
The Complexity of Some Problems on Subsequences
and Supersequences

DAVID MAIER

Princeton Umverszty, Prmceton, New Jersey

ABSTRACT The complexity of finding the Longest Common Subsequence (LCS) and the Shortest Common
Supersequence (SCS) of an arbRrary number of sequences IS considered We show that the yes/no version of the
LCS problem is NP-complete for sequences over an alphabet of size 2, and that the yes/no SCS problem is NP-
complete for sequences over an alphabet of size 5

KEY WORDS AND PHRASES computational complexity, NP-completeness, longest common subsequence, shortest
common supersequence

CR CATEGORIES 5 23, 5 39

1. Definitions

Given a finite sequence S = sl, s2, ..., sin, we define a subsequence S' of S to be any sequence
which consists of S with between 0 and m terms deleted (e.g. ac, ad, and abcd are all
subsequences of abcd). We write S' < S if S' is a subsequence of S. We also say that S is
a supersequence of S', and write S > S'. Given a set R = {$1, $2 Sp} of sequences, we
speak of a Longest Common Subsequence of R, LCS(R), as a longest sequence S such that
S < S, for i = 1 p. For example, abe = LCS((ababe, cabe, abdde}). Actually, LCS(R)
is a set of subsequences, since there may be more than one sequence fitting the definition.
Since we will be mamly concerned with the length of any (and every) LCS(R), when we
write LCS(R) we will mean a single representaUve of this set. Simdarly, a Shortest Common
Supersequence of R, SCS(R), is a shortest sequence S' such that S' > S,, I = 1 p. For
example, SCS({abbb, bab, bba}) = abbab.

The yes~no LCS (SCS)problem is: Given an integer k and a listing of the sequences in
R, is ILCS(R)[--> k (ISCS(R)I .~ k), where IsI is the number of terms in sequence S?
Whenever we refer to the LCS and SCS problems in this paper, we will mean the yes/no
versions. We define the alphabet of R, X(R), to be the finite set of values the terms of
sequences S1, $2 Sp take on. Clearly IX(R) I -< ml + m2 + + rap, where m, = [S,I. We
also use I I to denote the cardinality of a set; the context will distinguish the usage.

2. Threading Schemes
It is convenient to think of the LCS and SCS problems in terms of threading beads. We
think of a sequence as a row of beads and the matching process as threading the beads m
a certain manner. Suppose we have three sequences $1 = bybrr, $2 -- yyrrbr, and $3 =
byrry. We represent them as rows of beads:

General permission to make fair use in teaching or research of all or part of this material is granted to individual
readers and to nonprofit hbrarles acting for them provided that ACM's copyright noUce is given and that
reference is made to the pubhcatlon, to ItS date of msue, and to the fact that reprinting prlwleges were granted by
permission of the Association for Computing Machinery To otherwise reprint a figure, table, other substantial
excerpt, or the entire work requires specific permission as does repubhcatlon, or systematic or muluple
reproduction

This ,york was partially supported by the National Science Foundation under Grant DCR-74-21939

Author's address. Department of Electrical Engmeenng and Computer Science, Pnnceton Umverstty, Prmceton,
NJ 08540
© 1978 ACM 0004-5411/78/0400-0322 $00 75

Journal of the Assocmtton for Computing Machinery, Vol 25, No 2, Apnl 1978, pp 322-336

The Complextty of Some Problems on Subsequences and Supersequences 323

® ® @ ® ®
® ® ® © ® ®

® ® ® ® ®
For the LCS problem we demand that each thread have exactly one bead from each

row, and all the beads on a thread be the same. We stipulate that no two threads may
cross. We w~sh to know if k threads can be used. In our example, k must be three or less:

et ~ ez,-..--.,, ~- I
® ®

For the SCS problem, we relax the threading rules so a thread contains at most one
bead from each row. We want to find If k threads are sufficient to thread all the beads. All
beads on a thread must still be of the same color and threads may not cross. In our example
k must be 9 or more:

We refer to a thread by the terms of each sequence it threads, and also designate the
type of thread. For example, 0~ is a y-thread in the LCS example and 07 is a b-thread in the
SCS example. We refer to a threading scheme 0 as a list of threads 01, 02 0j which, in the
LCS problem, fulfill the threading rules and, in the SCS problem, fulfill the rules and
thread all the beads. Given a threading scheme O = 0~, 02 0j for a set of sequences R,
we can obtain a common subsequence or common supersequence, depending on the sort
of scheme, by reading off the types of 01, 02, ..., 0~. Note that a threading scheme gives rise
to a unique sub- or supersequence, but the reverse is false, as there may be a number of
threading schemes giving rise to the same sub- or supersequence.

3. Applicatwns of Threading Schemes to the LCS Problem

Computing the LCS has found use in the field of molecular biology m studying amino
acid sequences m similar proteins [6, 7, 16, 18]. The LCS and SCS problems may also have
application to data compression techniques: A number of very similar files might be stored
as the LCS or SCS of the files plus modtfications for individual files. The complexity of
the LCS and similar problems has been analyzed for the case where [RI = 2 [1-4, 8-12, 14,
15, 17, 19-24], R being the set of sequences in question. In this paper the LCS and SCS
problems are considered with no bound on the size of R, but with various bounds on the
size of]g(R). We shall show the SCS problem to be NP-complete for 12(R)I >- 5 and the
LCS problem to be NP-complete for IZ(R) I >-- 2.

All of the proofs of NP-completeness will be by reduction of the node cover problem [5,
13]. Given an undirected graph G = (N, E) and an integer k, the node cover problem is to
determine if there is an N' contained m N, with I N'I = k, such that for every (x, y) ~ E,
either x E N' or y ~ N' (possibly both). We assume the problem is posed as an integer k
and a list of edges in E: k; (xl,y~); (xz, yz); ...; (Xr, yr). We flow prove three theorems, each
having successwely stronger results. The reason for the redundant theorems is to develop
the proof in stages which can be more easdy grasped.

