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Abstract

RSA is a very popular public key cryptosystem. This algorithm is known to be secure, but this fact

relies on the difficulty of factoring large numbers. Because of the popularity of the algorithm, much

research has gone into this problem of factoring a large number.

The size of the number that we are able to factor increases exponentially year by year. This fact is

partly due to advancements in computing hardware, but it is largely due to advancements in factoring

algorithms. The General Number Field Sieve is an example of just such an advanced factoring algorithm.

This is currently the best known method for factoring large numbers.

This paper is a presentation of the General Number Field Sieve. It begins with a discussion of the

algorithm in general and covers the theory that is responsible for its success. Because often the best way

to learn an algorithm is by applying it, an extensive numerical example is included as well.

I. I NTRODUCTION

The General Number Field Sieve is an algorithm for factoring very large numbers. Factoring is very

important in the field of cryptography, specifically in the RSA cryptosystem.

The Rivest, Shamir, Adleman (RSA) cryptosystem is a scheme for encrypting and decrypting messages,

and its security relies on the fact that factoring large composite numbers is a very hard, computationally

intensive task. The RSA algorithm works in the following way:

• Choose two large primesp andq. Setn = pq.

• Choose a randome satisfying1 ≤ e < n.

• Setd = e−1 (mod (p− 1)(q − 1)).

• A messagem is encrypted toc ≡ me (mod n). Note that onlye andn were needed to computec.

e andn are known as the public key and are public information.
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• An encrypted messagee is decrypted by evaluatinged (mod n) = m. Becaused can decrypt

messages, it should be kept secret.d is known as the secret key.

This system can be broken by factoringn into p and q. If n is factored then(p − 1)(q − 1) can be

found and from thisd can be computed. Therefore, any adversary that factorsn can find the private key

d and with it decrypt any encrypted message.

Because the security of RSA is so dependent on an adversary’s inability to factor a large composite

number, much research has been done to find ways to quickly factor such numbers.

The Number Field Sieve (NFS) is the fruit of that research. This is an algorithm for factoring composite

numbers that is currently the best known method for factoring numbers over100 digits. The NFS has

two common variations: the Special Number Field Sieve (SNFS) and the General Number Field Sieve

(GNFS). The SNFS is an algorithm that can quickly factor large numbers but works only for numbers

of a special form. The GNFS works for all composite numbers, but this flexibility is at the cost of the

GNFS being slightly slower than the SNFS. However, because of its increased flexibility, the GNFS is

the method of choice in many factoring challenges. For this reason, it is the GNFS that will be examined

in this paper.

II. T HE GNFS ALGORITHM

A. The Difference of Squares Factorization Method

Suppose that one wants to factor a composite numbern, and for two numberss, r ∈ Z, s2 ≡ r2

(mod n). Thens2 − r2 ≡ 0 (mod n). Supposen has the prime factorizationn = pq. Then

pq |
(
s2 − r2

)
=⇒ pq | (s− r) (s + r)

=⇒ p | (s− r) (s + r) and q | (s− r) (s + r)

A standard result from number theory states that ifc | ab andgcd (b, c) = 1 then c | a. This implies

that the following conditions must hold: p | (s + r) or p | (s− r)

q | (s + r) or q | (s− r)

The above implies that it is not possible thatp - (s + r) andp - (s− r). Similarly, it is not possible

that q - (s + r) andq - (s− r). Table I summarizes the possibilities forp andq dividing s+ r ands− r.

As an example of how to read Table I, supposep | (s + r), p | (s− r), q - (s + r), andq | (s− r).

gcd(pq, s + r) ∈ {1, p, q, pq}, the divisors ofn = pq. Since p | (s + r), p | gcd(pq, s + r). Now,
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TABLE I

POSSIBILITIES FORp AND q DIVIDING s + r AND s− r

Possible Divisibility Scenarios GCD Results

p | (s + r) p | (s− r) q | (s + r) q | (s− r) gcd (pq, s + r) gcd (pq, s− r) Successful Factorization

No Yes No Yes 0 pq

No Yes Yes No q p ?

No Yes Yes Yes q pq ?

Yes No No Yes p q ?

Yes No Yes No pq 0

Yes No Yes Yes pq q ?

Yes Yes No Yes p pq ?

Yes Yes Yes No pq p ?

Yes Yes Yes Yes pq pq

pq - (s + r) becauseq - (s + r) and hence the only value thatgcd(pq, s + r) can assume isp. Similarly,

gcd(pq, s−r) = pq because bothp | (s− r) andq | (s− r). Because one of the gcd’s was able to isolate

eitherp or q, this scenario led to a successful factorization ofn = pq.

