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Abstract

RSA is a very popular public key cryptosystem. This algorithm is known to be secure, but this fact
relies on the difficulty of factoring large numbers. Because of the popularity of the algorithm, much
research has gone into this problem of factoring a large number.

The size of the number that we are able to factor increases exponentially year by year. This fact is
partly due to advancements in computing hardware, but it is largely due to advancements in factoring
algorithms. The General Number Field Sieve is an example of just such an advanced factoring algorithm.
This is currently the best known method for factoring large numbers.

This paper is a presentation of the General Number Field Sieve. It begins with a discussion of the
algorithm in general and covers the theory that is responsible for its success. Because often the best way

to learn an algorithm is by applying it, an extensive numerical example is included as well.

I. INTRODUCTION

The General Number Field Sieve is an algorithm for factoring very large numbers. Factoring is very
important in the field of cryptography, specifically in the RSA cryptosystem.

The Rivest, Shamir, Adleman (RSA) cryptosystem is a scheme for encrypting and decrypting messages,
and its security relies on the fact that factoring large composite numbers is a very hard, computationally

intensive task. The RSA algorithm works in the following way:

« Choose two large primes andgq. Setn = pq.

» Choose a random satisfyingl < e < n.

e Setd=ec! (mod (p—1)(qg—1)).

o A messagen is encrypted ta: = m® (mod n). Note that onlye andn were needed to compute

e andn are known as the public key and are public information.



« An encrypted message is decrypted by evaluating? (mod n) = m. Becaused can decrypt

messages, it should be kept sectkets known as the secret key.

This system can be broken by factoringinto p and ¢. If n is factored thenp — 1)(¢ — 1) can be
found and from this/ can be computed. Therefore, any adversary that fact@an find the private key
d and with it decrypt any encrypted message.

Because the security of RSA is so dependent on an adversary’s inability to factor a large composite
number, much research has been done to find ways to quickly factor such numbers.

The Number Field Sieve (NFS) is the fruit of that research. This is an algorithm for factoring composite
numbers that is currently the best known method for factoring numbersiovedigits. The NFS has
two common variations: the Special Number Field Sieve (SNFS) and the General Number Field Sieve
(GNFS). The SNFS is an algorithm that can quickly factor large numbers but works only for numbers
of a special form. The GNFS works for all composite humbers, but this flexibility is at the cost of the
GNFS being slightly slower than the SNFS. However, because of its increased flexibility, the GNFS is
the method of choice in many factoring challenges. For this reason, it is the GNFS that will be examined

in this paper.

[I. THE GNFS ALGORITHM

A. The Difference of Squares Factorization Method

Suppose that one wants to factor a composite numbeand for two numbers,r € Z, s?> = r2

(mod n). Thens? —r? =0 (mod n). Supposen has the prime factorization = pq. Then
pa | (s*—1?)
—=pq|(s—r)(s+r)
= pl|l(s—r)(s+r)andq|(s—7)(s+7)
A standard result from number theory states that fifab and ged (b, ¢) = 1 thenc | a. This implies
that the following conditions must hold:
{ pls+r) orpl(s—7)
ql(s+r)orql(s—r)
The above implies that it is not possible that (s + ) andp { (s — r). Similarly, it is not possible
thatq 1 (s +r) andq 1 (s — r). Table | summarizes the possibilities ferandq dividing s +r ands — r.
As an example of how to read Table |, suppese(s+ ), p | (s—7), gt (s+7), andq | (s — 7).
ged(pg, s + 1) € {1,p,q,pq}, the divisors ofn = pq. Sincep | (s+7r), p | ged(pg, s + 7). Now,



TABLE |

POSSIBILITIES FORp AND ¢ DIVIDING S+ 7 AND s — 1

Possible Divisibility Scenarios GCD Results
pls+r) pls=r) q|(s+7r) q|(s—r) | ged(pg,s+7) gcd(pg,s—r) | Successful Factorization