THEOREM 1. The LCS problem ts NP-complete for Z(R) of arburary size.
PROOF. Given an instance of the node cover problem on the graph G -- (N, E)" k;

(x~, y0 ; (x2, y2); ...; (xr, yr), encoded into a string of length n, we find N and assign an
arbitrary order {v~, v2 v,} to N. Clearly, r, t _< n. We construct r + 1 sequences of length

324 D A V I D M A 1 E R

at most 2(t - 1) as shown in Figure 1. The first sequence is the template T, which is the
sequence vl, v2 yr. For each edge e, = (x,, y,) m E we construct a sequence S~. Assume
without loss of generality that x, = vj, y , = vm, a n d j < m. Then S, is vl, v2, v3 vj-~, vj+~,
• . . , Vm~ . . . , 'l~t, V1, '122, ...~ l"j~ ...~ Vm--1, "Vm+l, . . . , I~l

CLAIM. The graph G has a node cover o f size k i f and only i f the set R = {T, $1, $2,
.... St} has a common subsequence o f size t - k.

PROOF (only if). Let V' = {u~, u2 uk} be the node cover of size k. Then the sequence
T ' , which is T with the nodes of V' deleted, has size t - k. Clearly T ' < T. For each S,
either x, E V" o ry , E V'. I f x, E V', then T' is a subsequence o f the first half of S~, since
every node in T' appears in the first half of S,, and the elements of T' and the first hal f of
S, are in the same order. I f y, E V', then T' is a subsequence of the last half of S,. So 7" is
a common subsequence o f R with length t - k.

(if). Let T' be a common subsequence of R. We notice that for each t, T ' cannot
contain both x, andy, . To see this, let x, = v~ andy , = Vm, where we have a s sumed j < m.
For both vj and Vm to be in T', in any threading scheme we must have threads running
through vj and v~ in T. Also, we have only one choice of where to run the threads in S,,
since it also has only one occurrence of vj and Vm. But thls cannot be done without crossing
threads, since the order of vj and Vm is different in the two sequences. (See Figure 2.) Let
V ' = { u l , u2 uk} be the nodes in T but not in T'. We are given [T' [= t - k, so I V'[
= k. For each S , either x~ or y, IS in V'. Hence for every edge (x , y,) in E of graph G, x,

V' or y~ ~ V'. Hence V' is a node cover of size k.
PROOF OF THEOREM 1 CONTINUED. From the claim it is apparent that the minimal

node cover of G has size k if and only if LCS(R) has size t - k. I f the node cover problem
has length n, the input for the LCS algorithm is of length t + 2r(t - 1) _< O(n2). It is not
hard to see that the construction can be done in polynomml time. Therefore we have a
polynomial' reduction of the node cover problem to the LCS problem.

THEOREM 2. The L C S p r o b l e m is NP-complete for I ~ (R) I = 3.
PROOF. Here we use an encoding for the nodes of the graph. In Theorem l the main

point is that for each edge e, = (x,, y,) in E, the LCS(R) cannot contain both x, andy, , and
this point is preserved in the encoding. We also encode the edges, for use in distinguishing
among the sequences.

In Figure 3 we see how the codes are laid out. The codes are over the alphabet

, v , , v= , v~ , . . . , v t ,

ALL NODES

Si j ± .z "_" ,J ,_- '_ ,J2:L "_" "_L v_, ,_ , j , , j± . ._ . ._, ._, ,z", v , J

ALL NODES BUT x! (= vj) ALL NODES BUT Yl (=Vm)

F I G 1

Si

J± ~'_'~_"'_JLJ
, v , ' - " vj. ,vj , . . . , v . , / . . . , v t y , , . . .~vj , . . . , ~ , ,v,~., , . . . , v t ,

. 1

~t AND 02 MUST CROSS

Flo 2

The Complexity o f Some Problems on Subsequences and Supersequences 325

{1, 0, *}. There are two codes which go into the template, called codeplates. The node
codeplate ~r consists of t + 1 blocks o f4 r + 2t ones, separated by stars. The edge codeplate
~? has r + 1 blocks o f4 r + 2t zeros, separated by two stars. The code for a node v, ~ N wall
be denoted ~r[/], and will be obtained by deleting the ith star of ~r. We also define a
multiple node code for v,,, v,~ v±~ E N, denoted N[i l , /2 i,], to be obtained by deleting
the fist, t2nd i~th stars from N. f~[j] and E[fi, J2 , j~] are obtained by analagous
deletions of pairs of stars from ~S.

Given an instance of the node cover problem on a graph G = (N, E): k; (Xl, yl); (x2,
y2); ...; (x~, y~), let us construct a set R of r + 1 sequences as shown in Figure 4. Our
template_T will be the edge codeplate E, followed by the node c odeplate ~r, followed by
another E. We will distinguish the two f~'s as the left and right E's. For the ith edge e, =
(x,, y,), let x, = v~ and y, = Vm, where {v~, v2 vt} is an ordering of N. We create a
sequence S, which ts the code for edge e,, Ell]; the code for vj, N0]; the edge codeplate,
E; the code for Vm, rid[m]; and a second occurrence of E[0. Again, we distinguish the left
E[t] and the nght E[0.

CLAIM. l f graph G = (N, E) has a node cover o f size k then the set R has a common
subsequence o f size

(2r + t + 3)(4r + 20 + (2r + t - k).

