D. Coppersmith, Modifications to the number field sieve, J. Cryptology,
to appear; prepublication: IBM Research Report #RC 16264, Yorktown
Heights, New York, 16 pages, November 1990.

The combined use of several number fields leads to an improvement of the con-
jectural run time estimate of the number field sieve.

7. A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, J. M. Pollard, The fac-
torization of the ninth Fermat number, Math. Comp. 61 (1993), to appear.

The ninth Fermat number Fy = 2°1%2 4+ 1 was factored in 1990 by means of the
number field sieve. The paper discusses several aspects of this factorization. It
can be read as an introduction to the number field sieve.

8. J. M. Pollard, The lattice sieve, this volume, pp. 43-49; manuscript, 7 pages,
September 1991.

Pollard advocates the use of a two-dimensional sieve in order to speed up the
sieving process. It is not yet clear whether the idea leads to a practical improve-
ment; see also [12].

9. O. Schirokauer, On pro-finite groups and on discrete logarithms, Ph.D.
thesis, University of California, Berkeley, 68 pages, May 1992.

In the second chapter (46 pp.) of his thesis, Schirokauer considers the application
of the number field sieve to the discrete logarithm problem. Through the use of
l-adic logarithms he achieves a better conjectural run time than in [4] (see the
introduction to [3]). Practical issues are not considered.

10.  J.P. Buhler, H. W. Lenstra, Jr., C. Pomerance, Factoring integers with the
number field sieve, this volume, pp. 50-94.
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This paper describes the number field sieve as it applies to integers that are not
necessarily of a special form. The description incorporates Adleman’s idea [5].
An elaborate complexity analysis is given, and several possible practical improve-
ments are discussed.

11. J.-M. Couveignes, Computing a square root for the number field sieve, this
volume, pp. 95-102.

One step in Adleman’s version of the number field sieve [5; 10] involves a com-
putation with exceedingly large numbers. Couveignes develops a method for
avoiding this.

12. D.J. Bernstein, A.K. Lenstra, A general number field sieve implementa-
tion, this volume, pp. 103-126.

The title explains itself. The implementation applies to “general” integers, but
almost all examples given are integers of a special form. It remains to be decided
whether the number field sieve will eventually be the method of choice for large
integers.

13. D.M. Gordon, Designing and detecting trapdoors for discrete log cryp-
tosystems, Advances in cryptology, Crypto 92, to appear.

Gordon discusses the applicability of the number field sieve to the construction
of trapdoors in cryptological systems that are based on the discrete logarithm
problem.

14. J. Buchmann, J. Loho, J. Zayer, An Implementation of the general num-
ber field sieve, extended abstract, Fachbereich Informatik, Universitat des
Saarlandes, 7 pages, May 1993.

This report describes the authors’ practical experience with their first imple-
mentation. They factor three “general” integers of 29, 40, and 49 digits.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720,
U.S.A.
E-mail address: hwl@math berkeley.edu



FACTORING WITH CUBIC INTEGERS

J. M. PoLLARD

SUMMARY. We describe an experimental factoring method for numbers of form
2° + k; at present we have used only k = 2. The method is the cubic version of
the idea given by Coppersmith, Odlyzko and Schroeppel (Algorithmica 1 (1986},
1-15), in their section ‘Gaussian integers’. We look for pairs of small coprime
integers a and b such that:

i. the integer a + bz is smooth,

ii. the algebraic integer a + bz is smooth, where 22 = —k. This is the same as
asking that its norm, the integer a® — k5% shall be smooth (at least, it is
when k = 2).

We used the method to repeat the factorisation of F7 on an 8-bit computer
(2F7 = z° + 2, where z = 243).

INTRODUCTION

We consider the case £ = 2 throughout. We denote by Z the set of rational
integers (ordinary integers) and by & the set of algebraic integers:

[a,b,c] = a+ bz + cz?, {a,b,cin Z).

These constitute the algebraic integers of the field generated by z, and possess
the property of unique factorisation (neither statement true for general k, see
e.g. [2]). According to [1], such methods are still possible when unique factori-
sation fails.
We also write:
{a,b,c} = a+ bz + cx?.

When i1. holds, we have some factorisation:
[2,b,0]=[d,e, f]-...,
into units and primes of S (defined shortly). Then also:
{a,b,0} = {d,e, f} ... (modn).

But by i. we have also a factorisation:

{a,b,O}:p-q»,“,
into small primes of Z. So we have a congruence (mod n) involving rational
integers from two small sets. From a sufficient number of such congruences, we
obtain some equations:

X? =Y? (modn),
and hopefully the factorisation of n.

1991 Mathematics Subject Classification. Primary 11Y05, 11Y40.
Key words and phrases. Factoring algorithm, algebraic number fields.



FACTORING WITH CUBIC INTEGERS 5

PROPERTIES OF THE SET S
The norm of a member [a, b, ¢] of S is the rational integer:
N(a,b,c) = a® — 26% + 4¢3 + 6abe.
This is a multiplicative function, i.e. the equation
la,b,c) = [d, e, ] g, b (1)

implies:

N(a,b,c) = N(d,e, f) - N(g,h,1).
Given an equation (1), we say that [d, e, f] divides [a, b, ¢].
The norm can be zero only when a = b = ¢ = 0. Numbers with norm +1 or
—1 are called units. There are an infinity of units, namely all the numbers:
+UP (i=0, +1, £2,...),

where U = (1, 1,0]. We give a table of the small powers of U

] U Uu-?

0 [1,00 [ 1, o0 0
1 [ I»LO} {-1» 11 —1}
2 [ 1,21 [ 5 -4 3
3 [-1,3,3] [-19, 15,-19]
4 [-7,2,6) [ 73,-58, 46]

A unit divides any integer. If [d, e, f] in (1) is a unit, then the other two
numbers are termed associates; clearly this means that:

N{a,b,¢) = £N(g,h,1),

but the converse statement is false as we shall see.

A number [a, b, c] is termed prime if any factorisation (1) contains a unit (and
an associate). A number of norm p (p prime) is certainly a prime; but not all
primes are of this form.

A rational prime p need not be a prime of S. We have N(p,0,0) = p3, so
perhaps p can have prime factors of norm +p or +p?. Indeed it can. There are
four cases (see [2, p. 186]):

1. The primes p = 2 and 3. These factor as a unit and the cube of a prime of
norm p:

2= -1 -[ 0,1,05,

3=1[1,1,0]- [-1,1,0%

2. Primes p of form 6m + 1, with —2 a cubic residue (mod p):

p =31, 43, 109, 127, 157, ... .



6 J.M. POLLARD

There are three nonassociated factors of norm p. For example:
31=1[5,-4,3]-[-1,-2,1] - [-9,-6,1] - [3,0,1].

(The first factor on the right is a unit.)
3. Primes of form p = 6m + 5:

p=>5,11,17,23,29, ....
There is one factor of norm p and one of norm p?. For example:

5=1(1,0,1]-[1,-2,~1].

4. Primes p of form 6m + 1, with —2 a cubic nonresidue (mod p):
p="17,13,19,37,....
There is no factorisation: p is a prime of norm p°.

OPERATIONS ON THE INTEGERS OF S

It is easy to add, subtract and multiply numbers [a, b, ¢]; when multiplying, we

use z3 = —2, to remove the cube and fourth power terms in 2. As for division,

we do not need a Euclidean algorithm (does it exist?), but only to test whether:

[d,e, fia, b,]? 2)

and, if so, to find the quotient, [g, h,1] in (1).
We shall use:
N(a,b,¢) = [a,b,¢]- C(a,b,c),

where
C{a,b,c) = [a* + 2bc, —ab — 2¢%,b? — ac].

This can be easily verified; in fact C is the product of the conjugates of [a, b, ¢],
obtained by replacing z by the other two cube roots of —2. To test (2) we multiply
both sides by C(d, e, f); this gives the question

N(d,e, f)|[A, B,C]?

This holds when each of A, B and C is divisible by the integer N = N(d, e, f):
if so the required quotient is [A/N, B/N,C/N].
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FACTORISATION OF F7

An obvious test case for our method is Fy = 2128 4 1, first factored by Brillhart
and Morrison in 1970 [3]. We have:

2F; = 23 + 2, where z = 2%3.

We describe the method in detail for this number.

Step 1. Compute the factor base.
The first part of the factor base, F By, consists of the first 500 primes:

2,3,5,...,357L.

It is also convenient to compute z (mod p) for each such prime.

The second part F By consists of primes of S arising from the factorisations of
the rational primes p of F B;. Only primes of norm 4p are used. Those of norm
p? in case 3 cannot divide numbers [a, b, 0], gcd(a,b) = 1, and are not needed.

Cases Times Primes
1 2 2
2 81 243
3 252 252
4 165 0
Totals 500 497

We also included in F B; three units: —1, U and 1/U, making 500 members in
all, like FB; (a coincidence!). The choice of F'B, was dictated by convenience,
and is larger than necessary. We have at once 81 equations connecting F B; and
F B;, and one more involving the units.

Step 2. Run the sieve.

We want to find numbers a 4+ bz composed of the primes of FB;, except
perhaps for one larger prime. Our program is like that for the Quadratic Sieve
of Pomerance [4], but simpler; b is held constant while a varies over an interval
of width up to 12,000. Only coprime pairs (a, b) are saved.

Range for b=1...2000
Range for a = —4800 . ..4800
Limit for large prime = 10,000
Integers sieved = 1.92(7)
Successes = 40,762

Note:

1. My sieve represents an integer m by the nearest integer to 2logs(m). This
means that the limit on the large prime is very rough.

2. We do not know, at this stage, how many of these successes involve a large
prime.
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Step 2A. Look for smooth values of the norm.
For each pair, we compute the norm:

N = N(a,b,0) = a® — 2b°.

We factor by trial division, using only the norms of primes of F B, (there are
335 distinct values). When N factors completely over these primes (no ‘large’
prime allowed here), compute the large prime g, if any, implicit in Step 2.

Number of A-solutions (no large prime) = 538
Number of B-solutions (large prime) = 1133

Step 3. Pair the large primes.
When the large prime ¢ arises { > 2 times, we count [ — 1 pairs.

Number of A-solutions = 538
Pairs of B-solutions = 399

Equations already known = 81
Total = 1018

Step 4. Obtain factorisations of a + bz, a + bz.

For those solutions to be used, whether A or B, obtain the complete factori-
sations of a+ bz by trial division (by working (mod p), we eliminate unsuccessful
trials).

Factorising the numbers [a, b, 0] is slightly more complicated. Again compute
the norm N(a, b, 0) and factor by trial division. When a prime p is found, divide
out a prime of norm +p from the number [a, b, 0] (we may need to try up to
three such primes). We should finish with a unit, [d, ¢, f] say. From a table of
powers of U and 1/U, we can recognise it as +U*.

Two questions arise here:

1. How large a table is needed? I took i = —8...8, the largest I could compute
in single length arithmetic (32 bits).

2. Perhaps this process could still cause an overflow? But it didn’t. Numbers
with small norm can have large coefficients (even units).

Step 5. Obtain linearly dependent sets.

Just as in QS (or CF). My QS program needed only trivial changes. 31 sets
were obtained.

Step 6. Complete the factorisation.

Again just as in QS. Add up the powers of each member of FB; and F B,
in all the solutions in the set (take the quotient of each pair of B-solutions).
The totals should be even! Replacing each number [a, b, ] by {a, b, ¢}, compute
integers X and Y with

X?=Y? (mod Fy).

Compute
ged(X — Y, Fr7) = 5964958 91274 97217 (1st set!).

This agrees with [3], and with the well-known mnemonic for Fermat factors.
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COMPUTER AND PROGRAM DETAILS

The 8-bit computer used is the Philips P2012, with 64k of store, and two disc
drives (640k each). There are seven separate programs, one for each step de-
scribed above. The programs are in Pascal, with a small amount of machine
code (for multi-length arithmetic and logical operations). My programs have
much in common with those written for QS (only six!), with which I have fac-
tored numbers up to 51 digits.

Program 1. Single length working. Rational primes are generated by a sieve.
My method to find their factors in S is crude. Generate all numbers {a, b, ¢] of
S with small coefficients (I used —15...15), saving those with norm +1 or +p.
By experiment, find a fundamental unit U/. Sort the others on p and remove
assoclates to obtain F B,.

Program 2. Similar to QS, e. g. [4]. T use a sieve array of 8 bit elements. Multi-
length arithmetic not essential (only used if exact values of large primes are to
be found at once).

Program 2A. Requires multilength working for a+bz and double length working
for the values of the norm. Inefficient on an 8-bit computer without division—
unlike Program 2, which doesn’t need them. Probably capable of improvement—
but the author prefers to keep to Pascal if at all possible!

Program 3. Simple sorting program using Treesort3, CACM algorithm 245.
Program 4. Requires multilength arithmetic.

Program 5. Requires bit operations. Binary matrix is processed in a series of
passes between two disc files (largest matrix used so far (for QS) was ~ 1700
Tows).

Program 6. Requires multilength arithmetic and bit operations.

The running times quoted below are very rough since the programs have been
run over a period of some weeks, and in some cases have gone through several

versions. }
Program Time

(hours)

1
5
A 10
0.5
1.5
2
6 0.1

Total 20.1

[ BN LI N S
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EXAMPLE OF AN A-SOLUTION

= 2% a = 1693, b =749,

a+ bz = 658827 36736 35485

=5-1319-449 - 1567 - 2477 - 3061
40121 80059

= -1 - =3 - —43 . 157 - =397 - 499

[a,b,0] = [-1,-2,-1]-[-1,1,0] - [-3,2,0] - [5,0,2] - [-7,3,0] - [5, 1, 4]
The first factor on the right is —U?; the others are primes (written as in F By,
with highest nonzero coefficient positive).

a® — 25°
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THE NUMBER FIELD SIEVE

A K. LENSTRA, H. W. LENSTRA, JR., M.S. MANASSE, J. M. POLLARD

ABSTRACT. The number field sieve is an algorithm to factor integers of the form
r¢ — s for small positive » and |s|. The algorithm depends on arithmetic in an
algebraic number field. We describe the algorithm, discuss several aspects of its
implementation, and present some of the factorizations obtained. A heuristic run
time analysis indicates that the number field sieve is asymptotically substantially
faster than any other known factoring method, for the integers that it applies to.
The number field sieve can be modified to handle arbitrary integers. This variant
is slower, but asymptotically it is still expected to beat all older factoring methods.

1. INTRODUCTION

In this paper we present a novel algorithm to factor integers of the form r® — s,
where r and |s| are small positive integers, r > 1, and e is large. The algorithm
has become known as the number field sieve, because it depends on arithmetic
in an algebraic number field combined with more traditional sieving techniques.
It has proved to be quite practical, its most notable success being the factor-
ization of the ninth Fermat number. We refer to our account [26] of the latter
factorization for an introduction to the number field sieve.

Let N be an integer of the form r® — s as above. It should be thought of
as an integer that we want to factor into prime factors. Examples of such N
can be found in the Cunningham tables [3]. In many cases, one already knows
some prime factors of N, so that it is the cofactor n that remains to be factored.
Applying the number field sieve for this purpose is not recommended if n is much
smaller than N, since the conjectured run time of the algorithm depends on the
size of N rather than on the size of n.

To express the conjectured run time, we define

Lz[v, ] = exp(A(log z)¥(log log z)' ~*)

for real numbers z, v and X with z > e. In the discussion below we will, for
simplicity, abbreviate the expression L;[v, A 4+ o(1)] to L.[v, A]; here the o(1) is
for 2 — oo. With this notation, we expect that for » and |s| below a fixed upper
bound the number field sieve takes time LN[%, c], where ¢ = (32/9)Y/% = 1.5263,
irrespectively of the size of the factors of N. We are not able to prove this run
time rigorously, and even our heuristic argument has a weak spot (see 6.4).

1991 Mathematics Subject Classification. Primary 11Y05, 11Y40.

Key words and phrases. Factoring algorithm, algebraic number fields.

The second author was supported by NSF under Grant No. DMS-9002939 and by NSA/
MSP under Grant No. MDA90-H-4043.
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Buhler and Pomerance observed that the idea of the number field sieve can
be applied to general integers as well, i.e., to integers n that do not necessarily
have a small multiple of the form r¢ — s as above. The generalized version of the
number field sieve is also conjectured to take time Ly (3, c], but with a larger value
for ¢ than above. Due to additional contributions by Adleman and Coppersmith,
the smallest value for ¢ that can currently conjecturally be achieved is given by

. (92 + 26+/13)V/3

=1.
3 9019,

see Section 9, and [1; 7; 11]. This makes the number field sieve, conjecturally
and asymptotically, into the fastest currently known integer factoring algorithm;
only the elliptic curve method [29] is, for a special class of numbers, supposed
to be faster.

The function Ly, [v, A], which plays an important role in the analysis of modern
factoring algorithms, interpolates between powers of n and powers of log n. More
specifically, we have

La[,Al=n*,  La[0,A] = (logn)*,
loglog La[v, A} = v - loglog L[1, A] + (1 — v) - loglog L[0, A].

The most significant parameter is v. Traditional algorithms such as trial division
have v = 1, in the sense that they run in time L[1, A] for some A > 0. These
algorithms are said to run in exponential time. A polynomial time algorithm
would have v = 0. Thus, the many algorithms that run in time Ln{%,k] (see
below) are in this sense halfway between the exponential time and polynomial
time ones. The number field sieve, which has v = %, represents an additional
step in the direction of polynomial time algorithms. The notation L, (v, A] was
introduced in [25], following the notation L(n)* that Pomerance introduced for
La[%, 2] in 1983 (see [34]).

The first person to realize that the function Ln[%, A] can be used to express
conjectural run times of factoring algorithms was Schroeppel, in 1975 (see [21,
Section 4.5.4]). In 1978 Dixon obtained a rigorous result of this nature (see [16]).
The study of the precise value of X was initiated by Pomerance (see [34]). It is now
conjectured that many factoring algorithms, including the continued fraction
method, the quadratic sieve, and the elliptic curve method, run in expected
time at most L,[3,1], and for the class group relations method this has been
proved (see [31]). Accounts of these developments can be found in [25] and [36].
The cubic sieve algorithm (see {14, Section 7; 25, Section 4.E]) is conjectured to
be faster and to run in time Ln[%, '], with v/2/3 < ¢’ < 1; however, it applies
only to numbers of a special form, including Cunningham numbers, and it has
never proved to be of more than theoretical interest.

In 1981 the function L,[3, A] made its appearance in the analysis of factor-
ing algorithms, when Schnorr {38] showed, under plausible assumptions, that
an integer n can be factored in time Ln[%,Q] provided that suitable lists of
smooth numbers are available. Here we call a number smooth—the term is due
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to Rivest—if its prime factors are small; more precisely, it is B-smooth if its
prime factors are at most B.

The importance of the function L,[v, A] for analyzing factoring algorithms is
due to its connection with smooth numbers. Many factoring algorithms proceed
by generating a sequence of integers, in a more or less random fashion, of which
only the smooth ones are useful. For all algorithms before the number field sieve,
the integers that are inspected for smoothness have order of magnitude n¥, for
some constant w that depends on the algorithm. For instance, all algorithms
with expected run time L[}, 1]} have w = {. The cubic sieve algorithm was the
first to break through the w = & barrier with w = % for n of a special form,
and thus achieved run time L,[3,¢'] with ¢/ < 1 for such n. A more dramatic
improvement is realized by the number field sieve: the integers that it inspects
for smoothness are only n°) if n is not too much smaller than N. This makes
it the first factoring algorithm with conjectured run time essentially faster than
Ln[3, A}, for any positive constant A. We refer to [7, Section 10] for a discussion
of the relation between the run time of a factoring algorithm and the size of
the numbers that it inspects for smoothness, and for an explanation of the role
played by the function L,[v, A].

From an algorithmic point of view, the problem of factoring integers is closely
related to the discrete logarithm problem, see [25; 36]. The conjectural run time
of many discrete logarithm algorithms for a finite field of n elements is of the
form L, [v, A] with v = 3. Coppersmith was the first to achieve v = L, for the case
that n is a power of 2 (see [10; 25, Section 3.17; 19]). His bimodal polynomials
method shares a few formal features with Schnorr’s work [38]: the appearance
ofv = %, and the requirement that two expressions are simultaneously smooth.
It is interesting to observe that the number field sieve has these features as well.
In addition, both the number field sieve and the bimodal polynomials method
start by looking for a good auxiliary polynomial.

The algorithm in the present paper was inspired by the discrete logarithm
algorithm for prime n using Gaussian integers that was presented by Copper-
smith, Odlyzko, and Schroeppel (see [14, Section 7; 23]). This algorithm, which
has v = %, was in turn inspired by work of ElGamal [17]. The main change
that we made, which is crucial for obtaining v = %, is that we use rings of al-
gebraic integers in higher degree number fields, and that we optimize the choice
of the degree as a function of the number to be factored (see 6.3). Gordon [18]
showed that the same technique can be used for the discrete logarithm problem
for prime n. The conjectural run time estimate of his algorithm is Ln{%, 91/3),
where 9'/3 = 2.0801. Schirokauer [39] improved this to L. [}, (64/9)*/], where
(64/9)1/3 = 1.9230.

In Section 2 of the present paper we describe the number field sieve, as it
applies to integers of the form r® — s for small positive r and |s|. Details that are
left out from this description are explained in Sections 3, 4, and 5. A conjectural
analysis of the run time of the number field sieve is given in Section 6. In Section 7
we discuss a few modifications to the algorithm. Examples of factorizations that
have been obtained by means of the number field sieve are presented in Section 8.
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Section 9 is devoted to possible generalizations of the number field sieve to
arbitrary integers.

In our description of the number field sieve we will make a few simplifying and
not always realistic assumptions about the number fields that we are using, cf. 2.5
and 3.1. We refer to 3.4-3.8, Section 9, and [2; 7] for variations of the number
field sieve that make no simplifying assumptions about the fields involved.

We shall denote by Z the ring of integers, and by Q, R, and C the fields of
rational, real, and complex numbers, respectively.

2. THE ALGORITHM

Let n be an odd integer, n > 1, and assume that n is not a prime number or
a power of a prime number. We assume that n itself or a small multiple of n is
of the form r¢ — s, for a small integer » > 1 and a non-zero integer s of small
absolute value, and with e an integer that is possibly much larger. It is assumed
that r, e, and s are given along with n. Numbers of this form often appear on the
‘wanted’ lists from [3]. The fact that n is not a prime number can usually easily
be proved by means of a probabilistic compositeness test, see [25, Section 5.1].
If we use the variation of the probabilistic compositeness test described in [26,
Section 2.5] we can also easily check that n is not a prime power. We describe a
factoring algorithm, the number field sieve, that makes use of the special form of
the multiple r® — s of n, to factor n. For background on the elementary algebraic
number theory used by the algorithm we refer to [40] and to [26, Section 4].

2.1. Outline of the algorithm. For a random integer z satisfying
(2.2) t2=1modn

there is a probability of at least 1 that ged(n,z — 1) is a non-trivial factor of n.
To factor n it therefore suffices to construct several solutions z to (2.2) in an
apparently random manner. Many factoring algorithms, including the number
field sieve, achieve this by means of the following three-step approach.

Step 1. Selecting the factor base. Select a collection of non-zero elements
a; € Z/nZ, with i ranging over some finite index set I. The collection (a;)icr is
called the factor base, for a reason that will be clear from the sequel. The elements
of the factor base should not be confused with a possible list of candidate factors
of n; indeed, we may assume that all a; are units in Z/nZ, because if they are
not, then n can be factored immediately.

Step 2. Collecting relations. Collect relations between the q;, i.e., vectors
v = (v;)ies € Z! for which

(2.3) Ha;" =1
i€l
Stop as soon as the collection V of relations that have been found contains
slightly more than #1I elements.
Step 3. Finding dependencies. Find dependencies modulo 2 among the ele-
ments of V, i.e., subsets W of V such that ZUEW v =2 (w;)ier with w; € Z.
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Notice that non-trivial dependencies exist because #V > #I. For each depen-
dency W we can calculate an integer ¢ with [];.; aj’" = (z mod n), and this
integer satisfies (2.2). Under conditions on the a; and V that can usually not be
proved but that are normally satisfied, consideration of a few linearly indepen-
dent W’s leads to the complete factorization of n into powers of distinct prime
numbers; see [26, Section 2.6] for a further discussion of this point.

The remainder of this section is devoted to a description of how Steps 1 and 2
are carried out in the number field sieve. For Step 3 we refer to the literature on
large sparse matrix elimination, cf. [22; 37; 42; 12; 13], and to [26].

2.4. The idea of the number field sieve. The number field sieve is based on the
observation that it is possible to construct a number field K = Q(a) and a
ring homomorphism ¢ from the subring Z[a] of K to Z/nZ such that p(a) =
(m mod n), where both a and |m| are small compared to n; here the smallness
of « is measured by means of the sum of the absolute values of the coefficients of
its irreducible polynomial, which are supposed to be integers. The idea is then
to look for pairs of small coprime integers a and b such that both the algebraic
integer a + b and the integer a + bm are smooth, in a sense to be specified
below. Because ¢(a + ba) = (a + bm mod n), each pair provides an equality of
two products in Z/nZ. The factors occurring in these products form the factor
base, and each congruence leads to a relation as in (2.3).

2.5. Construction of the number field. To define the number field K and the
homomorphism ¢ as in 2.4 we proceed as follows. Given the multiple r® — s of n,
we first select a small positive integer d that will serve as the extension degree.
More about the choice of d can be found in Sections 6, 7, and 8. Given d, let k
be the least positive integer for which k -d > e, put t = s - 7¥9=¢, and let f be
the polynomial X4 —t. The number m = r* satisfies f(m) = 0 mod n, since n
divides r¢ — 5. Our number field K is now given by K = Q(a), where f(ea) = 0.

We will assume that the polynomial f is irreducible. This condition is likely
to be satisfied, since in realistic cases a non-trivial factor of f gives rise to a
non-trivial factor of n. If it is not satisfied we can replace f by a suitable factor.
The irreducibility of f is easily checked: f is reducible if and only if either there
is a prime number p dividing d such that ¢ is a pth power, or 4 divides d and
—4t is a fourth power (see [24, Chapter VI, Theorem 9.1]). For example, if r is
not a power of a smaller integer, and s = 1, then f is irreducible if and only if
ged(d,e) = 1.

The irreducibility of f implies that the degree of the number field K equals d,
and that each element of K has a unique expression of the form Zf;ol g
with ¢; € Q. The subring Z[a] of K consists of the expressions SS9 siaf with
coefficients s; € Z. The ring homomorphism ¢: Z[a] — Z/nZ is now defined by
(o) = (m mod n). Generally, we have go(zf;ol s;iat) = (Ef;ol s;m* mod n) if
s; € Z.

To simplify the exposition of the algorithm, we will assume that the ring
Z[e] is a unique factorization domain. As we shall see in 3.4, this is a strong
assumption, which is not always satisfied. We refer to Section 3 for a discussion
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of the modifications that are necessary if Z[a] is not a unique factorization
domain.

To give an example, for 3239 —1 (one of the numbers we factored, cf. Section 8),
we used d = 5 as extension degree, m = 3*8, and a a zero of the polynomial
f = X®-3; in this case Z[c] is indeed a unique factorization domain. For another
number we factored, 2512 + 1, we used d = 5, m = 21°3, and « a zero of X° + 8.
Because a?/2 ¢ Z[a] and because o?/2 is a zero of X° — 2 € Z[X], we find that
Z[c] is not the ring of integers of K. We simply got around that problem by
using Z[a?/2] instead of Z[a] in the algorithms described below.

It is in the construction of K and ¢, as described above, that we exploit the
special form of the multiple r¢ — s of n. The main difficulty with general n is
that one is led to consider much “larger” number fields, which are much harder
to control. This difficulty is discussed in Section 9.

2.6. Smoothness in the number field. An algebraic integer is called B-smooth if
every prime number dividing its norm is at most B. We shall mainly be interested
in smoothness of algebraic integers of the form a + ba, where a, b are coprime
integers. The norm N(a + ba) of a + ba is equal to a® — t(—b)?, so a + ba is
B-smooth if and only if |a? — #(~b)?| is a product of prime numbers < B.

The norm Na of a non-zero ideal a of Z[a] is defined by MNa = #(Z[a]/a),
which is a positive integer. A first degree prime ideal of Z[c] is a non-zero ideal
p of prime norm p. For such an ideal we have Z[a]/p = Z/pZ, which is a field, so
that p is indeed a prime ideal. The set of first degree prime ideals p is in bijective
correspondence with the set of pairs (p, c mod p), where p is a prime number and
¢ € Z satisfies f(c) = 0 mod p; if p corresponds to (p, ¢ mod p), then Np = p,
the map Z[a] — Z[a]/p = Z/pZ maps « to (¢ mod p), and p is generated, as an
ideal, by p and ¢ — a. The map Z[a] — Z[c]/p can be used to test whether a
given element of Z[a] is contained in p: namely, one has Y, s;a’ € p if and only
if 3~ sic = 0 mod p, with p, c as above.

Let a, b be coprime integers. Every prime ideal of Z[«] that contains a + ba is
a first degree prime ideal (see [26, Section 5, Lemma; 7, Corollary 5.5]), and as
we just saw a + ba is contained in the prime ideal corresponding to (p, ¢ mod p)
if and only if @ + bc = 0 mod p. This implies that the prime ideal factorization
of a + ba corresponds to the prime factorization of its norm a? — t(—b)¢, as
follows. If a? — t(—b)? contains the prime factor p exactly k times, with & > 0,
then a = —bc mod p for a unique ¢ mod p for which f(c) = 0 mod p, and the
first degree prime ideal corresponding to (p, ¢ mod p) divides a + ba exactly to
tge kth podwer. So, one ideal of norm p accounts for the full exponent of p in
a® — t{—b)e.

We denote by 7, an element of Z[a] that generates p. Such an element exists
because Z[«] is assumed to be a principal ideal domain; it is unique only up to
multiplication by units. To pass from the prime ideal factorization of a + ba to
its prime factorization it suffices to replace each prime ideal factor p by 7, and
to multiply the result by a suitable unit.

2.7. Step 1 of the number field sieve. The discussion above leads to the following
selection of the factor base. First select two smoothness bounds, By and Bs. In
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practice these bounds are best determined empirically. See Section 8 for some
examples, and 6.2 and 6.3 for choices that are satisfactory from a theoretical
point of view. We will use B; as smoothness bound for the integers a + bm, and
B» as smoothness bound for the algebraic integers a+ba. Now let I = PUUUG,
where P is the set of all prime numbers < Bj, the set U is a set of generators
for the group of units of Z[a], and G consists of the elements 7, € Z[a], where p
ranges over the set of first degree prime ideals of Z[e] of norm < Bs. The factor
base is then formed by the elements a; = ¢(i) € Z/nZ, for i € I. We assume
that ged(a;,n) = 1 for ¢ € I; if that is not the case n can easily be factored, and
the algorithm terminates.

To complete the description of Step 1 it remains to explain how to construct
the sets U and G. This will be done in Section 3.

2.8. Step 2 of the number field sieve. We discuss how Step 2 is performed. First,
select two additional bounds B3 and Bs. These bounds are again best determined
empirically. See 4.6 for various considerations concerning their choice, and Sec-
tion 8 for examples. To find relations among the a;, one searches for pairs of
integers (a, b), with b > 0, satisfying the following conditions:

() ged{a, by =1;
(ii) |a + bm| is By-smooth, except for at most one additional prime factor
Py, which should satisfy By < p; < Bas;

(iit) a+ba is By-smooth, except for at most one additional prime ideal factor
p2, of which the norm p; should satisfy By < p2 < By.

We will assume that a + bm > 0; in the unlikely event that a + bm < 0, replace
(a,b) by (—a,~b).

The prime number p; in (ii) is called the large prime, and the additional
prime ideal p; in (iii) the large prime ideal. Note that p; corresponds to the
pair (p2,c mod ps), where ¢ is such that a = —bc mod p;; this enables us to
distinguish between prime ideals of the same norm. If the large prime does
not occur, then we write py = 1. Likewise, if the large prime ideal does not
occur in (iii), we write symbolically p» = 1 and p, = 1. Pairs (a,b) for which
p1 = pp = 1 will be called full relations, and the other pairs partial relations.

The search for pairs (a, b) satisfying (i), (il), and (iii) above can be carried out
by means of the sieving technique described in Section 4. We show how the pairs
give rise to relations between the a,. First, suppose that (a,b) is a full relation.
By (ii}, there is an identity of the form

a-+bm= H P
peP

with e(p) € Zyo. From (i), (iii), and 2.6 it follows that a + bo can be written as
a product of elements 7, € G to certain powers, and a unit from Z[«]. One can
determine the contribution from G by considering the factorization of N{a +
ba) = a? — t(—b)?, as explained in 2.6. Since U generates the group of units
of Z[«], the unit contribution to the prime factorization of a + ba can be written



18 A.K. LENSTRA, H. W. LENSTRA, JR., M.S. MANASSE, J.M, POLLARD

as a product of elements from U. In Section 5 it is explained how this is achieved.
As a result, we get an identity of the form

a+ bo = H utl®) . H g%,

uel g€G

with e(u) € Z and e(g) € Z»g. Because a+ bm and a4 ba have the same image
under , these two factorizations lead to the identity

(2.9) [T ¢2)® = ] e ] ele)®

peP uel 9€G

in Z/nZ, from which one obtains a relation v = (v;)ies € Z! between the a; by
putting v; = (i) for i € P, and v; = —e(i) for i ¢ P. Note that aj* exists for
i ¢ P because ged{a;,n)=1fori € I.

In this way each full relation (a, b) leads to a relation between the a; as in (2.3).

2.10. Making use of partial relations. As we will see in Section 4, partial relations
can be found at little extra cost during the search for full relations. Furthermore,
they occur much more frequently than full relations, so that relatively many of
them are found; so many, in fact, that there are quite a few with the same large
prime or the same large prime ideal. If that occurs it may be possible to convert
a collection of partial relations into a relation among the a; as in (2.3), as follows.

A set C of partial relations is called a cycle if for each (a,b) € C there is a
sign s(a,b) € {—1,+1} such that

H (a + bm)*(@:b) = H pe(®),

(a,b)eC pEP

with e(p) € Z, and

H (a+ba)*(@® = H ut®). H g°@

(a,b)eEC uelU geG

with e(u), e(g) € Z. Informally, this means that if a prime p; > Bj occurs in
the factorization of a + dm for some pair (a,b) € C, then p; also occurs in the
factorization of @+ bm for some pair (@, b) € C with s(a, b) = —s(a, b). Similarly,
each occurrence of a large prime ideal in a + be is canceled by the occurrence of
the same large prime ideal in another pair with the opposite sign.

For each cycle one can compute the exponents e(p) by adding or subtracting
the exponents occurring in the factorizations of the a + bm for the pairs (a, b) in
the cycle, according to their signs. Similarly, one computes the e(g) by adding or
subtracting the exponents in the prime ideal factorizations of the a + ba; these
exponents are found as explained in 2.6. Once the e(g) have been computed, the
e{u) are found with the method given in Section 5, cf. Remark 5.3.



THE NUMBER FIELD SIEVE 19

Just as above, we now obtain the following relation between the q;:

1 ¢@)°® = ] e - I] #()°®-

peEP uel geG

This is the same as (2.9), except that now the integers e(7) are allowed to be
negative. Since ged(a;, n) = 1 for i € I, negative powers of the a; are well defined.

In this way each cycle among partial relations leads to a relation between
the a;.

2.11. Remark. Partial relations for which p;y # 1 but p; = 1 are referred to
as pf’s (for ‘partial-full’), because they would lead to an equation as in (2.9)
with a partial factorization, i.e., a factor ¢(p1), on the left hand side, and a
full factorization on the right. Similarly, partial relations for which p; = 1 and
p2 # 1 are called fp’s, partial relations for which both p; # 1 and p; # 1 are
called pp’s, and full relations are fi’s. We refer to 7.3 for a more general notion
of partial relations.