No Yes No Yes 0 Pq

No Yes Yes No q P *
No Yes Yes Yes q pq *
Yes No No Yes P q *
Yes No Yes No pq

Yes No Yes Yes pq q *
Yes Yes No Yes P pq *
Yes Yes Yes No pq P *
Yes Yes Yes Yes pq pq

pq 1 (s+r) because; (s + r) and hence the only value thgtd(pq, s + r) can assume is. Similarly,
ged(pg, s—r) = pq because bothp | (s — r) andq | (s — r). Because one of the gcd’s was able to isolate
eitherp or g, this scenario led to a successful factorizatiomot pq.
If it is assumed that all of the combinations in Table | are equally likely #fer 72 (mod n) implies
that eitherged (pq, s + ) or ged (pg, s — r) gives a nontrivial factor oh = pg with probability 2/3.
Although it is not guaranteed that havieg = r? (mod n) will give a nontrivial factor ofn, due to
this high probability, one would not expect to have to find many pairssatisfyings? = 72 (mod n)

in order to factorn.

B. Free Parameters in the GNFS

The GNFS algorithm includes two free parameters that must be chosen to meet certain criteria. These
free variables will be used throughout the derivation of the GNFS along with a composite intéugr
is to be factored. The first such parameter is a polynorfiiaR — R with integer coefficients, and the
second parameter is a natural numbeg N that satisfiesf (m) =0 (mod n).

In practice, findingf andm such that the above hold is a simple matter so longnas chosen first.

Consider the base: expansion ofn.

n = admd + ad,lmd_l +...4+ag



By defining the functionf as
f(z)= agr® +ag_ 127+ .. 4 ao

f(m) = n. Thereforef (m) = 0 (mod n), and sof andm meet the above criteria. Let, m, and

the compositen be given throughout this document.

C. The RingZ[d]

The GNFS works because of the properties of a ring callgd. This ring will now be explained.
Let # € C be a (possibly complex) root of the polynomialfrom Section 1I-B. Letd be the degree

of the polynomialf. The spacéZ|f] is defined as follows.
Z[0] = {x cx=ag_ 107" + ag_20%"2 + ... + ag for {a;} C Z}

Theorem 2.1: With multiplication defined as the normal polynomial multiplicafdé, forms a ring.

The definition of this ring causes some strange behavior when elements are multiplied. To see this, let
A, B € Z[f]. Let a(x) andb(x) be two polynomials such that(#) = A andb(d) = B.
By the division algorithma(z)b(z) = e(x) f(x) + c(x) wheree(z) andc(x) are two polynomials with

integer coefficients and the degree«df) is less than the degree ¢f DefineC' = ¢(0).

AB = a(x)b(x)

Note that by construction, the degree®fis less than the degrekof f. Then obviouslyC € Z[6]. *

This suggests that the multiplication of two polynomials evaluatetdsitould be carried out as follows

=0 . b(l‘)

a(x)

= [a(2)b(x)  (mod f(z))],—

Even if the degree of’ had not been less thah C could have been reduced modyldo something with degree less than

d. C has an equivalent element with degree less ihaso strictly speakingC € Z[6] in this case as well.



It is very important to take note of this multiplication method because it will be used extensively in

examples to follow.

D. The Heart of the GNFS Algorithm

The fundamental reason that the GNFS algorithm will factor composite numbers will be explained in
this section.

Suppose one can find @ ¢ Z[f] that is a perfect square andyd € Z that is a perfect square.
Then one can produce a difference of squares congruence that can be used ta fastdetailed in

Section II-A. This works because of the following theorem.

Theorem 2.2: Given a polynomigl(z) with integer coefficients, a rodt € C, and anm € Z/nZ

such thatf(m) =0 (mod n), there exists a unique mapping: Z[0] — Z/nZ satisfying

1) ¢ (ab) = ¢ (a )¢(b) Va,b € Z[0]
pla+b)=¢(a)+¢(b) Va,beZ[f]
p(1)=1 (mod n)

4) ¢ (0) =m (mod n)
(The above conditions also imply thatza) = z¢ (a) Va € Z[0],z € Z.)

One can apply this theorem to obtain a difference of squares congruence in the following way: suppose

there exists a finite sdéf of pairs of integerga, b) such that

H (a4 b8) = 32 and H a+ bm) = 3>

(a,b)eU (a,b)eU



for 5 € Z[0] andy € Z. Let z = ¢ (). Then working congruent module,

1'2:

Thus a relationz? = 32 (mod n) has been created and by Section II-A, there is a probability/af

that this will lead to a factorization aof.