PROOF. Let N ' = {Ul, u~ u~} be a node cover of size k. Let W be the set o f all edges
e, = (x,, y,) such that x, ~ N'. Let U be the set of the rest of the edges in N. Clearly, for
every e, in U, y, ~ N'. Let T' be the sequence E[W]; /V[N']; E[U]. (See Figure 5.) 7" is of
length (2r + t + 3)(4r + 20 + (2r + t - k), since f WI + I U I = r. In Figure 6 we show how

NODE CODEPLATE N LENGTH = (t + l) (4 r + 2 t) +1

t OCCURRENCES OF m
f
! ! I m . . . m I

* l , , , I t l i
L-----.-J-- -I-- __ --L-- L - - .J---- L--. L.--.--L -- .--t

4r+2t I 4r+2t I 4r+2t I I 4 re2 t

EDGE CODEPLATE E LENGTH = (r+l)(4r+Zt) + 2r

r OCCURRENCES OF m m

0 i 0 • 0 I o m 0
I I i i t l e e I I I L _ _ L ~ _ _ ' = , , ~ _ . _ ~
4 r + 2 t 2 4r+Zt 2 4r+2t 2 2 4 r e 2 t

NODE CODE N [i] LENGTH =(t+ l) (4 r+2 t) + (t - I)

E ! . . . I m . . . l it I
t i t , f I i ~ i

4r+2t I 4r+2t I 4r+2t 14r+2t I I 4r÷2t
i t h I SPOT

MULTIPLE NODECODE N C I i , i 2 ,15] LENGTH = (t + l) (4 r + 2 t) + (t - s)

I I I

4r+2t I 4r+2t 4r+2t14.r+2t I 4r+2t 14r÷2t I 4r+2t !4r÷2t I I 4r+2t
I I I

i I S P O T i 2 S P O T . . , I S S P O T

F ~ 3

LENGTH = (2r+t +3) (4r+2t) + (4 r + t)

T E N
L i i ,

(r +11 (4r,~-2t)+2r (t* l)(4r+~2t)÷ t (r+ l l (4 r +2t l+2r

LENGTH = (3r+2t~-5)(4r+2t) + (6r÷2t -6)

s i L . E: ['1 .L fi [j l , ~: , f i [m] , E [i l

(r+ l) (4 r+2 ;)~ -2 (r - I) (t+ l) (4r . l -2 t l . l - (t * l) (r+D(4r+2 t l÷2r (tH lN. r+2t)+(t - l) (r~-1)(4r.l-2t'i'.l-2(r-I)

FIG. 4

326 DAVID MAIER

T' Cw] N CN'] [CU] i i i D

(r+ I) (4r+21) +2(r - IWl) (t + l) (4 r + 2 t) ÷ (t - k) (r .H) (4 r + 2 t) +2 (r - IUI)

FIG, 5

-r" , E [w] ,

T , E ,

$i ~d_ J

FIG, 6

T' will thread with T and with the sequence S, for edge (x,, y,) = (vj, vm), assuming x, E
N'. Corresponding sections of T' and T thread because T' is simply T with some of the
stars deleted. T' threads with the left side of S, as follows: E[IV] threads with 8[/] since the
only pair o f stars missing in LE[t] is also missing ~ El W]. Similarly, _~N'] threads with At[/]
since the j th star of ~/[N'] is missing. Finally, E[U] threads with E, since E[U] is E with
some pairs of stars deleted. So T' is a common subsequence of R with the desired length.

CLAIM. I f L C S (R) has length

(2r + t + 3)(4r + 20 + (2r + t - k),

then the graph G has a node cover o f size k.
PROOF. We need a preliminary lemma and corollary.
LEMMA. Given any common subsequence T' o f R, there exists a common subsequence

T" o f R with [T" I ->] T'], such that T" has a threading scheme which threads entire blocks
o f 4r + 2t zeros or ones in the sequences o f R. That is, under this threading scheme, in any
Mock o f zeros or ones in a sequence, either all the zeros or ones are threaded, or none are
threaded.

PROOF. We will show the lemma holds for the blocks of zeros. The proof is merely a
process of pushing threads to the left within blocks of ones and adding more threads.
Suppose we have a threading scheme O for T', with 01 being the leftmost 0-thread, and let
Bo, B~, B2 Br be the blocks of zeros which 0~ threads. (See Figure 7(a).) Since 0~ is the
leftmost 0-thread, we can move it so it threads the leftmost zero in each of Bo, B~ B,.
(See Figure 7(b).) We then add thread Oz runmng through the second leftmost zero of B0,
B1 Br. Notice that 02 can conflict with at most one existing thread. Suppose there were
two threads, 0a and 0b, which already threaded second leftmost zeros in two different
blocks, say B, and B~, respectively. Then in sequence S,, 0, would be to the left of 0b, while
in Sj, 0a has to thread to the right of ~ . This would mean 0a and 0b crossed somewhere
between S, and S~, which is disallowed by our threading rules.

Should we find such a thread conflicting wtth 02, we elimmate it. We continue by adding
threads 03, 04 ,04r+2t in the same manner, never decreasing the number of threads in 0.
Now we find the next 0-thread to the right of 04r+2, call it 0L and repeat the process.
realizing that 0~ cannot pass through blocks Bo, B~ Br. We continue in this manner
until all 0-threads run through blocks which are completely threaded.

We perform a similar process on the l-threads, and derive our common subsequence T"
from the new threading scheme, with [T ' [_> 17"].

COROLLARY. There exists an L C S f o r R with a threading scheme whtch threads all
the zeros and ones in T.

PROOF First we note that

The Complexity of Some Problems on Subsequences arid Supersequences 327

81 8o el e203 04,+z,
' I ' l , k k h T ' ' , l : : I I I I I T ,

I I

s, I I s, l l , l , f : ' ' - I'~ .
. ' ' " - -

s2 _ _ _ I : s z h ,) , l t:
' ' ' ' ' I I

, 1 1 { I
Sr ; : ', : t : I |1 I - - - - - - Sr ' ltiti , : ' , : : :I ~

I I l l t
(a) (b)

FiG 7

/~[1, 2 r]; IV[l , 2 /] ; /~ [1 , 2 r] ~- 1 (r+l)(4r+2t) 0 (t+l)(4r+2t) l (r+D(4r+2t)

is a common subsequence of R of size (2r + t + 3)(4r + 20. Suppose T' is an LCS of R.
We apply the above lemma to T' to get an LCS T ' with a threading scheme O which
threads only whole blocks of zeros and ones. Suppose O does not thread some block of
zeros or block of ones in T, the template. Then the maximum length of T" is (2r + t + 2)
(4r + 20 + (4r + t), since the blocks have length 4r + 2t. But this makes T" shorter than
(2r + t + 3)(4r + 20 and therefore not an LCS of R. Contradiction. So the scheme O for
T" must thread all the zeros and ones in T.