If it is assumed that all of the combinations in Table I are equally likely thens2 ≡ r2 (mod n) implies

that eithergcd (pq, s + r) or gcd (pq, s− r) gives a nontrivial factor ofn = pq with probability 2/3.

Although it is not guaranteed that havings2 ≡ r2 (mod n) will give a nontrivial factor ofn, due to

this high probability, one would not expect to have to find many pairss, r satisfyings2 ≡ r2 (mod n)

in order to factorn.

B. Free Parameters in the GNFS

The GNFS algorithm includes two free parameters that must be chosen to meet certain criteria. These

free variables will be used throughout the derivation of the GNFS along with a composite integern that

is to be factored. The first such parameter is a polynomialf : R → R with integer coefficients, and the

second parameter is a natural numberm ∈ N that satisfiesf (m) ≡ 0 (mod n).

In practice, findingf andm such that the above hold is a simple matter so long asm is chosen first.

Consider the base-m expansion ofn.

n = adm
d + ad−1m

d−1 + . . . + a0
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By defining the functionf as

f (x) = adx
d + ad−1x

d−1 + . . . + a0

f (m) = n. Thereforef (m) ≡ 0 (mod n), and sof and m meet the above criteria. Letf , m, and

the compositen be given throughout this document.

C. The RingZ[θ]

The GNFS works because of the properties of a ring calledZ[θ]. This ring will now be explained.

Let θ ∈ C be a (possibly complex) root of the polynomialf from Section II-B. Letd be the degree

of the polynomialf . The spaceZ[θ] is defined as follows.

Z[θ] =
{

x : x = ad−1θ
d−1 + ad−2θ

d−2 + . . . + a0 for {aj} ⊂ Z
}

Theorem 2.1: With multiplication defined as the normal polynomial multiplication,Z[θ] forms a ring.

The definition of this ring causes some strange behavior when elements are multiplied. To see this, let

A,B ∈ Z[θ]. Let a(x) andb(x) be two polynomials such thata(θ) = A andb(θ) = B.

By the division algorithm,a(x)b(x) = e(x)f(x)+c(x) wheree(x) andc(x) are two polynomials with

integer coefficients and the degree ofc(x) is less than the degree off . DefineC = c(θ).

AB = a(x)b(x)
∣∣∣
x=θ

= e(x)f(x)
∣∣∣
x=θ

+ c(x)
∣∣∣
x=θ

= e(θ)f(θ) + C

= e(θ) · 0 + C

= C

Note that by construction, the degree ofC is less than the degreed of f . Then obviously,C ∈ Z[θ]. 1

This suggests that the multiplication of two polynomials evaluated atθ should be carried out as follows

a(x)
∣∣∣
x=θ

· b(x)
∣∣∣
x=θ

= [a(x)b(x) (mod f(x))]x=θ

1Even if the degree ofC had not been less thand, C could have been reduced modulof to something with degree less than

d. C has an equivalent element with degree less thand, so strictly speaking,C ∈ Z[θ] in this case as well.
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It is very important to take note of this multiplication method because it will be used extensively in

examples to follow.

D. The Heart of the GNFS Algorithm

The fundamental reason that the GNFS algorithm will factor composite numbers will be explained in

this section.

Suppose one can find aβ2 ∈ Z[θ] that is a perfect square and ay2 ∈ Z that is a perfect square.

Then one can produce a difference of squares congruence that can be used to factorn as detailed in

Section II-A. This works because of the following theorem.

Theorem 2.2: Given a polynomialf(x) with integer coefficients, a rootθ ∈ C, and anm ∈ Z/nZ

such thatf(m) ≡ 0 (mod n), there exists a unique mappingφ : Z[θ] → Z/nZ satisfying

1) φ (ab) = φ (a) φ (b) ∀a, b ∈ Z[θ]

2) φ (a + b) = φ (a) + φ (b) ∀a, b ∈ Z[θ]

3) φ (1) ≡ 1 (mod n)

4) φ (θ) ≡ m (mod n)

(The above conditions also imply thatφ (za) = zφ (a) ∀a ∈ Z[θ], z ∈ Z.)

One can apply this theorem to obtain a difference of squares congruence in the following way: suppose

there exists a finite setU of pairs of integers(a, b) such that∏
(a,b)∈U

(a + bθ) = β2 and
∏

(a,b)∈U

(a + bm) = y2
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for β ∈ Z[θ] andy ∈ Z. Let x = φ (β). Then working congruent modulon,

x2 = φ (β) φ (β)

= φ
(
β2

)
= φ

 ∏
(a,b)∈U

(a + bθ)


=

∏
(a,b)∈U

(φ (a + bθ))

=
∏

(a,b)∈U

(a + bm)

= y2

Thus a relationx2 ≡ y2 (mod n) has been created and by Section II-A, there is a probability of2/3

that this will lead to a factorization ofn.