E. Finding a perfect square if[f] and in Z

The following sections will discuss in length procedures for finding perfect squarg®jrand inZ.
The method for finding both squares is based on a particular strategy. In order to motivate the discussion,
a numerical example using the same strategy is given below.

Suppose one wishes to find a perfect squarg.ifrurther suppose that for some reason, this task is
not as simple as taking an arbitrary integer and squaring it. Also, suppose that there are numbers known

for which all of their prime factors are less than or equal o Let this set of numbers be
{455,39270, 770, 429, 1616615, 3990, 106590, 187, 19019} (1.1)

These numbers have the property that all their prime factors are contained in the set
{2,3,5,7,11,13,17,19} (11.2)

and all exponents occurring in the prime factorizations are equal to 1. The factorization of each number
is illustrated in Table II.

Each number in the array has a unique prime factorization involving only the primes in (I.2). Therefore,
each number in Table Il can be represented with a vector composed of all the exponents occurring in

the prime factorization. Note that this means that there will be one entry in the vector for each prime in



TABLE Il

FACTORS FOR THE NUMERICAL EXAMPLE OFSECTION II-E

Number Factorization
2 3 5 7 11 13 17 19

455 * *

39270 * ok x Kk * *
770 * * Kk x

429 * * *
1616615 *x  x x * * *
3990 * ok Kk % *
106590 | * * % * * *
187 * *
19019 * K * *

(I1.2). For example
455 = 203%5'7'11913117°19°
455 < (0,0,1,1,0,1,0,0)

Under this notation, multiplying two numbers together will yield an integer with an exponent vector

equivalent to adding the exponent vectors of the two numbers.

770455 < (1,0,1,1,1,0,0,0) + (0,0,1,1,0,1,0,0)

—

(1,0,2,2,1,1,0,0)

If a product of a subset of the numbers in (I.1) results in an exponent vector with all even entries,
then the product is a perfect square.

This is equivalent to finding a vectdu,, as, . . ., ag]” such that

[0 0 1
111

1 01
1 10

4T

a

a2

ag

0
0

(mod 2) (1.3)



where the matrix on the left is a result of the relationship

455 (00011010 0]

39270 11111010
—
| 19019 | 0001110 1]

Because (Il.1) is a system @&f equations and unknowns, a (nonunique) solution does exist. One
solution to this equation i@l,ag,ag,a3,a4,a5,a6,a7,ag,ag]T =[1,1,0,0,1,1,0,0, O]T. This implies
that455 - 39270 - 1616615 - 3990 is a perfect square. Indeed, a simple calculation showsitHiat39270 -
1616615 - 3990 = (339489150).

This method for finding perfect squares is of great importance in the GNFS, and ideas used in the

above example will be used in later sections.

1) Definition of Smoothness @£¢] and Z:

Definition 2.1: A rational factor base is a finite collection of prime numbers.

In this paper, only rational factor bases of small, consecutive primes are considered. Therefore, for the

purposes of this paper, a rational factor base can be thought of as a set
{p:pisprimeand p < M} forsome M € N

Definition 2.2: An integel € Z is said to be smooth over a rational factor baReif R contains all

of the prime divisors of.

Note that in the numerical example of Section II-E, all of the numHe¥s, 39270, ...} (equation
I1.1) were smooth over the rational factor bajge 3,5,7,11,13,17,19}.
It is now necessary to define an algebraic factor base, a concept very similar to a rational factor base.

However, some things must be assumed in order to properly define an algebraic factor base.

Definition 2.3: An algebraic factor base is a finite §et+ b0} C Z[0] where fora, b € Z, eacha+ b6
satisfiesV (a,b) , B ¢,d € Z[f] such that c-d = a + bf. (This condition causes + b to be what is

commonly called a "prime ideal)



Definition 2.4: An elemente Z[0] is said to be smooth over an algebraic factor baséf 3 W C A
such that[[ . e (c+df) = L.