PROOF OF CLAIM CONTINUED. Now that we know an LCS T" for R matches all the
zeros and ones in T, we can demonstrate some other properties of T". First we note that
there is no threa_ding scheme O for T" which contains threads Oa and Ob threading the left
8 and the right E of T and also the 8 of any S,, since this would prevent the ones in ~r of
T from being threaded. (See Figure 8.) Hence for any threading scheme O and sequence
S,, ~t must either be the case that there a r e (r + 1)(4r + 20 0-threads, 01, 02 8,, threading
all the zeros in the left 8 and the left E[l] or (r + l)(4r + 20 0-threads 0~, 81 O's,
threading all the zeros in the right 8 and the nght 8[0, as shown in Figure 9. This means
the ith pair of stars in the left or right 8 of T is not threaded, though not necessarily both
pairs.

Suppose for a given S, all these 0-threads run through the left 8 and E[l]. (See Figure
10.) Then [here cannot be threads 0a and 0b both passing through ~r of T and then through
~ /] and NIm] of S,, respectively. This would mean the ith pair o f stars o f the right E in
T would go unmatched. But more threads could be run, as shown in Figure 11, by
threading the lefi 8 and 8[/] together, N and NIJ] together, and the right 8 of T and 8 of
S, together. Tins would mean the ith star of N goes unmatched. A symmetrical situation
applies if 8~, 8~ ~ thread the right E and 8[i], with the final result given in Figure 12.

What we see from these constraints on O is that for each S, in R, the ith pair of stars in
the lefi 8 or the right 8 m Tgoes unmatched and the j th or mth star in N goes unmatched.
Now if T", our LCS, is of size (2r + t + 3)(4r + 2t) + (2r + t - k), we know that
(2r + t + 3)(4r + 2t) threads match zeros and ones in T, leaving 2r + t - k threads for
stars. There are 4r + t stars in T, and we know that for each S, in R we can match the ith
pair of stars in the left E[t], but not in the right 8[0, or wee versa. So we have 2r stars
matched in the left and right E ' s of T, leaving t - k stars matched in ~r of T. There are t
stars in N, so k of these stars go unthreaded under the scheme O. By letting N' be the set
of nodes corresponding to those stars not matched in ~r of T, we can show that N' is a
node cover of graph G of size k, by methods similar to Theorem 1.

PROOF OF THEOREM 2 CONTINUED The two claims above suffice to show that
LCS(R) has size (2r + t + 3)(4r + 20 + (2r + t - k) if and only if the graph G has a
mlntmal node cover of size k. Given an input for the node cover problem of length n, we

328 DAVID MA1ER

$i E [i]
I

E e° ~ eb [

\ ?
, ~ [i3 g ~ [m] , g [,3 ,

_~ I________I~_
i I

FiG. 8

e, e 2 . . . e s OR e ; e ~ . . . e~

FIG. 9

e e e~ • "" es eo #b

T Z~

11- 1 r I T t T
FiG I0

e, e 2 . . . e s ~ , ~ ~ ~ ! _ , _ T L_~ _%_, ~__

FIG 11

g[,,3 ___.J

Fm 12

must construct r + l sequences of length less than or equal to (3r + 2t + 5)(4r + 2 0 +
(6r + 2t - 6) to use as input for the LCS algorithm, where r, t _~ n. So the total length of
the input for the LCS problem ts O(n3), and it can be seen that the sequences of R can be
generated m polynomial time. Therefore the LCS problem with [X(R) I >_ 3 is NP-complete.

THEOREM 3. The LCSproblem is NP-completefor [~(R)I ~_ 2.
PROOF. The proof of this theorem is essenttally that of Theorem 2, but we ehmmate

the use of stars, replacing them by zeros and ones as appropriate. (See Figure 13). The
proof of Theorem 2 now carries through with the changes of stars to zeros and ones, except
for one difficulty. The problem arises in the lemma, where the proof becomes invalid with
the changes of symbols. We present an alternate lemma which will replace the former
lemma and its corollary. All our notaUon will be the same as m Theorem 2, except as
noted.

LEMMA. There exists an LCS T" of R with a threading scheme which fully threads all
the blocks in T of R.

The Complexity of Some Problems on Subsequences and Supersequences

NODE CODEPLATE N LENGTH = (t+ I) (4 r + 2t) -I- t

t OCCURRENCES OF 0

, I , tO I , 0 , I 0 . . . , 0 ~ , I _ i
~___ J___L ___~_ L _ L a_._~__

4 ¢ + 2 t I 4 r + ~ I 4 r + 2 t I I 4 r + 2 t

EDGE C O D E P L A T E E LENGTH = (r + I) (4 r ÷ 2 t) + 2 r

r OCCURRENCES OF II
A

i 0 , r l , 0 , I i 0 , I , • • • I ' = 2 ,

4 r + 2 t 2 4 r + 2 4 r + 2 t 2 2 4 r + 2 t

NODE CODE N [i ' l L E N G T H = (t -H) (4 r + 2 t) + (t - I)

,.~_~_......, ~_.-,~ ,~_,, .~_..,,.,._, ~_,~_,.~
4 r + 2 t I 4 r + 2 t I 4 r + 2 t 1 4 r + 2 t I I 4 r + 2 t

tth SPOT

MULTIPLE NODE CODE N E i t ,i 2 , . . i s] LENGTH = I t + I) 1 4 r + 2 t) + (t - s)

i I iO ..., ,0,... 0 ... ,0 i..-,O , i i i i i , , i i i

4 r + 2 t 1 4 r + 2 t 4 r + 2 t l 4 r + 2 t I 4 r + 2 t 1 4 r + 2 t I 4 r + 2 t 1 4 r + 2 t I I 4 r ÷ 2 t
i I I

' l SPOT i z SPOT . . . i s SPOT

FIG 13

329

PROOF. Since we now have zeros and ones occurring in places other than in blocks, we
will also write of O-diwders (of length 1) and 1-dividers (of length 2), these being the zeros
and ones which replaced the stars of Theorem 2. Next we note that LT[I, 2 r]; At[l, 2,
.... t]; E l i , 2 r] is a common subsequence of R of length (2r + t + 3)(4r + 20 + 2r; it
threads slmdarly to 7" m Figure 6. So any LCS of R must have at least this length, and
must therefore thread at least (2r + t + 2)(4r + 20 + (2r + 0 terms of the blocks of T,
since there are only 4r + t terms in the dividers. In other words, only 2r + t terms in blocks
of T may go unthreaded, which implies that every block of T must have at least 2r + t
terms threaded m any scheme for an LCS of R.