E. Finding a perfect square inZ[θ] and in Z

The following sections will discuss in length procedures for finding perfect squares inZ[θ] and inZ.

The method for finding both squares is based on a particular strategy. In order to motivate the discussion,

a numerical example using the same strategy is given below.

Suppose one wishes to find a perfect square inZ. Further suppose that for some reason, this task is

not as simple as taking an arbitrary integer and squaring it. Also, suppose that there are numbers known

for which all of their prime factors are less than or equal to19. Let this set of numbers be

{455, 39270, 770, 429, 1616615, 3990, 106590, 187, 19019} (II.1)

These numbers have the property that all their prime factors are contained in the set

{2, 3, 5, 7, 11, 13, 17, 19} (II.2)

and all exponents occurring in the prime factorizations are equal to 1. The factorization of each number

is illustrated in Table II.

Each number in the array has a unique prime factorization involving only the primes in (II.2). Therefore,

each number in Table II can be represented with a vector composed of all the exponents occurring in

the prime factorization. Note that this means that there will be one entry in the vector for each prime in
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TABLE II

FACTORS FOR THE NUMERICAL EXAMPLE OFSECTION II-E

Number Factorization

2 3 5 7 11 13 17 19

455 ? ? ?

39270 ? ? ? ? ? ?

770 ? ? ? ?

429 ? ? ?

1616615 ? ? ? ? ? ?

3990 ? ? ? ? ?

106590 ? ? ? ? ? ?

187 ? ?

19019 ? ? ? ?

(II.2). For example

455 = 20305171110131170190

455 ↔ (0, 0, 1, 1, 0, 1, 0, 0)

Under this notation, multiplying two numbers together will yield an integer with an exponent vector

equivalent to adding the exponent vectors of the two numbers.

770 · 455 ↔ (1, 0, 1, 1, 1, 0, 0, 0) + (0, 0, 1, 1, 0, 1, 0, 0)

↔ (1, 0, 2, 2, 1, 1, 0, 0)

If a product of a subset of the numbers in (II.1) results in an exponent vector with all even entries,

then the product is a perfect square.

This is equivalent to finding a vector[a1, a2, . . . , a9]
T such that

0 0 1 1 0 1 0 0

1 1 1 1 1 0 1 0
...

0 0 0 1 1 1 0 1



T 
a1

a2

...

a9

 ≡


0

0
...

0

 (mod 2) (II.3)
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where the matrix on the left is a result of the relationship
455

39270
...

19019

 ↔


0 0 1 1 0 1 0 0

1 1 1 1 1 0 1 0
...

0 0 0 1 1 1 0 1


Because (II.1) is a system of8 equations and9 unknowns, a (nonunique) solution does exist. One

solution to this equation is[a1, a2, a2, a3, a4, a5, a6, a7, a8, a9]
T = [1, 1, 0, 0, 1, 1, 0, 0, 0]T . This implies

that455 · 39270 · 1616615 · 3990 is a perfect square. Indeed, a simple calculation shows that455 · 39270 ·

1616615 · 3990 = (339489150)2.

This method for finding perfect squares is of great importance in the GNFS, and ideas used in the

above example will be used in later sections.

1) Definition of Smoothness onZ[θ] and Z:

Definition 2.1: A rational factor base is a finite collection of prime numbers.

In this paper, only rational factor bases of small, consecutive primes are considered. Therefore, for the

purposes of this paper, a rational factor base can be thought of as a set

{p : p is prime and p ≤ M} for some M ∈ N

Definition 2.2: An integerl ∈ Z is said to be smooth over a rational factor baseR if R contains all

of the prime divisors ofl.

Note that in the numerical example of Section II-E, all of the numbers{455, 39270, . . .} (equation

II.1) were smooth over the rational factor base{2, 3, 5, 7, 11, 13, 17, 19}.

It is now necessary to define an algebraic factor base, a concept very similar to a rational factor base.

However, some things must be assumed in order to properly define an algebraic factor base.

Definition 2.3: An algebraic factor base is a finite set{a + bθ} ⊂ Z[θ] where fora, b ∈ Z, eacha+bθ

satisfies∀ (a, b) , @ c, d ∈ Z[θ] such that c · d = a + bθ. (This condition causesa + bθ to be what is

commonly called a ”prime ideal.”)
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Definition 2.4: An elementl ∈ Z[θ] is said to be smooth over an algebraic factor baseA if ∃ W ⊂ A

such that
∏

(c,d)∈W (c + dθ) = l.