The definition of an algebraic factor base involves elementsbd € Z[0]. Z[6] is a difficult space
to represent on a computer, and hence development of an algorithm bag&€] amould be difficult.
Fortunately, this concept of an algebraic factor base has an analog that gives a way to more easily

represent elements+ b0 € Z[6)].

Theorem 2.3: Lef(x) be a polynomial with integer coefficients anddet C be a root of f(x). Then
the set of pairs{(r, p)} wherep is a prime integer and € Z/nZ with f(r) = 0 (mod p) is in bijective

correspondence with the set@of- b6 € Z[6] that satisfy the criteria for being in an algebraic factor base.

This theorem can be used to represent the algebraic factor{baséf} as a finite set of pairs of
integers{(r,p)}. While not every element oZ[f] can be represented as a pé&itp), what can be

represented is sufficient to meet the needs of the GNFS.

2) Finding Smooth Numbers: Sieving Techniquiesorder to find a square i#i[f] and inZ as required
by Section II-A, it first necessary to find pairs of numbéusb) such thata + b0 is smooth in some
algebraic factor base and+ bm is smooth in some rational factor base.

Let R be an arbitrary rational factor base represented by the set of pfigneand let.4 be an arbitrary

algebraic factor base i#i[f] represented by the set of paif&-;,p;)} as described by Theorem 2.3.

Theorem 2.4: Forc + df in an algebraic factor base and that has the representatian), ¢ + d6
dividesa + b0 € Z[0] if and only ifa = —br (mod p).

Theorem 2.5: A finite séf of pairs (r,p) € Z[0] represents a complete factorization of- b6 if and

only if [T, pyev Pi = () f(—a/b) whered is the degree of .
Theorem 2.6: A prime numberwill divide a + bm if and only ifa = —bm (mod q).

Using the above three theorems, smooth elemen@fandZ can be found in the following way:

(8) Fixb e 7Z, and letN be an arbitrary positive integer.
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(b) Leta vary from —N to N. Create two arrays: one for the various values af b6 that will result

and another for the various valuesof bm that will result. This concept is illustrated in Figure 1.

Fig. 1. Sieve Arrays
—N +bo —N +bm

(~-N+1D+6| | (-N+1)+m

(N — 1)+ bd (N = 1)+ bm
N + b6 N +bm

(c) For eachg; in R, g; will divide a + bm if and only if a = —bm (mod ¢;). Find values ofa for
which a = —bm + kq; for somek € 7Z, and for each value af make note of this factor of + bm
in the sieve array. Repeat this process for evgry R. When finished, make note of all tlhet- bm
in the sieve array that are completely factored by this method. Thasém are smooth irR.

(d) Proceed in an identical manner for the- b0 sieve array. An(r;, p;) € A dividesa + b6 if and
only if a = —br; (mod p;). Find values ofu satisfyinga = —br; + kp; for somek € Z. For each
a found, make note of thigr;, p;) factor of a + b6 in the sieve array. When finished, for alk- b0
in the sieve array there will be a list ¢f;,p;) factors. If [[ p; = (—b)?f(—a/b) then this list of
factors is a complete factorization and hemce b0 is smooth over the given algebraic factor base
A.

(e) Compare the two arrays entry by entry. At any position, if bothdhebd and thea + bm are
smooth then thiga, b) is what was sought after. Save it for later use.

One can repeat this procedure by alterintp find as many(a, b) satisfying the required criteria as

may be needed.

3) Verifying That Elements d£[f] and Z Are Squares:From Section II-E.2, one can find smooth
a + bm and smooth: + b8. A method similar to the numerical example of Section II-E to find squares
in Z6 and Z will be used. However, before this is done it is necessary to develop methods for testing
for squareness i and Z[6)].

It is relatively easy to determine whether or not an arbitrary Z is a perfect square. In fact, the
methods used in the GNFS will give access to the prime factorizationfarf the s that is to be tested

for squareness. In this casejs a perfect square if and only if every exponent occurring in the prime
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factorization is even. That is, for every exponenin the prime factorization, it = 0 (mod 2) thens

is a perfect square iff. Testingl € Z[#] for perfect squareness is more complicated.