Gwen a threading scheme for an LCS of R, we will show that we can rearrange the
threads so that all blocks of T in the left E thread completely with entire blocks m St, $2,
..., S,. A similar approach works for the blocks of N and the right/~ of T. We first note
that all the sequences m R begin with a 0-block We thread these 0-blocks together, which
we can do without decreasing the number of threads. We now look at the next 0-block to
the right in the left E, and attempt to thread it with 0-blocks in $1, $2, ..., St, and proceed
to the right.

We may encounter a hitch, however. Examine Figure 14. We are working on the 0-
block B0 of T, and we know that all the blocks to the left of B0 thread completely with 0-
blocks in the rest of the sequences. The last 0-thread of the previous block we call 0p. The
threads through the l-divider immediately before B0 we call Oa and 8b, if they exist. The
leftmost and rightmost threads in Bo we call O. and 0v, respectively. Since B0 must have at
least 2r + t threads, in each of the S, some of the threads 0. - 0~, must either pass through
or encompass (pass to the left and right of) at least one 0-block, since ~r[x,] and ~r[y~] have
only t - 1 zeros apiece.

We can have one of three cases with each of the S,; these cases are exemplified by
sequences Sf, Sg, and Sh Sequence St represents the case where there is a block or a
portion of a block Bf between 0,, and Op (or 0b instead, if it exists), where no threads from
other 0-blocks of T run through Bf. The case for Se is where all the threads 0. - 0o pass
through a single block B e, there are no 0-blocks between 0. and whichever of 0p or 0b is
closer, and there exist some threads to the right of 0,, in B e. The case for Sh is that of Sg,
except that 0u and some threads to its right run through 0-dwiders instead of Bh.

If we have a case similar to Sf, we simply push all the threads 0u - 0o into Bf. The case
S e is harder to handle, and will be dealt with in detail. The case for Sh is very much the

3 3 0 DAVID MAIER

___? I='' !lla°l i:

" ~ - - " NO O 'B

= I : _ _ _ _

FtG 14

same as the case for Sg, and will not be given. Going back to Sg, consider the thread to the
immediate right of 0o in Bg. This thread ts of course to the immediate right of 0,. m T as
well, and a moment's careful thought wdl show that this thread must pass through the next
0-block to the right of B0 in the left E. We call this block Bo ~, with leftmost and nghtmost
threads 0~ and 0~.

The situation for Se may be further complicated, as we see in Figure 15. Here we have
0-blocks B~, j = 0 s, in the left E of T, with leflmost and nghtmost threads 0~ and
0~, and 0-blocks B~, j = 0 s, in Sg (with possibly no S~). The blocks Bo °, Bo l, and Bg °
correspond to B0, B~, and Bg in Figure 14. The following condiuons hold:

(l) Bo j-~ and Bo J are adjacent blocks of T f o r j = l s.
(2) 0~ -~ and 01 both thread B~ -~ f o r j = l s - I.
(3) B~ -~ and B~ are adjacent 0-blocks in Sg, or they are separated by A/[xg], for j =

l, ..., s. (They cannot be separated by Ar[ygl, for this would make it impossible to thread
the l-blocks in A r of T.)

(4) B[is the first block to the right of Bo o where the threads 0~ - 8~ do not share a block
or divider in S¢ with any 0-threads to the risht of 0~,.

Note that B~ must occur before f¢ of T, since the first l-block of A r must have a l-thread,
and our conditions preclude a l-thread between 0°~ and 0~.

Our conditions allow for four cases, as to where 0~runs in Sg.
Case I. The thread 0~ runs though the block B~ in Sg. (See Figure 16.) We know there

are no threads to the right of 0~ in B~. So we move threads as follows:

0~ - 0~ run t h r o u g h / ~ by themselves.
0~ -~ - 0~ -~ run through B'~ -~ by themselves.

0~ - 0~ run through B~ by themselves.
0~ - 0~ run through B~ by themselves.

Bg . (See Figure 17.) This means all the Case II. The thread 0~ runs through block ~-]
threads 0°= - 0~ will fit in the blocks B~ through ~-~ Bg , plus possibly the 0-divlders in
]V[xg], of Sg. But this is only s(4r + 2t) + 2r terms. So Bo O through B[must have 2r + 2t
unthreaded terms, which is more than the 2r + t allowed. This means our threading
scheme cannot correspond to an LCS for R.

Case III. The thread 0~ runs through a 0-divider in A/[xg], and there is a 0w between
and 0~ which threads through B~. (See Figure 18.) Here we proceed as in case I.

Case IV. The thread 0~ runs through a 0-divider m Ar[xg], but there is no block B~
between 0~ and 0~. (See Figure 19.) The argument from case II can be applied.

We now are able to thread 0~ - 0~ through the same block m St, Sg, and Sh, with no
other threads passing through these blocks. These sequences typify the cases in all the S,,
so we may run 0, - 0o through blocks by themselves in all the S~. It then becomes a stmple

The Complexity of Some Problems on Subsequences and Supersequences

0 0 I I 2 2 Op O 0 e b e u ,.~nov °u ~l 8v Ou ~ 8v
, , =~ , °o Oo , T I ,I I ,I I , _ _ ~ __ I . I _ I~ .~LL : .