The definition of an algebraic factor base involves elementsa + bθ ∈ Z[θ]. Z[θ] is a difficult space

to represent on a computer, and hence development of an algorithm based onZ[θ] would be difficult.

Fortunately, this concept of an algebraic factor base has an analog that gives a way to more easily

represent elementsa + bθ ∈ Z[θ].

Theorem 2.3: Letf(x) be a polynomial with integer coefficients and letθ ∈ C be a root off(x). Then

the set of pairs{(r, p)} wherep is a prime integer andr ∈ Z/nZ with f(r) ≡ 0 (mod p) is in bijective

correspondence with the set ofa+bθ ∈ Z[θ] that satisfy the criteria for being in an algebraic factor base.

This theorem can be used to represent the algebraic factor base{a + bθ} as a finite set of pairs of

integers{(r, p)}. While not every element ofZ[θ] can be represented as a pair(r, p), what can be

represented is sufficient to meet the needs of the GNFS.

2) Finding Smooth Numbers: Sieving Techniques:In order to find a square inZ[θ] and inZ as required

by Section II-A, it first necessary to find pairs of numbers(a, b) such thata + bθ is smooth in some

algebraic factor base anda + bm is smooth in some rational factor base.

LetR be an arbitrary rational factor base represented by the set of primes{qi} and letA be an arbitrary

algebraic factor base inZ[θ] represented by the set of pairs{(ri, pi)} as described by Theorem 2.3.

Theorem 2.4: Forc + dθ in an algebraic factor base and that has the representation(r, p), c + dθ

dividesa + bθ ∈ Z[θ] if and only if a ≡ −br (mod p).

Theorem 2.5: A finite setU of pairs (r, p) ∈ Z[θ] represents a complete factorization ofa + bθ if and

only if
∏

(ri,pi)∈U pi = (−b)df(−a/b) whered is the degree off .

Theorem 2.6: A prime numberq will divide a + bm if and only if a ≡ −bm (mod q).

Using the above three theorems, smooth elements ofZ[θ] andZ can be found in the following way:

(a) Fix b ∈ Z, and letN be an arbitrary positive integer.
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(b) Let a vary from−N to N . Create two arrays: one for the various values ofa + bθ that will result

and another for the various values ofa+bm that will result. This concept is illustrated in Figure 1.

Fig. 1. Sieve Arrays

−N + bθ

(−N + 1) + θ
...

(N − 1) + bθ

N + bθ

−N + bm

(−N + 1) + m
...

(N − 1) + bm

N + bm

(c) For eachqi in R, qi will divide a + bm if and only if a ≡ −bm (mod qi). Find values ofa for

which a = −bm+ kqi for somek ∈ Z, and for each value ofa make note of this factor ofa+ bm

in the sieve array. Repeat this process for everyqi ∈ R. When finished, make note of all thea+bm

in the sieve array that are completely factored by this method. Thesea + bm are smooth inR.

(d) Proceed in an identical manner for thea + bθ sieve array. An(ri, pi) ∈ A divides a + bθ if and

only if a ≡ −bri (mod pi). Find values ofa satisfyinga = −bri + kpi for somek ∈ Z. For each

a found, make note of this(ri, pi) factor ofa+ bθ in the sieve array. When finished, for alla+ bθ

in the sieve array there will be a list of(ri, pi) factors. If
∏

pi = (−b)df(−a/b) then this list of

factors is a complete factorization and hencea + bθ is smooth over the given algebraic factor base

A.

(e) Compare the two arrays entry by entry. At any position, if both thea + bθ and thea + bm are

smooth then this(a, b) is what was sought after. Save it for later use.

One can repeat this procedure by alteringb to find as many(a, b) satisfying the required criteria as

may be needed.

3) Verifying That Elements ofZ[θ] and Z Are Squares:From Section II-E.2, one can find smooth

a + bm and smootha + bθ. A method similar to the numerical example of Section II-E to find squares

in Zθ and Z will be used. However, before this is done it is necessary to develop methods for testing

for squareness inZ andZ[θ].

It is relatively easy to determine whether or not an arbitrarys ∈ Z is a perfect square. In fact, the

methods used in the GNFS will give access to the prime factorization ofs for the s that is to be tested

for squareness. In this case,s is a perfect square if and only if every exponent occurring in the prime
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factorization is even. That is, for every exponente in the prime factorization, ife ≡ 0 (mod 2) then s

is a perfect square inZ. Testingl ∈ Z[θ] for perfect squareness is more complicated.