The negative s(a,b) in the cycles have the effect that the large primes and
the large prime ideals in the resulting combinations are canceled. For cycles
consisting of only two pf’s (with the same p;) there is no need to make use of
the signs s(a, b), because a relation among the g; of the form

2 Ve
o 'H“i =

tel

for some unit z € Z/nZ (of the form ¢(p1)), is just as useful as a relation
like (2.3). However, doing the same for cycles involving fp’s or pp’s would in-
troduce factors @(m,) for prime ideals p of norm > B, into z, and would thus
require finding generators of the large prime ideals involved in the cycles. This
is avoided by means of the signs described above.

In 9.6 we shall encounter a variant of the number field sieve in which the use
of generators is avoided, and in which the signs can be discarded. At the other
extreme, 9.1 describes a variant in which all prime ideals are canceled, not just
the large ones.

2.12. Finding the cycles. Write Py for the set of all large primes occurring in
the partial relations, and P, for the set of all large prime ideals that occur.
We view the set of partial relations as the set of edges of a graph with vertex
set {1} U P; U Py; namely, each partial relation with large prime p; and large
prime ideal ps represents an edge between p; and ps. The edges incident with 1
correspond to the pf’s and fp’s; except for these edges the graph is bipartite.
Each cycle in the graph gives rise to a cycle among the partial relations. For
cycles of even length one can assign the signs +1, —1 alternately to the partial
relations corresponding to the edges. Cycles of odd length contain the vertex 1;
again one can assign the signs alternately, but now starting with an edge incident
with 1.

It is not necessary to find all cycles in the graph. For example, if the symmetric
difference of two cycles Cy and C; is a cycle Cs, then the relation between the
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a; obtained from Cj3 is a linear combination of the relations obtained from C}
and C5. Therefore, if the cycles Cy, €, are already used, there is no point in
using Cs as well. In other words, it will suffice to find a maximal set of cycles that
is “independent” in a suitable sense. In [28] it is explained how this can be done,
and how a convenient representation for the graph can be constructed. Another
way of dealing with the partial relations is to postpone their combination into
cycles until Step 3, as discussed in 7.2.

2.13. Free relatjons. In addition to the relations that are based on full relations
and cycles among partial relations, there are the free relations, which are much
easler to come by. They are already valid in the ring Z[a], before ¢ is applied.
There is one such relation for each prime number p < min(B;, By) for which the
polynomial f = X¢ — t factors completely into linear factors modulo p. Namely,
let p be such a prime, and write X4 —t = [1.(X =c)*c mod p, where c ranges over
a set of integers that are pairwise distinct modulo p, and where the multiplicities
e. are positive integers (they are equal to 1 if p does not divide dt). Each ¢ is
a zero of f (modp), and therefore gives rise to a first degree prime ideal p of
norm p, as explained in 2.6; for this p we write e(p) = ¢,. With this notation,
the ideal generated by p is equal to the product of the ideals pé(®), so p can be
written as the product of the elements wp(p) multiplied by a unit:

p= H ut . H wg(p) with e(u) € Z.

uelU p, Np=p

This gives the identity

e(p) = [T o™ I elm)®,

uelU p, Np=p

which has the form (2.9). The integers e(u) € Z can again be found by means
of the method explained in Section 5. The density of the set of primes that split
completely in this way is the inverse of the degree of the splitting field of f, which
divides d - ¢(d) and is a multiple of lem(d, ¢(d)), with ¢ the Euler ¢-function.
For example, if d = 5 then one out of every twenty primes splits completely in
this way; if B; &~ Bs this means that one may expect approximately one fortieth
of all relations to come for free.

This completes the description of Step 2, and thereby the description of the
number field sieve.

3. FINDING GENERATORS

In this section we discuss the computation of the sets U and G introduced in 2.7.

An element of Z[a] is a unit if and only if it has norm +1. The structure
of the group of units can be described as follows. Let the polynomial f that
was selected in 2.5 have ry real roots and 2r; non-real complex roots, so that
r2 = (d —r1)/2. Since f is of the form X¢ — ¢, we have r; = 1 if d is odd; and
ifdiseven, then ri = 0ift <Qandr; =2ift > 0. Let | = r; + 75 — 1. With
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this notation, the group of units of Z[a] is generated by a suitable root of unity
up and ! multiplicatively independent units us, usg, ..., u; of infinite order; we
may take ug = —1 if r; > 0. We shall let U consist of such elements ug, ..., u;.

Before we compute G we make a list of ali first degree prime ideals of norm
< Bj. As we saw in 2.6, this amounts to making a list of all pairs (p, ¢ mod p),
where p is a prime number < B;, and ¢ € Z satisfies f(¢) = 0 mod p. To find
these pairs efficiently, one can use a probabilistic root finder for polynomials over
finite fields, cf. [21, Section 4.6.2]; the number of pairs thus found, i.e., #G, can
be expected to be close to m(B;), the number of primes up to By. An element of
Z[o] generates p if and only if it belongs to p and has norm %p; in other words,
the conditions to be met by 7, = Ef‘;ol s;o' are that Ef;ol s;¢t = 0 mod p and
N(=y) = £p. To determine G it suffices to find one such element for each pair
(p, ¢ mod p).

In practice the search for elements of U and G is best carried out simulta-
neously. This can be done as follows. Fix a multiplier bound M and a search
bound C, depending on K and B,. We refer to 3.6 for a discussion of feasible
choices of M and C. For the moment, one may think of M as a fairly small
integer—in all cases that we did M could be taken less than 10—and of C
as roughly proportional to Bz/d
though.

For all first degree prime ideals p for which we want to find a generator, put
m{p) equal to M + 1. This number m(p) keeps track of the status of p during
the search process: if m(p) > M no generator has been found yet, otherwise an
element 7, of p has been found with N(#,) = £m(p)p, where p = Np; then the
ideal generated by 7, is p times an ideal of norm m(p).

3.1. Search algorithm. For all y = Y% s;a' € Z[a] for which Sssal¥ < C,
compute the norm N(¥), ¢f. Remark 3.3; here |o| denotes the real number |t|1/d.
If N(v) is of the form kp for some prime p from the list of pairs (p,c mod p)
and some non-zero integer k with |k| < M, do the following. Identify the first
degree prime ideal p that corresponds to this p and 7, in other words, the pair
(p, ¢ mod p) for which Zt —o si¢" = 0 mod p, and update the data concerning’p:
if m(p) > |k| then replace m(p) by |k| and put #, equal to 7.

After all these v have been processed, the m(p) are all < M if the multiplier
bound M and the search bound C have been chosen properly. For the p with
m(p) = 1, put m, equal to T,. For the other p, compute 7, by dividing 7, by a
generator of the appropriate ideal of norm m(p). This requires the computation
of generators of the ideals of norm at most M, as well as the inverses of these
generators. There are only a few such ideals, and generators for them are often
easy to find; in general, one may hope to encounter them during the search just
described. If this doesn’t work, one may have to appeal to one of the methods
indicated in 3.8 below.

During the same search one keeps track of the units that are encountered.
These are not only the elements ¥ with N(y) = x1 that are found, but also
quotients of two elements that have the same norm (up to sign) and that generate
the same ideal; in the latter case a division is needed. Multiplicative dependencies

The actual asymptotics are a little different,
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can be cast out with the help of the function v from Section 5. The set U of
units that we are left with will often be the set of [ multiplicatively independent
elements that we are looking for. If later in the algorithm it is discovered that the
resulting set U does not generate the group of units of Z[a], then this discovery
leads to a new unit, which can be used to alter U; see Remark 5.4.

3.2. Remark. If r; > 0 it is useful to require that all elements of G and U except
ug = —1 are positive under some particular embedding of Q(«a) into R. For this
purpose one fixes one particular real embedding, and one replaces ¢ by —z for
each ¢ € GUU, £ # —1 that is negative under this embedding.

3.3. Remark. For v = Zf;ol s;at the norm N(v) is a homogeneous dth degree
polynomial in the s; with coefficients that are integers depending on the poly-
nomial f. In our implementation of Algorithm 3.1 the norm-polynomial was
‘hard-wired’, i.e., each new f required changes in the program and thus recom-
pilation. Furthermore, the search was organized in such a way that the norm of
each v was obtained from the norm of the previous v by just a few arithmetic
operations. This greatly enhanced the speed of our searching program.

In the rest of this section we discuss a few technical difficulties related to the
search for U and G. Some of these difficulties were actually encountered during
the factorizations reported in Section 8. Some others we did not encounter, but
we can vividly imagine that this will happen to others who try the algorithm.
Finally, there are difficulties of a primarily theoretical nature, which come up
when one attempts to analyse the run time of the algorithm. We resolve these
difficulties by using the tools that have been developed in algorithmic algebraic
number theory. For general background, see [43; 8; 30; 33].

3.4. Lack of unique factorization. In the description of the algorithm we made
the assumption that Z[a] is a unique factorization domain. This is a strong
assumption, which indeed fails to hold in three of the examples given in Section 8.
The assumption implies that Z[a] is equal to the ring of integers of K, which in
turn implies that e = 0 or —1 mod d. We now discuss how to proceed if Z[o] is
not assumed to have unique factorization. We note that in general it is not easy
to check whether Z[a] has unique factorization, but if desired this can be done
along the way.

3.5. The ring of integers. One starts by replacing Z[a] by the ring A of algebraic
integers in K. Methods for determining A can be found in the references just
given; see also [5]. The discriminant of f, which equals £d%9~!, can for bounded
r and |s| easily be factored into primes, and once this prime factorization is
available the determination of A proceeds in time (d-+log [t|)9(}). A few examples
of rings of integers A are given in 2.5 and in Section 8. If Z[a] # A then Z[a] is
not a unique factorization domain.

We shall denote the absolute value of the discriminant of A by A. This number
is given by A = d4[t|4=1/[A : Z[a]]?, and it is usually determined simultaneously
with A. One can show that A divides d%(r|s|)¥~" and that it is at least d%/(1 +
log d)°? for some absolute positive constant c.



THE NUMBER FIELD SIEVE 23

The replacement of Z[a] by A necessitates a few modifications to the al-
gorithm. The first is that the ring homomorphism ¢: Z[a] — Z/nZ needs to
be extended to A. This can be done if the natural condition ged{drs,n) = 1
is satisfied. Namely, any element v € A can be written as ¥ = §/m, where
m € Z is built up from prime numbers dividing drs; then ¢(m) has an inverse
in Z/nZ, and we can extend ¢ to a ring homomorphism A — Z/nZ by putting
e(7) = p(B)p(m)~*.

Secondly, it is, for the ring A, not necessarily true that each prime ideal p
dividing an expression a+ ba, with a, b € Z coprime, is a first degree prime ideal
in the sense that #A/p is a prime number. In addition to the first degree prime
ideals, one may also encounter prime ideals p that contain a prime number p
dividing the index [A : Z[a]] of additive groups and that intersect Z[a] in a first
degree prime ideal of Z[a]; such p divide drs. In the rest of this section we call
these prime ideals exceptional. In order to compute the prime ideal factorizations
of the expressions a + ba one needs to construct the exceptional prime ideals p as
well as the corresponding valuations. The existence of an efficient algorithm for
doing this follows from [30, Theorem 4.9, and the discussion following its proof];
often there are faster ad hoc ways to proceed than the one indicated in [30].

3.6. Searching for prime elements. Denote by wy the volume of the unit ball
in R¢. We have wg = 7%/2/T(1 + £), where T(1 + £) can be calculated from
I(1+2) = 2I(2), [(1) = 1, and T(3) = /7. Next put vg = (4/d)%/? /w4, which
is ((2 4 o(1))/(ne))¥? for d — oo, and

C=(vaVA-B)YY, M =[vg VA

With this notation, one searches among all non-zero elements v € A for which
1Y, lev[? € C, with o ranging over the embeddings K — C; if we write
y = Y40 o with ¢; € Q, then 13 [ovf? = 540 g2|t)%/4. One of the
purposes of the search is to find, for each first degree or exceptional prime ideal
p with M < 91p < Bs, a non-zero element 7, € p with |[N(7y)| < M9p. One can
check whether a given element v can play the role of r, for some p if one knows
the norm of v, as in 3.1.

It is a consequence of the Minkowski lattice point theorem that at the end of
the search for each p an element 7, has been found. The ideal generated by m,
is then not necessarily equal to p, but it is equal to p multiplied by an ideal of
norm at most M. From 91p > M one sees that p occurs exactly once in 7.

The theory of sphere packings implies that the choice of v4 above is not the
best one, and in practice one would do wise to experiment with smaller values
for v4. For the purposes of a complexity analysis the value given above is good
enough, since any feasible choice for vy i1s outweighed by VA.

3.7. Factoring elements. We shall write G’ for the set of mp’s found in 3.6, with
p ranging over the set of first degree or exceptional prime ideals for which M <
Np < B,. In addition, we write H for the multiplicative group of non-zero
elements v € K for which the fractional ideal Ay is built up from the prime
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ideals of norm < M. All units of A clearly belong to H. The set G’ and the
group H will play the role that the set G and the group of units of Z[a] played
in Section 2. For example, the algorithm of Section 2 requires that we write
certain expressions of the form a + ba as a product of powers of elements of G
and a unit, and similarly for certain alternating products of such expressions. In
the modified algorithm, we write expressions of the same type as a product of
elements of G’ and an element of H. To determine which power of m, € G’ occurs
in a given expression one proceeds exactly as in Section 2, using 2.6, except if
p is exceptional; in the latter case one needs to apply the valuations mentioned
in 3.5.

3.8. Generators for H. The next step is to find a multiplicative representation
for the elements of H, by means of a set U’ that plays the role of U. One can
attempt to find such a set U’ by means of the method indicated in 3.1. Namely,
during the search in 3.6 one also keeps track of elements that are entirely built
up from prime ideals of norm at most M. If one is lucky, one obtains in this
way not only a set U of generating units, but also generators for each of the
prime ideals of norm at most M, either directly or by combining a few elements
that are found. The set U’ then consists of U together with the generators of
those prime ideals, and as in 3.1 one can modify the elements 7, € G’ found
in 3.6 so as to obtain true generators for the larger prime ideals p. Altogether
this situation is very similar to what we had earlier, the main difference being
that Z[e] is replaced by A. In particular, A4 is a unique factorization domain in
this case.

In the examples that we tried the above is, essentially, what happened. In
general one cannot expect to be so fortunate. In the first place, the ring A
need not be a unique factorization domain, in which case there do not exist
generators for all primes of norm at most M. A more serious difficulty is caused
by the possibility that A does not have a set of “small” generating units. If
this occurs, then not only the units, but also generators of some of the prime
ideals may be hard to find. It seems likely that this difficulty may actually be
encountered in practice. Since we have no experience with it, we do not know
which of our ideas for dealing with it is to be recommended for practical use. We
shall just make a few remarks of a theoretical nature, which indicate that there
do exist satisfactory ways to solve the problem. In this discussion we make no
assumptions on unique factorization in A or about the units of A.

One possibility is to use an algorithm of Buchmann, see {4; 30, Theorem 5;
6, Section 6]. If properly modified and interpreted, this algorithm yields a set of
independent generators U’ for the group H, and these generators are such that
there is a fast algorithm that given v € H finds the unique expression of v as a
product of powers of elements of I/'. This means that U/’ can in a satisfactory
way play the role of U.

A second possibility is to use Theorem 6.2 of [30] in order to find a set of
generators for H. In order to convert this set of generators into an independent
set U’ for which a fast algorithm as just indicated exists, one can apply linear
algebra over Z (see [20]) as well as basis reduction techniques (cf. [18]).
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A third possibility is not to bother about finding a generating set for H at
all, but waiting for elements of H to produce themselves in the course of the
algorithm. For example, every Bj-smooth expression a + ba that is found gives,
upon division by an appropriate product of elements of G', an element of H, and
likewise for the alternating products of expressions a + b that arise from the
partial relations. The collection of all elements of H that produce themselves in
this way generates a subgroup H’ of H. It is not guaranteed that H' equals H,
but since we never encounter elements of H outside of H’ this is of no concern
to us. We do need to convert the given set of generators for H' into a set U’
of independent generators for H’. This can be done as indicated above. See
also Remark 5.4.

Once a suitable set U’ has been found, it is necessary to find, for each u € U’,
an element of Z/nZ that can meaningfully be called @(u). If U’ is contained in
A this presents no problem, since ¢ is defined on A. If U’ is not contained in
A we can proceed as we did with A itself; this can be done if 7 is free of prime
factors < M, a condition that can easily be checked.

It is to be remarked that the third possibility for finding U’ mentioned above
can in principle be extended to G': do not search for elements 7y, but wait for
them (or for elements that are just as good) to produce themselves in the course
of the algorithm. This approach might be feasible for number fields for which
A is much larger, and it might therefore be useful if one wants to apply the
number field sieve to arbitrary positive integers n. The resulting algorithm is,
in a somewhat different formulation, discussed in 9.1. As we shall see in 9.6,
there is also a variant of the number field sieve that dispenses with G’ and U’
altogether.

In several of the manipulations with elements of H and G’ that we just
sketched it happens that the elements u that one is interested in arise as the
product of powers of certain other elements and their inverses. In this case it
may be laborious to calculate the explicit expression u = Ef;ol gio* of u in
terms of the powers of a. It is good to keep in mind that this calculation can
usually be avoided. This is because the information on u that the algorithm
really needs—such as the vector v(u) defined in Section 5, the argument of u
under one particular embedding K — C, and the value of ¢(u) € Z/nZ—can
all be derived from the given product representation for u.

4. SIEVING

In this section we describe how the search for full and partial relations can be
carried out. In the notation of Section 2, these relations correspond to pairs of
coprime integers (a,b) such that a + bm is Bi-smooth, except for at most one
prime factor < Bs, and such that a + ba is Bs-smooth, except for at most one
prime ideal of norm < By.

From a theoretical point of view one can solve the problem of finding these
pairs (a, b) by applying the elliptic curve smoothness test (25, Section 4.3] to each
individual pair, because smoothness of the algebraic integer a + ba is equivalent
to smoothness of the integer a®—t(—5)?, cf. 2.6. In this section we present a more
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practical way to find the pairs (a,b). For the purposes of the run time analysis
in Section 6 the two methods are equivalent.

We describe a method to find pairs (a, b) that satisfy the conditions (i), (it),
and (iii) of 2.8 for some fixed positive value of b, and for a ranging over an
interval [amin, @max). This method is applied to all b in [1, bmax] that are to be
processed. There is no particular order in which this has to be done. We shall see,
however, that one can gain some efficiency by processing the b’s in order. This
is to be kept in mind if the search for relations is carried out in parallel on many
independent processors: it is better to assign a range of consecutive b-values to
each processor than some arbitrary set of b-values. An entirely different way to
organize the sieving step is described in [2].

The values of g, and ayax are best determined empirically; see Sections 6
and 8 for theoretical and practical choices. It is not necessary to make a choice
for bmax, since one can simply continue until the number of full relations plus
the number of independent cycles among the partial relations is larger than #1I,
the cardinality of the factor base. With growing b, however, the probability that
both ¢ + dm and a + ba are smooth gets smaller, and quite noticeably so. This
means that if By and By have been chosen too low, then one might never find
sufficiently many relations. See Section 8 for examples of by and Section 6 for
a theoretical estimate.

4.1. Two sieves. Fix some positive value for b. Testing the numbers a + bm with
a € [@min, @max) for Bj-smoothness can be done by means of a sieve over a,
because p divides a + bm for all a that are —bm mod p. After sieving with all
p < By, one can identify the pairs (a,b) that have a reasonable chance to sat-
isfy 2.8(ii), and one has to inspect the corresponding a+ba’s for By-smoothness,
cf. 2.8(iii). If there are only a few candidates, one can do this using trial division
of the norms N(a + ba) (after checking that 2.8(i) holds), cf. 2.6. In practice
it will be much faster to apply a second sieve, again over the entire interval of
a-values, because the number of candidates, for a proper choice of the factor
base, will be considerable. A sieve can be applied because the first degree prime
ideal corresponding to a pair (p,c mod p), as in 2.6, occurs in @ + be for all a
that are —bc mod p.

Only pairs (a,b) for which both a + bm (after the first sieve} and a + bo
(after the second sieve) are likely to satisfy the smoothness conditions of 2.8(ii)
and 2.8(iii), are subjected to further ged and trial division tests to see if the pair
indeed gives rise to a full or a partial relation. The rest of this section is devoted
to a more detailed description of a possible implementation of the sieving step.

4.2. The rational sieve. We describe how the a + bm, for some fixed b, can be
sieved for Bj-smoothness. For all @ € [amin, amax) initialize the sieve locations sq
as zero. Next, for all primes p < Bj, replace s, by s, +logp for all a € [amin, @max)
that are —bm mod p.

If, after all primes p < B; have been processed, a sieve location s, is close to
log|a + bm|, then it is quite likely that a + bm is B;-smooth. If s, > log(a +
bm) — log Bs, then a + bm is probably B;j-smooth except for a factor that is at
most Bs; if B3 < B?, then this factor will be prime, if we assume that a + bm
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is square-free. The event that s, > log(a + bm) — log Bj is called a report (but
see 4.3).

4.3. Efficiency considerations. Because we do not sieve with prime powers, not
all smooth a + bm are caught in the sieve: numbers a + dm that are smooth
and not square-free may be overlooked. This is only a first step in speeding up
the sieving without affecting its yield by too much. In practice quite a few more
smooth a + &m will be missed, because 4.2 is only an idealized version of what
actually happens. The s,, for instance, are usually represented by 8-bit (1-byte)
integers. Consequently, logp is rounded to the nearest integer, and the base of
the logarithm is chosen large enough so that overflow is avoided when 8-bit (or
7-bit, see below) integers are added. Furthermore, one often does not sieve with
the small primes below a certain small prime bound, or one replaces them by a
small power. This means that one should use log(a + bm) — log Bs — Bs instead
of log(a + bm) — log B3 while checking for reports, for some Bs that depends on
the small prime bound. The small prime bound and the corresponding Bs are
best determined empirically.

It is often a good idea to allow negative s,, 1.€., 7-bit integers plus one bit for
the sign. This makes it possible to initialize the s, as ~log(a+bm) +log B3 + Bs
so that the report-check can be replaced by a non-negativity check, which is often
faster. In many architectures four consecutive 8-bit s,’s can be checked simul-
taneously for non-negativity by means of one 32-bit ‘and’-operation with the
proper mask. Since a will be small compared to bm, all s, can be initialized to
the same rounded value — log(bm) + log B3 + Bs. This often allows a simultane-
ous initialization of several consecutive s,’s. All these changes are intended to
decrease the cost of the sieving step, while some of them have a negative effect
on the performance. Care should be taken that the cost/performance ratio does
not increase.

The computation of —bm mod p requires a (multi-precision) division by p, un-
less —(b — 1)m mod p is known, in which case a few additions and comparisons
suffice. This makes consecutive processing of the b’s slightly faster than process-
ing them in random order. A similar remark applies to the second, algebraic
sleve.

4.4. The algebraic sieve and trial division. We describe how to process the reports
from 4.2 in order to locate the pairs (a,b) that satisfy conditions 2.8(i), (ii),
and (iii), for the same fixed b as in 4.2. The improvements of 4.3 are taken into
account.

First, check for reports: let A = {a : s, > 0} be the set of a’s at which reports
occur, replace s, for a € A by some moderately small negative number Bg, and
leave the other s, unchanged. Next use a sieve to replace, for all first degree
prime ideals p with Mp < By, the number s, by s, +logp for all a € [amin, Gmax)
with a = —bc mod p, where (p, c mod p) corresponds to p.

Finally, do the following for all a € A for which s, > 0. If ged(a,b) = 1,
then compute log |a? — t(—b)¢|—for which a crude floating point approximation
to the integer a? — t(—b)? suffices—and check if s, > log|a% — t(—b)¢| + Bs —
log By, cf. 2.6. If that turns out to be the case, attempt to factor |a + bm]
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using trial division by the primes < By. If |a + bm] is B;-smooth, except for
at most one prime factor < Bjs, compute |a? ~ ¢(—b)¢], and attempt to factor
this number using trial division by the primes < Bj. If |a® — ¢(—b)¢| turns out
to be Bj-smooth, except for at most one prime factor < By, then a pair (a,b)
satisfying 2.8(i), (ii}, and (iii) has been found.

We introduced Bs because |a? — t(—b)?| can vary considerably over the a-
interval. This implies that no uniform negative initialization of the s, as in 4.3
can be used, which would allow an easy non-negativity check after the sieving.
To avoid the computation of ged(a,b) (and of log|a? — t(—b)¢|) for all a € A
(with ged(a, b) = 1), we initialize the s, for a € A as Bg, and we only compute
the corresponding ged (and possibly the logarithm) if s, has at least made it
to a non-negative number after the sieving. This saves some time, but it also
introduces an extra inaccuracy, because values of a close to a zero of a? —¢(—b)?
can be overlooked if Bg is chosen too small. The value for Bg is best determined
empirically. Notice that overflow may occur in s, for a ¢ A, which one can avoid
by changing these s, to the smallest negative value that they can assume instead
of leaving them unchanged during the report-check.

One can also compute ged(a,b) before putting ¢ in A. In that way fewer
locations have to be checked after the second sieve. On the other hand, many
more ged’s would have to be computed than in the version given above, because
in that version the @ € A for which s, < 0 after the second sieve are cast
out. It depends on the relative speed of the various operations which version is
preferable.

4.5. Remark. If apax —@min, the number of memory locations needed for the sieve,
1s more than can be allocated, then the interval [amin, @max ) should be partitioned
into subintervals to which 4.2 and 4.4 can be applied. If the subintervals are
processed in order (of the a’s), then one can easily arrange an efficient transition
from one subinterval to the next, by remembering the last visited a-value for
each p and p.

4.6. Choice of B3 and B4. We conclude this section with a few remarks concerning
the choice of the large prime bounds B3 and By. In the theoretical analysis in
Section 6 the partial relations play no role, cf. 6.2 and 6.5. This implies that the
choices By = By and By = By, for which all relations are full relations, are good
enough from a theoretical point of view. In practice, however, partial relations
make the algorithm run substantially faster, as can be seen in Section 8. The
choice of Bs and By depends on various considerations. In the first place, one
has to choose them such that B3 < B? and By < B to avoid the problem
of having to factor the remaining factor of |a + bm| or |a? — t(~b)9| after trial
division by the primes < Bj or < B,, respectively. Large choices within the
respective ranges result in many reports, a slow performance of the sieving step,
but a very high yield. This may sound good, but large primes near the lower
end of the range have a higher probability to be matched in a cycle, whereas the
majority of the other partial relations will turn out to be useless, after having
slowed down the sieving step and clogged up the disks. A reasonable choice for
B3 seems to be somewhere between B} ? and B}, and similarly for By.
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5. FINDING THE UNIT CONTRIBUTION

Let the notation be as in Sections 2 and 3, and let a, b be coprime integers for
which a + b is By-smooth. Then the ideal generated by a + ba can be written
as the product of first degree prime ideals p of norm < By:

(a+ba)=]p.

In 2.6 we saw how the e(p) € Z5o can be determined. The element a + ba itself
can now be written as

(5.1) a+tba= H O H g¢@,

uel 9€EG

where e(g) = e(p) if g = 7, and with integers e(u) that remain to be found.

Of course, one can find the unit [, ¢, u*(*) by computing (a+ba) [l eq g~
in the number field. Given a sufficiently large table of products of elements of
U and their inverses, the e(u) can then be found by table look-up. For very
“small” fields this will probably work quite satisfactorily. However, when the
field is a bit “larger”, it will be quite slow, due to the arithmetic in the number
field, which consists of fairly expensive polynomial multiplications and divisions
modulo f. In this section we describe a faster method for determining the e(u).
The method keeps track of some extra information per generator g € G, and
uses vector additions instead of arithmetic in the number field.

Let U = {ug,uy,...,w} be as in Section 3. Choose | embeddings ¢1, ¢2, ...,
¢ of K into C such that no two of the ¢; are complex conjugates. This can be
done as follows. Let f have r; real roots a4, as, ..., @, and 2ry = d — r{ non-
real complex roots oy, 41, @r 42, .- -, &4, With oy 4r,+; the complex conjugate
of ar,4j, for 1 < j < ry. In Section 3 we saw that I =r; +r;—1. For1 <i <!
let ¢; be the embedding K — C that maps }:;i;é g to Zj;é gjol.

Forz € K,z # 0, let v(z) be the I-dimensional real vector with ith coordinate
equal to log |pi(z)| — (log IN(z)])/d, for 1 < i < I; if z is taken to be a unit of
Z[a] then |N(z)| = 1 so that the term —(log|N(z)|)/d can be omitted. Note
that v(ug) = 0. Let W be the I x | matrix having v(u;) as its ith column, for
1 < i < I. The image of the group of units of Z[a] under v is a lattice in R, a
basis for this lattice being given by the columns of W.

To find the e(u) € Z that satisfy (5.1) we notice in the first place that v =
(a+ba) Tlee g~ is a unit, and that

(5.2) v(v) = v(a+ba)— Y e(g) - ¥(g).

geG

Since v is a unit, ¥(v) is in the lattice spanned by the columns of W, and more
in particular v(v) = W - (e(uy), e(uz), ... ,e(w))T, so that the e(u;) for 1 <i <1
are the entries of the vector W~! . v(v) and can be computed as such.

It remains to determine e(ug). If f has at least one real root, then we took up =
—1 in Section 3, and furthermore we specified some particular real embedding
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such that the other u; and all ¢ € G are positive under this embedding, see
Remark 3.2. So, we put e¢(ug) = 0 if a + ba is positive under this embedding,
and e(up) = 1 otherwise. If f has no real roots, then ug is some root of unity. In
this case, choose some particular complex embedding, and select e{ug) in such a
way that the arguments (angles) of this complex embedding of the left and right
hand sides of (5.1) match.

In practice the mapping v and the entries of the matrix W~! are only com-
puted in limited precision, and the entries of the vector W~ . v(v) are rounded
to integers. To avoid problems with limited precision computations, it helps to
select (or to change) U such that the columns of W form a reduced basis for the
lattice that they span. It also helps to select {or to change) the elements ¢ € G
such that the coordinates of W~ - v(g) lie between —% and %; one can achieve
this by multiplying ¢ by an appropriate product of units {to be determined with
the help of v). In our implementation, the vectors W=1! - v(g), for g € G, were
computed once and for all and kept in a file.

5.3. Remark. The same method can be applied to determine the unit contribution
in a cycle C, where we are dealing with H(a,b)ec(a + ba)*(@¥) instead of a + ba
in (5.1): simply replace v(a + ba) in (5.2) by 3, yec s(a,b) - v(a + ba). The
case of the free relations (see 2.13) is even easier, since v(p) is the zero vector.

5.4. Remark. If the set U as determined in Section 3 fails to generate the unit
group, or if one decides not to bother determining U at all (cf. 3.1 and 3.8),
then the algorithm described in this section needs to be modified in the sense
that the units must be processed as they come along. At each stage, one needs
to keep track of a set of independent generators for the group generated by the
units that have appeared so far. If a unit u is encountered for which v(u) does
not belong to the lattice spanned by the images, under v, of the current set of
generators, then this set of generators needs to be updated. This can be done by
means of lattice basis reduction techniques. It is likely that only a few of such
updates will be necessary. In the cases that we tried difficulties of this nature
did not arise. If they do arise, then the remark made at the end of Section 3 may
help to minimize the arithmetic that needs to be done with the units.

6. RUN TIME ANALYSIS

In this section we present a heuristic estimate for the run time of the number field
sieve. Currently there are several factoring algorithms that have a subexponential
expected run time, such as the continued fraction algorithm, the quadratic sieve
algorithm and its variants, the elliptic curve method, the number field sieve,
Dixon’s random squares algorithm, Vallée’s two-thirds algorithm, and the class
group relations method. Only for the last three algorithms has a rigorous analysis
of the expected run time been given [31; 35; 41]. For the other algorithms the
only available run time analysis is based on heuristic estimates, but in practice
they perform better than the rigorously analyzed ones.

Each of the algorithms mentioned generates, implicitly or explicitly, a se-
quence of integers of which only the smooth ones are useful. Depending on the



THE NUMBER FIELD SIEVE 31

algorithm and on its implementation, these integers are constructed determinis-
tically or drawn from a certain distribution. In all cases, the expected number of
smooth integers in the sequence plays an important role in the run time analy-
sis. A satisfactory estimate for this expected number can be given if the integers
are independently drawn from the uniform distribution on the interval [1, B],
for some upper bound B. However, none of the algorithms that we mentioned
satisfies this condition. To obtain a heuristic analysis, one simply assumes that
the smoothness probabilities are the same as in the independent, uniform case.
Only for the random squares algorithm, the two-thirds algorithm, and the class
group relations method has this actually been proved, and this leads to a rigorous
analysis of their expected run times.

For the other algorithms, including the algorithm described in this paper,
nothing better can presently be given than a heuristic analysis. This is not fully
satisfactory, but it is better than having nothing at all. Such heuristic analyses
add to our understanding of algorithms that are practically useful. They enable
us to make comparisons between different algorithms, and to make predictions
about their practical performance. If one insists on having fully proved theo-
rems, then the best one can currently do is explicitly formulating all heuristic
assumptions that enter into the analysis. For examples of such theorems we re-
fer to [34]. For one factoring algorithm, the random class groups method, one
of these heuristic assumptions turned out to be incorrect, and consequently the
heuristic subexponential run time estimate for that algorithm had to be with-
drawn (see [31]).

For the number field sieve the heuristic run time analysis is unusually labo-
rious, and it is carried out in some detail in [7]. The algorithm in the present
paper is sufficiently similar to that in [7] that we may content ourselves with
indicating how the analysis in [7] needs to be modified, and what the outcome
of the modified analysis is.

Our estimates will depend on N = r® — s rather than on the divisor n of N;
in most cases N will be not much larger than n. We use the notation L (v, A]
introduced in the Introduction. Also, the expression Ly{v, A + o(1)] will be ab-
breviated to Ly [v, A], here the o(1) is for N — oo, uniformly for r, s in a finite
set. We shall express our final estimates in the latter notation. We note that
this makes sense only if r, s are fixed, or range over a finite set, and e tends to
infinity.

6.1. Probability of smoothness. The result that makes the L-function useful in
estimating smoothness probabilities reads as follows (cf. [25, (3.16); 7, Section
10]). Let C C R* be a compact set such that for all (A, g, w,v) € C one has
A>0, >0 and 0 < w < v < 1. Then the probability that a random positive
integer < Lg[v, A] is L;{w, u]-smooth equals Ly[v — w, =A(v — w)/p + o(1)] for
z — oo, uniformly for (A, g, w,v)in C.

6.2. Parameter choice as a function of the degree. We begin by indicating the
optimal choices of the parameters as a function of N and the degree d of the
number field. These are derived from 6.1 by means of the heuristic argument
that was presented in support of Conjecture 11.4 in [7]. The main change that
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needs to be made is that the upper bound for |(a + bm)N(a + ba)| used in [7] is
replaced by the smaller value (amax + bmax™)(@thax + bhax|t]), where m & N1/4
and where we assume Gmin = —@max. Following this change through the entire
argument one finds that optimal choices of the parameters are obtained if all of
Gmax, Omax, B1, and By are taken equal to

exp((} + o(1)) (dlogd + V/(dlogd)? + 21og(N/4) loglog(N1/4)) ),

the o(1) being for e — oo, uniform for bounded r and s and for d in the region
1<d*® < N. (The analysis in [7] assumes that amax = bmax, B1 = Bz, but this
makes no difference.) In addition, we take B3 = By and By = B3, so that only
full relations are considered (see 6.5). The size of the factor base and the number
of full relations that one expects to find are given by the same expression. The
typical size of the numbers |(a + bm)N(a + ba)| that one wants to be smooth is

exp((%-}-o(l))(dzlogd+2log(Nl/d)+d\/(dlogd)2 + 21og(N1/4)log 1og(N1/d))).

The run time for the sieving in Step 2 and for the solution of the linear system
in Step 3 each come out to be

exp((1+o(1))(dlogd + V/(dlogd)? + 2log(N1/4)loglog(N'1/%) ) ).

The other parts of the algorithm take less time, with the possible exception of
the search for G and U in Step 1, since this search has no equivalent in the
algorithm of [7}; this point is discussed in 6.4.