Theorem 2.7: Lef € Z[0] have the factorizatiorn = (a1 + 16)* (a2 + b260)* ... where for every
J, aj + b;0 satisfies the criteria to be in an algebraic factor basel 1§ a perfect square irZ[f] then
Vi,e; =0 (mod 2).

This is one such condition that a perfect squéare Z[0] will satisfy. However, it is not the only

condition.

Definition 2.5: The Legendre symbég) for a € Z and p a prime integer is defined as:

1 ifz2=a (mod p) has a solution
a
() =4 —1 ifz2=a (mod p) has no solution

0 ifpla

Theorem 2.8: LeU be a set of(a, b) pairs such thaf] [, ,)c;; (a + b0) is a perfect square irZ[6)].
Then for any(s, ¢) with ¢ prime ands given as Theorem 2.3 witfs, ¢) 1 a + b6 for any (a,b) € U,

H <azbs> 1

(a,b)eU

Note that in the above theorerts, ¢) { a + b6 implies thata # —bs (mod ¢). Thusq { a + bs and so
(%”5) # 0. This is an important observation to make as it will be used in later sections.

The above two theorems give necessary but not sufficient conditions for an elem@jsf o6 be a
perfect square. That is, if the goal is to show that something is a perfect square, then the above theorems
are the converse of what is needed.

In practice, one determines if an elemeért Z[0] is square in the following way:

(a) Verify that for a factorization
l= (a1 + 1)19)61 (CLQ + b29)62 ...

e; =0 (mod 2) for every.
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(b) Let Q be a set of pairs of numbe(s, ¢) with ¢ prime ands given as in Theorem 2.3. Choogg

such that(s, q) 1 a + b for everya + b6 occurring in the factorization of. Verify that for every

(s,q) € Q,
1 (%)=

(a,b)eU

for U defined as in Theorem 2.8. The €&ts called the quadratic character base and éagh € O

is called a quadratic character.
(c) If the above two conditions are satisfied, tHeis probably a perfect square #[0]. Note that to

increase this probability, one should increase the number of elemeds in

In summary, there are now developed methods for testing for perfect squefés snd Z.

4) Putting It All Together: From Smooth Numbers to Square Numb¥gsito this point methods are
developed to find a set of numbdrs= {(a,b)} such thata + bm is smooth in a rational factor bage
anda+ b is smooth in an algebraic factor bade This section will describe how to use this information
to find a square irfZ and inZ[f]. Throughout, ideas similar to the numerical example of Section II-E
are used.

Let the rational factor bas® havek elements, and let the algebraic factor bakdave! elements.
Choose an arbitrary quadratic character b@seith « elements’R and.4 will be used to find a square
in Z andZ[#], and Q will be used to verify that the result is a square.

Each(a,b) € U can be represented as a row vector With k£ + [ + u entries. The first entry should
be equal to0 if a + bm is positive andl if a 4+ bm is negative. The next entries are given to the
exponent vector modulo 2, as described in Section II-E. The followiegtries are used for indicating
whether a particular element of dividesa + b9. The exponent on this element gf that appears in
the factorization modul@ is what should appear in each of thdsentries. The finak entries are used
in conjunction with the quadratic character ba@eEach entry is set t0 if for the appropriate(s, ¢),
(%”s) = 1. Otherwise, set the entry th

In summary, let the rational factor bage be {¢,to,...,t;}, let the algebraic factor basd be
{(r1,p1), (r2,p2), ... (r1,p)}, and let the quadratic character badebe {(s1,q1), (s2,92), - - - (Su, qu) }-
For a given(a,b), a + bm has a factorizatiort{'¢3* - --t;*. a + b# has the factorization that can be

represented a1, p1)7t (ra, p2)’2 - - - (11, pr) 7.
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Then the pair(a, b) should be represented by a row vector of the following form:

0,a+bm >0
er  (mod 2) e (mod 2) e (mod 2)
1, else
fi (mod 2) fo  (mod 2) fi  (mod 2)
atbsi | _ atbss | _ atbs, |\ _
o.(sf) =1 fo() =l o) =
1, else 1, else 1, else

(I1.4)

Now suppose & C U is found such thaf] , , ¢\ (a + bm) is a perfect square @ and[ ], )<y (a + b0)

is a perfect square iZ[6]. Then the following must all hold:

O,CLj—l-bij 0

(@) T4, 5,)cv(aj + bjm) must be positive. Let; = . Note that this is just the

(b)

()

(d)

1, else
first entry in the vector fo(a;, b;). Then[], , ey (a; +b;jm) is positive if and only ify c; = 0

(mod 2). This insures that the number of negative numbers in the product is even. Because
raised to an even power is the product will be positive.
Every exponent occurring in the prime factorizatior] §f, , ycy (a;+0b;m) must be even. Because
V j,a; + bym is smooth onR, the product will also be smooth oR. Furthermore, ife; is
the corresponding exponent appearing on any R in the prime factorization ofz; + b;m,
then the exponent appearing in the prime factorization of the produ@(g’b])ev e;j. Thus, for
[L(a, b,)ev (aj + bjm) to be squareyt € R,
Z e; =0 (mod2) & Z (ej (mod?2))=0 (mod2)

(aj,b;)eV (aj,b;)eV
Eache; (mod 2) in the sum on the left is an entry in the vector representatiofuof).
Every exponent occurring in the prime ideal factorizationl—p(gj7bj)ev(aj + b;0) must be even.
Similar to the abovey j, a; + b;6 is smooth inA implies that[], , ycy (a; + b;0) smooth inA.
Let a; + b6 have the representatidin, p1)® (r2, p2)%2 . .. (ri, i) Then] [, ey (a; + b;0)
has the representation

(7“17191)Z e (7"2,2?2)2 G2 (Tl,pz)z c

Each exponent in this expansion is required to be even. Vhu}_ e;, = 0 (mod 2). This implies
thatV i, (e;, (mod 2)) =0 (mod 2). Note that eacle;, (mod 2) is just an entry in the vector
representation ofa;, b;).

For every(s,q) € Q. Il p,)ev (ajzbjs> must bel. Becausey j, (%’7:5) € {1,—1}, in order

for I1(a, »,)ev (“J‘*qbﬂ's) = 1, the number ofj for which (%) = —1 must be even. For a given
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(s,q), the vector representation ¢i;,b;) has an entry corresponding to

Q(ﬂ$ﬁ):1

1, else

If the sum of these entries is even then the numbei'ofor which (%qus

) = —1 will be even.
Hence N
aj+b;s) _
H <aj+bjs>:1(:) Z 07<T)_1 =0 (mod2)
(az.b;)EV a (a;.0,)ev | 1;else

Because alli of the above conditions must hold simultaneoudly,, , e (a; + bjm) is a perfect
square inZ and ], ,ev(a; + b;0) is a perfect square i[¢] if and only the sum of the vector
representation of eactu;,b;) € V' is equivalent to the zero vector moduto

Let the setU/ of smooth(a,b) havey elements. LetX be ay x (1 + k + [ + «) matrix with each row
being equivalent to the vector representation of @) € U.

Finding aV C U in order to get perfect squares is equivalent to finding a column vetwuch that

XT| 7| =0 (mod2) (1.5)

If y > 14 k+1+ u, this congruence is guaranteed to have a nontrivial solution
Because of this congruence modupevery 4; is in the set{0,1} (the residue set o). Let the
subsetV’ C U be defined byv(a;,b;) € U, (a;,b;) € V if A; = 1. Then[], ey (a; +bym) is a

perfect square itz and ][, , )y (a; + b;0) is a perfect square i [6].

F. A Summary Of The Above Methods
The GNFS algorithm to factor a composite numhetan be summarized as follows:
(@) Choose anm € Z and find a corresponding satisfying f(m) = 0 (mod n) by the basen
expansion method.
(b) Define a rational factor basR such thatR has finitely many elements antk € R, = is prime.
Let £ be the number of elements R.
(c) Define an algebraic factor basé such that4 has finitely many elements andr,p) € A, p is

prime andr satisfiesf(r) = 0 (mod p). Let ! be the number of elements iA.



(d)

(e)

()
()

(h)
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Define a quadratic character ba@ewith finitely many elements so thaf(s,q) € Q, ¢ is prime

and f(s) = 0 (mod g). Ensure that/(s,q) € Q, (s,q) € A. Let u be the number of elements in

Q.