Theorem 2.7: Letl ∈ Z[θ] have the factorizationl = (a1 + b1θ)
e1 (a2 + b2θ)

e2 . . . where for every

j, aj + bjθ satisfies the criteria to be in an algebraic factor base. Ifl is a perfect square inZ[θ] then

∀i, ei ≡ 0 (mod 2).

This is one such condition that a perfect squarel ∈ Z[θ] will satisfy. However, it is not the only

condition.

Definition 2.5: The Legendre symbol
(

a
p

)
for a ∈ Z and p a prime integer is defined as:

(
a

p

)
=


1 if x2 ≡ a (mod p) has a solution

−1 if x2 ≡ a (mod p) has no solution

0 if p | a

Theorem 2.8: LetU be a set of(a, b) pairs such that
∏

(a,b)∈U (a + bθ) is a perfect square inZ[θ].

Then for any(s, q) with q prime ands given as Theorem 2.3 with(s, q) - a + bθ for any (a, b) ∈ U ,∏
(a,b)∈U

(
a + bs

q

)
= 1

Note that in the above theorem,(s, q) - a + bθ implies thata 6≡ −bs (mod q). Thusq - a + bs and so(
a+bs

q

)
6= 0. This is an important observation to make as it will be used in later sections.

The above two theorems give necessary but not sufficient conditions for an element ofZ[θ] to be a

perfect square. That is, if the goal is to show that something is a perfect square, then the above theorems

are the converse of what is needed.

In practice, one determines if an elementl ∈ Z[θ] is square in the following way:

(a) Verify that for a factorization

l = (a1 + b1θ)
e1 (a2 + b2θ)

e2 . . .

ej ≡ 0 (mod 2) for every j.
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(b) LetQ be a set of pairs of numbers(s, q) with q prime ands given as in Theorem 2.3. ChooseQ

such that(s, q) - a + bθ for everya + bθ occurring in the factorization ofl. Verify that for every

(s, q) ∈ Q, ∏
(a,b)∈U

(
a + bs

q

)
= 1

for U defined as in Theorem 2.8. The setQ is called the quadratic character base and each(s, q) ∈ Q

is called a quadratic character.

(c) If the above two conditions are satisfied, thenl is probably a perfect square inZ[θ]. Note that to

increase this probability, one should increase the number of elements inQ.

In summary, there are now developed methods for testing for perfect squares inZ[θ] andZ.

4) Putting It All Together: From Smooth Numbers to Square Numbers:Up to this point methods are

developed to find a set of numbersU = {(a, b)} such thata + bm is smooth in a rational factor baseR

anda+bθ is smooth in an algebraic factor baseA. This section will describe how to use this information

to find a square inZ and in Z[θ]. Throughout, ideas similar to the numerical example of Section II-E

are used.

Let the rational factor baseR havek elements, and let the algebraic factor baseA have l elements.

Choose an arbitrary quadratic character baseQ with u elements.R andA will be used to find a square

in Z andZ[θ], andQ will be used to verify that the result is a square.

Each(a, b) ∈ U can be represented as a row vector with1 + k + l + u entries. The first entry should

be equal to0 if a + bm is positive and1 if a + bm is negative. The nextk entries are given to the

exponent vector modulo 2, as described in Section II-E. The followingl entries are used for indicating

whether a particular element ofA divides a + bθ. The exponent on this element ofA that appears in

the factorization modulo2 is what should appear in each of thesel entries. The finalu entries are used

in conjunction with the quadratic character baseQ. Each entry is set to0 if for the appropriate(s, q),(
a+bs

q

)
= 1. Otherwise, set the entry to1.

In summary, let the rational factor baseR be {t1, t2, . . . , tk}, let the algebraic factor baseA be

{(r1, p1), (r2, p2), . . . (rl, pl)}, and let the quadratic character baseQ be {(s1, q1), (s2, q2), . . . (su, qu)}.

For a given(a, b), a + bm has a factorizationte1
1 te2

2 · · · t
ek

k . a + bθ has the factorization that can be

represented as(r1, p1)f1(r2, p2)f2 · · · (rl, pl)fl .
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Then the pair(a, b) should be represented by a row vector of the following form:[  0, a + bm ≥ 0

1, else

 e1 (mod 2) e2 (mod 2) · · · ek (mod 2)

f1 (mod 2) f2 (mod 2) · · · fl (mod 2) 0,
(

a+bs1
q1

)
= 1

1, else


 0,

(
a+bs2

q2

)
= 1

1, else

 · · ·

 0,
(

a+bsu

qu

)
= 1

1, else


]

(II.4)

Now suppose aV ⊂ U is found such that
∏

(a,b)∈V (a + bm) is a perfect square inZ and
∏

(a,b)∈V (a + bθ)

is a perfect square inZ[θ]. Then the following must all hold:

(a)
∏

(aj ,bj)∈V (aj + bjm) must be positive. Letcj =

 0, aj + bjm ≥ 0

1, else
. Note that this is just the

first entry in the vector for(aj , bj). Then
∏

(aj ,bj)∈V (aj + bjm) is positive if and only if
∑

cj = 0

(mod 2). This insures that the number of negative numbers in the product is even. Because−1

raised to an even power is1, the product will be positive.