6.3. Optimal parameters. The optimal choice for d as a function of N is given

by
_ ((3+0(1))log N\'/?
d-< JToglog fore — oo

uniformly for r, s in a finite set. With this choice for d, the choices for amax,
braxs B1, B2, Bz, and By made in 6.2 are LN[%,(2/3)2/3]. The typical size
of the numbers |a + bm| and [N(a + ba)| is Ly[%,(2/3)!/?], so the numbers
|(a + bm)N(a + ba)| that one wants to be smooth are about Ly([Z,(16/3)*/%];
this is N°1), as announced in the introduction. The run time of the entire

algorithm, with the possible exclusion of the search in the number field in Step 1,
is Ly(3,(32/9)'/3).

6.4. Complexity of the search in the number fleld. As we saw in Section 3, the
search for U and G described in the first half of Section 3 is not likely to work in
all cases. For this reason we consider instead the modifications described in 3.6
and 3.8. A routine calculation shows that the determination of G’ in 3.6 can,
for the parameter choices in 6.2 and 6.3, be performed within the same time
limit. For the methods to determine U’ that were indicated in 3.8 this is not
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so clear. To illustrate the difficulty, let us consider the algorithm of Buchmann
that was mentioned in 3.8. Its run time is, according to [30, Theorem 5; 6,
Section 6], bounded by (log A)¢ - /A for some absolute constant c. In our case
we have A = d(1+°()4 for ¢ — oo (uniformly for bounded r, s), so that the
run time estimate of Buchmann’s algorithm becomes d(¢*2+°()¢_ Since the run
time in 6.3 is d(4+°(1))4_ this leads to the question whether one can take ¢ < 33.
We do not know the answer to this question, but we consider it likely that at
least one of the methods suggested in 3.8 will run in time at most d(4+°(1))4 with
our choice of parameters. If this is the case, then the run time Ly[3,(32/9)/%)
mentioned in 6.3 indeed applies to the entire number field sieve. If it is not the
case, we can still claim this run time for the algorithm of [7}, when applied to
integers of our special form. In the examples that we did, the search for U and
G took only a very small fraction of the total run time.

It may also be possible to justify, along sirnilar lines, the run time given in 6.2
as a function of d, though perhaps not for as wide a range of d as indicated
in 6.2.

8.5. Remark. Because of our choice Bz = B; and By = Bs, partial relations and
cycles among them were not considered in the version of the algorithm analyzed
above. The use of partial relation is important for the practical performance
of the number field sieve, as we shall illustrate in Section 8. Nevertheless, it is
unlikely that the use of partial relations will affect the run time estimate by more
than a factor Ly[3,0]. For a run time analysis of the cycle finding algorithm and
a discussion of the expected number of cycles we refer to [28].

7. ADDITIONAL REMARKS

7.1. Using more number fields. Instead of using a single number field, as in 2.5,
one can consider using several fields. Because the probability of finding relations
decreases with growing b, this might be advantageous, because for each number
field one can start afresh with the small b values. If we use smoothness bounds Bj;
and Bs; for the ith number field K;, then we need approximately max; {w(B1;)}+
Y ;(#U; + #G;) relations, where U; generates the units and G; the first degree
prime ideals of norm < Bsy; in K;. Hence no K; should be used that contributes
fewer than #U; + #G; relations.

To give an example of this multi-field approach, suppose that we want to
factor an integer n of the form 28¢ + 1, with e a positive integer, using number
fields of degree 4. Direct application of the construction in 2.5 leads to the field
Q(¢?), where ( is a primitive 16th root of unity; (? is a zero of the polynomial
X% 41, and it maps to 22¢ mod n under ¢. Two other fourth degree fields that
can be used are the fields Q(¢ £ (1), where ¢ & {~! satisfies the polynomial
X*F4X? 42 and is mapped to (2° £ 27°) mod n = (2° F 27°) mod n under ¢.
To the free relations from 2.13 one can then add the multiplicative relations that
exist between elements of different fields K;. As can be seen in [26], we did not
use this approach for ¢ = 64, and as far as we know the practical importance of
the multi-field approach is still unexplored. From a theoretical point of view the
idea has proved to be worthwhile, see [11].
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7.2. Postponing the construction of cycles. The construction of cycles among the
partial relations to obtain relations among the a; can be postponed until Step 3,
as mentioned in 2.12. Here we sketch how this can be achieved. Given a collection
of partial relations, let P; and Ps, as in 2.12, be the sets of large primes and large
prime ideals occurring in the partial relations, and let I = (I\U)U P;U P,. Each
partial relation can be regarded as an element ¥ = (¥;);¢ 1 of 27 Fori € I\U we
have #; = v; as in Section 2, and for each 7 at least 1 and at most 2 of the 7,
with i € P, U P, are non-zero. Let V be the collection of #’s, and let F be the
collection of full relations that have been found.

Given V, we attempt to find more than #I — #F linearly independent linear
combinations among its elements for which the entries corresponding to the
i € PyUP, are even. One way to do this is by means of the methods from [22; 37].
It is easy to see that such linear combinations correspond to cycles among the
partial relations. With appropriate signs, they can be turned into relations among
the a; (as in (2.3)), where the unit contribution can be determined as before.
Combined with the full relations this gives more than #1 relations among the a;,
80 that Step 3 can be completed in the usual manner.

There is no obvious way to see if a collection of partial relations will indeed
give rise to more than #I — #F linear combinations as above. In practice one
could first use the cycle counter from [28], and only proceed with the matrix
step above if there are enough cycles.

7.3. Double large primes. Following the approach from [28], we can allow two
large primes exceeding B; in a + bm, or two large prime ideals of norms larger
than By in a + be. This variant of the algorithm turned out to be much slower
than the version described in Section 2. This was caused by the dramatic growth
of the number of reports and trial divisions in the sieving step. Most of these
trial divisions were fruitless, partly because the large factors remaining after trial
division were often found to be prime instead of the product of two large primes.
It is possible, however, that this variant becomes preferable for larger values of
n than we tried.

8. EXAMPLES

The first factorization obtained by means of the number field sieve was the
factorization of the 39 digit number F7 = 27" + 1, which was in fact already
known (see [32]). This factorization was carried out by the fourth author in 20
hours on a Philips P2012, an 8-bit computer with 64K of memory and two 640K
disk drives. With f = X342 and a factor base consisting of 500 rational primes,
the units —1 and 14 (—2)!/3, and 497 algebraic primes, it took 2000 values of
b and per b the integers a with |a| < 4800 to find 538 ff's and 1133 pf’s with
p2 = 1 and Bs = 10000; no fp’s or pp’s were used. This led to 399 cycles, which
combined with the 81 free relations (cf. 2.13) sufficed to factor Fr:

2128 1 1 = 596495891274 97217 - 57 04689 20068 51290 54721.

Several steps of this first number field sieve factorization were not carried out
as described in the previous sections. For instance, only the numbers a + bm
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were sieved, prime powers were included in the sieving, and for the reports both
a + bm and N(a + ba) were tested for smoothness by trial division. The unit
contribution was found by means of a table containing u} for |i| < 8. The fourth
author was able to reduce the time needed for factoring F7 by a factor of two
by using some of the methods described in Sections 2, 4, and 5. Other numbers
factored by the fourth author are 2!%* — 3 (44 digits, in 47 hours) and 2!%3 + 3
(47 digits, in 61 hours):

2144 — 3 = 4927299 91333 - 45 25956 52604 77899 16201 09802 72761,
2'%3 +3 =511 600696 43200 64900 87537 - 3455 98297 79603 41893 82757.

Other, and more general, factoring methods should actually be preferred for the
factorization of integers in this range. We do not know for what size of numbers
the number field sieve may be expected to be faster than other, asymptotically
slower methods. We do know that for numbers of the right form that have
more than 100 decimal digits the number field sieve is faster than the multiple
polynomial quadratic sieve method. Until the appearance of the number field
sieve, the quadratic sieve was the only algorithm by which numbers in the 100+
digit range without small factors could be factored, and it still has the advantage
over the number field sieve that it applies to all numbers indiscriminately.

For our number field sieve implementation at Digital Equipment Corpora-
tion’s Systems Research Center we followed the same approach as for our imple-
mentations of the elliptic curve method and quadratic sieve as described in [27].
In short, this means that one central processor distributes tasks among several
hundred CVAX processors, the clients, and collects their results. For a more
general set-up of the number field sieve, which also allows external sites to con-
tribute to the factoring process by means of electronic mail, we refer to [26] and
also [27]. This parallelization and distribution of tasks was used only for the
second step of the algorithm, the collection of relations.

For the number field sieve tasks consist of short, non-overlapping intervals of
b-values. When a client is given an interval [by,b; + 1,...,b2], he starts sieving
all pairs a, b for b = by, b1 + 1, ..., by in succession, and per b for |a| less than
some predetermined bound. After each b, the client reports the full and partial
relations that it found for that b to the central processor (possibly no relations at
all), and it reports that it just processed that particular value of b. The central
processor keeps track of the relations it received and the b’s that have been
processed. It also notices if a client dies or becomes unavailable, which occurs
for instance if a workstation is claimed by its owner. In that case the b’s that
are left unfinished by that client can be redistributed. In this way, all positive
b’s will be processed, without gaps, until sufficiently many relations have been
collected.

This is a more conservative approach than we use for our elliptic curve and
quadratic sieve implementations. For the latter algorithms we can afford not to
worry about inputs that have been distributed but that are never processed. For
the number field sieve the smaller b’s are noticeably better than the larger ones,
so that we decided to be careful and not to waste any of them.
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TABLE 1. Four factorizations obtained with the number field sieve

3239 _1=2-479- 17209 - 433019 64055 63553 33339 45745 53310 61280
44213 - pbT;

2373 41 =3.60427 - 694 57949 73168 94264 42566 12436 59806 37197 21883
18857 - p60;

7149 41 =8-10133 - 473384 33355 18992 92791 10650 93183 78061 19829 00857
3928501623 - p66;

2*%7 1+ 1 =3 - 6885 35756 02053 19573 06063 38968 00918 44825 49047 29193 -
p89.

In Table 1 we hst the first four factorizations that were obtained with our
implementation of the number field sieve, with pi denoting a prime of ¢ decimal
digits. Additional data concerning these factorizations are found in Table 2. In
the first case Z[a] is a unique factorization domain. In the other three cases this
is not true, but we could use instead the ring of integers of Q(o), which does have
unique factorization. This ring of integers is equal to Z[a3/2], Z[a]+Z - (a+2)*/5,
and Z[a?/2] in the three respective cases.

Although the theoretical analysis indicates that the choice By = By is asymp-
totically optimal, one can imagine that in practice there are cases in which it is
better to take B; much smaller or much larger than B;. We have no experience
with this. Introducing several fields as in 7.1 leads to an asymmetry between By
and By, see for example [11].

The first two factorizations could have been obtained with much smaller factor
bases if we had used the pp’s, as we did for the other two. The first entry is the
first number we collected relations for; even with our restricted use of the partial
relations the factor base was chosen much too large. For the last two entries our
choice of factor base size turned out to be much better. This was, in particular
for the third entry, more or less a matter of luck, as we had no way to guess how
many partial relations would be needed to produce a given number of cycles.
The experience gained with these and other numbers (see {2; 26; 28]) enables us
to select the bounds By and B in a slightly less uncertain manner.

Before one invests a lot of computing time in the search for relations, it is
wise to check if the chosen values for B; and B are likely to work. By processing
several reasonably distanced intervals of consecutive b-values, one can get a fairly
cheap and accurate estimate of the total yield of full and partial relations, which
should help to decide if the choices are realistic. In our later experiments we
tried to select By, By, and byax such that the run time of Step 2 is minimized,
and such that one quarter of the final set of relations consists of full relations
and the remaining three quarters are expected to be produced by cycles among
the partials. This is probably rather conservative, but given how the number of
cycles varies, it seems to be a safe choice; in any case, we never had to start all
over again with larger bounds.

For the factorizations reported in Table 1 the first step, the determination
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TABLE 2. Data on the four factorizations

n is factor of 31 2841 T4 287 41

# digits of n 107 108 122 138

f X5 -3 X5 +4 X547 X5+8

m 348 975 780 992

B, = B, 479910 287120 287120 479910

#P 40000 25000 25000 40000

#U + #G 3+ 40067 3+ 25010 3+ 24880 3+ 40012
factor base size 80070 50013 49883 80015
B3 = By 108 108 108 108

Amax = —Gmin 5108 5-10° 5-10° 5-10°
bmax 120000 200000 1136000 2650000

# free’s 2014 1248 1222 2003

# fulls A 30000 = 20000 10688 17625

# partials not kept  not kept 1358719 1741365

# pf, pf pairs = 25000 = 15000 5341 not counted
# fp, fp pairs ~ 25000 = 15000 5058 not counted
# cycles with pp’s not used not used = 28000 not counted
total # cycles > 50000 > 30000 =~ 38400 62842
run time Step 2 2 days 3 days 2 weeks 7 weeks
run time Step 3 2 weeks 4 days 5 days 2 weeks

# digits of factors 41 & 67 48& 60 56 & 66 49 & 89

of sets of generators, turned out to be quite easy. In all four cases the set U
consisted of —1 and two units of infinite order, which were not hard to come by.
Determination of G by means of the method described in Section 3 never took
more than fifteen minutes on a CVAX processor. In Step 2, we partitioned the
a-interval into subintervals of length 500000.

One can find the cycles of length two in a trivial manner by sorting the pf’s
(and fp’s) according to p; (and ps), which is all we did to generate the cycles
for the first two factorizations. For the third entry the yield was already getting
quite low for b around 1100000, and we would never have been able to factor the
third and the fourth number had we not used cycles involving pp’s as well.

To place the run times in perspective one should keep in mind that Step 2 was
performed on a network of several hundred CVAX processors, whereas Step 3
was done on a single workstation containing six CVAX processors by means
of a fairly elementary Gaussian elimination program. Since these factorizations
were carried out we made substantial improvements in our implementation of
the third step, see [26; 28]. Other numbers we factored are a composite 115
digit factor of 3241 — 1 into a p52 and a p57, a composite 108 digit factor of
6149 — 1 into p36 - p79, and a composite 117 digit factor of 3251 — 1 into p37 - p80.
These factorizations did not produce new insights, and they were reported in
the updates to [3]. Furthermore we factored the composite 148 digit factor of
the ninth Fermat number, as reported in [26]. For more numbers we refer to [2].
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9. GENERALIZATION

Following an idea of Buhler and Pomerance, we can attempt to generalize the
number field sieve to integers n that do not have a small multiple of the form
r® — s, for small r and |s|, as follows. Select a positive integer d, an integer m
that is a little smaller than n!/¢, and put f = 3¢ f; X!, where n = S, fim'
with 0 € f; < m. The algebraic number field is then defined as K = Q(a) with
f(a) =0, and the map ¢: Z[a] — Z/nZ sends o to (m mod n).

If one is very lucky one hits upon a value of m for which the resulting number
field has a very small discriminant. This occurs, for example, if the digits f; of n
in base m are very small. In that case the algorithm as described in this paper can
be applied without major changes. It is much more likely, however, that one is
not so lucky, and then Steps 1 and 3 will run into serious trouble. It is debatable
how probable it is that Z[a] (or the ring of integers of K') is a unique factorization
domain (see [9]); but even if it is, it is completely unrealistic to expect that the
search methods discussed in Section 3 can be used to find generators for the unit
group and for the first degree prime ideals. This is because the values for M and
C would have to be taken prohibitively large. Standard estimates suggest that
the coefficients of the elements of U and G, when written as explicit polynomials
in a, are so large that they cannot even be written down in a reasonable amount
of time, let alone calculated. This means that the elements of U/ and G must
be represented in a different way, or that their computation must be avoided
altogether. We discuss a variant of the number field sieve that accomplishes the
latter.

9.1. Elimination over Z. To describe this variant, we make the simplifying as-
sumption that Z[a] is the ring of integers of K; this assumption is discussed
in 9.4. Also, we consider, for simplicity, only full relations. The sieving step pro-
vides us with many pairs of coprime integers a, b with the property that both
a + bm and a + bo are smooth:

a+bm= Hpe""’(p), {a+ba) = Hpe“’*’(’)‘
P P

Here p ranges over the prime numbers < Bj, and p over the first degree prime
ideals of Z[a] of norm < Bjy; furthermore, the e, ;(p) and e, 3(p) are non-negative
integers that one can compute. Note that we use only the ideal factorization of
a+ba, not a factorization in terms of sets I/ and G. Next one looks for solutions
to the system

S eap(Pzap =0mod2, Y ean(p)zap =0,  zep €2,
a,b a,b

the sums ranging over the pairs @, b that have been found. This amounts to
solving a large and sparse system of linear equations over Z. If ry, ry are as in
Section 3, then one needs a little more than ry + r; solutions z = (z43); they
should be independent in a suitable sense. For each solution z, the integer

H(a + bm)?=r

a,b
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is the square of an integer that can be explicitly written down as a product
of prime numbers p < B;. Also, the exponents occurring in the prime ideal
factorization of the algebraic number

(9.2) u=[]Jla+ba)=>

a,b

are all equal to 0, so u is a unit. Therefore each 2 gives rise to a relation of the
type

93) (e@*®)" = o)
4

in Z/nZ, where u is a unit given by (9.2) and the w(p) are integers. If one
has sufficiently many such relations, then the units u become multiplicatively
dependent, and one can find an explicit dependence relation by combining the
techniques of Section 5 with lattice basis reduction. For this one needs to know
the logarithms of the images of the units u under the embeddings K — C,
and these can be computed from (9.2). Taking the corresponding product of the
relations (9.3) one finds a relation of the type

(ew®) =),
P

so that z =[], p¥®) is a solution to (2.2), as required.

9.4. The ring of integers. In 9.1 we made the assumption that Z[a] is the ring
of integers of K. If this condition is not satisfied then some of the elements u
produced by the algorithm may not be units. In that case the vectors v(u) from
Section 5 will not necessarily belong to a lattice, so that lattice basis reduction
techniques cannot be used to find relations with integer coefficients between
these vectors.

There are several ways to deal with this problem. The first is based on the fol-
lowing conjecture, which is quite possibly provable with present-day techniques:
let d be an integer, d > 2; then for a “random” polynomial f = Z?:o fi Xt with
fi € Z, f4 = 1, the condition that Z[o] is the ring of integers of K is satisfied
with probability equal to 6/7%. This conjecture suggests that when one tries a
few values for m one soon runs into one for which the condition is satisfied, so
that the algorithm does not encounter the difficulty just indicated.

Alternatively, one might deal with the problem by replacing Z[a] by the ring of
integers A of K. With from some minor adjustments to the algorithm (see 3.5)
this ring can take the place of Z[a]. One might object that the only known
algorithms for determining A that are sufficiently fast for our purpose may fail
(see [30, Section 4; 5]); more precisely, they do produce a subring A’ of A, but A’
may be different from A if the discriminant of f has a very large but unknown
repeated prime factor. Fortunately, one can prove that A’ works just as well as
A if any such prime factor exceeds Bg.
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9.5. Complexity. In the rest of this section we abbreviate L,[v,A + o(1)], for
n — 0o, to Lp[v,A]. Arguments similar to those in Section 6 suggest that the
variant of the number field sieve that we just discussed factors any integer n in
time L,[%,9'/3], where 91/3 = 2.0801. A bottleneck is formed by the large linear
system, which is to be solved over Z rather than over Z/2Z. We did invent a
fairly complicated technique by which we could reduce the size of this system
to approximately its square root, while preserving the sparsity; this technique
depends on the availability—from a suitably modified Step 2—of many pairs
of coprime integers a, b for which a + ba is By-smooth (with no condition on
a + bm). This reduces the conjectural run time of the number field sieve to
La[L,(64/9)1/3], where (64/9)'/3 = 1.9230.

9.6. Quadratic characters. Although the ideas exposed above may have some
use in practice, our discussion has been rather sketchy. This is because there
exists a method that achieves the same conjectural run time Ln[%,(64/9)1/3]
in a conceptually much simpler way. It employs quadratic characters in the
number field. They were suggested by Adleman [1] as a tool to avoid both the
assumption that the ring of integers of K is a unique factorization domain and the
determination of the sets U and G. In [7] it was shown that quadratic characters
can also be used to avoid the need to determine the ring of integers of K (cf. 9.4),
a problem that is not dealt with in [1]. For a description of the method we refer
to [1; 7]

It is an essential feature of the use of quadratic characters that it produces a
square in the number field without producing its square root. This leads to the
problem of computing square roots of very large algebraic integers. The known
methods for doing this, which are discussed on [7, Section 9], lead to arithmetic
operations with integers whose number of bits is roughly proportional to the
square root of the run time of the entire factoring algorithm! A method proposed
by Couveignes (see [15; 2]) works with much smaller numbers; it works only if
the degree d is odd.

It is as yet unknown which of 9.1 and 9.6 should be preferred in practice. The
first method has the disadvantage of a considerably more complicated elimina-
tion step, the second method requires substantial computations in the number
field, but, as shown in [2], works quite satisfactorily if the extension degree is
odd.

Coppersmith [11] showed that one can reduce the conjectural run time to
Lal}, ], where ¢ = £(92 + 26+/13)'/3 = 1.9019, by using several number fields.
There is no indication that the modification proposed by Coppersmith has any
practical value.
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THE LATTICE SIEVE

J.M. PoLLARD

SUMMARY. We describe a possible improvement to the Number Field Sieve. In
theory we can reduce the time for the sieve stage by a factor comparable with
log(B1). In the real world, where much factoring takes place, the advantage will
be less. We used the method to repeat the factorisation of F7 on an 8-bit computer
(yet again!).

OBJECT OF THE LATTICE SIEVE

We will consider the case of F7 throughout. We have
2F; = 23 + 2, where z = 2%

The object of the sieve stage of the NFS is to find pairs of small coprime integers
a and b such that:

1. the integer a + bz is smooth.

ii.  the polynomial N(a,b) = a® — 2b* is smooth.

This polynomial arises as the ‘norm’ of the algebraic integer a + bz, where z is
a toot of the equation 23 4+ 2 = 0. For the sieve stage we don’t need to know
anything about algebraic numbers (for the whole algorithm we seem to need to
know a little—more for general numbers).

At present everyone assumes [1, 2, 3] that the best thing to do is fix b (positive)
and sieve over a range of values of a (positive and negative). We propose a
different method, suggested by the ‘special ¢’ version of the QS method (due to
Davis and Holdridge).

We divide the factor base into two parts:

S: the small primes: p < By,
M: the medium primes: By < p < Bj.

We put Bg/B; = k, likely to be in the range 0.1-0.5; as usual, we also use:
L: the large primes: B; < p< By,

where Bj is much larger than Bj.

Algorithm LS (the lattice sieve).
1. Choose a region R of the (a,b) plane to be sieved.
2. Choose a fixed prime ¢ in M, the ‘special prime’, and sieve only those (a, b)
pairs in R with
a+br=0 {modyg). e}

1991 Mathematics Subject Classification. Primary 11Y05, 11Y40.
Key words and phrases. Factoring algorithm, algebraic number fields.
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The sieve is a double one, as usual:

1. We sieve the numbers a + bz with the primes p < ¢ only,

ii.  We sieve the numbers N(a,b) with all the primes of S and M.

In both sieves we allow a large prime up to B;. We discuss in a moment
how the sieve works, but first we explain why it is (possibly) of interest.

Claim 1. The total number of integers sieved is much less than in the NFS.
In fact, it is reduced by the factor:

W Z . log(1/k) @

qu log B1

Claim 2. We still get most of the solutions given by the NFS.

The ones we miss are those for which a 4+ bz has no prime factor in M. It is
easiest to consider the case when no large prime is allowed in (a + bz), that is,
the ff and fp solutions of {1, 2]; then the fraction of solutions lost, L say, can be
expressed in terms of Dickman’s p function [4]. A random integer of size about
bz has all factors < B; with probability:

p(in(bz)/ In(B,)), (3)
and all factors < By with probability:
p(in(bz)/ In(Bo)). (4)

The required fraction L is {(4)/(3).

Example. The factorisation of Fy [2].
Here we have ¢ = 2'93, b = 1.25(6) [middle of the range], B; = 1.3(6). The
table below compares:

W = work done (eqn. 2), and
L = fraction of solutions lost,

as functions of k.

k W In(bz)/In(Bs) (4) L={4)/(3)
1.0 0.0 6.0687 1.71(-5) 1.0

0.5 0.0492 6.3830 6.38(—6) 0.373
0.4 0.0651 6.4912 4.52(-6) 0.264
0.3 0.0855 6.6363 2.85(—6) 0.167
0.2 0.1143 6.8521 1.42(—6) 0.083
0.1 0.1636 7.2554 3.81(-7) 0.022

Notes.
1. We used an approximate formula for p given by Pomerance [4] (In is the
natural logarithm):

plu) = exp{—u(ln(u) + 0.56 — 1/ In(u)})), (5<u<l1l).
2. It may be that a larger proportion of the pf and pp solutions are lost.

Conclusion. An Infinitely Skilful Programmer (ISP) can get 83% of the solutions
for 8.6% of the work.
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OPERATION OF THE SIEVE

We assume that no primes of M divide z (true in our case, and in most cases
of interest). The points (a,b) on (1) form a lattice L(q) in the (a,b) plane. We
begin by finding two short vectors which generate the lattice:

V1 = (al,bl) and Vg = (az,bg).

This is easy (my method resembles the extended ged algorithm, applied to ¢
and —z).
Then a typical point of the lattice is: ¢- V) +d - V5, 1. e.

(a,by=(c-a1+d-az, c- by +d-by). (5)

We regard this as a point (¢, d) in ‘the (¢, d) plane.’

For a and b to be coprime it is necessary that ¢ and d be coprime. Is it
sufficient? Not quite. It can happen that ¢ and d are coprime and a = b = 0
(mod g¢). In that case, a/q and b/q satisfy our conditions. So it suffices to consider
coprime values of ¢ and d.

We use a two-dimensional array A[—C ...C,1...D] whose [c, d] element rep-
resents the point (5) (there is no point in allowing negative d, and the row d = 0
has only one useful element A[1,0] so we omitted that also). Note that (5) can
produce negative values of b—then we change the signs of ¢ and b (b = 0 is
excluded, since then a = +1, and (1) does not hold).

It seems sensible to choose C > D for two reasons:

i because V) is shorter than V,, sometimes much shorter.
ii.  because sieving is then more efficient (see below).

Clearly the use of a fixed rectangle in the (¢, d) plane is crude, since this gives
regions of different shapes in the (a,b) plane; but it seemed good enough for
initial experiments.

We describe the working of the sieve in outline first, then in more detail. The
array is used twice over, in the two stages of the sieve. In the first stage it is
initially set to zero and then accumulates the sum of log(p) over those primes p
which divide (a +bz). We can find (easily) which values of (a + bz) were smooth
and these elements are marked provided that ¢ and d are coprime.

The second stage is similar. The array is again set to zero and now accumulates
sums of log(p) over those primes p which divide N(a,b). Finally we find which
elements [c,d] have twice held smooth numbers and compute the values of a
and b. From this point the algorithm is identical with the conventional NFS.

It remains to discuss how we sieve with a given number p, which is a prime
or prime power. The two stages of the sieve are almost identical, so we consider
the first stage. The array element Afe, d] represents the integer:

a+br=c-uy +d-uy, where

uy =a;+ bz and uy =ay+byz.

Here of course u; = ug = 0 (mod q), but u; and u; have no other prime factors
in common, i.e. (U, Uz} = ¢.
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Thus the element is to be sieved by p iff:
c-ur+d-uz=0 (mod p). (6)

Special cases arise when u; = 0 (mod p), or uz = 0 (mod p), when we must
sieve the whole of every pth row, or every pth column.

In the general case, we either have (u;,p) = 1 or (us,p) = 1 (both, unless
p is a prime power); assume the first condition. There are at least two ways to
proceed:

1. Sieving by rows. In each row each pth element is to be sieved. A convenient .
method is to sieve in both directions, starting from the least nonnegative solution
of (6). We first calculate the inverse of u; (mod p); then the starting value for
each row is easily found from the last. This simple method is satisfactory for the
smallest primes, but bad for the larger ones since no integers are to be sieved in
many rows.

ii. Sieving by vectors. We make use of the fact that the points to be sieved
form a lattice in the (e,d) plane (the corresponding points form a sublattice
L(pq) of L(q) in the (a,b) plane). We compute two short vectors which generate
the lattice:

vy = (e1,d1) and vy = (cg,da).

Again, this is easy, but it must be done fast.
A typical point of the lattice is: e - vy + f - vy, 1. €.

(c,d)=(e-c1+ f ez, e-dy+ f-da).

We call this a point (e, f) in ‘the (e, f) plane.” Again, it suffices to consider points
with (e, f) = 1.

Problem. To generate quickly those points (e, f), preferably with e and f co-
prime, which give (¢, d} points in the chosen rectangle.

In my version, described below, it suffices to consider small values of ¢ and f. In

a large scale implementation, sieving by vectors is essential, and must be done
better.

MORE FACTORISATIONS OF F!

To compare the LS and conventional NFS methods we used the number F7 =
2128 4 1, first factored by Brillhart and Morrison in 1970. Both algorithms were
implemented on a Philips 2012, an 8-bit computer with 64k of memory and two
640k disc drives. A form of NFS was already run on this computer in 1988 [3],
as a set of seven Pascal programs. The programs were subsequently improved
to the method of [1]. Only one new program was needed for the LS (certainly
capable of improvement).
The following applies to both methods. We have:

2F; = 23 + 2, where z = 243
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The first part of the factor base, F By, consists of the first 500 primes:
2,3,5,..., 3571,

The second part FBj consists of algebraic primes of norm =p arising in the
factorisations of the rational primes of FB;. There are 497 such primes. We
included in F B, three units: —1, U and 1/U making 500 members in all. We
have 81 ‘free’ equations connecting F' By and F B; (and one more involving the
units).

Our disc file of the factor base includes:

1. For each prime p of F By, the residue z (mod p).
ii.  For each member of F By, of norm p, the corresponding root r of:

= -2 (mod p). )

Indeed, for our present purposes, F'B; is a list of the roots of (7} for p in FB;.
Our versions of both methods allowed a large prime in a + bz, but not in
N(a,b); thus we used only ff and pf solutions.

1. The conventional Number Field Sieve.
The choice of parameters given here is better than in [3].

Rangeof b = 1...1350
Range of a = —6000...6000
Limit for large prime = 30,000
Integers sieved = 1.62(7)

ff solutions = 480

pf solutions = 1941
pf pairs = 484
Free solutions = 81
Total solutions = 1045

Integers sieved per ff solution = 33,750
Integers sieved per pf solution = 8,350

2. The Lattice Sieve (sieving by rows for all p).

The first 142 primes were small  :2, 3,5, ..., 821.
The next 358 primes were medium: 823, ..., 3571.
(Thus k = 821/3571 = 0.230).

Limit for large prime = 30,000

Dimensions of sieve array:  [—100...100, 1...60]
Integers sieved per ¢ = 12,060
Total integers sieved = 4.32(6)

ff solutions = 510

pf solutions = 1732
pf pairs = 418
Free solutions = 81
Total solutions = 1009

Integers sieved per ff solution = 8,466
Integers sieved per pf solution = 2,493
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Both methods succeeded in factoring F7. We see that even this crude version of
LS reduces the number of integers sieved by a factor of 4. At present the LS is
30% slower (6.5 hours compared to 4.9 hours). Some problems are:

1. Multiplication and division are slow on 8-bit computers; we need them for
ged, inverse (mod p) and shortest vector calculations (these are all rather
similar, and can perhaps be done by the ‘binary ged’” method).

ii.  Accessing two-dimensional arrays is also slow {perhaps we should only use
one-dimensional arrays).

SOME PROGRAMMING NOTES

1. My main array A is of 8-bit elements. I use a second array B to denote the
status of the elements of the 4. The elements of B take only three values, so I
need only 2 bits (but currently use 8). Initially we have:

e, d] 0, if c and d not coprime,
c.dl =
1, if ¢ and d are coprime.

After the first sieve, only the l-elements are examined, and some of the ‘1’s are
changed to ‘2’s:

Ble,d] =2, (c,d) passed through first sieve.

After the second sieve, only the 2-elements are examined, and the ‘2’s changed
back to ‘1’s.

2. After the first sieve, we must compare
Ale,d] and ‘log(a + bz)+ constant’

where b is variable, unlike the NFS. To save many logarithms, we take exponen-
tials and compare instead:

Table[A[c,d]] and abs(b).

3. Optionally, we can add log(p) to Alc, d] only when that element is still inter-
esting, i.e. marked ‘1’ in the first sieve, or ‘2’ in the second. In Pascal, this is
worthwhile for the second sieve at least (we access Alc, d] twice in adding to it).

4. In my program, sieving by vectors gains very little time, but I recently made
an attempt in this direction, since it is an essential part of the algorithm. My
present method is to allow only e, f = ~2,...,2, so that there are just nine
(e, f) points to try:

(1,0), (0,1), (1,1), (2,1), (1,2), (=1,1), (-1,2), £(=2,1). (8)

This means that some (¢, d) points get missed (see below).
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NUMERICAL EXAMPLE FROM THE FACTORISATION OF Fy
Take special prime ¢ = 3571 (the 500th and largest prime of FB;). We find

Vi =(-10,29) and V;=(99,70).
An example of an ff solution is:

(¢,d) = (—43,86),
(a,b) = (—1024,827) (signs changed to make b positive),
a+bz=2'°.32.7.13.1301-1867 - 3571,
a® —2b® = —2.5.59- 1789 - 2089.

To sieve by vectors with p = 1867, we begin by calculating:
v1 = (—43,6) and vy = (46,37).

We find that 5 of the 9 points in (8) give (¢, d) points in our rectangle:

(e, f) (¢,d)

(1,0) (—43,6) (gives ff solution above)
(0,1) (46,37)

(1,1) (3,43)

(-1,1)  (89,31)
(2,1)  (—40,49)

Sieving by rows reveals that we missed one point:
(3,1) (—83,55)

If we sieve by vectors for the upper 250 primes of M only, {as in Note 4), we
miss 7 out of 517 points in the first sieve, and 2 out of 28 in the second.
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FACTORING INTEGERS WITH THE NUMBER FIELD SIEVE

J.P. BUHLER, H. W. LENSTRA, JR., CARL POMERANCE

ABSTRACT. In 1990, the ninth Fermat number was factored into primes by means
of a new algorithm, the “number field sieve”, which was proposed by John Pollard.
The present paper is devoted to the description and analysis of a more general
version of the number field sieve. It should be possible to use this algorithm to
factor arbitrary integers into prime factors, not just integers of a special form like
the ninth Fermat number. Under reasonable heuristic assumptions, the analysis
predicts that the time needed by the general number field sieve to factor n is
exp((c+0(1))(logn)!/3(loglog n)?/3) (for n — oc), where ¢ = (64/9)1/2 = 1.9223.
This is asymptotically faster than all other known factoring algorithms, such as
the quadratic sieve and the elliptic curve method.

1. INTRODUCTION

In 1988 John Pollard circulated a manuscript [31] that described a new method
for factoring integers. The procedure required the use of an algebraic number
field tailored for the specific number n to be factored. In [24] a practical version
of this idea was presented, dubbed by the authors “the number field sieve”.
This method has had several noteworthy successes in factoring numbers of the
form n = b° £ 1, where b is small, from the Cunningham project (see [5]). The
most spectacular of these factorizations was that of the ninth Fermat number
Fy = 2%° 4+ 1, which has 155 decimal digits (see [23]).

The number field sieve has, so far, only been applied to factor numbers where
certain desiderata were easily met. These include a monic irreducible polynomial
f € Z[X] of “small, but not too small” degree d, with “small” coefficients, and
an integer m ~ n'/? such that f(m) = 0 mod n. Further, if a is a zero of f, it
is convenient for the ring of integers O of the number field K = Q(«) to be not
too much larger than Z[«], for O to have class number one, and for the units of
O to be easily computable.

For example, in the case n = Fy the polynomial f = X® + 8 and the integer
m = 2103 were used; note that f(m) = m® + 8 = 25154+ 8 = 0 mod n. More
generally, for several numbers n = b° 4+ 1, with b small and ¢ large, it has been
fairly easy to meet the list of desiderata and to use the number field sieve to
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factor n. For numbers of this form it was suggested in [24] that the number field
sieve takes time at most Ln[L,(32/9)}/3 + o(1)] to factor n as n goes to infinity,
where

L, [u,v] = exp(v(log n)* (loglog n)! *).