For a fixedh € Z, build sieve arrays as in Section II-E.2. Note the elements of the sieve arrays that
are smooth and also for these elements record whichR and which(r;,p;) € A are divisors.
Repeat this process for variobisas necessary until more than+ k£ + [ + u pairs (a, b) have been
found such that + bm is smooth inZ anda + b6 is smooth inZ[f]. Let y be the number of
smooth(a, b) found.

Populate ay x (1 + k£ + 1 4+ m) matrix X as described in Section II-E.4.

Solve the equation

Ay

A
xT .2 =0 (mod 2)

Ay
for {Ay,..., A,}. Let the subseV C U be defined by/(a;,b;) € U, (aj,b;) € V if A; = 1. Then
[L(a, b,)ev (aj +bjm) is a perfect square i and] ], , e (a; +b;0) is a perfect square iz[f].
With the mappingp from Section 1I-D,

ng( H (a—i—b@)) = H (aj +bjm) (mod n)

(a;,b;)eV (a;,b;)€V
Use this to attempt to factor using the difference of square factorization method of Section II-A.

If no factorization is found, go to (b) and repeat this process.

1. AN EXAMPLE

In this section the GNFS is used to factor an example number. To help solidify the above concepts,

this example will be presented at length.

Suppose one desires to factor the number 45113. A preliminary step is to verify that the number is

composite. Assume some primality test has been donelahnid is known to be composite. The GNFS

can then be used to factdp113.

The first step in the GNFS is to pick an integarand a polynomialf as discussed in Section II-B.

Let m = 31. f must be chosen to satisff(m) = 0 (mod n), but by considering the base-expansion

of n this task is easily done.

45113 =313 +15-312+29-31 +8



Define f(x) = 3 + 1522 + 292 + 8. Then f(m) = f(31) = 45113 = n, and thereforef(m) = 0
(mod n).
The next task to be done in setting up the GNFS is to pick the rational and algebraic factor bases. For

the rational factor bas®, simply consider all primes belod0.
R =1{2,3,5,7,11,13,17,19,23,29}

Any algebraic factor basd can be represented by pairs p) wherep is a prime and- satisfiesf(r) = 0
(mod p) (Theorem 2.3). Arbitrarily, lep be any prime less thadv and find a set; such that/i, f(r;) =0
(mod p). For eachr;, add an entry(r;, p) to .A. Repeating this for alp in the set of primes less than

90 yields
A = {(0,2),(6,7),(13,17),(11,23), (26,29), (18,31), (19, 41), (13,43), (1,53), (46, 61),
(2,67),(6,67),(44,67), (50,73),(23,79), (47,79), (73,79), (28, 89), (62, 89), (73,89) }

Note that theR chosen hag = 10 elements and thel chosen has = 20 elements. The cardinality of
these sets will be important later.

In addition to a rational factor base and an algebraic factor base, a quadratic character base must also
be found. Choose primesnot occurring in the algebraic factor base and for eactind all s satisfying
f(s) =0 (mod q). For eachs, add the pair(s, ¢q) to the quadratic character base. In this example, the
primes97,101, 103, 107 did not appear ind. Using these primes, the quadratic character 2se then

computed to be
Q = {(28,97),(87,101), (47,103), (4,107), (8,107), (80, 107) }

Note thatQ hasu = 6 entries. By Section II-E.4, more thant k + [ + « = 37 pairs(a, b) with a + bm
smooth inR anda + b smooth in.A must be found.

The GNFS is now set up. The first step in executing it is to construct sieve arrays to find smooth
a+ bf and smoothu + bm. Let b run from1 to 41 and leta run from —400 to 400. Loop over the list of
possibleb, and for eachb, construct two arrays witli2 - 400 + 1) entries. Use these arrays as described
in Section II-E.4 to find the values af for which a + bm anda + bf are smooth. If both of these are
smooth for the same, save this(a, b) pair. Repeat this with eadhranging from1 to 41. This results in
38 pairs (a, b) satisfyinga + bm smooth overR anda + b smooth overd. See Table 1l for a complete
listing.