°oo ooe •

NO O-BLOCKS NO O-BLOCKS NO O-BLOCKS

FIG 15

331

BS" _ ~ _ _

Ov ~

I I ~ l i I T M I ' _ _ _ _

I I I II I I II I I I I
FIG 16

4

SsS sSSS

- - I I I II II III

• , l l

I I I II II II

" I I ~ I~ __~k~_~
" ' ' / / j

FIG 17

o, B~e~
=111 I~

,i 1 ~t' _ _
II

O IS A O-D IV IDER
FIG 18

S-I
!

II I I . ~ f I
D IS A O-DIVIDER

FIG 19

process to add more threads, if necessary, through these blocks to bring the count up to 4r
+ 2t. We thus fully thread all the 0-blocks in the left ~S of T. A similar method works for
the l-blocks of ~ / a n d the 0-blocks of the right E of T. This leads us to the desired result.

PROOF OF THEOREM 3 CONTINUED. With the above lemma, the proof of Theorem 2,
minus the lemma and corollary, is adequate for the proof of Theorem 3.

4 Applicattons of Threading Schemes to the SCS Problem

The proofs we will present dealing with the Shortest Common Supersequence (SCS)
problem are fairly similar to those for the LCS theorems; hence we will not go into as
much detail. We will prove two theorems, the second stronger than the first, in order to
develop the proof m stages.

3 3 2 DAVID MAIER

THEOREM 4. The S C S problem is NP-complete f o r Z(R) o f arbitrary size
PROOF. Once again we reduce the node cover problem to the problem at hand. Given

a node cover problem on a graph G = (N, E), say, k; (xl, Y0; (x2, y2); ...; (xr, yr), we
construct a set R of r + l sequences. The alphabet for R will be as follows. Find the set of
nodes m G, N = {vx, v2 vt}, and make each an alphabet member. The edges of E =
{el, e2 er}, where e, = (x,, y,), are also members of the alphabet. Finally, star (*) is a
member of the alphabet.

We then construct the r + l sequences. The template T is composed of six sections: ~r;
~; ~; ~; ,~; ~r, in that order. N is a hst of the nodes in N. E is a list of the edges m E, with
each edge appeanng twice m a row. The section A is a sequence of 4c stars, where c =
max(r, t). (See Figure 20) For each edge e, = (x,, y,) we construct a sequence S, which is
e,e,; vj; A; Vm; e,e,, where x, = vj, y, = vm, and A is 4c stars, as before.

CLAIM. If G has a node cover o f stze k, then R has a common supersequence o f length
8c + 6r + 2t + k

PROOF. Let N' = {ul, u~ u~} be a node cover of size k. Let W = {e, lx, E N'}, and
U = {ejle~ is not in /4/}. Clearly if e, E U, then y, ~ N'. We now construct a sequence T'
by augmenting T with three sections: fV at the beginning, ~r, between the two E's, and
at the end, where fl r is a list of the edges in W, with each edge twice, fg' is a list of the
nodes m N', and U is two occurrences of each edge in U. (See Figure 21) T' has length 8c
+ 6r + 2t + k. To see that T' is a common su_persequence of R, note that for each S,, we
can match x, = vj or y, = Vm to a term m N'. The rest of the matching follows m a
straightforward manner.

CLAIM. I f R has an S C S o f length 8c + 6r + 2t + k, then G has a node cover o f size
k.

PROOF. First we note that for any node cover N' of G of size s, there is a supersequence
T' of R with length 8c + 6r + 2t + s, formed in the manner of the T' in the claim above.
Further, since s _< t, 8c + 6r + 2t + s _< 8c + 6r + 3t, and since N is a node cover of G, any
SCS of R has length less than 8c + 6r + 3t. Let T" be an SCS of R. We can now prove the
following lemma.

LEMMA. There is a threading scheme O" for T" such that fo r all S, ~ R, all the stars
o f A o f S, are threaded with the left A o f T or the right .4 o f T.

PROOF. It is a property of SCS threading schemes that all terms of all sequences get
threaded. Suppose for a given S,, none of the stars in A thread with either A of T. Then
0" has at least 12c + 4r + 2t threads, which is more than the 8c + 6r + 3t allowed for an
SCS. We get the former number by counting the terms in T (8c + 4r + 2t) plus the_terms
in A of S,, all of which need separate threads. So at least one thread goes through A of S,
and one of the A's of T. But once we have one common thread, we can shift and add
threads to thread all the stars of A of S, and all the stars of either the left or the right A of
T. (See Figure 22.)

L E N G T H = 8 c + 4 r + 2 t

~ VJ V21__ , . V . • e • e - e . e . e . e , e ,
" I I '1 i I l l , " " " I l l ; I l l I I " " " I ' l ' l ! V i iV21 . . . i V t i

4 C 4 C

$i

L E N G T H = 4 c - v 6

, e I • i v j , • ,Vm,e i e i

4c
FIG 20

, e i , e i , • • • , , , , u l ~u2~ " ' ' ~ u s , , i , e j l e j l " " " i
¢_. -L. . -J . - - - - __ L - _ _ . - -L __ - - ¢._ _ _ _~. ~ .--L - - - - L ~ A__ - - --L_ _ _ ._L _ _ ._L .._1 _ . a - - - - ----J

F O R A L L • I IN W A l L M E M B E R S O F N r F O R A L L e j IN U

FIG 21

The Complexity o f Some Problems on Subsequences and Supersequences 3 3 3

PROOF OF CLAIM CONTINUED. Now ~t remains to be determined how the rest of S, is
threaded. We will define extra threads as those threads in O" threading no term in T.
Suppose we have A of S, threading completely with the left A of T, as shown in Figure 22.
Then there are no terms in T or any other sequence to thread with the left pair of e,'s, so
they must be on their own extra threads, which we can run around the left end of T. (See
Figure 23.) This allows us to thread b with the corresponding term in N of T. On the right
end, it is not difficult to see that we can do no better than running vm on an extra thread
between the E ' s and matching e,e, to the right E. I f A of St threads the right A of T, we
end up with a mirror image scheme.