The exponent u = %— in the number field sieve is the new and exciting aspect of
this complexity function since all other known algorithms, such as the quadratic
sieve or the elliptic curve method, have complexity, heuristic or probabilistic,
at least Ln[3,1+ o(1)] for n tending to infinity through an infinite sequence of
numbers.

Can the number field sieve be extended to general integers? It is to this
question that this paper is addressed. We show that the method can be mod-
ified so that an arbitrary integer n can be factored with heuristic complexity
La[3,(64/9)!/3 4 o(1)] for n — oco. We will call the new algorithm the number
field sieve; if we need to specifically refer to the earlier algorithm we will refer
to it as the special number field sieve.

The reason the constant (64/9)'/3 = 1.922999 for the general case is larger
than the constant (32/9)/3 = 1.526285 for the special number field sieve is that
the coefficients of the polynomial f we construct below are about n!/4. This is in
a rough sense asymptotically best possible for general n, as we shall see in 12.10.
For special values of n it may be possible to choose the coefficients of f much
smaller, which makes the algorithm faster.

Is the number field sieve practical? Since it involves the same underlying
sieving operations as, for instance, the quadratic sieve and the special number
field sieve, it is our guess that this algorithm will eventually be the method of
choice for sufficiently large integers. At the moment, its crossover with the “state-
of-the-art” algorithm for factoring, namely the quadratic sieve, seems to be about
125 digits. This is so high that it is very difficult to factor a general number of
this size with either method. The current record with the quadratic sieve is 116
decimal digits (see [25]). However, time is on the side of the number field sieve.
It is reasonable to expect that hardware will improve and that the number field
sieve will be refined and polished as it becomes better understood. Of course it
is impossible to predict the future; some other faster factoring algorithm may be
discovered that will supplant the quadratic sieve before theoretical and practical
advances give the number field sieve its day in the sun.

If we compare the relative predicted performance of the number field sieve
and the quadratic sieve on the basis of the somewhat questionable assumption
that the “o(1)” terms in the heuristic complexity estimates can be ignored, then
we find that the predicted number of operations for both are within a factor of
about 3 for numbers between 100 and 150 decimal digits. This suggests that a
small change in the implementation of either algorithm may have a large effect
on the location of the crossover point.

Our description of the number field sieve incorporates the idea of Adleman [1]
of using ‘character columns’, described in Section 8. In our original formulation
of the number field sieve we had used a more awkward technique instead of
character columns, which initially achieved only L, [£,91/3+0(1)] as n — oo for
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the heuristic complexity of the number field sieve, where 91/3 = 2.080084; and it
was only at the expense of considerable additional complications that we could
obtain the bound L,[3,(64/9)/2 + o(1)] with this technique. Adleman’s idea
achieves the latter bound with much less effort, and it simplifies the description
of the algorithm in several ways. In addition it likely moves the number field
sieve closer to being a practical factoring algorithm for arbitrary integers.

Ancther improvement to be mentioned is that of Coppersmith [10]. His idea
reduces the complexity estimate even further, namely to L[}, ¢+ o(1)] for n —
oo, where

1/3
= “’_213%@_ = 1.901884.

However, it is unlikely that this method will be practical for numbers of reason-
able size (of fewer than 1000 digits, say).

The idea underlying the number field sieve has also been applied to the dis-
crete logarithm problem. For this, we refer to [15] and [35].

The structure of this paper is as follows. Section 2 contains an outline of the
number field sieve. In Section 3 we describe an algorithm for selecting the num-
ber field to be used by the algorithm. Section 4 is devoted to a description of
a well-known sieving technique for constructing squares in the field of rational
numbers. In Section 5 we carry this technique over to the algebraic number field.
It turns out that we have to deal with certain obstructions, which are described
and analyzed in Section 6. Two algebraic facts that are used in Sections 5 and 6
are proved in Section 7. We overcome the obstructions in Section 8, by using the
character columns that were suggested by Adleman. In Section 9 we discuss a
problem that has not appeared in earlier factoring algorithms, namely that of
taking square roots in algebraic number fields. In Section 10 we state a heuristic
principle that can be used to obtain running time estimates for a surprisingly
wide class of factoring algorithms. Section 11 summarizes the entire algorithm
and gives a heuristic running time analysis. Finally, in Section 12 we describe a
modification of the number field sieve that should improve its practical perfor-
mance.

2. THE IDEA OF THE NUMBER FIELD SIEVE

A very old factoring strategy going back to Fermat and Legendre is to write n
as a difference of two squares. More generally, it suffices to find a solution to
22 = y? mod n. One might then obtain a factorization of n by finding the greatest
common divisor of z—y and n. In fact, it is easy to prove that if n is divisible by at
least two distinct odd primes then for at least half of the pairs 2 mod n, y mod n
with 2 = y? mod n and ged(zy, n) = 1, we have 1 < ged(z — y,n) < n. There
are many factoring algorithms that exploit this idea by trying to construct such
pairs z, ¥ in a random or pseudo-random manner. These algorithms include the
continued fraction method {30], the random squares method [12], the quadratic
sieve [33], and, of course, the special number field sieve.

Before we see how the number field sieve attempts to find a solution to z? =
y* mod n we say a few words about the ring in which the number field sieve



FACTORING INTEGERS WITH THE NUMBER FIELD SIEVE 53

operates. Suppose f € Z[X] is monic and irreducible of degree d > 1. We
shall work with the ring Z[e] that is generated by a zero o of f. It makes
no difference whether one thinks of Z[a] as a subring of the field of complex
numbers or as the ring Z[X]/fZ[X], with & = (X mod f); all that matters is
that each element of Z[a] can in a unique way be written in the form }:f;ol a;at,
with ag, ay, ..., ag_1 € Z. Thus, each element of Z[a] can be represented as a
vector with d integral coordinates ;. The addition in the ring is then just vector
addition. To multiply two polynomial expressions in «, one first multiplies them
as polynomials, and next uses the relation f(a) = 0 to reduce the result to
a polynomial expression of degree less than d in . If we let, in a completely
analogous way, the a; range over the field Q of rational numbers rather than
over Z, then we obtain the field of fractions Q(a) of Z[a].

Coming back to the number field sieve, let us now assume that m € Z satisfies
f(m) = 0 mod n. Then there is a natural ring homomorphism ¢: Z[a] — Z/nZ
induced by ¢(a) = (m mod n); so p(3; a;a') = (3, asm' mod n). Suppose we
can find a non-empty set S of pairs (a,b) of relatively prime integers with the
following two properties:

(2.1) H (a + bm) 1is asquarein Z,
(a,b)eS
(2.2) H (a +ba) is a square in Z[a].
(a,b)eS

Let £ € Z be a square root of the square in (2.1) and let § € Z[a] be a square
root of the element of Z[a] in (2.2). Since p(a + ba) = (a + bm mod n), we
have ¢(B?) = (22 mod n). Let y € Z be such that ¢(8) = (y mod n). Then
y> = 2?2 mod n, and we have constructed our congruent squares and so may
attempt to factor n by computing ged(z — y, n).

There are several questions that are raised by the above outline:

(i) How are the polynomial f and the integer m to be constructed?

(i) How is the set S of coprime integer pairs that satisfies (2.1) and (2.2) to
be found?

(ili) How is an element 8 € Z[a] to be found such that 32 is the square in (2.2)?
(iv) How much time do these steps take?

The overall plan of this paper is to gradually answer these questions until we
can finally state a precise version of the algorithm and attempt to analyze its
complexity.

Remark. The basic goal of most “combination of congruences” factoring algo-
rithms, including the number field sieve, can be encapsulated algebraically in the
following way. We have a ring R and a ring homomorphism ¥: R — Z/nZ xZ/nZ
together with a means of generating many elements of R whose image under ¢
lies in the diagonal {(z,z) : = € (Z/nZ)"}. We then hope to combine these ele-
ments multiplicatively to obtain squares in R whose square roots have an image
under ¥ not lying in {(z,+z) : = € (Z/nZ)*}. In the case of the quadratic sieve
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we have R = Z xZ. In the case of the number field sieve we have R = Zx Z[«] and
¥(r, B) = (r mod n, ¢(8)), and we consider elements of the form (a+bm, a+ba).
It is tempting to consider more general rings, e.g., R = Z[a] x Z[/], or R = Z[a]
where f has two zeroes modulo n, but so far we have not found a way to exploit
this.

3. FINDING A POLYNOMIAL

Given a positive integer n that is not a prime power, the first step of the number
field sieve algorithm is to find a polynomial f with integer coefficients and an
integer m such that f(m) is a multiple of n. In the basic version of the number
field sieve that we will present, the following particularly simple method is used
to find a polynomial; this algorithm will be referred to as the “base m” method.

Suppose that we are given positive integers n and d with d > 1 and n > 2d* .
Set m = [n!/9], and write n to the base m:

(3.1) n:cdmd+cd,1md“1+...+60

where the “digits” ¢; satisfy, as usual, the inequality 0 < ¢; < m. The output
of the base m algorithm consists of the integer m and the polynomial f =
caX®+ g1 X414+ ... 4 ¢1.X + cp. Note that we have f(m) = n.

Proposition 3.2. The leading coefficient ¢4 of f is equal to 1, and c4—; < d.

Proof. From our assumption n > 2¢° we have (h<2¢—2<nl/d-2<m-1
Therefore the digits of (m + 1)? in the base m are the binomial coefficients (%),
and the proposition follows from the inequalities m? < n < (m + 1)%.

For the d that we will recommend later, n will be much larger than 24”

The polynomial f produced by the base m algorithm may be reducible. How-
ever, since our interest lies in factoring n, this event would be fortunate. Indeed,
if f = gh is a non-trivial factorization of f in Z[X] then g(m)h{m) = f(m) =n
is a non-trivial splitting of n in Z. This result follows from the proofs in [4],
where we need only the easier case m > 3. We note that f can be factored in
time (log 7)°(!), by means of the algorithm of [22].

In a weak asymptotic sense, the base m algorithm, simple as it may be, cannot
be improved for use in the number field sieve, although for practical purposes
there is still room for improvement. This is further discussed in 12.10 and 12.15.

The following estimate will be needed later in this paper. We let f be as
produced by the base m algorithm, with d > 1, n > 24,

Lemma 3.3. The discriminant A of f satisfies |A| < d?3n2-3/4,

Proof. The discriminant of the monic polynomial f is, up to sign, equal to the
resultant of f and its derivative, which in turn can be expressed as the determi-
nant of the corresponding Sylvester matrix (see [37, Sections 34 and 35}). The
non-zero entries of each of the first d — 1 rows of that matrix are the coeflicients
of f, and the non-zero entries of each of the remaining d rows are the coefficients
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of f'. To estimate the determinant, we divide each of the last d rows, corre-
sponding to f’, by d, and we divide each of the last 2d —~ 3 columns by m; those
are the columns involving a ¢; with ¢ < d — 1. Finally, we subtract c4_; times
the first column from the second column. This results in a matrix of which all
entries are at most 1 in absolute value. Each of the first d — 1 row vectors of that
matrix has Euclidean length at most v/d + 1, and each of the last d Tow vectors
has Euclidean length at most v/d. Thus from Hadamard’s determinant bound
we obtain
IAI < dded—3(d+ 1)(d—1)/2dd/2 < d?an—S/d’

using m? < n and d > 1 for the last inequality. This proves 3.3.

4. THE RATIONAL SIEVE

We let n and d be integers with n, d > 1, and we let f € Z[X] be a monic
irreducible polynomial of degree d. We let m be an integer with the property
f(m) = 0mod n. By a we denote a zero of f, as explained in Section 2. We
write Z[a] for the ring generated by a.

As we saw above, the heart of the number field sieve lies in constructing a
non-empty set S of coprime integer pairs for which we have

(4.1) H (a+bm) is asquarein Z,
{(a,b)ES
(4.2) H (a + ba) is a square in Z[a].
(a,b)ES

Basically, the construction of S proceeds in two steps. First, one uses a sieve to
find a set T of pairs (a,b) such that both a + bm is smooth (i.e., factors into
small primes), and a + ba is smooth (in a similar sense, to be defined later)
in Z[e]. Next, one uses linear algebra over the field with two elements to locate
SCT,.

Let u be a large positive number to be chosen later, depending on n. Our
overall universe of possible pairs, from which the sets 7" and S will be chosen, is

(4.3) U={(a,b):a,beZ, ged(a,b) =1, |a] < u, 0 <b<u}

We will need to choose the parameter u sufficiently large so that U contains a
non-empty set S satisfying (4.1) and (4.2).

Initially, we will discuss conditions (4.1) and (4.2) separately. That is, in the
present section we focus on the “rational” side of the number field sieve, i.e.,
finding a set S satisfying (4.1). Next we shall concentrate on the “algebraic”
side (4.2). Finally, we shall see how to achieve (4.1) and (4.2) simultaneously.

The procedure for finding a square in Z by sieving is standard; we recall the
idea. First a parameter y = y(n) is chosen, and by sieving one finds a subset

Ty = {(a,b) € U : a + bm is y-smooth},
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where we say that an integer is y-smooth if all of its prime divisors are less than
or equal to y. The sieving procedure works as follows. For each fixed integer &
with 0 < b < u an array is initialized with the integers a + bm for —u < a < u.
For each prime number p < y the numbers in the array corresponding to values
of @ with @ = —bm mod p are retrieved one at a time, divided by the highest
power of p that divides them, and the quotient is replaced in the same array
at the same location from which the number was retrieved. At the end of this
procedure the number in the ath location is, up to sign, the largest divisor of
a + bm that is coprime to the primes up to y. Any location that contains the
number 1 or —1 at the end of the procedure corresponds to a number a + bm
that is y-smooth. If gcd(a, b) = 1, we have thus detected a member of 7;.

In practice various devices can be used to speed up the sieving. For instance,
it is more efficient to replace the numbers in the array by their approximate
logarithms (say to base 2), to initialize the array with 0 instead of the logarithms
of the numbers |a + bm], to add the logarithm of p instead of dividing by p, to
ignore small primes, to ignore higher powers of p, and to inspect, at the end
of the procedure, all values of a for which the ath location contains a number
exceeding a certain bound independent of a.

Remark. The primes less than or equal to y are said to be in the “factor base”
of the sieve. The precise choice of the parameters y and u will be given later as
part of the complexity analysis of the final algorithm, see Section 11.

Suppose the parameters y and u are chosen so that #7; > n(y) + 1, where #
denotes cardinality and m(y) denotes the number of primes up to y. It is well-
known that by using linear algebra over the field F, with two elements one can
find a non-empty subset S of T} for which (4.1) holds; again we recall the idea.

Let B = n(y), let p; denote the jth prime, for 1 < j < B, and let po = —1.
For a y-smooth integer

B
W= H p;J
j=0

we define the exponent vector e(w) € FB+! by
e(w) = (e mod 2, e; mod 2, ..., eg mod 2).

We may form such a vector e(a + bm) for each (a,b) € T1. Since the number
of such vectors exceeds the dimension of the Fj-vector space FZB +1 there is
a non-trivial linear dependence relation with coefficients 0 and 1, and hence a
non-empty subset S C T} such that

Z e(a+bm)=0¢c FF
(a,b)es

Therefore
H {a +bm) is a square in Z.
(a,b)ES

Thus we have “solved” (4.1) by combining smooth elements.
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5. THE ALGEBRAIC SIEVE

The notation and hypotheses in this section are as in Section 4. In addition, we
write K for the field of fractions Q(a) of Z[«] (see Section 2) and O for the ring
of algebraic integers in K. The multiplicative group of K is indicated by K*,
and N: K — Q is the norm map of the extension Q C KA. For background on
algebraic number theory we refer to [19; 40].

In order to find a square in Z[a], i. e., find a set satisfying (4.2), we attempt to
mimic the well-worn strategy described in the previous section. If the ring Z[a]
1s a unique factorization domain this would be fairly easy, though problems with
units would still remain. We note that in only a few of the applications so far of
the special number field sieve, Z[a] has been a unique factorization domain, but
in the remaining cases where it has not, the full ring of integers O in K has been.
Since we certainly cannot count on this being true for arbitrary numbers, we will
describe a strategy for solving (4.2) that does not depend on special properties
of Z[a].

Define an element 8 € Z{a] to be y-smooth if its norm N(f) € Z is y-smooth.
We can calculate the norm of an element of the form a + ba by substituting a,
bfor X, Y in the homogeneous polynomial (=Y )¢ f(—X/Y); that is, if a, b € Z
then

(5.1) N(a+ba)=a%—ca_1a® b+ -+ (=1)%cob?

where f = X%+ ¢4 1 X1 4+ -+ co.
A modification of the earlier sieving idea can be used to find the set

T, = {{a,b) € U : a + ba is y-smooth},

where U is as in (4.3). Namely, for each prime p let the set of zeroes of f mod p
be denoted by R(p), i.e., R(p) = {r € {0,1,...,p—1} : f(r) = 0 mod p}.
Then for any fixed integer b with 0 < b < u and b # 0 mod p, the integers a
with N(a + ba) = 0 mod p are those with a = —br mod p for some r € R(p).
Note that if & = 0 mod p, then there are no integers a with (a,b) € U and
N{a+ ba) = 0 mod p.

For each fixed b initialize an array with the numbers N{(a+ba) for —u < a < u.
For each prime p < y that does not divide b and each choice of r € R(p) the
positions corresponding to a that are congruent to —br mod p are identified, the
numbers in these positions are retrieved and divided by the highest power of
p that divides them and then the quotient is replaced in the array as before.
At the end of this process the locations containing +1 correspond to y-smooth
values of a + b with ged(a,b) = 1, and hence to elements of 7. We can make
this procedure more efficient by using the techniques mentioned in the previous
section, including the use of approximate logarithms.

Remark 5.2. Note that for each prime p we might sieve as many as d residue
classes modulo p; however, heuristically the average size of R(p) is about 1
(see [19, Chapter VIII, Section 4]). (This would even be provable if we were to
choose y large enough.)
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The next step is to apply linear algebra over the field with two elements, but
here some complications arise. In the previous section we combined the numbers
a+ bm, for (a,b) € Ty, into a square by using their exponent vectors. Similarly,
we can now use the exponent vectors of the numbers N(a + ba) for (a,b) € T
and proceed with them in the same way. However, this leads to a subset S C T2
for which only the norm of the product H(a,b)es (a + ba) is a square (in Z).
This is a necessary condition for the product itself to be a square in Z[a] (or
even just in K), but it is very far from being sufficient. It turns out that we
can overcome this problem almost completely by keeping track, for each prime
number p dividing N{a + ba), of the value r € R(p) that is “responsible” for the
fact that p divides N{a + ba).

More explicitly, let a, b € Z satisfy ged(a,b) = 1. Further let p be a prime
number and r an element of the set R(p) defined above. Then we define ¢, . (a+
ba) by

otherwise,

where ord, (k) is the number of factors p in k. Clearly we have

N(a + ba) =4 Hpep,r(a+bcr)’

p,r

the product ranging over all pairs p, r with p prime and » € R(p). The following
result justifies the introduction of the numbers e, »(a + bo).

Proposition 5.3. Let S be a finite set of coprime integer pairs (a,b) with the
property that [], ;yc5 (a + ba) is the square of an element of K. Then for each
prime number p and each r € R(p) we have

> eprlatba)=0mod?2.
(ab)es

This proposition is proved below.

For the number field sieve we are really interested in the converse of the
proposition: if the congruence in 5.3 holds for all pairs p, r, does it follow that
[T(as)es (@ + ber) is a square? The answer is “no”, as is shown by the example
S = {(-1,0}}, if K does not contain a square root of —1. However, we shall see,
using the results in Section 7, that the extent to which the converse fails can be
measured, that it is quite small (see Theorem 6.7), and that the failure of the
converse can be overcome by the use of quadratic characters (see Section 8).

In order to prove 5.3 it is convenient to recall some basic facts about the
non-zero prime ideals, or “primes” as we shall call them, of the ring Z[e]. If
p C Z[a] is a prime, then Z[a]/p is a finite field, and p contains a unique prime
number p (see Section 7). The norm NMp of a prime p is the number of elements
Np = #Z[a]/p of its residue class field, and the degree of p is the degree of
Z[a]/p as a field extension of its prime field F,. If p is a first degree prime, then
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Z[a]/p is isomorphic to F,, we have 9Np = p, and the map Z[a] — F, with
kernel p sends « to a zero r mod p of f mod p. Hence, a first degree prime p
gives rise to a pair p, r as considered above. Conversely, if p is a prime number
and r € R(p), then there is a unique ring homomorphism Z[a] — F, that maps
a to r mod p, and its kernel is a first degree prime p of Z[a]. Thus there is a
one-to-one correspondence between pairs p, r with r € R(p) and first degree
primes p C Z[a]; the ideal p corresponding to p, r is generated by p and o — 7.

We shall interpret the number e, ,(a + ba) defined above as the “number of
factors p in a+ba”, where p corresponds to p, r. If Z[e] is equal to the full ring of
integers O of K then it is clear what we mean by this: it is a standard fact from
algebraic number theory that non-zero ideals of O factor uniquely into primes,
and ep ,(a + ba) is the exponent of p in the factorization of the ideal (a + ba)O.
In order to generalize this to the case in which Z[a] # O we need the following
result.

Proposition 5.4. There is, for each prime p of Z{x], a group homomorphism
lo: K* — Z, such that the following hold:

(a) 1(B) >0 for all B € Z{e), B # 0;

(b) ifB € Zlo], 8+#0, then l,(3) > 0 if and only if B € p;

(¢) for each B € K* one has l,(8) = 0 for all but finitely many p, and

T1ow)=@ = N (),

p

where p ranges over the set of all primes of Z[a].

If Z[e] = O, it suffices to take l,(z) equal to the exponent to which p appears
in the prime ideal factorization of the ideal z{J. The proof of 5.4 for the general
case is given in Section 7. It does not use algebraic number theory, but depends
on the Jordan-Holder theorem.

Corollary 5.5. Let a and b be coprime integers and let p be a prime of Z]a].
If p is not a first degree prime, then l,(a + ba) = 0. If p Is a first degree prime,
corresponding to a pair p, r, then l,(a + ba) = e, . (a + ba).

Proof. Let p be a prime of Z[a] with l,(a + ba) > 0, and let p be the prime
number contained in p. By 5.4(b), the element a + b maps to 0 under the map
Z[a] — Z[a]/p. If p divides b, then ba also maps to 0, so the same is true for a,
and therefore p divides a; this contradicts that ged(a,b) = 1. It follows that b
maps to a non-zero element of Z[a]/p. Denote by b’ the inverse of the image of b;
it belongs to the prime field F, of Z[a]. Since a + bar maps to 0, the element
o maps to —ab’, which belongs to F,. Therefore all of Z[a] maps to F,, which
proves that p is a first degree prime. This implies the first assertion of 5.5. If p
corresponds to p, r, then r is determined by a+br = 0 mod p. This shows that p
is the unique prime of Z[o] containing p and a+ba. Now the last statement of 5.5
follows if one compares the power of p on both sides of 5.4(c). This proves 5.5.

We can now prove Proposition 5.3. Let H(a,b)es (a + ba) = 72, and let p be
the first degree prime corresponding to p, r. Since [, is a homomorphism, we
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have

Z ep r(a +ba) = Z I(a+ bo) = lp( H (a+ ba))

(a,b)eS (a,b)ES (a,b)eS
= l,(¥*) = 2l,(7) = O mod 2.

This proves 5.3.

6. FOUR OBSTRUCTIONS

We retain the previous notation and remind the reader that we are trying to
find a square in Z{a] by finding a non-empty subset S of

Ty = {(a,b) € U : a + ba is y-smooth}

such that the product, over all (a,b) € S, of a + ba is a perfect square in Z[a].

The first degree primes p of Z[a] of norm at most y comprise the algebraic
part of the factor base. Suppose there are exactly B’ of them. (We expect B’ to
be close to n(y)—see Remark 5.2.) If #7% > B’ the linear algebra described in
Section 4 can be modified to give us a non-empty set S C T such that

(6.1) Z lj(a+ba)=0mod2  forall p.
(a,b)ES

This is weaker than we want. In fact there are four obstructions that may prevent
a set S that satisfies (6.1) from satisfying (4.2):

(6.2) The ideal [](, ;)¢5 (@ +ba)O of O may not be the square of an ideal, since
we work with primes of Z[a] rather than with primes of O.

(6.3) Even if [T, )¢5 (a+ba)O = o? for some ideal a of O, the ideal a need not
be principal.

(6.4) Even if [T, ;)es (a +52)O = 7?0 for some v € O, it is not necessary that
[Tiapyes (a+ba) = 7%

(6.5) Even if n(a,b)ES (a+be) = 42 for some v € O, we need not have v € Z{a].

We remark that if Z[a] = O then the obstructions (6.2) and (6.5) cannot oc-

cur. Further, if O has class number one, and is hence a principal ideal domain,

then obstruction (6.3) cannot occur. Finally, if O is a principal ideal domain

and we have an explicit basis for the unit group of O then we can handle the

obstruction (6.4) by linear algebra by including a system of generating units in

our factor base. However, in general we cannot make any of these assumptions.

First we note that the fourth obstruction can be dealt with very easily.
Namely, if

[T (a+ba)=+

(a,b)eS
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with ¥ € K, then ¥ € O and vf/(a) € Z[a] (see [40, Proposition 3-7-14]), so

(6.6) f(a)?- H {(a + ba) is the square of an element of Z{a].
(a,b)eS

Thus we may replace (4.2) with (6.6) in our factoring algorithm if we also multi-
ply (4.1) by f/(m)?. Indeed, if f and m are chosen by the base m algorithm then
1 < f'(m) < n so that we can assume that ged{f/(m),n) = 1 (since otherwise n
would be factored); thus multiplying (4.1) by f/(m)? will not affect our chance
of factoring n.

We could have dealt with the first obstruction by working with the primes p of
O rather than those of Z[a]. There is an efficient algorithm for constructing the
functions I, for those primes, given in [6] (cf. [27, Theorem 4.9]). In practice—or
perhaps in the application of the number field sieve to the discrete logarithm
problem in a finite field as in [15; 35]—it may be better to use the algorithm
from [6]. However, it turns out that the techniques we have to use anyway, in
order to cope with obstructions (6.3) and (6.4), also can be used to get around the
difference between Z[e] and 0. Thus for simplicity we do not use the algorithm
of [6] in what follows.

In Section 8 we describe how to deal with (6.2), (6.3) and (6.4); in the re-
mainder of this section we show that these obstructions are, in a suitable sense,
“small” obstructions.

Denote by V the multiplicative group of those § € K* with the property that
,(3) = 0 mod 2 for all primes p of Z[e]. Since each [ is a group homomorphism,
we have K*2 C V. The quotient V/K*? is a vector space over F; in a natural
way. We can readily produce elements of V but would like elements of K*2;
we can measure our obstructions precisely by bounding the dimension of the
quotient.

Theorem 6.7. Let n, d be integers with d > 2 and n > d2d2, and let m, f
be as produced by the base m algorithm in Section 3. Let K = Q(«) be as in
Section 5, and V' as defined above. Then we have dimg, V/K*? < (logn)/log2.

Note that this is equivalent to [V : K*?] < n. Note also that the bound n > d?¢’

supersedes the bound n > 2%’ required in Section 3.
We prove 6.7, Define

W = {y € K* : yO = a? for some fractional 0-ideal a}.
In Section 7 we shall prove that
(6.8) Vow, [V :W]<[0:Z[a]].

Let Y = O*K*? where O* denotes the group of units of . Note that the chain
of subgroups

VOWDY > K*?

corresponds exactly to the first three obstructions.
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The index of W in V' is bounded by (6.8). Next we consider W/Y. If y € W,
then ¥O = a? for some fractional O-ideal a, and the map that sends v to the
ideal class of a in the ideal class group of O clearly has Y as its kernel. We
conclude that if h is the order of the class group of K, then

W Y] <h

Finally, Y/K*? is isomorphic to @*/0*?, of which the Fy-dimension is equal to
the rank of the unit group O* plus one (accounting for the roots of unity). Thus
from Dirichlet’s unit theorem we have

[Y: K™% = 2%,

where s is one-half the number of non-real embeddings of K in the field of
complex numbers.
Combining the estimates, we find that

[V K*?|<[0:2Z][a]] - h-2¢°.

Let Ak denote the discriminant of K. From [27, Theorem 6.5, Remark] we have
that
(d—1+log M)4-?

(d—1)! ’
where M = (d!/d?)(4/7)*\/]Ak| is the Minkowski constant of K. Let A denote,
as in 3.3, the discriminant of f. Then we have

h< M-

M < |Ak| < [0 Z[a]] = V]A] < d¥nt=3/(2D),

The equality follows from [9, Chapter I, Section 3, Proposition 4(i) and Section 4,
Proposition 6(ii)], and the last inequality is Lemma 3.3. From d > 2 and n > 424
one deduces with a little work that

d—1+dlogd < ;—dlogn, 2d - (2logn)?~! < n¥/C24),

Combining all this, we obtain

Wik <0 zia] 5 (4) Vimg UL VIANT

a d—1)!
= VI8 2 a1+ 10g B ()

1-3/2) g .94 (4_ _3 -
<n d-2 (d 1+dlogd+(1 2d)logn)
<n!=3/C9 94 (210g n)4! < n,

as required. This proves Theorem 6.7.
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7. ALGEBRAIC INTERLUDE

This section is devoted to the proof of 5.4 and (6.8); it can be skipped by the
reader who is willing to take those assertions for granted. Our fundamental tool
is the Jordan-Holder theorem. One can also prove these results using some of
the machinery of commutative algebra; for instance, some of the facts proved
here can be extracted, with some work, from Appendices A1-3 in [13].

We denote by K an algebraic number field, i.e., a finite field extension of the
field Q of rational numbers, and by K* its multiplicative group. We let A be
an order in K, i.e., a subring (with 1) of the ring of integers O of K with the
property that the index of the additive group of A in that of @ is finite. The
case of interest in 5.4 is A = Z[e]. In O one has unique factorization of ideals
into prime ideals; in the present section we develop for A a substitute for this
unique factorization that meets the needs of the number field sieve.

Let N: K — Q be the norm map. For each z € K, the norm N(z) of z is
defined to be the determinant of the Q-linear map K — K that sends each y € K
to zy. It follows that for each non-zero element & € A we have #A/2A = |N(z)|.
This implies that A/a is finite for each non-zero ideal a of A. The cardinality of
A/a is called the norm of a, denoted 9a. In particular, if p is a non-zero prime
ideal of A, then A/p is a finite integral domain, and therefore a field. Hence
every such p is a maximal ideal of A and contains a unique prime number p; the
degree of p is the degree of A/p as a field extension of its prime field F,. In the
sequel, by a “prime of A” we will mean a non-zero prime ideal of A.

The following result clearly contains 5.4 as the special case A = Z[a].

Proposition 7.1. There exists, for each prime p of A, a group homomorphism
l;: K* — Z, such that the following hold:

(a) ly(z)>0forallze A, z#0;

(b) ifz is a non-zero element of A, then l,(x) > 0 if and only if ¢ € p;

(c) for each x € K* one has l,(z) = 0 for all but finitely many p, and

[Iow)»® = N ()],

p

where p ranges over the set of all primes of A.

Proof. First we construct the functions I,. Let p be a prime of A and let z € A,
z # 0. Since z A is of finite index in A, there is a finite chain

A=aDa; DD D1 Dy =xA

of distinct ideals of A that cannot be refined, in the sense that there is no ideal
properly between a;_, and g;, for 1 <1 < ¢. We now define {;(z) to be the number
ofi € {1,2,...,t} for which the A-modules 0;_1/a; and A/p are isomorphic. (We
shall see in a moment that for every i there exists a unique such p.) It follows
from the Jordan-Holder theorem (see [37, Section 51]) that I,(z) does not depend
on the choice of the chain of ideals a;. (In terms of commutative algebra, l,(z)
is the length of the module A;/z A, over the local ring A;.)



64 J.P. BUHLER, H.W. LENSTRA, JR., CARL POMERANCE

If r, y are non-zero elements of A, then a chain ag, a1, ..., a; as above can
be combined with a similar chain bg, by, ..., by for y into a chain ag, a1, ...,
a; = zbg, zby, ..., zb, for zy. This proves that we have l,(zy) = Ip(z) + Ip(y).
Therefore we can extend the map I, to a well-defined group homomorphism
K* — Z by putting l,(z/z) = l,(z) — l;(z) for any two non-zero elements z,
z € A. This completes the construction of the homomorphisms /;. It is clear
that (a) holds.

To prove the “if” part of (b), it suffices to observe that one can take a; = p
if £ € p. For the “only if” part, suppose that z ¢ p. Since p is maximal, the
ideal zA 4+ p equals A, so zy + z = 1 for certain y € A, z € p. Then z =
1 mod A, so multiplication by z induces the identity map A/zA — A/zA.
Hence z - (a;_1/a;) = a;_1/a;, which by z € p implies that a;_,/a; cannot be
isomorphic to A/p.

It suffices to prove (c) in the case that z € A. Let the a; be as above, so that

IN(z)| = #A/zA = H#ﬂi-l/ai-
1=1

Thus to prove (c) it suffices to show that for each ¢ there is a unique prime p
of A witha;_1/a; = A/p. Let y € a;_1, y ¢ a;. Since there is no ideal properly
in between q; and a;_;, we have y4 + a; = q,_1, so multiplication by y induces
a surjective map A — 0;..1/0;. Therefore A/p = a,_,/q; for some ideal p, and
since this module has no non-trivial submodules the ideal p is maximal. Also,
p is the annihilator of the A-module a;_;/a;, so it is uniquely determined. This
proves 7.1.

Remark. We remark that the functions I, are uniquely determined by the
properties listed in 7.1. To prove this, let [, for each prime p of A, be a homo-
morphism K* — Z, such that (a), (b), (c) hold with I}, instead of I,. Let p be
a prime of A, and p the prime number with p € p. Let ¢ € A, ¢ # 0. To prove
that I;(z) is uniquely determined we proceed as follows. From the definition of
I, we see that p™b C pr A, where

m=1l(pz), b= []q"".
a#EP

From p™ + b = A and the Chinese remainder theorem it follows that there exist
Yy z€ Awithy =z modp™, y = 1 mod b, z = 1 mod p™, z = z mod b. Then
yz = r mod pzA, so yz = we with w = 1 mod pA. From z, w ¢ p one obtains
li(z) = l;(y). We have y ¢ p’ for any p’ # p that is of p-power norm, since
each such p’ divides b. Hence [ (y) can be read off from (c). This proves the
uniqueness.

From the uniqueness it follows that in the case A = O the functions I, coincide
with the normalized exponential valuations corresponding to the primes of O; in
other words, [,(z) is the exponent of the exact power of p dividing the ideal 0.
One can also see this by writing the ideal £ as a product of prime ideals,
z0 = pipa - - - Py, and choosing a; = p1po---ps.
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We now turn to the proof of (6.8). In the rest of this section A and B denote
orders in K with A C B; for (6.8), we shall take 4 = Z[o], B = 0. If qgis a
prime of B, then p = qN A is a prime of A. In this case we say that g lies over p,
notation: qlp. If q lies over p, then the finite field B/q is a field extension of A/p,
and we denote the degree of this field extension by f(q/p). In order to avoid
confusion we shall write I, 4 for what we denoted by [, above.

Proposition 7.2. Let p be a prime of A. Then we have

lpa(z) = f(a/p)le,B(x)

alp

for each ¢ € K*, the sum ranging over the primes q of B that lie over p.

Proof. Tt is convenient, in this proof, to introduce the following notation. If M is
a finite A-module, then we let I, 4 (M) be the number of composition factors of M
that are isomorphic to A/p. With this notation, we have I, 4(z) = I, 4(A/zA)
for every non-zero element ¢ € A. Note that I, 4(M) = I a(L) + Iy a(M/L)
whenever L is a submodule of M.