(b) Every exponent occurring in the prime factorization of
∏

(aj ,bj)∈V (aj +bjm) must be even. Because

∀ j, aj + bjm is smooth onR, the product will also be smooth onR. Furthermore, ifej is

the corresponding exponent appearing on anyt ∈ R in the prime factorization ofaj + bjm,

then the exponent appearing in the prime factorization of the product is
∑

(aj ,bj)∈V ej . Thus, for∏
(aj ,bj)∈V (aj + bjm) to be square,∀t ∈ R,∑

(aj ,bj)∈V

ej ≡ 0 (mod 2) ⇔
∑

(aj ,bj)∈V

(ej (mod 2)) ≡ 0 (mod 2)

Eachej (mod 2) in the sum on the left is an entry in the vector representation of(a, b).

(c) Every exponent occurring in the prime ideal factorization of
∏

(aj ,bj)∈V (aj + bjθ) must be even.

Similar to the above,∀ j, aj + bjθ is smooth inA implies that
∏

(aj ,bj)∈V (aj + bjθ) smooth inA.

Let aj + bjθ have the representation(r1, p1)ej1 (r2, p2)ej2 . . . (rl, pl)ejl . Then
∏

(aj ,bj)∈V (aj + bjθ)

has the representation

(r1, p1)
∑

ej1 (r2, p2)
∑

ej2 . . . (rl, pl)
∑

ejl

Each exponent in this expansion is required to be even. Thus∀ i,
∑

eji
≡ 0 (mod 2). This implies

that ∀ i,
∑

(eji
(mod 2)) ≡ 0 (mod 2). Note that eacheji

(mod 2) is just an entry in the vector

representation of(aj , bj).

(d) For every(s, q) ∈ Q,
∏

(aj ,bj)∈V

(
aj+bjs

q

)
must be1. Because∀ j,

(
aj+bjs

q

)
∈ {1,−1}, in order

for
∏

(aj ,bj)∈V

(
aj+bjs

q

)
= 1, the number ofj for which

(
aj+bjs

q

)
= −1 must be even. For a given
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(s, q), the vector representation of(aj , bj) has an entry corresponding to 0,
(

aj+bjs
q

)
= 1

1, else


If the sum of these entries is even then the number ofj’s for which

(
aj+bjs

q

)
= −1 will be even.

Hence ∏
(aj ,bj)∈V

(
aj + bjs

q

)
= 1 ⇔

∑
(aj ,bj)∈V

 0,
(

aj+bjs
q

)
= 1

1, else

 ≡ 0 (mod 2)

Because all4 of the above conditions must hold simultaneously,
∏

(aj ,bj)∈V (aj + bjm) is a perfect

square inZ and
∏

(aj ,bj)∈V (aj + bjθ) is a perfect square inZ[θ] if and only the sum of the vector

representation of each(aj , bj) ∈ V is equivalent to the zero vector modulo2.

Let the setU of smooth(a, b) havey elements. LetX be ay x (1 + k + l + u) matrix with each row

being equivalent to the vector representation of an(a, b) ∈ U .

Finding aV ⊂ U in order to get perfect squares is equivalent to finding a column vectorA such that

XT


A1

A2

...

Ay

 ≡ 0 (mod 2) (II.5)

If y > 1 + k + l + u, this congruence is guaranteed to have a nontrivial solutionA.

Because of this congruence modulo2, every Aj is in the set{0, 1} (the residue set of2). Let the

subsetV ⊂ U be defined by∀(aj , bj) ∈ U, (aj , bj) ∈ V if Aj = 1. Then
∏

(aj ,bj)∈V (aj + bjm) is a

perfect square inZ and
∏

(aj ,bj)∈V (aj + bjθ) is a perfect square inZ[θ].

F. A Summary Of The Above Methods

The GNFS algorithm to factor a composite numbern can be summarized as follows:

(a) Choose anm ∈ Z and find a correspondingf satisfying f(m) ≡ 0 (mod n) by the base-m

expansion method.

(b) Define a rational factor baseR such thatR has finitely many elements and∀x ∈ R, x is prime.

Let k be the number of elements inR.