For each S,, we must run two extra threads for e,e, and one extra thread for x, o ry , (b
or v~). If x, = x~ for some j , and x~ and x~ are on extra threads, these threads can be
combined; likewise for x, = y~, y, = x~, or y, = y~ for somej . We see that O" will have 2r
extra threads for the e,'s and a number of extra threads for some of the members of N,
such that x, or y, is on an extra thread for each e~ = (x , y,) Since I T" I -- 8c + 6r + 2t +
k and we have 8c + 4r + 2t threads for T, plus 2r extra threads for the e,'s, there must be
k extra threads for the elements of N. If we let N ' = {vj E N I vj corresponds to an extra
thread}, we see that N' is a node cover for G of size k.

PROOF OF THEOREM 4 CONTINUED. The two claims above give us a reduction of the
node cover problem to the SCS problem. The length of the sequences for R is polynomial
in n, the length of the node cover input. The reduction Is polynomial, so the SCS problem
is NP-complete for [~(R)[unbounded.

THEOREM 5. The S C S p r o b l e m is NP-comple te for []g(R)[= 5.
PROOF. We use the same notation for our graph and node cover problem as we used

in the last theorem. Again, we do an encoding for the nodes and edges, usmg the alphabet
{a, b, 0, 1, *}. The encoding is similar to the encoding used for the LCS problem, except
that we insert &viders instead of deleting them. We define the node codeplate ~ /a s t + 1
blocks of 10c a's, where c = max(r, t). Any v, in N we encode with node code ~r[/], which
is obtained by inserting a b between the ith and (i + l)-st blocks of ~r. The multiple node
code ~/[il, i2 is] has a b in the ilst, i2nd i~th spots. The special case of At[l, 2 t I we
denote Ars and refer to as the node sink, since it is a supersequence of all the node codes,
as well as the node codeplate. The edge codeplate E, the edge code E[j], and the multiple
edge code Lift, j2 js] are defined similarly wi thblocks of 10c zeros and pairs of ones.
(The code ElL] is shown in Figure 24.) We call E[I , 2 r] the edge sink and denote
itEm. Finally, A consists of 10c stars.

We define the r + 1 sequences of R as follows. The sequences are somewhat similar to
the sequences of R in Theorem 4. The template T consists of the following codes in the
g}ven order: E; N~; A; E~; A/; L ; A; ~r; ~. For each e, = (x,, y,) we define S, as. E[l];
N[j]; A, fV[m]; ~7[/], where x, = vj and y, = Vm. (See Figure 25.) Note that T has length
10c(4r + 3t + 9) + (4r + 2t).

T N A E E A
1 i i i i i

Si " ' " _

F i e 22

T ~ XX ~ ~ ~

FiG. 23

334 DAVID MAIER

N O D E CODEPLATE t +1 BLOCKS LENGTH = I O c (t + I)

r 0 0 O 0
+ i ~ • i • t i

' d c ^ Idc " dc ' l o s '

NODE CODE N [i] L E N G T H • I O c (t + l) + I

, o . o , • • • , o , b , a , • • • ~ o , _ _ J a _ _ ~
L . - - - - - - - - . JL- . . - - - - - - . z - - + - - _ _ _ _ t-,,..,.. - - - - _ , L _ _ _ . J . _ . _ _ - - , _ _ L . _ _ - - . - - I - - _ _ - - . £ . - - ,
S . l~ . ,* ~ + , , , . . ~ , / ~ + i i - t~ +

IOc IOc IOc I IOc IOc I()c
i

I th ' S P O T

M U L T I P L E NODE N [I I , I z I s] L E N G T H = IO c (t + I) + $

0 0 . . . 0 b o . . . o b o . . . o b o . . . o
i I i i i i i * i i I i i i i i i

IOc IOc IOc I IOc IOc I IOc IOc I IOc IOc

i I S P O T i a SPOT " ' " i$ SPOT
EDGE CODE E [j] L E N G T H = IO c (r + I) + I

r + I B L O C K S

O O O I O O O
f
I i i + + • i i i i " " * l i i
- - _ _ _ _ - - _ _ _ _ - - _ _ _ _ - - _ _ _ _ - - _ _ - - _ _ _ _ - - _ _ _ _ . _ _ _ _ _ _ - - _ _ _ _ _ , i

IOc IOc IOc I IOc IOc IOc

I th SPOT

Fzo 24

T , i~ , R s , ~ , [s , R , E s , A , N s , [,

S i [C i] N I l 2 ~ R i m] [C i]
a i , i i I

F I G 2 5

CLAIM.

PROOF.
Then

I f G has a node cover o f size k, then R has a common supersequence o f length

10c(4r + 3t + 9) + (4r + 2t) + (2r + k).

Given N', a node cover of size k, let W and U be as specified In Theorem 4.

is a common supersequence of R of length

10c(4r + 3t + 9) + (4r + 2t) + (2r + k).

The matchmg is analogous to that of Theorem 4, with either v: or vm threading with
A l [N '] .

CLAIM. I f R has an S C S o f length

10c(4r + 3r + 9) + (4r + 2t) + (2r + k),

then G has a node cover o f size k.
PROOF. Given any node cover N' for G of raze s, we can construct T', a supersequence

for R of length

10c(4r + 3t + 9) + (4r + 2 0 + (2r + s) < 10e(4r + 3t + 9) + (4r + 2t) + (2r + t),

as above. The right-hand side of the inequality is thus an upper bound on the length of
any SCS of R. Let T" be an SCS of R. We may again observe that there exists a threading
scheme O" for T", such that for any S,, A of S, is completely threaded with the left A or
the right A of T. If A of S, had no threads in common wRh the left or right .A of T, O"
would have at least 10c(4r + 3t + 9) + (4r + 2 0 + 10c threads, which is too many, as 10c
> 2r + t. Once we have one thread common to A of S, and the left or right A of T, we can
run 10c threads through the two A's. Figure 26 shows one of the two cases. A similar

The Complexity of Some Problems on Subsequences and Supersequences 3 3 5

~ Ern~ EE i3 ,

FIG 26

ef e~ e~

FIG. 27

argument shows that the a-blocks of N[/] and fV[m] and the 0-blocks of the left and right
8[/] can also be made to thread with whole blocks in T.