It is relatively easy to check that any of these pairs is smooth. for example, consider t&lpair ).

a+ bm = 119 + 31 = 11 factors as2? - 5 - 23. Because all of these numbers are™®) a + bm is
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TABLE 1lI
SMOOTH PAIRS (a, b) FOUND BY SIEVING
(-73,1) (-13,1) (-6,1) (-2,1) (-1,1) 1,1) (2,1) (3.1)
(13,1) (15,1) (23,1) (61,1) 12 (3,2 (33,2) (2,3)
(5,3) (19,4) (145) (375) (3135) (11,70 (157) (7.9
(119,11) (-247,12) (175,13) (5,17) (-1,19) (35,19) (17,25) (49,26)
(375,29)  (9,32) (1,33) (7837) (541) (9.41)

smooth overR for this particular(119,11). It can be shown that the following pai(s, p) € A divide
a+ b0 = 119 + 110: {(19,41),(44,67),(62,89)}. By Theorem 2.5, this is complete factorization of
a + b0 if and only if 41 - 67 -89 = (—11)3f(—119/11). The reader can verify that both sides of this
equation are equal in absolute value. (Theorem 2.5 can be weakened to equality in absolute value with
no consequences.)

The next step in the GNFS is to set up the matrix equation of (I.5). This requires that the Aatrix
be found, a relatively straightforward procedure that can be done using the definition of each Xow of

as in (I1.4). For example, the row of corresponding to the pair19,11) is

exponents on the factors of a+bm for use with Q
[ 0 , 0,0,10,00,00,10 ,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,7, 1,0,0,0, 0]

sign of a+bm exponents on the factors of a-+b0

Using X, the equation

_ " ;
Ay
xT =0 (mod 2)
| Ay |
can be solved fofA;, A,2, ... ,Ay]T. Note that becaus& has more rows than columns this solution

will not be unique. One such solution is
[Ay,...,4,)" =10,0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0, 1,0,0,0,0, 0, 0]
This implies that for the following pairéa, b)

Vv = {(-2,1),(1,1),(13,1),(15,1),(23,1), (3, 2), (33, 2), (5, 3),

(19,4), (14,5), (15, 7), (119, 11), (175, 13), (—1, 19), (49, 26) }
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[L(ap)ev (a+bm) is a perfect square i and] ], ;e (a+bmb) is a perfect square ii[¢]. Evaluating
this yields
H (a+bm) = 45999712751795195582606376960000
(a,b)eV

I (@+00)

(a,b)eV

58251363820606365 - 6% + 149816899035790332 - § + 75158930297695972

Square roots irZ andZ[f] now need to be computed. The reader can verify that

2553045317222400° =[] (a+bm)
(a,b)eV

(108141021 - 6% + 235698019 - 6 + 62585630)2 = H (a+b0)
(a,b)eV

Using the mapping from Theorem 2.2,
10} (108141021 - 62 + 235698019 - 0 + 62585630) = 111292745400
Therefore, using an argument presented in Section 1I-D, one can conclude that
111292745400% = 2553045317222400> (mod n)
Attempting to factorn with this relation yields

ged(45113, 111292745400 + 2553045317222400) = 197

ged (45113, 111292745400 — 2553045317222400) 229

Therefore,n = 45113 = 197 - 229. The GNFS has successfully factored

IV. CONCLUSION

The GNFS is a very sophisticated algorithm for factoring composite numbers. While the algorithm
is complex, it does successfully factor a number relatively quickly. Due to the setup steps necessary,
the GNFS is significantly slower than other popular factoring methods for small composite humbers.
However, for large composite numbers the time spent in setting up the GNFS is negligible and the
algorithm is dramatically faster than any other factoring algorithm.

This point was proved on January 18, 2002 when a team of researchers from the University of Bonn
successfully factored @55 digit (512 bit) composite integer ir3.7 months using the GNFS. Had this

512 bit number been a public key in the RSA cryptosystem, the security of the system would have been
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compromised and an adversary would have gained access to the private key. The development of the
GNFS has brought into question the security of the RSA cryptosystem. Because of the widespread use

of RSA, the existence of the GNFS should cause any computer security expert to worry.
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