(c) Define an algebraic factor baseA such thatA has finitely many elements and∀(r, p) ∈ A, p is

prime andr satisfiesf(r) ≡ 0 (mod p). Let l be the number of elements inA.
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(d) Define a quadratic character baseQ with finitely many elements so that∀(s, q) ∈ Q, q is prime

andf(s) ≡ 0 (mod q). Ensure that∀(s, q) ∈ Q, (s, q) 6∈ A. Let u be the number of elements in

Q.

(e) For a fixedb ∈ Z, build sieve arrays as in Section II-E.2. Note the elements of the sieve arrays that

are smooth and also for these elements record whichqi ∈ R and which(ri, pi) ∈ A are divisors.

Repeat this process for variousb as necessary until more than1 + k + l + u pairs(a, b) have been

found such thata + bm is smooth inZ and a + bθ is smooth inZ[θ]. Let y be the number of

smooth(a, b) found.

(f) Populate ay x (1 + k + l + m) matrix X as described in Section II-E.4.

(g) Solve the equation

XT


A1

A2

...

Ay

 ≡ 0 (mod 2)

for {A1, . . . , Ay}. Let the subsetV ⊂ U be defined by∀(aj , bj) ∈ U, (aj , bj) ∈ V if Aj = 1. Then∏
(aj ,bj)∈V (aj + bjm) is a perfect square inZ and

∏
(aj ,bj)∈V (aj + bjθ) is a perfect square inZ[θ].

(h) With the mappingφ from Section II-D,

φ

 ∏
(aj ,bj)∈V

(a + bθ)

 ≡
∏

(aj ,bj)∈V

(aj + bjm) (mod n)

Use this to attempt to factorn using the difference of square factorization method of Section II-A.

If no factorization is found, go to (b) and repeat this process.

III. A N EXAMPLE

In this section the GNFS is used to factor an example number. To help solidify the above concepts,

this example will be presented at length.

Suppose one desires to factor the numbern = 45113. A preliminary step is to verify that the number is

composite. Assume some primality test has been done and45113 is known to be composite. The GNFS

can then be used to factor45113.

The first step in the GNFS is to pick an integerm and a polynomialf as discussed in Section II-B.

Let m = 31. f must be chosen to satisfyf(m) ≡ 0 (mod n), but by considering the base-m expansion

of n this task is easily done.

45113 = 313 + 15 · 312 + 29 · 31 + 8
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Define f(x) = x3 + 15x2 + 29x + 8. Then f(m) = f(31) = 45113 = n, and thereforef(m) ≡ 0

(mod n).

The next task to be done in setting up the GNFS is to pick the rational and algebraic factor bases. For

the rational factor baseR, simply consider all primes below30.

R = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

Any algebraic factor baseA can be represented by pairs(r, p) wherep is a prime andr satisfiesf(r) ≡ 0

(mod p) (Theorem 2.3). Arbitrarily, letp be any prime less than90 and find a setri such that∀i, f(ri) ≡ 0

(mod p). For eachri, add an entry(ri, p) to A. Repeating this for allp in the set of primes less than

90 yields

A = { (0, 2), (6, 7), (13, 17), (11, 23), (26, 29), (18, 31), (19, 41), (13, 43), (1, 53), (46, 61),

(2, 67), (6, 67), (44, 67), (50, 73), (23, 79), (47, 79), (73, 79), (28, 89), (62, 89), (73, 89) }

Note that theR chosen hask = 10 elements and theA chosen hasl = 20 elements. The cardinality of

these sets will be important later.

In addition to a rational factor base and an algebraic factor base, a quadratic character base must also

be found. Choose primesq not occurring in the algebraic factor base and for eachq, find all s satisfying

f(s) ≡ 0 (mod q). For eachs, add the pair(s, q) to the quadratic character base. In this example, the

primes97, 101, 103, 107 did not appear inA. Using these primes, the quadratic character baseQ is then

computed to be

Q = {(28, 97), (87, 101), (47, 103), (4, 107), (8, 107), (80, 107)}

Note thatQ hasu = 6 entries. By Section II-E.4, more than1 + k + l + u = 37 pairs(a, b) with a + bm

smooth inR anda + bθ smooth inA must be found.

The GNFS is now set up. The first step in executing it is to construct sieve arrays to find smooth

a+ bθ and smootha+ bm. Let b run from1 to 41 and leta run from−400 to 400. Loop over the list of

possibleb, and for eachb, construct two arrays with(2 · 400 + 1) entries. Use these arrays as described

in Section II-E.4 to find the values ofa for which a + bm anda + bθ are smooth. If both of these are

smooth for the samea, save this(a, b) pair. Repeat this with eachb ranging from1 to 41. This results in

38 pairs(a, b) satisfyinga+ bm smooth overR anda+ bθ smooth overA. See Table III for a complete

listing.