Assummg .~ of S, is threaded as m Figure 26, we have little choice on how to thread the
blocks of E[/] and i~/] They thread with E and N~ of T, and we need two extra threads,
0] and 02, to thread the two ones m the left E[t]. (See Fi_gure 27.) On the right side, we can
do no better than to thread N and ~r[m], and the right E~ and the right E[q, with an extra
thread 03 to thread the b in fV[m]. We have the mirror situation if A of S~ is threaded with
the right A of T.

We may now proceed as in Theorem 4 to show that the nodes of N corresponding to
extra threads through N of T form a node cover for G of size k.

PROOV OF THEOREM 5 CONTINUED. The reduction of the node cover problem m
polynomial time and the NP-completeness follow as usual.

5. Conclusion

We have seen that the LCS and SCS problems are NP-complete for alphabet sizes of 2
and 5, respectively. We conjecture that the latter figure might be reduced to 3, by changing
the b's and ones to stars in Theorem 5.

The theorems indicate that any method for finding the LCS and SCS of an arbitrary
number of sequences is going to be intractable, and hence not useful for data compression
schemes. However, we might still ask if there are any good approximation methods whtch
could be used for data compression. Another question of interest is whether there exist low
order polynomial reductions directly between the LCS and SCS problems. Here we note
that the LCS of a set of sequences does not necessarily give any reformation about the
SCS, since we can always add a sequence to the set which will not change the SCS but
which is a common subsequence of all the other sequences.

ACKNOWLEDGMENT. The author wishes to thank Jeff Ullman for suggesting the topics
covered in this paper, and for the many discussions we had about them.

REFERENCES

1 AHO, A V, HIRSCHBERG, D S, AND ULLMAN, J D Bounds on the complexity of the longest common
subsequence problem J ACM 23, 1 (Jan 1976), !-12

2 AHO, A V, HOPCROFT, J E., AND ULLMAN, J D The Design and Analysts of ComputerAlgorzthms Addison-
Wesley, Reading, Mass, 1974

3 CHVATAL, V, KLARNER, D A, AND KNUTH, D E Selected combinatorial research problems STAN-CS-
72-292, Stanford U, Stanford, Cahf, 1972, p 26

4 CHVATAL, V, AND SANKOFF, D Longest common subsequences for two random sequences STAN-CS-75-
477, Stanford U, Stanford, Cahf., Jan 1975

5 COOK, S A The complexity of theorem proving procedures Proc Third Annual ACM Symp on Theory of
Computing, 1971, pp 151-158.

336 DAV1D MAIER

6. DAYHOFF, M.O Computer aids to protein sequence determination. £ Theoret. Biology 8, I (Jan 1965),
97-112.

7. DAYHOFF, M.D. Computer analysis of protein evoluUon. Scient~ Amer. 221, 1 (July 1969), 86-95
8. FISCHER, m.J., AND PATERSON, M.S. String matching and other products. Tech Memo 41, Proj MAC,

M.I.T., Cambridge, Mass, 1974.
9 FREDMAN, M.L. On computing length of the longest increasing subsequences Discrete Math 11, 1 (Jan.

1975), 29-36.
10. HIRSCHBERG, D S On finding maximal common subsequences TR-156, Comptr Sct Lab, Pnnceton U ,

Pnnceton, N J , 1974
11. HIRSCHBERG, D S. A linear space algorithm for computing maximal common subsequences Comm. ACM

l& 6 (June 1975), 341-343
12 HIRSCHBERG, n S The longest common subsequence problem. Ph D Diss., Princeton U , Princeton, N J.,

Aug 1975.
13 KARP, R.M Reduoblhty among combinatorial problems. In Complexity of Computer Computation, R E

Mdler and J.W Thatcher, Eds, Plenum, New York, 1972, pp. 85-103
14 LOWRANCE, R., AND WAGNER, R A An extension of the stnng-to-strmg correction problem ,L A CM 22, 2

(April 1975), 177-183
15. MORRIS, J.H., AND PRATT, V R. A hnear pattern-matching algorithm. TR-40, Comptr Ctr., U of Cahforma,

Berkeley, Calif., June 1970
16 NEEDLEMAN, S B , AND WUNSCH, C S. A general method applicable to the search for similarities m the

amino acid sequence of two proteins £ Molecular Biol 48 (1970), 443-453
17 SANKOFF, D Matchmg sequences under deletion/insertion constraints Proc. Nat Acad Scl. USA 69, 1

(Jan 1972), 4-6
18. SANKOFF, n , AND CEDERGREN, R J A test for nucleotlde sequence homology. J Molecular Btol 77 (1973),

159-164.
19. SELLERS, P H An algorithm for the distance between two finite sequences J Combm Theory 16 (1974),

253-258
20. SZYMANSKI, T.G. A speoal case of the maximal common subsequence problem. TR-170, Comptr Scl. Lab,

Princeton U , Princeton, N J., Jan. 1975.
21. WAGNER, R.A On the complexRy of the extended string-to-string correction problem. Proc Seventh Annual

ACM Syrup. on Theory of Comptng, 1975, pp 218-223
22. WAGNER, R A , AND FISCHER, M J The string-to-string correction problem J ACM 21, I (Jan 1974),

168-173
23. WEINER, P Linear pattern matchmg algorithms Proc 14th Annual Symp on Switching and Automata

Theory, 1973, pp 1-11
24. WONG, C.K., AND CHANDRA, A.K Bounds for the strmg editing problem J ACM 23, 1 (Jan. 1976), 13-16.

RECEIVED NOVEMBER 1976; REVISED JUNE 1977

Journal of the Association for Computing Macluncry. Vol 25. No 2, April 1978