It clearly suffices to prove the formula in 7.2 for # € A. Multiplication by
z shows that the A-modules B/A and zB/z A are isomorphic, so I a(B/A) =
I, a(zB/xA). Therefore we have

lp,a(2) = lp,a(A/zA) = I a(B/zA) — Iy, 4(B/A)
= ip}A(B/.”CA) - lp,A(xB/:cA) = Ip,A(B/xB).

Hence the formula in 7.2"is equivalent to the statement that for M = B/zB we

have
lpa(M) =" f(a/p)la,B(M).

qlp

We prove this formula for any finite B-module M. Choosing a composition series
for M we immediately reduce to the case that M is a simple B-module, which
means that M has exactly two B-submodules ({0} and itself). In that case
M = B/q for some prime ¢’ of B, and I, (M) equals 1 or 0 according as q = ¢’
orq#q. Let p’ = g NA. As an A-module, M = B/q is a direct sum of f(q'/p’)
copies of A/p’, so that I, (M) equals f(q'/p’) or 0 accordingasp =p' or p # p'.
Thus the above formula follows by inspection. This proves 7.2.

Note that it follows from 7.2 thaf for each p the set of primes g of B lying
over p is finite and non-empty. We now prove that for all but finitely many p it
is true that there is exactly one q lying over p, and that it satisfies f(q/p) = 1.

Proposition 7.3. For all but finitely many primes p of A we have qup f(a/p)
=.1. In addition, the integer

I] ()~ +Zaw I lo),
p
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with p ranging over all primes of A, divides the index [B : A] of A in B.

Proof. Let T be any finite set of primes of A, and let U be the set of primes
of B lying over the primes in T. Let the A-ideal a be the intersection of the
primes p € T, and let the B-ideal b be the intersection of the primes q € U.
Then a = bN A, so A/a is a subring of B/b, and the index of A in B is
divisible by the index of A/a in B/b. By the Chinese remainder theorem, we
have A/a =[] ., A/p, and therefore

#A/a=T] Mp.
peT
Likewise we have
#B/b =[] Ma= [[ow) T/ /"),
qelU peT

It follows that [B : A] is divisible by
(#B/b)/(#A/a) = [ (9p)H+E e /),

peT
Therefore the number of p € T for which qup f(a/p) # 1 is bounded indepen-
dently of T, which implies the first assertion of 7.3. Taking for 7" the set of all p
with 3., f(a/p) # 1 we obtain the second. This proves 7.3.
In our final result in this section, we write

Va={c € K" : 1, 4(z) = 0 mod 2 for all primes p of A}.

In the notation of (6.8) we clearly have Vz[,) = V and Vo = W. Hence (6.8) is
an immediate consequence of the following proposition.

Proposition 7.4. If A C B are orders of K, then Vg C Va4, and [V4 : Vg] <
[B: A

Proof. The inclusion Vg C V, is clear from 7.2. To bound [Vy4 : Vg], we choose
for each prime p of A a set S of primes q of B lying over p, as follows. If f(q/p)
is even for each prime q of B lying over p, then we let Sy be the set of all q lying
over p. If there is at least one q lying over p for which f(q/p) is odd, then we
choose one such prime, qq (say), and we let S, consist of all primes g # qo that
lie over p. Since f(q/p) > 2 if f(q/p) is even, we have

#Sy < —14+ Y f(a/p)
alp
for all p. In particular, S, is empty for almost all p. Let S be the union of the
sets Sp, with p ranging over the primes of 4. We have

2#5 < T[ Ow)*S < [] (o) 1+ Zan /D) < (B 4,
B P

by 7.3. Thus to prove 7.4, it suffices to show that the group V4/Vp embeds in
the group (Z/22)°. To do this, map € V4 to the element (15 p(2) mod 2)4es of
(Z/2Z)5.1f z is in the kernel of this map, then I, p(z) is even for all g € S. Since
also all Iy 4(z) are even, it follows from 7.2 and the choice of S, that I, g(z) is
even for all q, so that € Vg. This proves 7.4.
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8. (QUADRATIC CHARACTERS

In this section the notation and hypotheses are as in Sections 4 and 5. We assume
in addition that n > d?@, and that m, f have been produced by the base m
method of Section 3.

In our original version of the number field sieve we handled the three obstruc-
tions (6.2), (6.3), (6.4) as follows. We dealt with the first obstruction, which
is due to the difference between the rings Z[a] and O, by using the algorithm
of [6], as mentioned in Section 6. To overcome the second obstruction, we pro-
posed that the linear algebra on the algebraic side be done over Z rather than
over Fy (cf. [24, Extended abstract, Section 7]). This allowed the construction
of integers s(a, b) for pairs {a,b) € Ty such that

(8.1) II @+say@Po=().

(a‘vb)ET2

Thus [](a + ba)*(*?) is a unit. The third obstruction was overcome by means
of lattice basis reduction methods on the logarithmic embedding in Euclidean
space of the units arising (see [15]). Thus several equations of the form (8.1)
could be combined to find integers s'(a, b) such that

I (@+ba) =1

(a,b)eT>

By then combining these ideas with the sieve on the rational side as discussed
in Section 4, we could find integers s”(a, b) for each pair (a,b) € Ty N T, such
that we have

H {a+ bm)’”(“’b) is a square in Z,
(a,0)ET1NT:

[ (a+ba)"@N=1
(a,b)ET; T,

These equations could then be used in place of (2.1) and (2.2) to attempt to
factor n.

In addition to being inelegant and complicated, the linear algebra step over Z
in the above scenario became a bottleneck in the complexity argument. In fact
the heuristic run time of the above version of the number field sieve is L,[1, 9l/34
o(1)] for n — oo rather than the bound we advertised above; the latter could be
achieved only at the expense of considerable additional complications. -

It was at this point that Adleman [1] suggested using quadratic characters
to overcome the second and third obstructions. As we shall see this allows the
linear algebra on the algebraic side to be done over Fy, greatly simplifying the
algorithm. In fact we use this same idea to also overcome the first obstruction.

In order to explain the idea behind “character columns”, we start by consid-
ering a simpler situation. Suppose that X is a finite set of primes and that [ € Z,
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1 # 0, has the property that in the factorization of [ into primes, the exponent of
each prime not in X is even. Is [ a square? The answer of course depends on the
sign of [ and the exponent of each prime p € X in the factorization of I. If these
quantities are inaccessible for some reason then we can still test [ for squareness
by the following probabilistic device: if p is a prime number that is not in X and
p does not divide 2[, then test the Legendre symbol (é) to see if it is equal to 1.
If the symbol is ever equal to —1 then [ is not a square; if the symbol is always
equal to 1 for a number of primes p significantly exceeding #X then we become
convinced that [ is a square. Specifically, if Vx denotes the multiplicative group
of non-zero rational numbers that are squares outside X as above, then Vx/Q*?
is an Fy-vector space of dimension #X + 1. The Legendre symbol corresponding
to each “test” prime p is a presumably random linear function on this vector
space. Qur test for ! being a square is ironclad if the characters corresponding
to the primes p that we choose span the dual space of Vx/Q*2.

Lemma 8.2. Let k, r be non-negative integers, and let E be a k-dimensional
Fy-vector space. Then the probability that k+r elements that are independently
drawn from E, with the uniform distribution, form a spanning set for E is at
least 1 —27".

Proof. For any hyperplane H of E, the probability that each of the k +r vectors
lies in H is 27%~7. Since each hyperplane is the kernel of a uniquely determined
non-zero linear function £ — F, the number of hyperplanes of E is 2¥ — 1. Thus
the probability that the k + r vectors all lie in some hyperplane is at most

(2F - 1)2 kT <277,

However, the k + r vectors do not span F if and only if they lie in some hyper-
plane. Thus the lemma follows.

Remark. If one picks random elements of E, independently, and from the
uniform distribution, until one has a set of generators, then the expectation of
the number of elements drawn is equal to k + Ef__.l(Qi —1)71. For k — oo, the
sum tends to a limit ¢ where ¢ = 1.606695. Thus for any k, the expectation is
less than &k + 2.

If we had some method of choosing Legendre characters that in the above
scenario corresponds to choosing elements of the dual space of Vx/Q*? inde-
pendently and from the uniform distribution, then we could develop a virtually
certain test for squareness for the integer I. In what follows, we replace Z with
Z[a] and make the heuristic assumption that choosing Legendre characters cor-
responding to small primes outside the factor base suffices for a squareness test.

The following result shows how Legendre symbols provide us with a necessary
condition for a product of elemenis a + b to be a square. The set R(q) is as
defined after (5.1).

Proposition 8.3. Let S be a finite set of coprime integer pairs (a,b) with the
property that H(a,b)eS (a + ba) is the square of an element of K. Further let ¢
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be an odd prime number and s € R(q), such that

a+bsZ0modg for each (a,b) € S,
f'(s) Z 0mod q.

H <a~{;b3> _q

(a,b)ES

Then we have

Proof. Let Z[a] — F, be the ring homomorphism mapping o to s mod ¢, and

let q be its kernel; this is the first degree prime corresponding to ¢, s. Define the

map xq: Zle] — q — {£1} to be the composition of Z[a] — g — F, — {0} with

the Legendre symbol F, — {0} — {+1}. Clearly, we have x4(a + ba) = (ii;b—’)
As we saw in (6.6), we have

f@?- I (a+ba)=#6

(a,b)eS

for some 6 € Z[a]. By hypothesis, the factors on the left are not in g, so we have
6 ¢ q. The proposition follows if we apply x4 to the equation.

As with 5.3, it is really the converse to 8.3 that we are interested in, and in
this case it does hold: if an element 8 € Z[a] — {0} satisfies x4(f) = 1 for all first
degree primes q with 203 ¢ q, or even for all such q with finitely many exceptions,
then [ is a square in K.

In the actual algorithm, we use both the functions e, and the Legendre
symbols to produce the square that we need, as follows. Let T = T NT3, so that

T = {(a,b) : ged(a,b) =1, |a] < v, 0 < b < u, (a + bm)N(a + ba) is y-smooth}.

Define
B = n(y),

B = #{(p, T) ‘P 1s a prime number, p<Ly re R(p)}1
B" = [3(logn)/ log2].

We define the factor base on the rational side to be the set of all prime numbers
up to y, call them p;, pa, ..., pp. Define the factor base on the algebraic side to
be the set of pairs (p1,71), (p2,72), ..., (P, 7B) as in the definition of B’. Let
(q1,81), (q2,82), ..., (g8, sB») be the first B" pairs consisting of a prime number
q > y and an integer s € R(q) with f'(s) # 0 mod ¢, ordered by increasing g¢.
We now define a map e from T to F%"'B*’BI*’B“. Say (a,b) € T. The first
coordinate of e(a, b) is determined by the sign of a+bm; it is 0 if a+bm > 0 and
1if a+bm < 0 (we cannot have a+bm = 0 if m > u, which will be the case with
our choice of parameters; sec Section 11). The next B coordinates are given by
ord,(a + bm) mod 2 as p runs over p1, pa, ..., pB. The next B’ coordinates are
given by e, .(a + ba) mod 2 as (p, r) runs over (p1,71), (p2,72), .-, (PB', 7B).
The last B" coordinates of e(a, b) are determined by (-‘H;—b—’-) as (g, s) runs over
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(q1,%1), (42,82), - .-, (gB~,spv). For a particular (g, s) it is 0 if (qubs_) =1 and
1if (ﬁ;b—’) = ~—1. Note that the reason for the special treatment of the first

coordinate and the last B” coordinates is to turn a multiplicative structure into
an additive structure.

If #T > 1+ B + B’ + B” then the vectors e(a,b) for (a,b) € T are linearly
dependent. Thus there is a non-empty subset S of 7" such that Z(a,b)ES e(a,b)

is the zero vector in Fé"’BJ’BIJ’B”. It is clear that such a set satisfies (4.1}, and
we conjecture that it satisfies (6.6) as well.

To support this conjecture, we make the following remarks. Let V be the
subgroup of K* defined before Theorem 6.7. If q is any first degree prime of
Z[o] with f'(a) ¢ q, then the function x, defined in the proof of 8.3 induces
a group homomorphism V/K*? — {£1}, again to be denoted by x,; namely,
one can show that any 8 € V can be written as 8 = 5,82, with 8 € Z[a] — q
and B, € K*, and that x,(8;) is independent of this representation, so that
we can put x4(8) = x4(81). The Cebotarev density theorem (see [19, Chapter
VIII, Section 4]) implies that if q ranges over all first degree primes of Z[a] with
f'(@) & q, ordered by increasing norm, then the elements x4 are asymptotically
equally distributed over Hom(V/K*? {#£1}). This suggests that the B” func-
tions x, that the algorithm employs may be viewed as random homomorphisms
V/K*? — {£1}, so that Theorem 6.7 and Lemma 8.2 make it overwhelmingly
likely that these functions x, span Hom(V/K*?,{£1}). If they do, then for an
element 8 € V to be a square it would be necessary and sufficient that x,(8) = 1
for each of the B” primes g, which would imply the conjecture. A rigorous proof
of the conjecture along these lines would require a very strong effective version
of the Cebotarev density theorem, which presently appears to be completely out
of reach. It may be possible to deduce a weak form of the conjecture-—with B"
replaced by a larger value—from the generalized Riemann hypothesis (cf. [2]). In
addition, it may be possible to rigorously prove a random version of the above,
where the B” primes q are independently and uniformly chosen from all the first
degree primes of Z[«] in some reasonable range.

Remark. One can also make use of Legendre symbols that are defined for
primes q of odd norm that have degree greater than 1. However, there is a
certain danger involved in using these primes. For example, if d = 2, then the
base m method of Section 3 leads to an imaginary quadratic field, and one can
show that in that case y4(u) = 1 for every unit u of @ and every prime q of
odd norm of degree greater than 1; this means that the quadratic characters
associated to such primes are not sufficient to deal with obstruction (6.4). First
degree primes do not suffer from this shortcoming.

9. FINDING SQUARE ROOTS

We retain the notation and hypotheses from the last section.

Now that we have produced presumed squares in Z and Z{a] we need to find
their square roots. In Z this is easy. If f'(m)? [1(a,p)es (a+bm) is a square, then
since the prime factorization of each a + bm is known it is an easy matter to
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compute the square root. We are ultimately only interested in the result mod n,
so all of the arithmetic can be done with integers of the size of n.

Next we address the problem of finding the square root in the number field.
This is a component of the number field sieve that has no analogue in earlier
factoring algorithms, including the special number field sieve. In the known so-
lutions to this problem one cannot work “mod n”, as we did in Z, and it is hard
to see how one can avoid dealing with numbers of a truly gigantic size. In fact,
the methods that we discuss in this section require arithmetic with numbers of
about +/C digits, where C is the running time of the entire number field sieve
(see 9.3 and Section 11). (In all other components of the number field sieve we
work with numbers of only C°(1) digits, for n — 00.) The time needed to find
the square root may dominate the running time of the number field sieve, unless
one employs techniques depending on the fast Fourier transform. In this section
we discuss the problem from a theoretical point of view. Practical experiments
conducted by D.J. Bernstein indicate that the method that we shall suggest
might actually work in practice. Meanwhile, J.-M. Couveignes [11] discovered a
more practical algorithm that does avoid large numbers; it requires the degree
d to be odd.

Let v = f'(a)? H(a,b)eS (a + ba) be the presumed square in Z[a]. To find
its square root, we can first multiply out the product and represent v as a
polynomial in & of degree less than d, and next apply one of the algorithms that
have been proposed for factoring polynomials over algebraic number fields (see
(38; 39; 18; 21]) to the polynomial X? — y € K[X]. It is important to bear in
mind that, when all parameters of the number field sieve are chosen optimally,
the cardinality of the set S and the coefficients of v as a polynomial in o are
very large (see 9.3 and Section 11). This implies that just computing v is already
very time consuming, and factoring X? — 4 even more so. In order to be able to
analyze the complexity of this step we consider what the algorithms of [38; 39;
18; 21] come down to in our case.

There is no essential difference between the algorithms proposed in [38; 39;
18; 21] if an odd prime number ¢ is available for which f mod ¢ is irreducible
in F,[X]; so let this now first be assumed. Then Z[a]/qZ[a] is isomorphic to
F,[X]/(f mod q), which is a field of cardinality ¢¢. Hence the ideal q = ¢Za],
which consists of all elements }:f;ol a;a for which each of the integer coeffi-
cients a; is divisible by ¢, is a prime of Z[a] of degree d. From the irreducibility
of f mod ¢ it follows that f'(a) ¢ q, and for each (a,b) € S we have a + ba ¢ g
since ged(a, b) = 1. Therefore the product v of all these elements does not belong
to q either. Taking the coefficients of v modulo ¢, and applying an algorithm for
taking square roots in the finite field Z{a]/q (see [20; 17, Section 4.6.2, Exer-
cise 15]), we find an element §; (mod q) such that 62y = 1 mod q; this é; mod g
is unique up to sign. (If one finds, unexpectedly, that X? — v is actually irre-
ducible modulo g, so that & cannot be found, then v is not a square in Z[c/],
and we have hit upon a counterexample to the conjecture stated in Section 8.
In this case more character columns might be tried.) Note that &q is the inverse
of a square root of ¥ mod q; this is in order to avoid divisions in the iteration to
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follow. Starting from ég, we apply a Newton iteration

6i-1(3 - ‘5]:‘2-17)
! 2

(=2

mod qu

to find éy, 64, ..., such that 6]-27 = 1 mod g . Notice that working modulo qzj
means that the coefficients a; in the expressions ), a;o are taken modulo q2j,

so that one may take |a;| < g%’ /2. One continues the Newton iteration until ¢’
1s at least twice as large as an upper bound that one is able to prove for the
absolute values of the coefficients of a true square root 8 of vy in Z[a]. Then
B can be calculated from 8 = §;¥ mod g% . If we wish, we can now verify that
8% =+, and thus free ourselves from having to rely on the unproved conjecture
of Section 8; but in the context of the number field sieve it is more efficient to
just assume that 32 = v, and to proceed immediately to the calculation of ¢(8)
(as in Section 2) in an attempt to factor n.

There are several refinements and modifications that might affect the practi-
cal performance of this scheme. For example, one can apply fast multiplication
techniques in the iteration; one can go up by powers ¢ instead of q?J of q;
and one can stop the iteration as soon as the coefficients of é;5 mod g%’ do not
change for a few successive values of j. One may also wonder whether there is a
method that does not start by multiplying out the product that defines .

In the above description we made the assumption that an odd prime number
q is available for which f mod ¢ is irreducible. One can attempt to find such
a prime number ¢ by trying ¢ = 3, 5, 7, ... in succession. (Of course, the
prime numbers that are norms of first degree primes of Z[a] can be left out.)
For each ¢, one can test f mod ¢ for irreducibility by applying an irreducibility
test in Fy[X] (see [20]). As we shall see below, one may for most n expect to
be successful fairly soon. However, there are cases in which not a single prime
number q exists for which f mod q is irreducible. This occurs, for example, when

n:m4+1, d:4

The question arises how to proceed when this happens.

One solution of this problem is based on the remark that, in a sense that can
be made precise, most monic polynomials f of degree d in Z[X] have the property
that the Galois group of f is the full symmetric group S; of order d! (see [14]).
If f satisfies this condition, then the Cebotarev density theorem implies that
the density, inside the set of all prime numbers, of the set of prime numbers
q for which f mod q is irreducible is equal to the probability that a random
permutation of {1, 2, ..., d} is a single d-cycle {cf. the proof of 9.1 below),
which is equal to 1/d. Since d will be chosen quite small with respect to n (see
Section 11), this is fairly large, so that for most values of n we expect that there
are many suitable prime numbers ¢ and that it will be easy to find one. It may be
possible to make this loose argument perfectly rigorous. If, for whatever reason,
a good ¢ is difficult to find, then one has the option of changing f (and hence the
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number field), for example by adding a polynomial that is divisible by X —m
to f, or by choosing a different value of m in the base m algorithm. However,
there are situations in which it is very undesirable to change f, for example when
f has particularly small coefficients. In that case one may not be able to work
with primes ¢ for which f mod ¢ is irreducible.

We briefly discuss what one can do if no odd prime number ¢ is available
for which f mod q is irreducible. The approach of [39] is then to do a similar
Newton iteration modulo powers of an odd prime number g. At the start of the
iteration, the ideal ¢Z[a] is not prime, so that the inverse square root ég of 7
(mod ¢) is not unique up to sign. Instead, one must take the inverse square root
of ¥ modulo each of the primes ¢ containing ¢, and combine them into an inverse
square root modulo ¢Z[a]; or if ¢ is small, one can try all (¢¢ — 1)/2 non-zero
elements of Z[a]/qZ[e], up to sign. If there are ¢ primes q containing ¢, then
this gives rise to 2'~! different starting values 6y for the Newton iteration. If we
choose ¢ as indicated below, then we have t < d/2, and it turns out that, with
our choice of parameters, a factor 2[9/21=1 does not greatly affect the running
time; so the algorithm of [39] may be feasible for our purposes.

The polynomial time algorithm of [18; 21] does a Newton iteration modulo
the powers of a single prime ¢ containing ¢. To recover the square root of v
from 6;7, for large j, one then needs to apply a basis reduction algorithm to the
ideal g%’. This is, with our choice of parameters, not attractive (see 9.3). Another
possibility is the algorithm of [38], but we have not investigated its merits for
use in the number field sieve. A final possibility is to make use of the “infinite”
prime, as was pointed out to us by V.S. Miller and R.D. Silverman. In this
case, one chooses an element of K = Q(«) that under each embedding o of K
in the field of complex numbers is close to a square root of (), and one next
applies a Newton iteration in Q(a), where one works with the coefficients a; as
real numbers that are rounded to rationals. For this algorithm, the number of
different starting values to be tried is 2¢*~! where s is one-half the number
of non-real embeddings of K into the field of complex numbers. For each of
these methods, the applicability of the refinements mentioned above is to be
considered. Which method is the best one for practical purposes remains to be
tested.

If one decides to use the algorithm of [39], then the choice of an appropriate
prime number ¢ is still important, since the method requires that the algebraic
integer v be coprime to ¢. This is guaranteed if f mod ¢ factors into distinct
irreducible non-linear factors. Indeed, if f mod ¢ is squarefree, then g is relatively
prime to f’(a), and if f mod ¢ has no linear factors then there is no first degree
prime of norm ¢, so that by 5.5 each a + box is coprime to ¢. One may wonder
whether primes q with the properties just mentioned exist. The following result
answers this question affirmatively, and in addition it asserts that there are so
many of them that in practice it should not be hard to find one.

Proposition 9.1. Let f € Z[X] be an irreducible monic polynomial of degree d,
with d > 1. Then the density, inside the set of all prime numbers, of the set of
prime numbers q for which f mod ¢ factors in F,[X) into distinct irreducible
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non-linear factors exists and is at least 1/d.

Proof. Let G be the Galois group of f over Q, viewed as a permutation group
of the set Q of zeroes of f. For each prime number ¢ that does not divide the
discriminant of f, there is a Frobenius element ¢, € G, which is well-defined up
to conjugacy in G, and which has the property that the degrees of the irreducible
factors of f mod q are the same as the lengths of the cycles of the permutation oy.
Hence, we are interested in those ¢ for which o, acts without fixed points on €.
The Cebotarev density theorem [19, Chapter VIII, Section 4] implies that for
every subset C C (7 that is a closed under conjugation by G, the set of prime
numbers ¢ for which o, belongs to C has a density, and that this density equals
#C/#G. Hence, the proposition follows from the following fact in group theory,
which was kindly proved for us by A. M. Cohen (see [7; 3]).

Lemma 9.2. Let G be a finite group that acts transitively on a finite set 2, with
#Q = d > 1. Then there are at least (#G)/d elements of G that act without
fixed points on €.

Proof. We recall that if G acts on a finite set X, then the number of orbits of
X under G is given by the formula

1 g
%Z#x,

where X° = {z € X : 0z = z} (see [16, Kapitel V, Satz 13.4]). We first apply
this formula to X = Q, which by hypothesis has one orbit under G. Writing f;
for the number of o € G that have exactly ¢ fixed points on 2, we get

d

d_ifi = #G.

i=0

Next we apply it to X = Q x Q, with G acting componentwise. The diagonal
is transformed into itself by G, and there are also off-diagonal points, because
d > 1. Hence X has at least two orbits under G, so that we obtain

d

> if > 2#G.

i=0

Finally, we have the trivial relation

d
D fi=#G.
i=0

Since the number 2 — (d+ 1)i + d = (i — 1)(i — d) is non-positive for 1 <i < d,
and equal to d for ¢ = 0, we now find that

d
dfo > (F = (d+ i+ d)fi > (2 (d+1)+d) - #G = #G,

£=0

as desired. This completes the proof of §.2 and 9.1.
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9.3. Complexity. The complexity analysis of the square root algorithm that we
described in this section is entirely straightforward. As we shall see in Section 11,
the parameters u and y will be chosen as functions of n and d such that each of
logu and logy equals

(4 + o(1))(dlogd + /(dlogd)? + 4log(n!/4) loglog(n1/4))

for n — oo, and the running time of other steps in the algorithm will (heuris-
tically) be bounded by y**°(1) In addition, we shall have #7 = y!*°(!), so
the same expression is an upper bound for #S as well, and it is unlikely that
#5 is much smaller. Thus an upper bound for the absolute value of the integers
involved in the computation of a square root of v is exp(y' *°(1)). In these circum-
stances, the calculation of the square root of v as described in this section takes
time at most y'*°(1) if one employs fast multiplication techniques, and y2rod)
if one uses traditional algorithms for the arithmetic operations. Thus if one does
not use fast multiplication techniques then the running time of the square root
algorithm may dominate the running time of the entire number field sieve. If we
replace [39] by [18; 21] in the square root algorithm, then one has to perform
a basis reduction algorithm, and the running time bounds become y?+°(*) and
y3+0(1), with fast and traditional arithmetic respectively; the numbers one works
with are bounded by exp(y'*?(})), as before. Thus it is not attractive to use the
methods of [18; 21].

Remark. To make the above algorithm more efficient, we can attempt to
replace the element v of which we take the square root by an element that
has smaller coefficients when expressed as a polynomial in «. This can possibly
be achieved by means of the following idea, which bears some resemblance to
the square root algorithm of [30]. Suppose S = {(a1,41),...,(as,b,)}, where
#S = 5. We inductively define two sequences (ui)i_, and (vi)i-, of elements
of Z[c]. First let o = v = 1. Suppose 1 < ¢ < s and p;_1, ¥j_1 have been
defined. If a; + b;o divides p;_; in Z[a], we let g; = pi—1/(a; + b;ar) and we let
v; = vi—1(a; + b;e). Otherwise, we let p; = pi—1{a; + bja) and v; = ;1. We
have the identity

v = f(@) T](as + biar) = f'()?pa?,
dm=1

so that if 7 is a square in Z[a], so is f'(a)?ps. Thus, instead of taking a square
root of 7, it suffices to take a square root of f/(a)?p, and to multiply this square
root by v,. In addition, our factoring algorithm does not need v, itself, but only
its image ¢(v,) in Z/nZ, which one can calculate by only doing arithmetic with
integers the size of n.

To test if some non-zero a + b divides some p in Z[a] and compute the
quotient if it does, we divide a + bX into f to get f = (a + bX)g + f(—a/b),
where ¢ € Q[X]. Then a + bo divides g in Z[a] if and only if p/(a + ba) =
—pgl(a)/ f(—a/b) belongs to Z[a].
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By using exponent vectors, one can often see very cheaply that a; + b;a does
not divide pi—1 in Z{a]. Let (p1,71), (p2,72), - .., (pB/,B’) be the factor base
on the algebraic side, and for 1 < i < s let v; € ZB' be the integer vector whose
coordinates are the numbers e, . (a;+b;) as (p, r) runs over (p1,71), (P2, 72), - - -»
(pp',B). Define the vectors w; € 78 inductively by wo = 0, w; = w;—y — v; if
a; + b, divides p;_y, and w; = w;_y + v; otherwise. From Proposition 7.1 we see
that w; is the exponent vector of u; and that it has non-negative coordinates.
This gives an easily checked necessary condition for a; + b;a to divide p;.1,
namely that w;_; — v; has non-negative coordinates. If w;_; — v; has a negative
coordinate, we do not have to compute y;..1/(a; + b;x).

The condition that w;_; — v; has non-negative coordinates is not a sufficient
condition for a; + b;« to divide u;_y1, but it is nearly so. That is, if w;_; — v
has non-negative coordinates, then the only prime numbers that can divide the
denominators of the coefficients of y;_;/(a; + b;c) are the prime numbers p < y
that divide [O : Z[a]]. From Lemma 3.3 it follows that there are only a few such
prime numbers, namely not more than o(logn) for n — cc. We can modify the
procedure described above by always putting p; = pi—1/(a;+b;c) when w;_ 1 —v;
has non-negative coordinates. Then we have to keep track of the exponents to
which those few prime numbers occur in the denominator of y;.

The use of exponent vectors suggests that it may be advantageous to order the
set S in such a way that the event that w; — v;_; has non-negative coordinates
is frequent. One possible ordering is the one that puts the smoother elements of
S first. There may be better orderings than this, but we are not sure what to
suggest.

The practical value of these ideas is unclear; the final verdict must await an
implementation.

10. ANALYTIC INTERLUDE

In this section we prove a theorem in analytic number theory that is helpful in
the complexity analysis of many factoring algorithms, including the number field
sieve.

Forz > 1, y > 1 let ¥(z,y) denote the number of y-smooth positive integers
up to z. Suppose z, y are positive integers and consider a process where we choose
random integers with the uniform distribution from [1, z] and stop when we have
chosen y not necessarily distinct numbers that are y-smooth. The probability
that we choose a y-smooth number on one draw is ¥(z, y)/z. Thus the expected
number of draws to choose y numbers that are y-smooth is zy/¥(z, y). We now
ask for the value of y that minimizes an expression slightly more general than
this expectation. Recall the definition of L, [u, v] from Section 1.

Theorem 10.1. Suppose g is a function defined for all y > 2 that satisfies
g(y) > 1 and g(y) = ¥**°1) for y — co. Then as ¢ — oo,

zg(y) 1 o
T g 2 Lele 2+
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uniformly for all y > 2. In addition,

z9(y) _ 1 0
e = Lo[5, V2 + o(1)]

for  — oo if and only if y = Ly[},v2/2 + o(1)] for ¢ — .
Proof, We shall use the following result from [8]. For any ¢ > 0 we have

(10.2) P(z, 2ty = g fwHow for w— o0,

uniformly in the region & > w1+,

We first show that if y < Lo}, 3] or y > L.[3,2], then

=9(y) 1240 or T — 00
(10.3) oy 2 Lelh2 o] 6 .

Indeed, if y < L[}, 1], then (10.2) implies that

zg(y) z z
5y > W@y = 96 L 1)

= Lx{%, 2+ o(1)]

for ¢ — oo. If y > L3, 2], then it is clear that (10.3) holds since z/¢¥(z,y) > 1.
Note that (10.2) implies that if y = L[%, 9], then

(10.4) xg(y; = L[}, 04 1/(20) +0(1)] forz — o0

uniformly for ¥ in any compact subset of the set of positive real numbers. Further
# +1/(29) has its minimum value for 9 > 0 at ¥ = v/2/2 and nowhere else. This
minimum value is /2, which proves the theorem.

Theorem 10.1 is useful in the analysis of many factoring algorithms. For exam-
ple, suppose an algorithm factoring n produces auxiliary numbers up to z = z(n)
and hopes to find y*+°(!) (for n — oco) auxiliary numbers that are y-smooth. If
these auxiliary numbers are just as likely to be y-smooth as random integers
up to z, then we expect to examine zy'+°(V)/4(z,y) of these to find the y-
smooth integers that we need. If the time to test a single auxiliary number for
y-smoothness is y°(1) | the expected time for this stage of the factoring algorithm
is zy'+) /ih(z,y). Theorem 10.1 tells us how to choose y so as to minimize
this running time, namely y = L.[3,v/2/2 + o(1)]. Further, this running time
would be y?*°(1) = L[+ +/2 + o(1)]. Thus if other steps in the algorithm, such
as processing a matrix, also take time at most y>*°(1), then L.[3,v2+ o(1)] is
the running time of the complete algorithm. This leads to the following heuristic
principle: if z is a bound on the numbers that “would be smooth” in a factoring
algorithm, then the running time of the algorithm is Lz[3,v/2 + o(1)].
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For some factoring algorithms, this outline of a complexity analysis can be
used as the backbone of a completely rigorous analysis, such as with Examples
10.5, 10.6 and 10.7 below. For other factoring algorithms, the above argument
is supplemented with various heuristic assumptions, one of which is often that
the auxiliary numbers that “would be smooth” are just as likely to be smooth
as random integers of the same approximate magnitude.

Example 10.5. In the random squares algorithm of Dixon (see [12]) the bound
for the auxiliary numbers that would be smooth is ¢ = n. The running time of
the algorithm thus turns out to be Ln[3,v/2 4 o(1)] (see [34]). Here, and in the
next two examples, we use the elliptic curve smoothness test (see [28; 34]) so
that most y-smooth numbers can (rigorously) be recognized to be y-smooth in
time y°(1).

Example 10.6. In [36], Vallée modified the random squares method so that
the bound for the auxiliary numbers that would be smooth is ¢ = n2/3+e(1),
Thus the running time for her algorithm is L,[3, 1/4/3 + o(1)].

Example 10.7. In the class group relations method [28] the size of the numbers
that would be smooth is n!/2+°(1) and its running time is Ly (3,14 o(1)]."

Example 10.8. In the quadratic sieve method [33] the size of the numbers that
would be smooth is n1/2+°(1) and so its heuristic running time is L[5, 1+ 0(1)].
Here sieving replaces the elliptic curve method as a smoothness test.

The heuristic even works for the elliptic curve factoring method [26]. Here
the auxiliary numbers that would be smooth are near the least prime factor
p of n. We need to find only one y-smooth auxiliary number, but the time to
process one trial is not y°(1) but y*+°(1). Thus the heuristic expected time is still
zy'+°() /4(z,y) where £ = p. Hence Theorem 10.1 applies and we find that the
heuristic running time of the elliptic curve method to factor n is L[, v/2+0(1)]
arithmetic operations with integers the size of n.

A sixth example is provided by the number field sieve. Its heuristic complexity
analysis, which is given in Section 11, depends on the two final results of this
section.

Lemma 10.9. For real numbers k > ¢, | > 1, define the number v = v(k,l) by

v?

e = ey 41, v >e.
logv

Then we have

2v = (14 o(1)){klogk + \/(klogk)? + 2llogl)

ask+ 1 — oco.

Proof. From v((v/logv)—k) = | one sees that v is well-defined and that v — oo
as k +1 — oco. To prove the lemma, we shall show that we can transform the
defining equation

(10.10) v? = kvlogv + llogv
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into the quadratic equation

llog!
)
We distinguish two cases. First suppose that kv > {, say kv = ¢l with ¢ > 1. Then
from kv < v?/(logv) < 2kv it follows that k — oo and logv = (1 + o(1)) logk
as k + | — co. Hence the first term on the right of (10.10) is (1 + o(1))kvlogk.
Using that ! = kv/c and that logc = O(c), we see that the second term is

(10.11) v? = (1+ o(1))(kvlogk + k41— oo.

Hog! + k—v(logv —~logk +loge) = Hog! + o(kv logk).

2 2c 2
This gives (10.11). In the second case we have | > kv, say | = ckv with ¢ > 1.
Then from I < v?/logv < 21 we obtain logv = (3 + o(1)) log!. The second term
on the right of (10.10) is then (1 + o(1))(Ilog!)/2, and the first is

llogv =

l
kvlogv = kvlogk + ~(2logv — log! + logc) = kvlogk + o(llogl).
c
This gives again (10.11). Solving the quadratic equation we obtain the lemma.

Lemma 10.12. For each pair of positive integers n, d satisfying n > FLLES 1,
let real numbers u = u{n,d) > 2 and y = y(n,d) > 2 be given, with the property
that the number

¢ = z(n,d) = 2dn?/ u¢t?

satisfies
u?y(z,
(10.13) -—-%—y) > g(v)

for some function g satisfying g(y) > 1 and g(y) = y't°(") as y — co. Then we
have

2logu > (1+0(1)) (d logd + \/(dlog d)? + 4log(nl/4)log Iog(nlfd))
for n — oo, uniformly in d.
Proof. In the proof, all o(1)’s are for n — oo, uniformly in d. From z® > n we

see that £ — 0o as n — oo. Hence Theorem 10.1 implies that

u2>ig—gl)—>L -1-,\/2-+01 .
- ¢(z’y) = -’5[2 ( )]
Taking the square of the logarithm on both sides we obtain
2(logu)? > (1 + o(1))log z loglog z.