It is relatively easy to check that any of these pairs is smooth. for example, consider the pair(119, 11).

a + bm = 119 + 31 ∗ 11 factors as22 · 5 · 23. Because all of these numbers are inR, a + bm is
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TABLE III

SMOOTH PAIRS(a, b) FOUND BY SIEVING

(-73,1) (-13,1) (-6,1) (-2,1) (-1,1) (1,1) (2,1) (3,1)

(13,1) (15,1) (23,1) (61,1) (1,2) (3,2) (33,2) (2,3)

(5,3) (19,4) (14,5) (37,5) (313,5) (11,7) (15,7) (-7,9)

(119,11) (-247,12) (175,13) (5,17) (-1,19) (35,19) (17,25) (49,26)

(375,29) (9,32) (1,33) (78,37) (5,41) (9,41)

smooth overR for this particular(119, 11). It can be shown that the following pairs(r, p) ∈ A divide

a + bθ = 119 + 11θ: {(19, 41), (44, 67), (62, 89)}. By Theorem 2.5, this is complete factorization of

a + bθ if and only if 41 · 67 · 89 = (−11)3f(−119/11). The reader can verify that both sides of this

equation are equal in absolute value. (Theorem 2.5 can be weakened to equality in absolute value with

no consequences.)

The next step in the GNFS is to set up the matrix equation of (II.5). This requires that the matrixX

be found, a relatively straightforward procedure that can be done using the definition of each row ofX

as in (II.4). For example, the row ofX corresponding to the pair(119, 11) is

[ 0︸︷︷︸
sign of a+bm

,

exponents on the factors of a+bm︷ ︸︸ ︷
0, 0, 1, 0, 0, 0, 0, 0, 1, 0 , 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0︸ ︷︷ ︸

exponents on the factors of a+bθ

,

for use with Q︷ ︸︸ ︷
1, 1, 0, 0, 0, 0]

Using X, the equation

XT


A1

A2

...

Ay

 ≡ 0 (mod 2)

can be solved for[A1, A, 2, . . . , Ay]T . Note that becauseX has more rows than columns this solution

will not be unique. One such solution is

[A1, . . . , Ay]T = [0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]T

This implies that for the following pairs(a, b)

V = { (−2, 1), (1, 1), (13, 1), (15, 1), (23, 1), (3, 2), (33, 2), (5, 3),

(19, 4), (14, 5), (15, 7), (119, 11), (175, 13), (−1, 19), (49, 26) }
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∏
(a,b)∈V (a+ bm) is a perfect square inZ and

∏
(a,b)∈V (a+ bmθ) is a perfect square inZ[θ]. Evaluating

this yields∏
(a,b)∈V

(a + bm) = 45999712751795195582606376960000

∏
(a,b)∈V

(a + bθ) = 58251363820606365 · θ2 + 149816899035790332 · θ + 75158930297695972

Square roots inZ andZ[θ] now need to be computed. The reader can verify that

25530453172224002 =
∏

(a,b)∈V

(a + bm)

(
108141021 · θ2 + 235698019 · θ + 62585630

)2 =
∏

(a,b)∈V

(a + bθ)

Using the mappingφ from Theorem 2.2,

φ
(
108141021 · θ2 + 235698019 · θ + 62585630

)
= 111292745400

Therefore, using an argument presented in Section II-D, one can conclude that

1112927454002 ≡ 25530453172224002 (mod n)

Attempting to factorn with this relation yields

gcd(45113, 111292745400 + 2553045317222400) = 197

gcd(45113, 111292745400− 2553045317222400) = 229

Therefore,n = 45113 = 197 · 229. The GNFS has successfully factoredn.

IV. CONCLUSION

The GNFS is a very sophisticated algorithm for factoring composite numbers. While the algorithm

is complex, it does successfully factor a number relatively quickly. Due to the setup steps necessary,

the GNFS is significantly slower than other popular factoring methods for small composite numbers.

However, for large composite numbers the time spent in setting up the GNFS is negligible and the

algorithm is dramatically faster than any other factoring algorithm.

This point was proved on January 18, 2002 when a team of researchers from the University of Bonn

successfully factored a155 digit (512 bit) composite integer in3.7 months using the GNFS. Had this

512 bit number been a public key in the RSA cryptosystem, the security of the system would have been
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compromised and an adversary would have gained access to the private key. The development of the

GNFS has brought into question the security of the RSA cryptosystem. Because of the widespread use

of RSA, the existence of the GNFS should cause any computer security expert to worry.
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