Dividing each side by its logarithm, and using that ¢/ log# is an increasing func-
tion of £ for t > e, we find that

(log u)®
loglogu

Applying 10.9, with k > (1 + 0(1))(d+ 1) and | > (2 + o(1)) log(n'/4), we obtain
the lemma.

>(1+o(l))logz = (1+ 0(1))(3— logn + (d + 1) log u).
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11. SUMMARY OF THE NUMBER FIELD SIEVE AND A HEURISTIC ANALYSIS

We are finally in a position to list the steps of the number field sieve with some
precision and to analyze its running time.

Algorithm 11.1. Given a positive integer n, together with parameters d, u, and
y satisfying d > 1 and n > 2@ this algorithm attempts to find a non-trivial
factor of n or to prove that n is prime; it halts whether or not it is successful.

Step 1. Test whether n is a power of a prime (see [23, Section 2]) or is divisible
by a prime that is less than or equal to y. In either case, output the prime and
stop.

Step 2. Apply the base m algorithm (see Section 3) to find an integer m and
a monic polynomial f € Z[X] of degree d such that f(m) = 0 mod n. Factor
f into irreducible factors in Z[X] by the algorithm of [22]. If f is found to be
reducible, with non-trivial factor g, output the non-trivial factor g{m) of n and
stop. Assume now that f is irreducible, and denote by a a zero of f. Compute
ged(f'(m), n). If this is a non-trivial factor of n output this factor and then stop.

Step 3. As described in Sections 4 and 5, use a sieve to find all members of
the set

T = {(a,b) € Z% : ged(a,b) = 1, |a| < u,
0 <b<u,{a+bm)N{a+ba)is y-smooth}.

Step 4. Form the matrix whose rows are the Fy-vectors e(a,b), as defined in
Section 8, for (a,b) € T. Use the Wiedemann coordinate recurrence algorithm
(see [41]) to find a non-trivial linear dependence relation on the rows of the
matrix. If this is unsuccessful, stop. If it is successful, let S be the set of pairs
(a,b) for which e{a, b) occurs in the dependence relation.

Step 5. Express the algebraic integer v = f/(a)? [T(a5)es (@ + ba) as a poly-
nomial in « of degree less than d. Attempt to find a square root § = Zf;ol biat
of 4 by the method of [39] (see Section 9). If this is unsuccessful, stop.

Step 6. For ¢ an integer with ¢ = f'(m)* [, ;)¢5 (¢ + bm), find the residue
cmod n.

Step 7. Compute ged{c — Ef;)l b;mt, n). If this is a non-trivial factor of n,
output the result and stop. Otherwise, remove an element of S from 7" and start
again at Step 4.

This completes the description of the algorithm.

The following conjectural result describes the optimal choice of the parameters
d, u, and y, and the running time of the algorithm for this choice.

Conjecture 11.2. For each integer n with n > 256, one can choose d, u, and
y, such that
d = (33 4 o(1))(log n/ loglog n)*/3, n>d? >1,
u=y= La[4,($)"/% + o(1)]

for n — oo, and such that Algorithm 11.1, on input n, d, u, and y, succeeds
either in finding a non-trivial factor of n or in proving that n is prime, in time
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at most
(11.3) L[}, (64/9)Y + o(1)]

for n — oo. Moreover, this is optimal in the sense that for general n and for all
choices of d, u and y satisfyingn > d2¢’ > 1 for which the algorithm is successful,
the expression (11.3) is a lower bound for the time taken by the algorithm.

The adjective “general” in the last assertion of the conjecture is meant to express
that we allow for exceptional integers n, for which the algorithm takes less time.
For example, if n is a power of a prime number, then Algorithm 11.1 terminates
in Step 1 in time much less than (11.3), independently of the choice of d, u,
and y. Likewise, if n has a relatively small prime factor, then there may be
a choice of y for which the algorithm terminates in Step 1 in time less than
(11.3). Next, there is a very small class of integers that for a suitable choice of
d are factored in Step 2 with very little effort. Finally, if the coefficients of the
polynomial f constructed in Step 2 are, for a suitable value of d, much smaller
than their upper bound n'/¢, then it is reasonable to suppose that one can factor
n in time less than (11.3), with values for u and y that may not be those in the
conjecture. This occurs, for example, if the special number field sieve [24] can
be applied. We do not know whether further categories of exceptional integers n
exist, but we believe that most integers divisible by at least two distinct primes
and not divisible by any small primes are in the class of “general” integers for
which (11.3) is a lower bound for the time taken by Algorithm 11.1 to factor
them.

The following more general conjecture describes the optimal choice of u and
y for given n and d.

Conjecture 11.4. For any two positive integers n and d satisfyingn > d24 > 1,
one can choose u and y such that each of u and y Is

(11.5) exp((% +o(1)) (d logd + \/(dlog d)? + 4log(nt/9) loglog(nl/d)))

and such that Algorithm 11.1, on input n, d, u, and y, succeeds either in finding
a non-trivial factor of n or in proving that n is prime, in time at most

(11.6)  exp ((1 + o(1)) (dlogd + \/(d]og d)? + 4log(n'/%)log log(nl/d))),

where the o(1)’s are for n — oo, uniformly in d. Moreover, this is optimal in the
sense that for general n, for all d in the region n > a2@ > 1, and for all choices

of u, y for which the algorithm is successful, the time taken by the algorithm is
at least (11.6).

To deduce 11.2 from 11.4 it suffices to choose d so as to minimize (11.6). It is
easy to see that we have to make (dlogd)? and log(n!/?)loglog(n'/4) of the
same order of magnitude, which occurs when d has the same order of magnitude
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as (logn/loglogn)!/3. Putting d = 6(logn/loglogn)!/® and optimizing § we
find that the optimal choice of d satisfies § = 3'/3 4 o(1) for n — oo. This
immediately leads to 11.2.

We now present a heuristic argument for the correctness of Conjecture 11.4.
We begin with the last assertion of the conjecture, which states that (11.6) is, in
general, a lower bound for the running time. We deduce this from Lemma 10.12.
If we assume that the algorithm does not terminate in Step 1 or in Step 2,
then the running time is at least the total number of locations in the sieve from
Section 4 that is used in Step 3, which is at least u?. The lower bound for u? that
is given by Lemma 10.12 thus leads immediately to the lower bound (11.6) for
the running time, provided that we check that condition (10.13) is satisfied. We
shall deduce (10.13), heuristically, from a constraint that is implicit in Step 4 of
the algorithm, namely, the condition that the number of rows of the matrix in
this step is at least of the same order of magnitude as the number of columns;
otherwise Step 4 is unlikely to be successful in finding a set S. The number of
columns is at least the number of primes in the factor base on the rational side.
This is 7(y), which is y'+°() for y — oo, as required for the right side of (10.13).
To estimate the number of rows, we first discuss a bound on the magnitude of
the auxiliary numbers generated in Step 3 that “would be smooth”. For |a| < u
and 0 < b < u, the integer (a + bm)N(a + ba) has absolute value at most

(u+ um)(d + Dmud < 2dm?udt? < 2dn? dydt!

since the coefficients of f are bounded by m and m < n'/¢ Hence the number
z = 2dn?/9y%*! defined in Lemma 10.12 is a bound on the auxiliary numbers
that would be smooth. A random positive integer up to z is y-smooth with
probability ¥(z,y)/[z]. The number of integers that we try is the number of
pairs of integers a, b satisfying |a| < u, 0 < b < u, and ged(a,b) = 1, which is
about cu? for ¢ = 12/7%. Thus we might naively think that a good approximation
to the cardinality of the set T in Step 3 is given by cu®y(z,y)/z. This belief
then leads to (10.13), the constant ¢ being absorbed in the factor y°() that we
allow on the right hand side of (10.13).

We do not know to what extent the naive belief on which the above argument
relies is justified. However, we feel that it is reasonable to suppose that for
“general” n, d our approximation to the cardinality of T is correct within an
exponent 1+ o(1) for y — oo (as allowed by (10.13)), at least for the values of
u and y that are relevant for the algorithm.

Next we turn to the first assertion of 11.4. Qur heuristic argument for this is
based on the same naive belief as above. Inspecting the case in which equality
is achieved in Lemma 10.12, we find in a straightforward way that the numbers

Up = Yo = exp (% (dlogd+ \/(dlogd)2 + 4log(nl/4)log log(nl/d))>,

g = 2dn2/dug+1

satisfy

(11.7) ug¥(®o, y0) _ ",
Zo
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the o(1)’s here and in the rest of the argument being for n — oo, uniformly
in d. We shall choose u and y a little larger. Specifically, let ¢ be a positive real
number, and put

u=y= e::(p(1 ; ¢ (dlogd + \/(dlogal)2 + 4log(nl/4)log log(nlfd))>,

z = 2dn?/ 3yttt

Note that these numbers tend to infinity with n, and that we have logn = yo
and (logy)/logz = o(1). From y = yi*¢, < z57° we see that (logz)/logy <

(logzo)/ log yo, so (10.2) gives

¥(z,y) > (1/)(:60,3/0))”0(1).

xz o

Combining this with (11.7) we obtain

2 2(14¢) L+o(1)
u?Y(z,y) > <uo T/)(z‘o,yo)) _ (ugcy0)1+o(l)

X To

which by up = yo = y/(+9 implies that

2
(11.8) uw’P(z,y) > y(1+o(1))(1+2e)/(1+e).
— =

From this inequality we shall deduce, heuristically, that there is a constant n(e)
such that for n > n(e), with the above choices of u and y, the number of rows
in the matrix in Step 4 is at least the number of columns in the matrix plus an
upper bound for the number of times that we cycle through Steps 4 to 7.

As above, we estimate the number of rows to be (u?4(z,y)/2)'+°(}). The
number of columns is, in the notation of Section 8, equal to 1 + B + B’ 4+ B".
We have

B =n(y) <y, B’ < dy, B” < 5logn, d < logn = y°W),

and therefore
14+ B+ B + B = ytto()),

Finally, the number of times that we<cycle through Steps 4 to 7 is one more than
the number of times that we find a trivial factor of n in Step 7, which is heuris-
tically bounded by (logn)?(t) = y*(1)"Thus our assertion follows, heuristically,
from (11.8).

We conclude that every time that Step 4 is performed, it finds a non-trivial
linear relation between the rows of the matrix. The linear relations found by
the algorithm are linearly independent, so it is reasonable to conjecture that
ultimately one of these relations will give rise to a non-trivial factor of n in
Step 7. Letting ¢ tend to 0 for n — oo we find that we can indeed choose u and
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y such that each of them is given by (11.5) and such that the algorithm is likely
to be successful on input n, d, u, y. Then we have u = ué+0(1), = yé"’o(l),
so (11.7) is also true with ug, yo, xo replaced by u, y, z.

It remains to estimate the running time of the algorithm with this choice of
parameters. It is easy to see that the time taken by Step 3 equals u?+°(1), which
is the length of the sieve multiplied by a lower order factor; this gives rise to the
expression (11.6). It is clear that Steps 1, 2, 6 and 7 are negligible compared with
Step 3. To estimate the running time of the Wiedemann coordinate recurrence
method in Step 4, we note that the matrix formed in this step has y*°(!) columns
and about as many rows. In addition, the number of non-zero entries in each
row is O(logn) = y°). Thus the number of non-zero entries in the matrix is
y'+°() and the running time of Step 4 is y2+°(1), This is the same as our bound
for the running time of Step 3. In Section 9 we saw that the running time for
Step 5 is y>+°(1) if we use naive arithmetic and y'+°(1) if we use fast arithmetic
subroutines. Thus either way this step too is dominated by Step 3. Finally, as
we saw above, the number of times that we cycle through Step 4 to 7 is likely
to be yo(1),

This concludes our heuristic argument supporting Conjectures 11.2 and 11.4.

We note that the bound for the numbers that “would be smooth” is

z=exp((3+o(1) (d%10g d-+410g(n/ *)+dy/(dlog d)? + 4log(n1/4) loglog(n/?)))
for n — oo, uniformly in d, when u is chosen as in Conjecture 11.4, and

z = Ly[2, (64/3)'/3 + o(1)] for n— oo
when d and u are chosen as in Conjecture 11.2.

We make a final remark concerning the numbers (a + bm)N(a + ba) in Step 3
that are examined for y-smoothness. We have assumed above that these integers
are just as likely to be y-smooth as random integers of the same magnitude. In
fact, the alert reader may have noticed that these numbers, since they already
factor into the two smaller numbers a + bm and N(a + ba), perhaps have a
greater chance of being y-smooth than a random integer. For practical purposes
this may be true. Asymptotically, however, an argument similar to the one above,
but taking this factorization into account, can be worked out, and it gives exactly
the same results. That is, any differences in the two analyses are absorbed in the
expression “o(1)”. It may be of interest to point out that when (a+bm)N{a+ba)
is y-smooth and a, b are coprime, then the numbers a + bm and N(a + ba) are
coprime too. Indeed, if a prime p divides both, it divides f(m) = n. However,
after Step 1 we are assured that n has only prime factors greater than y.

12. HOMOGENEOUS POLYNOMIALS

In this section we discuss a modification of the number field sieve, in which
the one-variable polynomial f is replaced by a homogeneous polynomial in two
variables. This has the advantage that its coefficients can be taken a bit smaller,
which improves the practical performance of the algorithm. We first describe the
algorithm, and then provide additional explanations for some of the individual
steps.
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Algorithm 12.1. Given an integer n > 1, which is not a power of a prime
number (see 11.1, Step 1), together with parameters d, u, and y, which are
positive integers, this algorithm attempts to find a non-trivial factor of n.

Step 1. Find integers m;, my, and a dth degree homogeneous polynomial

f=caX® a1 XY 4 4 e XY 4 ooV € Z[X, Y]

such that m;, my, and the coefficients ¢; are “small” and such that we have

f(my,m3) = 0mod n, f(my,my) # 0. See 12.2 for methods to select f, my, ms.
Step 2. Check that f is irreducible in Z[X, Y], so that in particular its content

equals 1, and that f # X, f # Y. Further check that each of ms, ¢4, and

d
Fx(my,mg) = Zicim’flmg“i, where fx =

i=1

af
X’

is coprime to n. See 12.5 for more information on this step.

Step 3. For each prime number p < y, determine the set R'(p) of elements
(r1 : ) of the projective line P!(F,) over F, for which f(r1,r2) = 0. Note that
if we identify P!(F,) with F, U {00} by identifying (ry : r3) with r1/rs, then
R/(p) consists of those r = ry/ry € F,, for which f(r, 1) = 0, together with oo if
cqg = 0 mod p.

Step 4. Find all members of the set

T = {(a,b) € Z° : gcd(a,d) = 1, |a| < u,
0 < b < u, (amy — bmy)f(a,b) is y-smooth}.

This is done with a sieve, as described in Sections 4 and 5. Note that, for coprime
integers a, b, and a prime number p, the number f(a,b) is divisible by p if and
only if (a mod p : b mod p) € R/(p).

Step 5. For each (a,b) € T, form the Fy-vector e{a,b) that is defined as fol-
lows. The first coordinate of e(a, b) is determined by the sign of ams — bmy, as
in Section 8 (we cannot have am; — bmy = 0 if max{|m|, |mz|} > u; which will
be the case with our choice of parameters). The next B = m(y) coordinates are
given by ord,(amy — bm;) mod 2, as p runs over the prime numbers < y. Next
there are B coordinates, where B' =3~ #R'(p), the sum ranging over prime
numbers p. For each prime number p < y and each r € R/(p), the (p,r)th coor-
dinate of e(a, b) is equal to e, . (a,b) mod 2, where e, .(a,b) equals ordy(f(a,b))
if (amodp : bmodp) = r and e, ,(a,b) = 0 otherwise. Each of the following
B'" coordinates corresponds to a prime number ¢ > y and a pair of numbers
s1, 82 with (s; mod ¢ : s; mod q) € R'(q); see 12.7 for the choice of B” and the
triples ¢, s1, s3. The (g, 51, 82)th coordinate of e(a, b) is 0 mod 2 if the Legendre
symbol (ﬂzg-bil) equals 1, and 1 mod 2 if it equals —1. Finally, e(a, b) has a last
coordinate that is equal to 1 mod 2. (Dan Bernstein points out that this last
coordinate can be omitted if my = 1 and m; > u, since then it is equal to the
first coordinate, which gives the sign of amy —bm;.) Thus e(a,b) € F%‘*’B +B'+8"
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Step 6. Use the Wiedemann coordinate recurrence algorithm (see [41]) to find
a non-trivial linear dependence relation between the vectors e(a,b), (a,b) € T.
If this is unsuccessful, stop. If it is successful, let S be the set of pairs (a, b) for
which e(a, b) occurs in the dependence relation. Note that #5S5 is even, due to
the presence of the last coordinate.

Step 7. Let the algebraic integer w be a zero of the polynomial f(X, ¢cq).
Express the algebraic integer

y=(fxw,ca)fea)® ] (caa—bw)

(a,b)eS

(with fx asin Step 2) as a polynomial in w of degree less than d. Attempt to find
a square root 3 of ¥ by the method of [39] (see Section 9). If this is unsuccessful,
stop. Otherwise, if § = Ef:_ol b;w', with b, € Z, calculate an integer v with
v= 3 bicimimd= " mod n.

Step 8. For w an integer with w? = H(a,b)es (amy — bmy), find the residue
w mod n. In addition, calculate integers h, { with

h= cz_2+#5/2 - fx( mod n.

my, ma) mod n, IEm?fs/2

Step 9. Compute ged(hw — v, n). If this is a non-trivial factor of n, output
the result and stop. Otherwise, remove an element of S from T and start again
at Step 6.

This completes the description of the algorithm. We now discuss some of the
individual steps.

12.2. Selecting f and my, my. If we insist on choices for which my = ¢4 = 1,
then Algorithm 12.1 reduces to 11.1, except for the last coordinate that was
appended to the vectors e{a,b). We now discuss three methods for choosing f,
my, ma. In the first method we allow ¢4 # 1, in the second method we allow
ms # 1, and in the third method we allow both.

In the first method we take ms = 1, and we let m; be the least integer
exceeding n!/(4+1) We obtain f by expanding n in base my, so that

n:cdm‘f+cd_1m‘li‘1+---+c1m1+co, 0<e <my.

With this method, we have |m;| < n/(d+1D) 4 1 |¢;| < n!/(4+1) Of course, we
can modify this method by changing m; a little, by allowing some of the digits
¢; to be negative, or by replacing n by a small multiple.

In the second method we take ¢4 = 1. To find the other ¢; and my, my, we
proceed as follows. For m; one tries several values with my; &~ n!/(4+1) until
one discovers a value for which n — m¢ is found to have a divisor my with
mg & nt/(4+1); for example, by trial division or by the elliptic curve method one
may discover so many small factors of n —m¢ that it is easy to multiply some of
them together in order to obtain a suitable my. Note that ged{m,, m,) divides n
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and is generally much smaller than n; so we may assume that ged(m;, mz) = 1.
Next one determines small coefficients ¢; such that

n—mf d-1 d=2 d-1
=cgmy o egmamy T+ comy .

(12.3)

ma

One can do this either by going from the right, determining cg, ¢1, ... succes-
sively by looking modulo m; and requiring that |¢;[ < m1/2 (or 0 < ¢; < my); or
similarly from the left and finding ¢4_1, cqa—2, ... from congruences modulo my;
or by determining some from the right and some from the left. In all cases, the
final c; to be determined is forced by equation (12.3). If d is small in comparison
with n/(4+1) a5t will be in practice, then the order of magnitude of |c;| will not
be much larger than n!/(4+1) Again, this method allows several refinements. For
example, one might choose mi, my to be & (n/d)'/(#+1); a judicious choice of
non-negative values for the ¢; may then result in a smaller value for the final c;.
In the third method we allow both ms # 1 and c¢g # 1. Although we do
not know how to exploit this freedom in order to obtain substantially better
results, it is still of interest to see how one can proceed. Namely, one can first
choose arbitrary coprime integers m;, my that are = nl/(@+1) Next one needs
to determine the ¢; such that
(12.4) kn = cdm‘f+cdu1m‘f_1m2+ ~-~+c0mg
for some small non-zero integer k. One can either do this by first choosing k (for
example, k = 1), and next determining the ¢; by one of the methods that we
indicated for solving (12.3). Alternatively, one can consider the subgroup

d
L={(z),: Zzimémg_i =0 mod n}

1=0
of Z%+1. A basis of L is given by (0,0,...,0,n) together with the d vectors
(0,...,0,1,-¢,0,...,0),

where t € Z is such that tm; = m; mod n (here we assume that ged(mz,n) = 1;
see 12.5). One can apply a lattice basis reduction algorithm (see [22]) to find
a basis of L that consists of relatively short vectors. At least one of the vec-
tors (z;)%_, in the reduced basis satisfies Y7_, z;mim$~* # 0, and a solution
to (12.4) is then given by ¢; = z;. Also for this algorithm one expects the ¢; to
be of order of magnitude n!/(4+1),

In the above we attempted to minimize the absolute values of m;, my, and
the coefficients of f. It should be kept in mind, however, that other properties of
f also influence the running time of the algorithm. For example, one may want
to choose f in such a way that f mod p has many linear factors in F,[X] for
several small prime numbers p. This increases the smoothness probability of the
numbers f(a,b).
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12.5. Irreducibility testing. With any reasonable choices that are made in Step 1,
each of m; and ¢4 will be much less than n in absolute value. Hence if any of
ged(ma, n), ged(cq, n) is found to be different from 1 then it is a non-trivial divi-
sor of n, and the algorithm can stop. Assume now that ged(mz, n) = ged(cq, n)
= 1. The content cont f = ged(cp,¢1,...,¢q) of the polynomial f divides the
multiple f(m;,mq) of n, and it is coprime to n because it divides ¢4. Therefore
the polynomial f* = f/ cont f still has the property that f*{(m;, ms) is divisible
by n. Thus, replacing f by f* if necessary, we may assume that cont f = 1. We
can now factor f into irreducible factors in Z[X,Y] with the algorithm of [22];
note that the factorization of f can easily be obtained from the factorization of
the one-variable polynomial f(X, 1). Suppose first that f is found to be reducible,
f = gh (say). Then we have f(my,m2) = g(my, ma)h(mi, m2), which leads to
a splitting of n. For most reasonable choices of the parameters it is very likely
that g(my, ms) and Ay, my) are less than n in absolute value, so that thisisa
non-trivial splitting. If nevertheless the splitting is trivial, then one of g(my, ms3),
h{mi,my) is divisible by n, say the first one. Then we can replace f and d by
g and degg. It is easy to see that this replacement improves the algorithm.
Let it next be assumed that f is irreducible. Again, in most cases the number
fx (m1, mz) will be less than n, so that gcd(fx (my, m3), n) is a non-trivial divi-
sor of n if it is not 1; and if it ever happens that ged(fx (mi, m2),n) = n then
one has the option of replacing f and d by fx and d — 1. Finally, the conditions
f# X, f#Y are satisfied if |my], |ma] < n, which is very likely to be true.

12.6. First degree primes. In Section 5 we saw that the pairs consisting of a
prime number p and an element r & R(p) correspond to the first degree primes
of the ring Z[a]. The pairs consisting of a prime number p and an element
r € R/(p) that occur in Algorithm 12.1 can be interpreted in a similar manner.
We introduce some notation.

Let ¢ = w/cy, where w is, as in Step 7, a zero of f(X,¢4); so a is a zero
of f(X,1). Note that « is not an algebraic integer unless ¢4 = %1; but w is
an algebraic integer, since f(X,cq)/cq is a monic polynomial with integral co-
efficients. Let the elements By, ..., Ba—1 € Z[a] be defined by f(X,1)/(X —
o) = Zf;ol Gi X% so B = cga 17t 4 cg_1a%727 4+ oo + ¢4y Further let
A=7+ Z:toz Z3;. A simple computation shows that A is closed under multi-
plication, so that A is an order in the number field K = Q(a), in the sense of
Section 7 (cf. {27, 2.10]). We have Z[w] C A C Z[a], where Z[w] is also an order
in K, but Z[o] is not (unless ¢4 = £1). The discriminant of A is equal to the

discriminant A of f(X, 1), and the discriminant of Z[w] equals cgd_l)(d"z)A. It
is of interest to observe that the ring A does not change if f(X,Y) is replaced
by f(Y,X) and @ by a~?; so we also have A C Z[a™?], and in fact one can show
that A = Z[a]N Z[a™1].

With this notation, the pairs consisting of a prime number p and an element
(ry : r2) € R/(p) are in bijective correspondence with the first degree primes
p of A. If ro # 0, then p is the intersection of A and the kernel of the ring
homomorphism Z[a] — F, that sends a to ri/re. If r; = 0, then p is the
intersection of A and the kernel of the ring homomorphism Z[a~!] — F, that
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sends a~! to 0. Each prime p of A gives rise to a function I, as in 7.1.

Let a, b be a pair of coprime integers. Then the following analogue of 5.5 is
valid. First, if p is a prime of A of degree greater than 1, then l,(a — ba) = 0.
Next, let p be a first degree prime of A, corresponding to a pair p, r € R'(p).
Then the number e, ,(a,b) that is defined as in Step 5 is equal to the number of
composition factors of the A-module (4 + Aa)/A(a — ba) that are isomorphic
to A/p; explicitly speaking, one has

ly(a — ba) if r # oo,
Iy(a —ba)+ordycqg if r=o0.

enrast) = {

(Note that this is consistent with 7.1(c), since f(a,b) = caN(a — ba).) It follows
that the analogue of 5.3 holds, provided that we restrict attention to sets S for
which #5 is even.

12.7. Making squares. 1t is the purpose of Steps 5 and 6 to find a non-empty
subset S C T of even cardinality such that [], )cs (ama — bry) is a square in
Z and H(a,b)ES (a — bar) is a square in K. Clearly, the condition that S be even
is taken care of by the last coordinate of the vectors e{a,b), and the condition
that the product of the elements ams — bm; be a square by the first 1 + B
coordinates. The B’ coordinates that correspond to the pairs p, r guarantee,
by 12.6, that the set S found in Step 6 is such that the product of the elements
a — ba, for (a,b) € S, belongs to the subgroup V4 of K* defined in Section 7.
One has V4 D K*?, and depending on the algorithm used for Step 1 one can
mimic the proof of Theorem 6.7 and find a constant ¢ for which the obstruction
group V4/K*? has Fy-dimension at most ¢logn. To overcome this obstruction
group, one can use quadratic characters for, say, B” = [(c + 2/log2) logn] first
degree primes q of A. As in Section 8, one can choose these primes to be the
first B" primes of norm exceeding y that do not contain fx(w,cs). Explicitly,
one can take the first B” triples ¢, s1, s3 = 1 for which ¢ is a prime number
not dividing ¢4 with ¢ > y, and s; (modq) is such that f(s;,1) = O modg,
fx(s1,1) # 0 mod ¢, and use these in Step 5.

12.8. The final congruence. Suppose that [], ;ye5 (a — ba) is a square in K and
that #S is even. Multiplying by cd#s we see that the element H(a,b)es (caa —bw)
of the order Z[w] is also a square in K. The square root is in the ring of integers
of K, s0 fx(w,cq)/ca times the square root belongs to Z[w)] (see [40, Proposition
3-7-14]). Hence the element 8 calculated in Step 7 has coefficients b; in Z.

Let now the ring homomorphism ¢:Z[a] — Z/nZ be such that p(a) =

(my mod n)/(mz mod n). Then p(maw) = (¢cgmi mod n), so with v as in Step 7
we have

e(m§~18) = (v mod n).
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With !, w and h as in Step 8, this leads to

(1%v? mod n) = w(mz(d'l)“L#Sﬁz)
= <P(( fX(w C4 /Cd H ma(cqa — bw))

{a,b)eS

= %0((fx(m2% mzca)/ca)2 - H calamg — bm1)>
(a,3)eS

pre w((cg'zfx(ml,mz))chswz)

= (h*w? mod n).

This explains the attempt in Step 9 to find a non-trivial factor of n.

12.9. Choice of parameters u, y, d. The heuristic analysis of Algorithm 11.1
given in Section 11 can be copied without essential changes for Algorithm 12.1.
The main difference is that the factor n?/¢ in z is to be replaced by n?/(4+1),
Since our analysis gave the optimal value for d only up to a factor 1+ o(1) (for
n — 00), the heuristic asymptotic results for Algorithm 12.1 are the same as for
Algorithm 11.1. From a practical point of view, 12.1 may be better than 11.1;
see the discussion in 12.15.

12.10. The optimal choice of the polynomial. In Section 3 and in 12.2 we de-
scribed altogether four methods for selecting f, m;, and ms. One may ask
whether there is a better method for doing this. We present an argument that
leads to a limit on the performance of any method for selecting f, m;, and ms.
It shows that asymptotically one cannot expect to do better than the methods
that we described if one wishes the algorithm to apply to all integers n. In ad-
dition, the argument suggests that for practical purposes there is still room for
improvement (see 12.15).

For a given choice of n and d, what would be a good choice of f, m;, my in
Step 1 of Algorithm 12.17 Let M = max{|m;|, [m2|} and let C = max{|co], |c1],

., lcal}. An upper bound on the integers |(ams—bm;)f(a, b)| that are examined
for smoothness in Step 4 of the algorithm is 2(d + 1)u?*'C M. Thus for a given n
and d, a choice of f, my, m, which has the product CM small should be better
for factoring n than another choice with CM large.

For example, in the base m method used in Algorithm 11.1 we have M <

n*/4 and C < n'/4, so that CM < n?/¢. The methods of 12.2 achieve CM =

O(n?(3+1)) 50 we would expect these methods to give an improvement over the
base m method. The following result expresses that we cannot expect to get CM
substantially smaller than n?/(4+2) for all n.

Given positive integers d, C, M, let §(d,C, M) denote the set of non-zero
integers of the form f(m;,my) where my, my are integers with |my], [mqf < M
and f = Zz 0 G XY € Z[X,Y] satisfies |¢;| < C for 0< i < d.

Proposition 12.11. For each € > 0 there is a number N(¢) with the following
property. Suppose d, C, M, N are positive integers with N > N(¢). If each
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integer in the interval [1, N] has a multiple in 8(d,C, M), then
oM > Lye-ana),
-8

Proof. It suffices to prove the proposition in the case 0 < ¢ < 1. Suppose d,
C, M, N are positive integers and S(d,C, M) contains a multiple of each of
the integers in [1, N]. We may assume that CM < N%/¢ for otherwise there is
nothing to prove. It is clear that each member of S(d, C, M) has absolute value
at most (d + 1)CM¢. Thus

(12.12) N <(d+1)CM? < (d+1)(CM)* < (d+1)N2

Let D = max{7(j) : 1 < j < (d + 1)N?}, where 7(j) denotes the number of
divisors of j. Since 7(j) = j°1) for j — oo, there is some number N(¢) such that
if N > N(¢) we have

(12.13) D <(d+1)°N*.
By our assumption on N we have
(12.14) N < D-#8(d,C,M) < D(2C + 1)**1(2M + 1)? < 3¢+ DCH M2,
Multiplying this by the first inequality in (12.12) we get
N? < 3%3(d + 1) DCH? M2,
so that using (12.13) we obtain

CM > (3%3(d + 1) D)1/ (4+2) N2/ (4+2)
> 3=(#3)/(+2)(g 4 1)=(1+0)/(d42) y(2-)/(d4+2)

S g-4/34-2/5 N (3-/(8+2) 5 L ya-a/a+2)
= 8

This completes the proof of the proposition.

If we do not require that every integer up to N have a multiple in S(d, C, M),
but only that N does, we still have (12.12) holding, which gives CM > (d +
1)-1/dN1/d > L N1/4 This lower bound for CM is almost achieved in the special
number field sieve, which accounts for its lower complexity.

12.15. Practical considerations. In practical circumstances, when n is fixed
rather than tending to infinity, the above argument suggests that our meth-
ods for selecting f, my, my are not yet optimal. Namely, suppose that for a
given N and d we ignore lower order factors in (12.12) and (12.14) and solve the
equations N = CM? = C¥*!'M? for C and M. This suggests we may be able to
choose M near N* and C near N' where

d d—2

SEESDE+Y) T E-DE+TD)
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In fact, suppose we choose M = [N?®], C = [N'], so that CM < N*t! =
N?2/(4+2) Tt is likely that for most integers in {1, V] there is a choice of f, m,
my satisfying le;} < C and |m;| < M. Indeed the total number of such triples is
(2C +1)4*+1(2M +1)?, which by our choice of C, M is somewhat larger than N.
Also, the typical order of magnitude of | f(m;, m2)| is CM?, which is about N.
But if we have a set of a little over N “pseudorandom” numbers of order of
magnitude N, then it is quite likely that most integers in [1, N] have a multiple
in the set. Thus if we are interested in a particular number n < N, either this
choice of values for C, M or perhaps slightly larger ones should suffice. Note
that this imprecise argument is purely existential, and that it does not suggest
a way of constructing f, my, ms.

Suppose that n lies in a realistic range, like n ~ 10!2°, and that we take d = 5.
Then Algorithm 11.1 uses s = ¢ = }, and therefore m and the coefficients of f
each have about 26 digits. In Algorithm 12.2 we have s =t = %, 80 my, ms and
the coeficients of f have about 22 digits, which is a significant improvement.
The above argument suggests that the optimal values would be s = 5/28 and
t = 3/28, in which case the m; would have about 23 digits and the coefficients
of f about 14 digits. Thus for practical purposes there may still be room for
improvement.

12.16. Additional improvements. We mention two variations of the number field
sieve that improve its practical performance, while not affecting the asymptotic
analysis. The first is the large prime variation, which was used in the factorization
of the ninth Fermat number [23]; see also [25]. The second is the lattice sieve
idea of Pollard [32].
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COMPUTING A SQUARE ROOT
FOR THE NUMBER FIELD SIEVE

JEAN-MaRc COUVEIGNES

AnsTrRACT. The number field sieve is a method proposed by Lenstra, Lenstra,
Manasse and Pollard for integer factorization (this volume, pp. 11-42). A heuristic
analysis indicates that this method is asymptotically faster than any other existing
one. It has had spectacular successes in factoring numbers of a special form. New
technical difficulties arise when the method is adapted for general numbers (this
volume, pp. 50-94). Among these is the need for computing the square root of a
huge algebraic integer given as a product of hundreds of thousands of small ones.
We present a method for computing such a square root that avoids excessively
large numbers. It works only if the degree of the number field that is used is odd.
The method is based on a careful use of the Chinese remainder theorem.

1. INTRODUCTION

We begin by recalling the basic scheme of the number field sieve, cf. [7]. Let n
be a positive integer that is not a power of a prime number. In order to factor n,
we first find many congruences modulo n involving a given set of numbers called
the basis. This is done by means of a suitable ring of algebraic integers. To
construct this ring, one chooses a positive integer d, which is the degree of the
ring to be constructed; if n has between 110 and 160 decimal digits then d = 5
is a good choice. Next one chooses a monic polynomial f € Z[X] of degree d
that represents n, i.e., f(m) = n for some integer m. We want both m and the
coefficients of f to be as small as possible. Indeed, we can easily make them
smaller than n!/4. Now, if f is reducible, then a non-trivial factor k of f should
give a non-trivial factor h(m) of n. Otherwise, we consider the number field
K = Q[X]/(f) together with the morphism ¢ from the order Z[a] to Z/nZ for
which ¢(a) = m, where we write o = (X mod f). We then look for algebraic
numbers of the form a + ba such that both a + bm and a + ba are smooth.
This means that, for a suitable positive integer y chosen at the beginning, both
a + bm and the norm N(a + ba) of a + ba are integers divisible only by prime
numbers not exceeding y. With each prime number p < y we associate a function
vy:Z — {0} — Z/2Z, which assigns to any non-zero integer k the residue class
modulo 2 of the number of factors p in k. In the same way, we associate with
any prime ideal p of Z[a] of norm at most y the function vy: Z[a] — {0} — Z/2Z
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that maps an element to the residue class modulo 2 of the number of factors p
appearing in that element (cf. [3, Section 5)).

As suggested by Adleman [1], we also use characters obtained in the following
way. Choose a collection of non-zero prime ideals q of Z[a] that are different
from all primes p used before and that do not divide the discriminant of f. With
each such q we associate the function xq: Z[a] — g — Z/2Z defined by

0 if z is a square modulo q,

Xq(z) :{

1 otherwise.

The first part of the algorithm consists of the search for many pairs (e, b) of
relatively prime rational integers for which both a + bm and a + ba are smooth,
and a + bm > 0. In the second part one looks for subsets S of the set of pairs
that have been found for which

H {a 4+ bm) is asquare in Z,
(a,b)ES

H (a+ba) isasquare in K.
(a,b)€Ss

One hopes that this is ensured by the following three conditions:

Z vp(a +bm) = 0 mod 2 for all prime numbers p < y,
(a,b)eS

Z vy{a + ba) = 0 mod 2 for all prime ideals p of Z[e] of norm <y,
(a,b)€S

Z Xq(a + ber) = 0 mod 2 for all q that have been chosen.
(a,b)€S

Indeed, these conditions are necessary. If enough characters x, have been chosen
then one may expect that the conditions are sufficient as well.

This leads to a large algebraic number v that is given as a product of many
small ones and that is a square in Z[a] (see [3]):

(1) y=F()? J] (a+ba)=p*  with B € Z[a].
(a,b)€S
We also know that the image of 4 under ¢,
e()=f(m)*- ]I (a+bm)modn,
(a,b)eS

satisfies

Fom? - T (a+bm) = f(m)?- T o = %,

(a,b)eS p<y
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where the integers e, can be determined from the prime factorization of the
numbers a + bm, and where

v=f(m)- []p.
Py
As for 3, we know its decomposition as an ideal of Z[a]; but since we do not
know generators for the prime ideals of norm at most y, this does not enable
us to write down an explicit expression for 8 itself. However, we do know an
expression for the norm of 3:

(2 N(8) = +N(f'(a)) - [] ¥,

<y
where the f, are non-negative integers that can be determined from the prime
ideal decomposition of 3. Furthermore, since 8 € Z[a] there exists a polynomial
B € Z[X] of degree at most d — 1 such that § = B(«). We shall compute this
polynomial.

The method suggested in [3] is as follows. First, look for an odd prime ¢ such
that the polynomial f remains irreducible modulo ¢. Then, compute ¥ mod ¢ by
performing all multiplications in the product (1) modulo ¢q. We view ¥ mod ¢ as
an element of the finite field F ¢, and we can easily compute the square roots of
this element. Next, we choose one of the two square roots and lift it to a square
root modulo ¢2, g%, ¢%, ..., using Newton’s method, until the modulus is larger
than twice a given estimate of the coefficients of B. In this manner we find B.
The congruence

B(m)* = ¢(8)* = ¢(8°) = ¢(7) = v’ mod n
suggests that ged(B(m) — v, n) has a good chance to be a non-trivial factor of n.

One of the difficulties with this method is the very large size of the numbers
that occur in the last iterations of Newton’s method. The time taken by this
computation is comparable to the time taken by the entire algorithm, except
if one uses fast multiplication techniques; but even if that is done one may
have serious practical difficulties with the very large integers that arise. It is
particularly disconcerting that the huge numbers that we compute are ultimately
replaced by their remainder modulo n.

The approach that we suggest is to work with many different moduli m; = qf '
where the g¢; are distinct odd primes for which f is irreducible modulo ¢;. We
first compute, as above, a square root §; of ¥ modulo each m;, i.e., a poly-
nomial B; € Z{X] of degree at most d — 1 such that §; = Bj(a) satisfies §7 =
+ mod m;; the coefficients of B; matter only modulo m;. If 8 = B(«) denotes, as
above, one of the two square roots of v in Z{a], then we have f; = 4 mod m;,
where the signs are a priori unknown. Our first problem is to compute those
signs or, equivalently, to make sure that the various §; are congruent to the
same square root 3 modulo m;. Next, using the Chinese remainder theorem, we
can compute # = B(a) € Z[a] and ¢(B8) = (B(m) mod n) € Z/nZ. However,
the coefficients of B and the number B(m) are so large that one should avoid
explicitly calculating any of them. We shall see that once the B(m) mod m; are
known, we can compute B(m) modulo n without computing B or B(m) itself.
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2. DESCRIPTION AND ANALYSIS OF THE METHOD

We first consider the sign problem discussed at the end of Section 1. We shall
make the assumption that the degree of the extension K/Q is odd. The basic
observation is that, under this hypothesis, we have N(—z) = —IN(z) for any non-
zero element z of K. Hence, exactly one of the two square roots of 4 has positive
norm. Let that one be called 3. Suppose, as above, that we know a square root
B; = B;(a) of ¥ modulo m; = qf" for each i, and that we want to test whether
B; = B mod m; or §; = —F mod m;. We can decide this by looking modulo g¢;.
Thus, we compute the norm of (§; mod ¢;), viewed as an element of the finite
field of cardinality ¢f; this norm is the (¢¢ — 1)/(g; — 1)th power of (8; mod g¢;),
and it belongs to the prime field Z/q; Z. We compare this norm with the residue
modulo ¢; of the norm of 8, which is computed by means of formula (2), but
with £N(f’(a)) replaced by its absolute value; the multiplications in (2) are
performed modulo ¢;. If the two norms are equal, then 8; = # mod m;, and we
keep B;. If they are opposite, then we replace B; by —B;.

Substituting m in B; we find B(m) modulo m; for all 7, and we wish to
compute B(m) modulo n. We discuss this problem in a more general setting.

2.1. Changing moduli. In modular arithmetic one represents an integer by
means of its residue classes modulo each of a set of pairwise coprime integers m;.
The theoretical basis of modular arithmetic is formed by the Chinese remainder
theorem. An introduction to the algorithmic aspects of modular arithmetic, and
a discussion of its applications, can be found in [4, Section 4.3.2].

We consider the following algorithmic problem from modular arithmetic (cf.
[9, Section 4]). One is given a collection of pairwise coprime positive integers m;,
a positive integer n, for each ¢ an integer z; with 0 < z; < m;, and a small
positive real number ¢, for example € = 0.01. In addition, one is provided with
the information that there exists an integer z satisfying £ = 2; mod m; for
each i, and |z| < (3 — €) []; mi; clearly, such an integer  is unique if it exists.
The question is to compute the residue class of £ modulo n.

If we define the quantities

(3) M:Hmi,

(3
(4) M,-:Hmj:M/m,',
J#
(5) a; = 1/M; mod m;, 0<a; <my,

then the number z =, a; M;z; is congruent to £ modulo M. Hence, if we round
z/M to an integer: r = [ + %], then we have £ = z — rM. The point is that we
can calculate r without calculating the possibly very large number z, as follows.

From z = z—rM and our hypothesis |z} < (}—€)M it follows that & +3 is not
within e of an integer. Hence, to calculate r it suffices to know an approximation
t to z/M with |t — 2/M| < €. Such an approximation can be obtained from

g T
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All terms in the sum are between 0 and max; m;, so they can be computed as
low precision real numbers.

This results in the following algorithm. Denote by rem(a, b) the remainder of
the Euclidean division of a by b.

1. For each i, compute rem(M;, m;) by multiplying out the product (4) mod-
ulo m;, and compute the numbers a; as in (5) with the extended Euclidean
algorithm.

2. Compute rem(M, n) by multiplying out the product (3) modulo n, and com-
pute rem(M;,n) for each i; if ged(m;,n) = 1 one can do this by dividing
rem(M,n) by m; modulo n;

3. Compute a number ¢ that differs by less than ¢ from the sum in (6), and round
t to an integer: r = [t + 3].
4. Output

rem{z,n) = rem((z a; rem(M;, n)xi) — rrem(M, n), n).

(If m; is much larger than n one may prefer to replace a; and ; by rem(a;, n)
and rem(z;, n) in this expression.)

Note that we never handle numbers substantially larger than the moduli.

2.2. Size and complexity. We derive upper bounds for the integers b; for
which 8 = by + bia + - - + bg_1a%~1, with B as in (1). For f = Yi_j ;i X' we

write || f|| = (Zf:o cf)l/z, and we let u be an upper bound for all numbers |al,
{b] for which (a,b) € S.

Proposition. We have =
Jbat < d3/2 - || £1197F - (2ull £I)*S/
for0<i<d-1.

Proof. The field K has d embeddings into the field of complex numbers, and we
denote the image of an element ¢ € K under the kth embedding by ¢®). We
have f =[], (X — o), and

d
9 max(1, |a(®}) < T] max(1, 1a®)) < [I£]l

j=1

for each k; the first inequality is trivial, and the second is due to Landau [5; 8,
Chapitre IV, Section 3.3].

Let 6, 81, ..., 6a_1 € K be defined by 720 6:X* = f/(X — ), so that
b = ;'l;é—, ci+j+107 . By [6, Chapter III, Proposition 2] we have
) d
8) b = Tx(8:8/f' () = 3 8680/ (@),

k=1



100 JEAN-MARC COUVEIGNES

where Tr: K — Q is the trace function. The Cauchy-Schwarz inequality and (7)
imply that

d—1-1i
B2 <UAP- D 1@ <d- AP (0<i<d- 1),

3=0

From
188/ f (@)= T] la+ba™| < (2u|f])**

(a,b)€S

we now obtain
d
il = [3 6980/ 5] < a7 i1 ullA*,
k=1

as required.

If f is chosen as in [3], then we have ||f]] < v/d - n'/¢ and |m| < n'/¢, and
therefore

() |B(m)| < d(@+9/2 5 (2u/dnt/4)#5/2,

Note that the three factors in this upper bound are of completely different orders
of magnitude. In realistic cases, the last factor has millions of decimal digits, the
middle one has between one and two hundred digits, and the first one has just
a few digits. We refer to [3, 9.3 and Section 11] for an estimate of v and #5 as
functions of n and d.

The estimate (9) is good enough to enable us to get a rough impression of the
precision needed, i.e., the number and size of moduli m;. Note that too many
moduli would make us waste time, while not enough moduli would give an incor-
rect result. In order to get a more accurate estimate, we can explicitly compute
the zeroes a(*) of f as low precision complex numbers. We can then evaluate
the complex numbers 5§k) and f'(a(®)), and, multiplying out the product (1),
the real numbers |3(*)|. Then we obtain from (8) an upper bound for |5;]. This
leads to an upper bound for B(im) that is better than (9).

We now give a rough estimate of the complexity of our method as a function of
the logarithm of an upper bound like (9) for B(m); let this logarithm be called s.
For the sake of comparison, we mention that the square root method proposed
in [3] takes time s!*°(1) if fast multiplication techniques are used, and s2*+°(1)
otherwise, and that the entire number field sieve is conjectured to run in time
s2+9) | see [3, 9.3 and Section 11]; here and below the o(1) is for n — co. The
time taken by our method depends on the size and the number of the moduli,
and on whether or not fast multiplication techniques are used. We consider two
extreme cases.

In the first case the moduli are chosen as small as possible. We assume, heuris-
tically, that f is irreducible modulo one out of every d primes (see the remark
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below). We take the m; to be all those primes up to ds(1 + o(1)). Their prod-
uct will then be exp(s't°(1)), which is large enough for the algorithm of 2.1.
From d = s°1) one sees that both the number of moduli and the largest of
them is of the order s't°(1), The most time-consuming part of the method is
the computation of the product (1) modulo each m;. This requires s2+o(l) mul-
tiplications. Since all multiplications are done with small numbers, it is not clear
how fast multiplication techniques can help at all. It is conceivable, though, that
the computation can be speeded up by some divide-and-conquer technique.

The second extreme possibility is to fix the number of moduli and to choose
each m; to be exp(s!*°(1)). In this case we can use fast multiplication, and the
time taken is s'*°(1). This is also achieved in [3] by means of a single modulus.
With this choice of moduli one does ultimately handle very large integers.

The conclusion is that from a theoretical point of view our method does not
represent an improvement over [3]. In practice, however, our method has the
advantage of offering the possibility to work with much smaller numbers, and
in addition it can be run in parallel. The number and the size of the moduli to
be used depend strongly on the features of the available computing equipment.
In [2] many small moduli are chosen, which is justified by the use of a massively
parallel computer. One can imagine that in other situations it is desirable to use
larger moduli so as to take advantage of sophisticated multiplication techniques.
In principle it is not necessary to let the moduli be of the same approximate
size: if several different computers are used, then one can adapt the sizes of the
moduli to the individual machines.

Remark. It was pointed out in [3] that primes ¢ for which f is irreducible
modulo ¢ do not necessarily exist, but that for “most” f one may expect that
one out of every d primes has this property (see [10]). If the degree d, which we
assumed to be odd, is a prime number, then indeed every irreducible polynomial
f € Z[X] of degree d remains irreducible modulo at least one out of every d
primes (asymptotically). This applies in particular to d = 3, 5, and 7. For the
proof it suffices, by the argument of [3, Proposition 9.1}, to show that every
transitive permutation group G of prime degree d contains at least #G/d cycles
of length d. Indeed, by Cauchy’s theorem G has an element of order d, and this
element must be a d-cycle. Letting G act by conjugation on the set of its d-cycles
one finds that the number of d-cycles is divisible by #G/d, as required.
The complete algorithm may be summarized as follows.

Algorithm. Let the integers n and m, the integer v mod n, the polynomial f,
and the set S of pairs (a, b) be given, as in the number field sieve. This algorithm
determines the possibly trivial factorization of n that the set S gives rise to.

1. Choose the moduli m; = ¢ according to the above remarks. This necessitates
the computation of complex approximations to the a(¥) and 18D

2. Compute for each 7 the numbers rem(M;, m;), a;, and rem(M;,n) as in 2.1.
3. For each modulus m;, compute the product

vi= . H (a4 bX) mod (f, m;),

(a,d)ES
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6.

as well as a square root §; of ¥;.

. Compute Ny ;, the norm of 8; mod ¢;, and Ny ;, the product in {2) modulo g;.

K N, ; # Ny, then replace 5; by —5;. Let B; € Z[X] be a polynomial of degree
< d — 1 for which §; = B; mod (f,m;), and compute B;(m) (modulo m;).
This step is to be performed for each i.

. Compute B(m) mod n from the B;(m) using the quantities calculated in

step 2 (see 2.1).
Output ged(B(m) — v, n).

Note that steps 2, 3, and 4 can be parallelized.

10.
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A GENERAL NUMBER FIELD SIEVE IMPLEMENTATION

DaNIEL J. BERNSTEIN, A. K. LENSTRA

ABSTRACT. The general number field sieve is the asymptotically fastest—and by
far most complex—factoring algorithm known. We have implemented this algo-
rithm, including five practical improvements: projective polynomials, the lattice
sieve, the large prime variation, character columns, and the positive square root
method. In this paper we describe our implementation and list some factorizations
we obtained, including the record factorization of 2523 — 1.

1. INTRODUCTION

The general number field sieve (GNFS) [3] is a modified version of the special
number field sieve (SNFS) [8; 9]. GNFS factors arbitrary integers n in heuristic
time

exp((cqg + o(1)) log!/® nlog??logn)

as n — co. Here ¢, = (64/9)'/3 x 1.9. For the special integers n where SNFS is
applicable, GNFS takes time

exp((cs + o(1))log!/3 nlog?3logn),

with ¢, = (32/9)}/3 & 1.5. These asymptotic estimates should be compared with
the time
exp((1 + o(1)) log*/% n log'/? logn)

taken by the multiple polynomial quadratic sieve (QS) [14], generally regarded
as the best general-purpose factoring method for large integers.

We implemented GNFS on Bellcore’s MasPar!, a SIMD (single instruction
multiple data) computer with 16384 processors, and used it to obtain some
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factorizations, as described in Section 12. To speed the implementation we used
five modifications to the basic algorithm: projective polynomials [3], Pollard’s
lattice sieve [13], the large prime variation [8; 9; 10], character columns [1], and
Couveignes’s positive square root method [4]. In this paper we describe our
implementation. We also present some factorizations we obtained with GNFS.

We suspect that for general numbers GNFS is competitive with QS at the
edge of what we can factor in a reasonable time today, between 120 and 130
digits. For larger numbers it is faster. For smaller numbers it is usable, though
slower than QS in its current form—but see Section 13 for comments on this
situation.

We warn the reader that the word “smooth” is defined anew in several sections
of this paper. To avoid confusion we give each different use of “smooth” a unique
prefix: basically smooth in Section 3, sieve-smooth and prec-smooth in Section 6,
and rat-smooth and alg-smooth in Section 7. We write 4.5 for the size of a set S.
Most further notation for this paper is established in Section 3.

2. QUTLINE OF THE IMPLEMENTATION

We refer the reader to [3] for an explanation of how the number field sieve works;
except for a few brief proofs in Section 11 we do not justify the algorithm here.

We begin with a composite number n > 0 to be factored. We assume as known
that n is odd—in fact that it has no factors smaller than some reasonable bound,
say the largest integer that fits into a computer word. We also assume that n is
not a power of a prime. These facts will all be apparent after an application of
trial division, standard compositeness and power-of-prime tests [8], Pollard’s p
method [7], and the elliptic curve method [11], all of which are tried before the
number field sieve.

GNFS can be divided into four stages. In the first stage, described in Sections 3
through 5, we choose parameters and precompute various information about an
algebraic number field associated with n. In the second and most time-consuming
stage, described in Sections 6 and 7, we perform the heart of the number field
sieve, looking for “relations.” In the third stage, described in Sections 8 and 9,
we build a matrix out of the relations and find random elements of the nullspace
of the matrix. In the final stage, described in Sections 10 and 11, we effectively
take a square root of a large element of our number field.

Figure 1 shows the flow of data in GNFS. Upper case names such as POLY are
data files, i.e., sets stored on the computer; lower case names such as pntls are
programs. Each node is labeled with a section number. Data flows downwards
through the graph.

3. CHOOSING THE POLYNOMIAL

The entire computation begins with a file POLY, which contains the number n to
be factored together with a low-degree polynomial f and an integer m such that
n divides f(m). The degree d of f is most commonly 3 or 5; it is required to be
odd because of a restriction in the square root stage, as described in Section 10.
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irred (5)

sgauss, gauss (9)
SOLNS (9)

IPB (5)

cosqrt (10)

Ficure 1. The flow of data in our GNFS implementation.

(See Remark 10.1. We can in principle use even degrees, as we have a single-
processor implementation of the square root method described in {3], which can
work with any degree. We have been using a MasPar implementation of another
method, which demands odd degrees.)

Several mathematical objects are implicitly associated with the polynomial
f we choose. Most important is the projective two-variable norm polynomial,
which we define as N(a, b) = f(a/b)b?; see Section 11 for a number-theoretic in-
terpretation of this object. Another is the monic polynomial g(z) = f(a:/cd)cg"l,
where ¢4 is the leading coefficient of f. Another is the number field

Qla]/ f(a) = Q[w]/g(w).

Here a could be regarded as a root of f within the complex plane, and w = acqy
could be regarded as a root of g; but neither « nor w is ever computed explicitly.
We actually work within the number ring Z[w]/g(w) inside our number field.
Elements of this number ring are represented as polynomials o, 4 z;w' where
each z is an integer. Finally we will need the discriminant disc(g) (but see
Remark 10.4 for a way to avoid computing this quantity).
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For special numbers n, such as numbers of the form b° £ 1 where SNFS is
applicable, we choose POLY by hand. Otherwise we let the computer search for a
good polynomial by brute force in a given range of m’s, as described in the next
section.

All else being equal, one polynomial f is better than another with a similar
value of m if the norm values N(a,b) are more likely to be basically smooth for
a and b small. Here z is basically smooth if its prime factors are small. (It is not
necessary to define “small” precisely.) See next section for further details of how
we find f in general.

We measure f (for a fixed d) in two ways. The first is coefficient size: if f
has coefficients that are small in absolute value then N(a,b) will be small and
hence likely to be basically smooth. The second measurement is more algebraic:
we compute an average logarithmic subtraction from log N(a, b) given the roots
of f modulo tiny primes. Consider, for example, a polynomial f congruent to
z*—1 modulo 5, so that f has four roots modulo 5. Then N(a, b) will be divisible
by 5 for four-fifths of all choices of a, b, in some sense. So if we remove the first
factor of 5 (if any) from N (a, b) then log N (a, b) becomes an average of (4/5) log5
smaller. We compute these logarithmic subtractions for tiny primes through 19.

Once we have chosen f we choose several further parameters: the rational
prime bound max RFB (on the order of 10°), the algebraic prime bound max AFB
(so far always chosen equal to maxRFB), the large prime bound L (on the order
of 108), a quadratic character base size #QCB (so far always chosen as 100}, an
inert prime base size #IPB (on the order of 10°), and a range {e} of integers
(typically all values between 1 and 10*—see Remark 3.1).

All these parameters except #IPB and #QCB are chosen with the constraint
that the matrix constructed in Section 8 has a nontrivial nullspace. The size
#QCB must be large enough that the quadratic characters are highly likely to
span a certain vector space; see Section 8 and [3]. The size #IPB must be large
enough that a certain inequality holds; see Remark 10.3 and Remark 11.1.

3.1. Remark. The range {e¢} determines the length of one of the sides of the
sieving parallelogram (see Section 6), and can be chosen freely. The other length
is hard-wired in our sieving program and fixed at compile time; its choice depends
on the design of the sieving program and is severely limited by the architecture
of the MasPar.

3.2. Remark. In principle we should check that m and ¢z do not have any fac-
tors in common with n, that the derivative f/'(m) does not have any factors in
common with n, and that there are enough inert primes, but in practice none of
these problems will occur. If f is “bad” in any way then the algorithm will fail
in an obvious manner. We describe these failures at the points where they may
occur. See Remark 5.2 and Remark 10.2.

3.3. Remark. The possibility of f not being monic characterizes the “projective”
number field sieve. It permits much smaller coefficients at very little expense.
Actually the projective number field can be chosen with two parameters m;
and mgy in place of m; the idea is that m is a fraction, m; /my. The additional
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possibility of my # 1 characterizes the “homogeneous” polynomial variation.
See [3] for details of this generalization. As m, intrudes (a bit) at every step
of the computation, and does not show any obvious advantages, we have not
used it. But see Section 13 for further comments.

4. SEARCHING FOR A POLYNOMIAL

The time taken by GNFS depends heavily on the size of the polynomial f. In
this section we describe how we search for polynomials when we do not know a
special form for n.

To fix ideas we set d = 5. Here is the polynomial-searching problem. We are
given n. We want to find a positive integer m in a given range and six integer
coefficients cg, . . ., ¢5 such that cg +cym+ - -+ csm® is a positive multiple of n,
with all the ¢; small in absolute value.

The straightforward solution is to pick m around n1/® and to expand n in
base m. But there are many other polynomials for n. For a detailed analysis of
the polynomial existence problem we refer to [3]; here is a rough outline of the
argument showing that we can expect that much better polynomials exist. Say
d = 5 and n is around 10!%%. We have seven parameters, m and ¢y through cs, to
change; let us choose m around 25 digits, cs around 20 digits, and the other ¢;
up to 25 digits. This gives approximately 1017° values of f(m); it is reasonable
to expect that at least 102% of them will equal (or at least be divisible by) n.
The five ¢; other than ¢y vary wildly with the precise value of m. If they are
independently and uniformly distributed then there is some polynomial for n
where each of those five ¢; is a factor of 1025/ = 10° better than the maximum.
In other words there should be a polynomial for n with m &~ 102 and |e;| < 10%°.

By the same argument, if we use m = mj;/m, as described in [3], choosing
m, and m, around 25 digits, then there should be a polynomial for n with
m; &~ 10%° and |¢;| < 10'®. But it is already extremely difficult to find optimal ¢;
without mgy, so we will ignore my for the remainder of this section. In case of any
breakthrough in polynomial-searching methods it will obviously be important to
use ms.

Unfortunately we do not know any way substantially faster than brute force
to generate a good polynomial for general n. We start from a polynomial with
a given m. We choose some integer k, replace m by m — k, and compute the
polynomial for this new value of m. If any coefficient is larger than m/2 in
absolute value, we subtract m from it and add 1 to the next coefficient. Finally
we check whether all the coefficients are small. We repeat as long as necessary.

It is easy to choose k so that c4 is bounded by a small multiple of c5. But this
still leaves four coefficients, co through cs, which can range up to about m/2.
If we search through 10!? polynomials in this way then we expect to find some
value of m such that each of ¢y through c3 is at most m/2000 in absolute value.
This is good, though still nowhere near optimal.

We emphasize that polynomial-searching is highly underdeveloped. There is
much unexploited structure in the polynomial-searching problem. It appears far
more tractable than factoring itself. Surely we can do better than brute force?



108 DANIEL J. BERNSTEIN, A.K. LENSTRA

5. COMPUTING BASES

After settling on a polynomial we compute four bases: the rational factor base
RFB, the algebraic factor base AFB, the quadratic character base QCB, and the
inert prime base IPB. All these files are stored in binary format so that they can
be loaded quickly. All the parameters listed in Section 3 except {e} are used in
constructing these factor bases.

RFB does not depend on POLY. Tt consists of all odd primes up to maxRFB.

AFB is a list of all (p,7) pairs with p dividing f(r) and 0 < r < p; p is
restricted to the odd primes below max AFB. There may be as many as d roots
r of f modulo p. Our algbase program computes them as in {7, Section 4.6.2].
We also include pairs (p,oo) (represented inside the computer as (p,p)) with p
dividing cg, as per [3]. For all polynomials used in practice, the number of (p, r)
pairs in the algebraic factor base with p in any given range will be very close to
the number of primes p in the rational factor base in the same range.

IPB is a list of #IPB odd primes ¢ that remain inert in the number ring,
i.e., for which f is irreducible modulo £. We also require that no £ divide c4.
These conditions imply that £ does not divide the discriminant disc(g). See
Remark 11.1 for details on the choice of #IPB. A program irred, similar to
algbase but running on the MasPar, looks for inert primes among all primes
£ > 10000. {Actually it would be better to generate primes £ down from the
computer’s word size; see Remark 11.1.) It checks 16384 possibilities for £ at
once using the tests in [7, Section 4.6.2].

Finally, QCB is a list of (g, s) pairs with the odd prime ¢ dividing f(s); here,
unlike AFB, ¢ is required to be larger than the large prime bound L. We choose
the first #QCB primes ¢ larger than L. As indicated in Section 3 we use only
#QCB = 100 different pairs, so QCB is a small file.

5.1. Remark. In principle the ¢’s in QCB should not divide ¢4 or the derivative
f'(s). These conditions rarely fail, but if they do fail then they will fail silently
(i.e., without overt effects on the computation). On the other hand, we have not
bothered checking for these failures, for reasons explained in Remark 8.1.

5.2. Remark. The files computed here could, in highly improbable circumstances,
be much too small. In this case f is bad and a different f must be chosen.

6. SIEVING

In this section we regard the rational primes p as pairs (p, m mod p). We thus
regard the rational and algebraic factor bases as a single collection of pairs (p, r),
of size #RFB + #AFB. (For simplicity we ignore any pairs (p, 00).) In this section
we use the parameter {e} as well as many sieving parameters chosen heuristically.

The object of the sieving stage is to produce an (a,b) pair, with a and b
relatively prime integers that fit easily inside a computer word, such that b > 0
and a = br (mod p) for several pairs (p, r)—a sieve-smooth (a, b) pair, for short.
Actually the sieving stage should produce as many sieve-smooth (a,b) pairs as
possible in a reasonable amount of time.
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6.1. Sieving without special-q. Here is the direct approach to sieving. We consider
a region of the (a, b)-plane of area A. We divide the region into some number X
of roughly equal-area pieces. We then do the following:

For each piece
For each (p,7)
Figure out which (a, b) inside the piece have a = br (mod p)
“Hit” all those spots
For each {a,d) in the piece
Check if (a, b) has enough hits

S P 2R

For example, one might choose X = 1 and initialize an array of counters, one
counter for each (a,b) pair in a rectangle near the origin, say 0 < b < v and
—u < a < u. (With these choices we say we are using the “plane method.”) For
each pair {p,r) one “hits” the counters for all {a,b) pairs in the lattice defined
by @ = br (mod p). After all (p,r) have been considered one can “read off” the
sieve-smooth (a, b) pairs from the counters.

As another example, in other NFS implementations [8; 9] one runs through
the (a,b) plane in horizontal slices. More precisely, one still considers 0 < b < v
and —u < a < u, but this area is split into X = v — 1 pieces, each piece with a
fixed b. {This is the “line method.”) For each b = 1,2, ... one initializes counters
for the line of a values between —u and u. For each pair (p, r) one runs through
the a values with @ = br (mod p), hitting the appropriate counters. After this
one can read off the sieve-smooth (a,b) pairs and continue on to the next b.
One feature of this method is that it is easy to keep track of br (mod p) as b
increases. More importantly, we end up using only a small amount of memory.

As yet another example, one can split the plane into horizontal slices, and
then split each slice into several pieces. This reduces memory requirements still
further.

How much time and memory does the direct approach take? Denote the set
of (p,r) by P. We use time T} X for step 1, time To X# P for steps 2 and 3, and
time T4 A for steps 5 and 6; recall that 4 is the total area of the {(a, b) plane under
consideration. (Here each T; is the amount of time taken by some basic step; see
Remark 6.13.) We use time roughly T3 3", e p 4/p for step 4, assuming (as is
correct for current theory and practice) that the A pairs (a, b) fall almost equally
into equivalence classes of a — br modulo p.

The total time is

(6.2) T\ X + T X#P + TyA+ T3A > 1/p.

The total memory is some constant plus A/X.

6.3. Sieving with special-q. In the direct approach described above, we must
consider every pair (a, b). Pollard [13] pointed out that a variation of the “special-
¢” method for QS of Davis and Holdridge [5] could be applied to NFS. This
variation, called the “lattice sieve” for NFS by Pollard, is a general improvement,
which with the proper parameter selection lets us consider only a fraction of all
(a, b) pairs.
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Here is how it works. Choose an ordering of the set P of pairs (p,r)—see
Remark 6.9. For each (a,b) define “the special (¢,s)” as the largest (p,r) with
a = br (mod p). Then partition all (a,b) pairs according to their special (g, s)
values. Instead of searching through all (a,b) we search through the (a,b) for
each special (g,s) € @ in turn, for some subset @ of P. Some (a, b) pairs don’t
have a special (g,s) in @, and thus are ignored, but with the proper choice of Q
we can find most sieve-smooth (a, b) pairs.

Fix (g, s) € Q. The set of sieve-smooth (a,b) pairs with this special (¢,s) is a
subset of the lattice of (a,b) pairs with a = bs (mod ¢). Which subset is it7 It
is the subset that is sieve-smooth for those (p,r) pairs no larger than (g, s).

So we run through all {g,s) € @ in turn. For a fixed (g, s) we compute two
short vectors C = (a.,b.) and E = (a.,be) that generate the lattice a = bs
(mod gq). (If we cannot find short enough vectors we simply throw ¢ away. See
Remark 6.11.) Then we find pairs (c, €) such that (a, b) = ¢C+¢€E is hit by several
(p, 7) smaller than (g, s). To do this we transform the condition “a = br (mod p)”
into a similar condition on (¢, €), and we search through a small rectangle of (c, ¢)
values near the origin.

More formally, here is the algorithm.

For each (g,s) in Q
Identify the lattice of (a,b) with a = bs (mod ¢)
Form coordinates (c, e) for some area of size C' of this lattice
For each (p,7) in P
Transform “a = br (mod p)” to the (c, e) plane
For each piece of the (¢, e) plane
For each (p,r) smaller than (g, s)
“Hit” the appropriate (¢, ¢) inside the piece
For each (c, €) in the piece
0. Check if (¢, €) has enough hits

il o bl e

We have two parameters here corresponding to the parameters A and X in the
direct approach: we choose an area of size C in the (c, ¢)-plane, and split it into
Y roughly equal pieces for steps 6 through 10.

For example we can choose ¥ = 1 and use the plane method (“sieving by
vectors”) in the (c, e) plane. Or we can split the (c,e) plane down into ¥ > 1
lines, each with a fixed c—hence using the line method (“sieving by rows”) in
the (c, e) plane. We can even split the (¢, e) plane into pieces smaller than lines,
so as to save on memory. We could choose a different region of the (c, e)-plane
for each (g, s) {as suggested in [13]), but for simplicity we keep C and Y constant
(also following [13]).

How much time and memory does. the special-¢q approach take? To simplify the
analysis let us assume (to the detriment of the lattice sieve) that all pairs (p, r),
rather than just those pairs up through (g, s), are used in steps 7 through 10.

As in our analysis of the direct approach, for each (g, s) we do a sieve taking
time VY + TR Y#P+T,C+T3C Z(py,) 1/p. The total over all (¢,s) is TIY #Q +
LY #P#Q + TuCH#Q + T3C#Q 3 1/p. We also spend time Ts#Q + Te# P#Q
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on the preparatory steps of the lattice sieve. The total time is
(6.4) #Q(T\Y + LY #P + TuC + T3C Y 1/p+ Ts + Ts#P).

The total memory is some constant plus C/Y.

6.5. Comparison of sieving methods. We have presented two different approaches:
the direct approach and the special-g approach. Each approach uses parameters
that determine the time, memory, and yield of the sieving step: the direct ap-
proach uses X pieces of total area A in the (a, b) plane, and the special-g approach
uses Y pieces of total area C in the (c,e) plane.

To compare the approaches we must first assume that they give the same
yield. An area of A pairs (a,b) corresponds roughly to an area of A/max P of
the (c, €) plane; as illustrated by Pollard [13] we will miss some, though not too
many, sieve-smooth (a,b) pairs if we set C as small as A/maxP. To equalize
the yield we might choose an area as large as 10A/max P of the {c,e) plane.
This number 10 is surely large enough if we choose @ following Pollard. In the
following discussion we will take C' = V A/max P where V is an unknown “fuzz
factor” between 1 and 10.

Now for fixed A and C our time analyses (6.2), (6.4) show that sieving is
faster when X and Y are smaller——more pieces means more overhead. On the
other hand we use A/X or C/Y memory, so if memory is limited then we cannot
choose X or Y too small.

Therefore, no matter which approach we use, we split the plane into as few
pieces as possible, subject to the sole constraint that our sieve fit into memory.
This is important both for theory and practice.

To continue our comparison of the two approaches we must consider two
cases. Either we have an incredibly large amount of memory available (at least
A/max P), or we do not. In the first case we can choose Y = 1 (and X < max P).
Again to the detriment of the lattice sieve we will ignore the X terms in (6.2)
altogether: now the time (6.2) for the direct approach is over A(Ty + T3 1/p),
and the time (6.4) for the special-¢ approach is

max P #Pmax P
5 T (T2 + Ts)——A—

Both in theory [3, Section 10] and in practice we may assume that A is at least
roughly as large as # P max P. Now it is easy to see that the special-¢ approach
is asymptotically some constant times max P/#Q > logmax P faster than the
direct approach.

In the second case we do not have A/maxP memory available. Then both
approaches are constrained by the available memory, so as per our previous
comments we assume that they both use as much memory as possible—in par-
ticular, they both use the same amount of memory. In other words A/X and
C/Y = VA/(Y max P) should be equal. Hence Y = XV/maxP.

Now the time (6.2) for the direct approach is

1
"ri"% ((Tl +T3) +T4V+T3VZ§> .

XM+ T#P) + AT+ T3y %),
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and the time (6.4) for the special-¢ approach is

Xn‘:jch(Tl + T3 #P) +An‘::i?3 <T4 + T3 Z 11—) + Tsm‘z/u;P + T #P;n:xP) .
The first terms may dominate the second terms, or they might not. In either
case, the special-¢ approach is once again asymptotically logmax P faster than
the direct approach.

Of course, the special-q approach is more complex than the direct approach,
so in small examples [13] the direct approach may be faster, depending on the
constants T; and V. But as max P grows the special-¢ approach has a logmax P
advantage, both in theory and in practice. For us max P is large enough that we
suspect the special-g method is more than twice as fast as any implementation
of the direct approach.

6.6. Sieving on a MasPar. The MasPar consists of a mesh of 128 x 128 SIMD
processors with 64 KByte memory per processor. As shown in [6] the multiple
polynomial variant of the quadratic sieve can be implemented quite efficiently on
the MasPar. The MasPar is split into 128 rows, each handling the sieve line for
one polynomial. Each sieve line is split into 128 pieces, one piece per processor.
We use just 32 KByte on each processor to avoid conflicts with other users; of
this we allocate 27000 bytes for the sieve.

To implement the sieving stage of NFS on the MasPar we could follow the
same approach—i.e., the direct approach, with 4/X = 27000 values of (a, b) per
piece, and one piece per processor. However, we never attempted to implement
this. Instead we tried to get the lattice sieve—special-g, with the plane method
in the {c,e) plane—to work on the MasPar. Unfortunately we have not come
up with a way to lay out the (c,e) plane over more than one processor without
running into serious communications overhead.

So we chop the (c, ) plane into pieces that fit into one processor. In Pollard’s
terminology [13] we “sieve by rows”: each processor considers one e for one (g, s)
and uses its memory to sieve a line of ¢’s with all the pairs (p,r) smaller than
(g, 5). Our MasPar sieving program, pnfls, handles 128 special (g,s) pairs at
a time, one pair per row of processors. For each (g, s) batch it iterates through
128 ¢’s from the range {e} at a time, one e per column of processors.

6.7. Sieving results. The sieving program pnfls produces some “reports” of good
(c, e) pairs, which (together with the corresponding (a, b) pairs and ¢’s) are saved
in a binary file OUT.

Our first version of pntls used 10* values of ¢, namely —5000 < ¢ < 5000, and
used 24 KByte per processor. We used counters of the form (2., z,), initialized
to (0,0) and stored in two bytes. Denote the approximate logarithm base 2 of
p by I(p). To hit a counter with a prime p from RFB we added ({(p),0) to the
counter. To hit a counter with a prime pair (p, r) from AFB we added (0, !(p)) to
the counter. We choose, by hand, minimum values for z, and z,; we throw out
any (c, e) whose counter does not meet or exceed those minima. Pairs (¢, €) that
pass this test are subjected to more stringent tests, involving approximations to
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a — bm and N(a,b). When all is said and done perhaps one out of every 7 or 8
reported sieve-smooth (a,b) pairs is actually prec-smooth (precisely smooth).
(See Remark 6.8.) Hopefully we do not throw out more than a fraction of prec-
smooth pairs.

In the current version of pnfls we use the same byte to represent z, during
the first sieve and z, during the second one: we first sieve with the primes from
RFB, remember the locations of z,’s where the counter is large enough before
resetting the z,’s to zero, and next use the same sieve locations to sieve with
the pairs from AFB. In this way we could double the length of the ¢ interval and
increase the yield per unit of time, without affecting the memory requirements
of pnfls. With a ¢ interval of —10000 < ¢ < 10000, pnfls fits in 24 KByte per
processor; currently we are using —14000 < ¢ < 14000, which fits in 32 KByte.

6.8. Remark. In the above description we neglected to define various terms:
“several pairs,” “hitting,” “read off,” “most,” “small,” etc. The real object of
the sieve stage is to limit the number of (a,b) pairs that have to be checked by
trial division (next section). For trial division there is a quite precise definition
of what “smoothness” (prec-smoothness) means: namely, a — bm factors almost
completely into primes smaller than maxRFB with at most one “large prime”
between maxRFB and L, and similarly for N(a,b) and maxAFB. In sieving we
can at best approximate this definition.

6.9. Remark. We choose the ordering of (p,r) values for the special-¢ method
as suggested by Pollard [13]: all (p, r) from AFB are considered smaller than any
(p, m mod p) from RFB; the p’s from RFB are placed into their natural order. Then
the special ¢’s are chosen from among the rational primes p. This means that
the entire algebraic factdr base is used at every step. This may not be optimal.
It might be better to interleave the rational and algebraic factor bases, with all
pairs (p, r) ordered simply by the value of p. We have not explored the practical
import of this approach.

6.10. Remark. By definition, all special values of (¢, s) come from RFB or AFB. It
may happen that a — bm has a large prime factor from outside RFB; this factor
is not the special ¢! If we were to include large primes in our ordering of (p,r)
values, then any pair with a large p would have to be considered smaller than
any pair from RFB or AFB with respect to this ordering.

6.11. Remark. We generate short vectors in a given lattice as in [7, exercise
3.3.4-5). Except where certain intermediate values are 0 modulo ¢ we accept the
resulting vectors as “short enough.”

6.12. Remark. Initially we suspected that the special-¢ method would require
larger factor bases to break even on the number of reports, even though the
total time spent should be smaller. This would make the matrix reduction step
slightly more difficult. This was, however, only a consequence of our initial choice
of ¢ interval, which was fairly short. The newer version of the program does not
require substantially larger factor bases.
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6.13. Remark. In this section we have taken 11, . . ., Tg as positive constant multi-
ples of some unspecified unit of time. In practice this is a reasonable assumption,
but in some theoretical machine models these times are not constant. For ex-
ample, in a bit-oriented model of computation, each T; is between logmax P
and log max P log* logmax P, if we use fast arithmetic for the basic steps. Our
conclusion that special-q is asymptotically beneficial holds for any model where
all the ratios T;/T; grow more slowly than logmax P.

7. TRIAL DIVIDING

We retain the notation of the previous section. The goal of the trial division
stage is to produce (a,b) pairs, with a and b relatively prime integers that fit
into a computer word, such that b is positive, a—bm is rat-smooth, and N(a,b) =
f(a/b)b¢ is alg-smooth—prec-smooth pairs, for short. Here a — bm is rat-smooth
if all its prime factors are smaller than maxRFB, except for at most one large
prime factor between maxRFB and L. Similarly N(a,?b) is alg-smooth if all its
prime factors are smaller than max AFB, except for at most one large prime factor
between max AFB and L.

Our trial division program abra takes as input the reports OUT from the
sieving stage. One hopes that many of the pairs {a,b) produced by the sieving
stage have a = b(m mod p) (mod p) for several primes p, so that a — bm is
divisible by several primes p and thus has a good chance of being rat-smooth.
(Note that @ — bm is always divisible by the special ¢, which is saved in OUT.)
Similarly one hopes that a = br (mod p) for several algebraic pairs (p, 7). Then

N(a,b) = f(a/b)b® = f(r)b* =0 (mod p)

so that N(a,b) is divisible by several primes p and thus has a good chance of
being alg-smooth.

Our MasPar trial division program abra processes one pair (a,b) at a time,
together with the special ¢ value saved from sieving. If a and b are not coprime
then (a, ) is thrown out immediately. Otherwise abra computes (a —bm)/q and
N(a,b). It then invokes a MasPar routine to trial-divide (a —bm)/q by all primes
p in the rational factor base. (The prime 2 is not in the factor base for various
reasons; it is trial-divided separately.) Unless a — &m is rat-smooth abra goes on
to the next (a,b) pair. If @ — bm factors properly, abra trial-divides N{a,b). If
N{(a,b) is alg-smooth then abra saves the prec-smooth pair (a,b) and its prime
factorization in a readable file ABRA, together with some useful statistics from
the sieving stage. Actually, to make disk space easier to manage, we split ABRA
into a directory of individual files, each with at most 1000 prec-smooth (a,b)
pairs.

Once abra is done processing (a, b) pairs we remove the output file OUT.

7.1. Remark. A prec-smooth pair is usually called an ff, pf, fp, or pp relation [9];
it is pf or pp iff @ — bm has a large prime factor, and it is fp or pp iff N(a,b)
has a large prime factor.
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8. CONSTRUCTING THE MATRIX

Our matrix construction program newmat reads the results ABRA of the trial divi-
sion stage, removes duplicates, and produces a single large file MAT representing
a matrix modulo 2 in binary format. It uses no other data except QCB.

The rows of the matrix are indexed by prec-smooth (a, b) pairs. A row contains
the following bits:

(1) A bit always equal to 1.

(2) The log base —1 of the sign of a — bm. This bit is 1 in all our runs as
a — bm is always negative.

(3) For each prime p, ordy(a — bm) mod 2.

(4) For each prime p dividing cq4, ord, N(a,b) mod 2 if p divides b, 0 other-
wise.

(5) For each pair (p,7) with 0 < r < p and p prime, ord, N(a,b) mod 2 if p
divides a — br, 0 otherwise.

(6) Finally, for each (g, s) in the quadratic character base, the log base —1

of the Legendre symbol (“'qﬁ)

Note that these rows are defined in terms of all primes p, not just those
appearing in RFB and AFB. Of course we do not want to store infinitely long rows
inside the computer. So instead of one bit for each prime p, we simply store a
list of the primes that divide a — bm to odd powers. We allow up to 18 primes
in this list. Similarly we store a list of the primes p that divide N(a,b) to odd
powers, together with the corresponding values of r. We allow up to 19 pairs
(p, ) in this list. We store the #QCB = 100 Legendre symbols and two extra bits
packed into 14 bytes. Together with control information a row takes exactly 256
bytes to store in this format.

Most of the information in a row is easy to compute from ABRA. To com-
pute the Legendre symbols we use a fast Jacobi symbol routine due to Peter
Montgomery.

For the reasons behind these rows we refer to [3]. In the next steps (next
section) of the algorithm we construct a set S of (a,b) such that the ‘corre-
sponding rows add up to 0 (mod 2). In this case we call S a dependency. If S
is any set of (a,b) (with #S even) such that [, ;)es(a — bm) and the element
[T(a,p)es(a — ba) of our number field are both squares then 5 will, in fact, be a
dependency. Conversely, we hope that if S is constructed as a dependency then
[1(a)es(@ — bm) and H(a,b)es(a — ba) will both be squares. If the quadratic
character base is ridiculously large then this will necessarily be true. In prac-
tice a quadratic character base of size #QCB = 50 would probably suffice for all
factorizations ever accomplished with the number field sieve in its present form;
our choice of #QCB = 100 is almost certainly excessive.

8.1. Remark. Recall from Remark 5.1 that we might occasionally have a bad
(¢, s) column. For all we know hardware failures might corrupt several columns.
It will no longer be true that if [J(a — bm) and [[(a — ba) are squares then
the corresponding rows of the computed matrix always add up to 0. But if the
number of bad quadratic character columns does not exceed the number of excess
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quadratic character columns, then any computed dependency S will necessarily
produce squares. The only bad effect of such errors is that some fraction of the
correct dependencies will be ignored during the matrix reduction stage. This
justifies the first author’s somewhat careless attitude towards the possibility of
errors.

9. REDUCING THE MATRIX

The goal of this step is to produce several independent elements of the nullspace
of the matrix constructed in the previous section. Note that the matrix is always
taken modulo 2. We could have checked the validity of the rows at this point if
we were worried about hardware errors.

We find cycles among the partial relations as described in [10]. This reduces
the matrix to the set of rows that will be useful in producing dependencies.
The useful matrix can be reduced in various ways, such as structured Gaussian
elimination [8]. A problem for the future is that structured Gaussian elimination
appears to take time cubic in the number of columns of the matrix, although the
constant factor is very small. We tried the quadratic method of Wiedemann [15],
but were not able to produce a sufficiently fast implementation for our purposes.

Our matrix reduction consists of two programs: sgauss, which runs on a
workstation, to reduce the large but sparse matrix of fI'’s and cycles to a smaller
dense matrix, and gauss, which runs on the MasPar, to find dependencies in the
dense matrix. The output of the matrix reduction stage is a file SOLNS containing
some sets of pairs (a, b) such that the corresponding rows for each set add up to
0 modulo 2.

10. COMPUTING THE SQUARE ROOT

We now have a file SOLNS containing one or more sets S of pairs (a, b) such that
[1(a.5)(a — bm) is an integer square and [], ;)(a — ba) is (we hope) a square in
the number field. In the final stage of GNFS we convert each set S into a relation
z? = y? (mod n). Heuristically at least one half of these pairs (x,y) will give
rise to a nontrivial factor ged(z — y,n) of n.

QOur cosqrt program uses the ideas of Couveignes [4]. We prove in the next
section that this procedure works. cosqrt begins by reading the inert primes £ in
IPB. As we will see in the next section there is a lower bound on the size of IPB;
we assume that this lower bound is met. Write P = [] £. We next compute (P/£)
mod £ directly for each £, 16384 at a time, on the MasPar. (In this section, when
we say “compute X mod M directly,” when X is any sort of product, we mean
“multiply the factors of the product X, one at a time, modulo M.” We do not
actually compute X and then reduce it modulo M.} Then we invert P/£ modulo
£ and keep the result, k;. We also compute P mod n directly for later use.

We read a set of pairs (a, b) that together form a dependency. For each of the
inert primes £ we compute v, = ¢'(w)? H(a’b)(cda — bw) mod £ directly inside
the number ring Z[w]/g(w). We also trial-divide each a — bm and each N(a,b) as
in abra (see Section 7); we tally up the powers of each prime p dividing a — bm
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and dividing N(a, b). The tallies are forced to be even, so we end up with

H (a —bm) = szr" and II Nia,b)= Hp?‘“‘h

(a,b) (a,b) 4

Next we compute w = HP p"* mod n directly, as well as

Ny = disc(g)cy’™V#5/2 T] p* mod ¢
P

for each inert prime £. We will show in the next section that each Ny is nonzero.
Next we set s
14£(1 4 +£272)/2
ﬁlz (+(++ )//NE

inside the number ring modulo £; here the division /N; means multiplication by
the reciprocal of N; modulo 4.

Write 8 = ), bg},-w", We process each i from 0 through d — 1 in turn. For
each ¢ we compute an approximation to

K;= sz,ike/f
7

in floating-point arithmetic. Next we compute Z; = round(K;), the integer near-
est K;.
All further computations in cosqrt are modulo n. For each i we compute

P
S; = sz,ik‘g? mod n;
¢

here (P/£) mod n equals the product of P mod n and the multiplicative inverse
of £ mod n. Finally we compute

z = c;-z+#5/z

f'(m)w mod n

and _
y= Z(Si — Zi PY{(cqgm)* mod n.
i

We have 2% = y? mod n, and we finish by checking whether z — y has a factor
in common with n. If n is not completely factored, cosqrt continues on to the
next dependency from SOLNS.

10.1. Remark. It is the computation of 3, that forces the degree d to be odd. See
Section 13 for further comments.

10.2. Remark. Some of the ways in which f could conceivably be bad will show
up at this stage, though they will rarely affect the factorization. It could turn
out that # = y = 0 {mod n). In this case, either f'(m), ¢4, or one of the primes
p in RFB will have a factor in common with n.
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10.3. Remark. If the parameters #QCB and #IPB are not chosen large enough
then it may happen that z? # y®> (mod n). In general (see next section) all
values K; should be extremely close to integers; if they are not then #IPB is too
small.

10.4. Remark. We can compute N, without computing disc(g). For
disc(g) = (=1)3@=D/2g/ ()& =D/E=1) (moq f)

if £ is any inert prime. This computation must be performed in the number ring,
though the result will be an integer. Note that the factor (—1)%(4~1)/Z can be
omitted, if it is omitted for all £ consistently; for reasons explained in the next
section, disc(g) need be computed only up to sign.

11. PROOF THAT THE SQUARE ROOT WORKS

In this section we verify the assertions of the previous section, along the lines
of [4]. We retain all notation of the previous section.

We write N(§) for the norm of an element é of our number ring. We will need
three properties of the norm: N(6§') = N(8§)N(8'); N(g'(w)) = = disc(g); and
N{ecqa — bw) equals ci_l times the norm polynomial N(a, b) defined in Section 3.

Set v = g'(w)? [T(a5)(caa — bw), so that v, = v (mod £). If all has gone well
7 is in fact a square inside the number ring. Define g = 3, b;w’ as the unique

square root of vy such that N(fF) has the same sign as disc(g)cgd'm#sm; here

to ensure uniqueness we need the fact that d is odd. (This is what we call the
positive square root method.) Now

N(y) = N(g' @) N(]] (caa = bw))
(a,b)
= disc(g)zcgd_l)#s H N{a,b)
(a,b)

= disc(g)zcgi‘l)#s sz"?.
»

By choice of 8 we must have

N(B) = disc(g)cy"™#52 TT pr.
14

Thus Ny = N(B) (mod £). It is a pleasant fact of life that
N(B) = g =DI=1  (mod #).
We now work modulo £:

-2 a2
BN, = BN(B) = I@,@(l"—l)/(l—l) — 714-4(1~+w+lid 2 = 7ll+£(1+ +HNI2 = g, N,
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We will show later that N, cannot be divisible by £. Therefore 8 = 3; (mod £).
Of course this means that b; = b; ; (mod ¢) for each i.

The remaining computations described in the previous section are an appli-
cation of the Chinese remainder theorem. By construction k,P/¢ is congruent to
1 modulo £ and congruent to 0 modulo any ¢ # £. Define

R; = Z be,skz-?,
¢

so that S; = R; mod n. Since R; = by; (mod £) for each ¢, we must have R; = b;
(mod P). Define Z; = (R; — b;)/P.

We now show that Z! = Z;. Assume that the product P = [] £ is large enough
that —P/2 < b; < P/2 for each i. We must choose #IPB large enough that this
is satisfied. Now round(b;/P) = 0, so round(R;/P) = Z{. But by definition of R;

R  ~x—beike .
? = z{: 7 = I\z.

Therefore
Z{ = round(R;/P) = round(Kj;) = Z;

as desired.
Sob; = R, — Z!P=R; — Z;P = S; — Z; P (mod n). We substitute this into
the definition of y:

Y= Z bi(cgm)’  (mod n).
i
Define a homomorphism ¢ from Z[w] to Z/n by ¢(w) = cam. Then

p(g(w)) = g(cam) = f(m)c§™ =0 (mod n)

so ¢ induces a homomorphism, which we also label ¢, from our number ring
Z[w]/g(w) to Z/n. We compute modulo n:

¥l = (Z bi(cam)')’ = (SO(Z biw'))?
= ¢(8)? = p(v) = ¢(g' (w)® H (cqa — bw))
(a,)

= ¢'(cam)? [ (caa — beam) = (c§2 f'(m))?ck® [] (@ - bm)
(a,b) (a,b)

TECORO SRt | i
P

22,

Let us now prove the lemma that N, is nonzero modulo £. By construction
¢ does not divide disc(g) or c¢4. Furthermore, any prime p appearing in [] p®r
must come from a pair (p,r) in AFB, so that f has a root modulo p. But f is
irreducible modulo £. So N; has no factors divisible by £.
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11.1. Remark. As we noted above IPB must be large enough that P = J[ £ is at
least twice b; in absolute value. Certainly the coefficients of v are comparable to
(ca)#5 where ¢ reflects the coefficients of g and a reflects the values of @ and b in
our relations. Thus the coefficients of 3 are roughly comparable to (ca)#5/2. We
want P to be larger than this. We choose #IPB loosely based on rough estimates
of ca and the average value of £. At worst 2% and y? will not be congruent modulo
n and we will try a larger inert prime base. Notice that IPB can be chosen smaller
if the average £ is increased.

12. EXAMPLES

In this section we list some results obtained with our GNFS implementation,
and we describe the resources used for these results.

We used GNFS to factor the 145-digit number (2*88+1)/257. Its prime factors,
found at 14:50 EDT on 23 July 1992, are psy and pg7, where

pas = 1035 8178779260 14488 58713 38184 91976 75938 90347 64353

and

por = 300207375742 87773 82273 85792 23855 12797 76379 2723266417
65602 5021527116 98977 99529 50182 55653 756418 50817.

As of August 1992 this was the record non-networked factorization of any difficult
number, 1.e., any number with no factors under 40 digits.

We proved p4g9 and pe7 prime both with the Jacobi sum primality test imple-
mentation of Bosma and Van der Hulst 2] and with Morain’s ECPP implemen-
tation of the elliptic-curve primality test {12]. To see if the p £ 1 methods would
have worked, we factored psg £ 1 and pgy £ 1. It turns out that pse + 1 has the
large prime factor (pss + 1)/6, pas — 1 has the large prime factor

40 69106 49418 15554 84740 76559,

po7r + 1 has the large prime factor (pgy + 1)/474, and pe7 — 1 has a few large
prime factors, including

p2s = 64969 31962 87009 71159 63241

and
Phs = 1051271418 58017 46720 49443.

Actually it was not entirely trivial to factor pg7 — 1: after a few minutes of the
elliptic curve method we were stuck with the 66-digit number

346838 1582437308 8881132906 1576183794 4797477331 0360327973 7735819099.

To complete this factorization with the elliptic curve method took about three
more hours. We also factored the number on the MasPar, with both QS and
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(without any tuning) GNFS, which was the first truly general GNFS factoriza-
tion obtained with our implementation; QS succeeded in a few minutes, and
GNFS succeeded in a few hours. The prime factors of this 66-digit number are
50781286063727873, p2s, and phs.

At 21:47 EDT on 15 September 1992 we found the prime factors of the 151-
digit number (2°9% 4 1)/3. They are pss and a pg- different from the one above:

pss = 20497 44746 26356 86465 84566 17590 83859 0741501232 90052 98331
and

po7 = 425859933875 58828 5370502226 73947 72292 11842 80651 25200
5327005475 15369 56453 88200 68351 21461 75553 45713.

It is a debatable point whether or not this factorization beats the record set by
the factorization of the ninth Fermat number [8]: the composite factor (2°!% +
1)/2424833 of Fy has only 148 digits, but was just as hard to factor as the 155-
digit number 2°!2 + 1, whereas here we factored a 151-digit number for the price
of the 152-digit number 2503 4 1.

We set an unequivocal new factoring record by factoring the 158-digit
Mersenne number 25231, The prime factors, found at 19:30 EDT on 24 October
1992, are pgg and pgq, where

pes = 1601 8877831320 21186 10543 68536 88786 88932
8287011365 01444 93221 74680 39063

and
poo = 17141 7691861249 1981283170 96534 32211 64761 65056

71863 03450 94896 62036 78600 06486 97710 18595 04089.

We gratefully acknowledge Andrew Odlyzko’s help with the sieving and trial
division for this record factorization. He did about one third of the work on the
MasPar at AT&T Bell Laboratories; the MasPar at Bellcore did the rest.

We proved pss, ps7, pss, and pgo prime with the Jacobi sum primality test
implementation from [2].

In Table 1 our parameter choices and other details concerning these factor-
izations are reported. We did not include the 66-digit general factorization in
the table, as we spent no time tuning it. (We ended up not needing any of the
partial relations we generated!)

QOur choices for #QCB and #IPB were not tuned at all. Both RFB and IPB use
four bytes per prime, and AFB uses eight bytes per (p,r) pair. So for all three
numbers these files take at most a few MByte of disk space.

For the first number our MasPar sieving program, pnfls, processed over 2-10%
values of (g,¢,(p,7)) per second, or over 12,000 values per processing element
(PE) per second (where 2 - 108 &~ 199947 - 5888 - 66161/(4.5 - 24 - 3600)). This
figure should be taken as somewhat variable because we sieve only up to ¢ on the
rational side, and because smaller values of p required more than one hit on the
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n
# digits of n

f

m

maxRFB

#RFB

max AFB

#AFB

#QCB

#1IPB

L

¢ interval

{e}

#Q

min@

run time pnfls
space pnfls
#0UT

run time abra
space abra

# s

# fig’s

# pf’s

# pfq’s

# fp’s

# fpq’s

# pp’s

# ppq’s

size ABRA

# distinct f/'’s
# distinct partials
size MAT

total # cycles
sparse matrix
(run time sgauss)
dense matrix
size dense matrix
run time gauss
#S

run time cosqrt
# cosqrt trials
total run time
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TaBLE 1. Data on the factorizations

(2988 + 1)/257
148

X®+4

298

1300000
1000620
1300000
99827

100

163909

108

[~5000, 5000)
[1,5888]
66161

= 400000

4.5 days

24 KByte per PE
18- 108

1.7 days

4 KByte per PE
60253

32060
367402
20573
324296
141171
1681923

2057

721 MByte
65626
2409258

624 MByte
142657
208283 x 199947
(16 hours)
not kept

not kept

not kept

not counted
7.5 hours

3

7.5 days

(2503 + 1)/3
151

8X° +1

2100

1300000
100020
1300000
99827

100

163909

108

[—5000, 5000)
(1,7936]
82037

& 200000

6.5 days

24 KByte per PE
55 - 108

3 days

4 KByte per PE
51905

40999
348074
59192
289665
213419
1920259
239124

867 MByte
57728
2713637

709 MByte
149813
207541x 199947
(16 hours)
74100%x 73900
685 MByte
2.1 hours

& 257000

7.5 hours

5

12 days

2523 -1

158

8X°% ~1

9104

1600000
121126
1600000
120909

100

196586

108

[—14000, 14000)
[1,12800]

= 65000

a 700000

14 days

32 KByte per PE
13107

7 days

4 KByte per PE
not kept

not kept

not kept

not kept

not kept

not kept

not kept

not kept

not kept

> 70000

~ 3.5 10°
895 MByte
> 210000
280000x 242135
(2 days)
94000x 93900
1.1 GByte

5 hours

~ 283000

9 hours

3

22 days
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¢ interval from (6.7); we used primes as low as 23. In any case, as each processor
performs about 2 - 10° additions per second, it appears that we did the work of
about 16 additions per (g, ¢, (p, 7)). For the second number the sieving speed was
comparable. The version of pnfls that we used for the first two numbers took 2
bytes per ¢. At some expense in run time we reduced this to 1 byte in the version
of pnfls that we used for the third number. With slightly more space per PE,
this allowed us to almost triple the c interval. As a result the sieving speed for
the third number was somewhat slower, but the yield was much higher.

OUT, the binary output from sieving, uses 24 bytes per report. With well-tuned
cutoff parameters there are not too many more reports than actual relations.
For the first number we chose the cutoffs so as to eliminate many, perhaps most,
of the pp relations. For the other two numbers the cutoffs were chosen more
conservatively. This led to far fewer relations per report, but to more partials
and cycles. For the last number this could have led to storage problems for OUT.
We avoided this by sieving in batches of special ¢ values, removing OUT after
running abra for each batch, so that DUT never used more than eighty MByte of
disk space at a time.

For the first number abra processed 7500 reports per minute. A newer version
of abra, which was used for the other two numbers, achieved almost twice that
speed. Of course, many of the reports were cut out after trial division by the
primes of RFB and did not require division by the primes of AFB.

ABRA, the readable relations file resulting from abra, takes a lot of disk space.
The “q” suffix of the f’s, pf’s, fp’s, and pp’s (see Remark 7.1) means that
the factorization of a — bm ended up with a larger prime than ¢ from RFB. In
principle such relations have the “wrong” ¢ and are not useful, as they should
also be found with the “right” ¢. However, our sieving bounds were so high that
many relations are not actually hit during sieving by their special ¢’s; and our
sieving bounds were so low that many ff’s and fp’s were caught by a lower g than
their special ¢’s. The fact that our sieving bounds were simultaneously so high
and so low stems from the inherent inaccuracy of the logarithmic approximations
we used; see Section 6. Another explanation for the occurrence of relations with
the “wrong” ¢ is that we searched somewhat different areas of the (a,b) plane
for different q.

Because of the occurrence of fig’s, pfg’s, fpq’s, and ppq’s, duplicate relations
were found, which were removed by newmat before it constructed the quadratic
characters. The run time of newmat was reasonably short, and is not given in
Table 1. By far the most costly activity in this stage was I/O. The run time
for sgauss is parenthesized because this was the only substantial step that was
not carried out on a MasPar but on an ordinary workstation. We note that the
dense matrix for the second number is larger than the dense matrix involved in
factorization of the ninth Fermat number [8]. Its reduction produced considerably
more than 74100 — 73900 dependencies. For the last number the dense matrix
did not fit in the MasPar memory (which is only 1 GByte), so we had to upgrade
our in-core matrix eliminator to a more flexible but slower program that stores
intermediate results on disk. Again we found many more dependencies than the
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approximately 94000 — 93900 that we expected. This might be due to our very
conservative choice of #QCB.

Our cosqrt is not inherently faster than the simple method stated in [3] but
it is much more amenable to parallelization. The cosqrt run time in the Table
refers to the processing time per dependency. Most of this time was used to
compute ;.

We also factored a 123-digit composite factor of 241 + 1, as well as (113! —
1)/2630. Of course all these numbers could have been handled by SNFS, even
though Q(v/11), the field of choice for (11131 — 1)/2630, has class number 5, as
reported by R.D. Silverman.

13. FUTURE DIRECTIONS

The crucial problem in GNFS is finding a good polynomial. We cannot overesti-
mate the practical importance of searching for a polynomial a few digits better
than random. According to theoretical estimates [3] our polynomials are nowhere
near optimal. As polynomials improve, GNFS will become more and more com-
petitive with QS; a much better polynomial-finding method could make GNFS
the leader for general 100-digit numbers.

As indicated in Section 4, without m, from [3] we can in theory reduce the
coefficients by several digits. With my we can in theory reduce the coefficients
by twice as many digits. So we should incorporate my into our GNFS implemen-
tation as polynomial-searching methods improve.

The restriction that d must be odd is not at all helpful, as d = 4 appears to
be a very good choice for numbers around 100 digits. If d is even, is there a way
to uniquely specify 3, analogous to the requirement that N(3) have a certain
sign, that can be tested easily modulo any £7 Or is there a fast way to determine
the two values of f mod ££'7 If either of these problems is solved then we can
use even degrees. Of course, the method in [3] is reasonably fast, given a fast
multidigit multiplication routine; but it does not seem to parallelize easily.

Don Coppersmith has suggested a method that will work for even degrees at
the expense of some arithmetic on huge numbers (much less than in [3] for d > 1).
We illustrate it for d = 4 under the assumption that (say) b; is not divisible
by n. Compute v in the number ring modulo each £. By standard methods
compute some square root 3; of v in each of the finite fields (Z/¢Z)[w]/g(w). The
square roots need not be consistent over different £, but the products be ;b. 1 for
7 =0,1,2,3 are consistent. So we combine these products for § # 1 into values
b;b1 modulo n as in Section 11. Using the standard Chinese remainder theorem,
w1th arithmetic on huge numbers, we combine the squares b7  into a value b7.
We then choose one of the two square roots b; and have enough information to
put together a consistent b; mod n for j = 0,1,2,3 as desired. It remains to be
seen how much work this method will require in practice.

We have not yet incorporated certain practical improvements. There are a
significant number of “free relations” [9]; we should use them. We judge a special
g as productive if it is not in the bottom fraction of RFB, as per [13]; we should
pay more attention to the reduced lattice vectors. We should experiment with
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interleaving the factor bases as suggested in Remark 6.9. We should compute
the actual number of quadratic characters needed in various real examples, then
use only a few more than the maximum, rather than 100. We should use (p, cc)
pairs in the sieving when possible.

What can be said about the sizes of the coefficients ;7 It would be nice to
have accurate estimates—taking the distribution of (a,b) into account—so that
we could select #IPB sensibly. We have certainly wasted time on the MasPar
processing excessively many values of £.

Our parameters are not chosen optimally. In particular the algebraic factor
base should probably be much larger than the rational factor base for best results.
It would help greatly if we could quickly and reliably estimate, to within a few
percent, the number of relations that will be produced by the sieving, given POLY
and all relevant parameters.

It is tempting to try to construct pairs (a,b) with a high likelihood of being
prec-smooth. For instance, if a has a large factor in common with m, then a —
bm will also have that factor (this is equivalent to dividing b by the factor, as
suggested by R.D. Silverman). Unfortunately it appears that N(a,b) becomes
too big. Similarly if a/b is extremely close to a root of f then N(a,b) will be
small, but then a — bm will not remain small enough. It is not clear whether
considerations like these are the path to an improved number field sieve or merely
minor curiosities.
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THE ILLUSTRATION ON THE FRONT COVER

The illustration on the front cover is inspired by the Remark on page 53. It
depicts the spectrum of the subring of Z x Z[a] generated by (m,a). In the
informal explanation below we let ring stand for commutative ring with 1.

In contemporary algebraic geometry one associates with every ring a topolog-
ical space, called the spectrum of the ring. This is done in such a way that the
elements of the ring can be thought of as functions defined on that space. This
makes 1t possible to use geometric intuition when dealing with algebraic objects.
This is useful not only in algebraic geometry, but also in number theory, though
not yet in integer factoring.

As an example, consider the ring C[X,Y] of polynomials in two variables X,
Y over the field C of complex numbers. One can view elements of this ring as
polynomial functions defined on C x C, with values in C; and the spectrum of
C[X,Y] is, accordingly, almost the same as C x C.

As another example, take the ring Z of ordinary integers. In this case it is less
clear how the elements of the ring can be viewed as functions on some space,
but algebraic geometry tells us what to do: the space is just the set of prime
numbers, and each integer n is thought of as the function that maps a prime
number p to the residue class (n mod p). Thus, the spectrum of Z is essentially
the same as the set of prime numbers. In general, the spectrum of a ring is equal
to the set of prime ideals of the ring. For instance, if n is a positive integer, then
the number of points in the spectrum of Z/nZ is equal to the number of distinct
prime factors of n. For the illustration, we have assumed that n is the product
of two different prime numbers, corresponding to the two dots that form the
intersection points of the two curves.

The spectrum of a ring can be made into a topological space. This suggests a
pictorial representation of rings that is even less precise than pictures of topolog-
ical spaces in general. Nevertheless, several properties of a ring can be reflected
in a picture of its spectrum. For example, the rings Z and Z[a] have the prop-
erty that all of their non-zero prime ideals are maximal ideals. One expresses
this by saying that the rings are one-dimensional, and their spectra are accord-
ingly represented as curves, which are one-dimensional objects. The smoothness
of the curve that goes with Z expresses that Z equals the full ring of algebraic
integers in the field of rational numbers. The cusp and the node in the curve that
represents Z[a] indicate the possibility of various singularities when the ring is
not the full ning of integers in the number field.

The “small” prime ideals of Z and Z[a], which play an important role in the
number field sieve, are found near the “beginning” of the respective curves.

The spectrum of the product ring Z x Z[a] would just be the disjoint union
of the spectra of Z and Z[a]: two separate curves without intersection points.
Restricting to the subring generated by (m, @), which has index n in the full
ring, comes down to gluing the two curves together in two points. Those two
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points correspond to the two prime divisors of n.

To factor n one needs to separate the two points of the spectrum of Z/nZ from
each other. In terms of the picture, the number field sieve attempts to achieve
this by pulling the two curves apart at one intersection point while keeping them
joined at the other.

The main technical tool of the number field sieve is a two-dimensional sieving
process. This is represented in the background of the picture, which shows two
two-dimensional lattices and their intersection.

An illustrated introduction to spectra of rings can be found in Schemes: the
language of modern algebraic geometry by D. Eisenbud and J. Harris (Brooks/
Cole, 1992).
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Projective line, 85
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RFB, 105, 106, 108

Ring homomorphism, 15, 23, 53, 59,
88, 95, 119

Ring of integers, 22, 38, 39, 40, 50, 57,
59, 63, 89

Run time, 9, 12, 13, 30-33, 40, 51, 75,
77, 80-84, 100-101, 111-112

Scheme, 128

Search bound, 21

Search for prime elements, 23

sgauss, 105, 116

Sieve, 7, 25-28, 45-46, 55-60, 108~
114

Sieve-smooth, 108

Sieving by rows, 46, 110, 112

Sieving by vectors, 46, 110

SIMD, 103, 112

Simple module, 65

Singular integers, 2

Small prime, 43

Smooth, 12, 16, 95, 104

Smoothness bound, 16, 17

Smoothness probability, 31, 76-78, 87

SNFS, 103

SOLNS, 105, 116

Special number field sieve, 11-42, 51,
103

Special prime, 43, 109, 113

Spectrum, 127

Square root, 40, 53, 70-76, 95-102,
116-120, 124

Trial division, 8, 12, 27, 86, 114

Two-thirds algorithm, 30, 31, 78

Unique factorization, 4, 15, 22, 24, 40,
50, 57, 63

Unit, 5, 16, 17, 20, 24, 29, 30, 50

Unit contribution, 29, 34, 35

Wanted list, 14
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