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1. Definitions 

Given a finite sequence S = sl, s2, ..., sin, we define a subsequence S' of S to be any sequence 
which consists of S with between 0 and m terms deleted (e.g. ac, ad, and abcd are all 
subsequences of abcd). We write S' < S if S' is a subsequence of S. We also say that S is 
a supersequence of S', and write S > S'. Given a set R = {$1, $2 ..... Sp} of sequences, we 
speak of a Longest Common Subsequence of R, LCS(R), as a longest sequence S such that 
S < S, for i = 1 ..... p. For example, abe = LCS((ababe, cabe, abdde} ). Actually, LCS(R) 
is a set of subsequences, since there may be more than one sequence fitting the definition. 
Since we will be mamly concerned with the length of any (and every) LCS(R), when we 
write LCS(R) we will mean a single representaUve of this set. Simdarly, a Shortest Common 
Supersequence of R, SCS(R), is a shortest sequence S' such that S' > S,, I = 1 ..... p. For 
example, SCS({abbb, bab, bba} ) = abbab. 

The yes~no LCS (SCS)problem is: Given an integer k and a listing of the sequences in 
R, is ILCS(R)[ --> k (ISCS(R)I .~ k), where IsI is the number  of terms in sequence S? 
Whenever we refer to the LCS and SCS problems in this paper, we will mean the yes/no 
versions. We define the alphabet of R, X(R), to be the finite set of values the terms of 
sequences S1, $2 ..... Sp take on. Clearly IX(R) I -< ml + m2 + + rap, where m, = [ S,I. We 
also use I I to denote the cardinality of a set; the context will distinguish the usage. 

2. Threading Schemes 
It is convenient to think of the LCS and SCS problems in terms of threading beads. We 
think of a sequence as a row of beads and the matching process as threading the beads m 
a certain manner. Suppose we have three sequences $1 = bybrr, $2 -- yyrrbr, and $3 = 
byrry. We represent them as rows of beads: 
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For the LCS problem we demand that each thread have exactly one bead from each 

row, and all the beads on a thread be the same. We stipulate that no two threads may 
cross. We w~sh to know if k threads can be used. In our example, k must be three or less: 

et ~ ez,-..--.,, ~-  I 
® ® 

For the SCS problem, we relax the threading rules so a thread contains at most one 
bead from each row. We want to find If k threads are sufficient to thread all the beads. All 
beads on a thread must still be of  the same color and threads may not cross. In our example 
k must be 9 or more: 

We refer to a thread by the terms of  each sequence it threads, and also designate the 
type of  thread. For  example, 0~ is a y-thread in the LCS example and 07 is a b-thread in the 
SCS example. We refer to a threading scheme 0 as a list of  threads 01, 02 ..... 0j which, in the 
LCS problem, fulfill the threading rules and, in the SCS problem, fulfill the rules and 
thread all the beads. Given a threading scheme O = 0~, 02 . . . . .  0j for a set of  sequences R, 
we can obtain a common subsequence or common supersequence, depending on the sort 
of  scheme, by reading off the types of  01, 02, ..., 0~. Note that a threading scheme gives rise 
to a unique sub- or supersequence, but the reverse is false, as there may be a number  of  
threading schemes giving rise to the same sub- or supersequence. 

3. Applicatwns of Threading Schemes to the LCS Problem 

Computing the LCS has found use in the field of  molecular biology m studying amino 
acid sequences m similar proteins [6, 7, 16, 18]. The LCS and SCS problems may also have 
application to data compression techniques: A number of  very similar files might be stored 
as the LCS or SCS of  the files plus modtfications for individual files. The complexity of  
the LCS and similar problems has been analyzed for the case where [RI = 2 [1-4, 8-12, 14, 
15, 17, 19-24], R being the set of  sequences in question. In this paper the LCS and SCS 
problems are considered with no bound on the size of  R, but with various bounds on the 
size of  ]g(R). We shall show the SCS problem to be NP-complete for 12(R)I >- 5 and the 
LCS problem to be NP-complete for IZ(R) I >-- 2. 

All of  the proofs of  NP-completeness will be by reduction of  the node cover problem [5, 
13]. Given an undirected graph G = (N, E) and an integer k, the node cover problem is to 
determine if  there is an N' contained m N, with I N'I = k, such that for every (x, y)  ~ E, 
either x E N' or y ~ N'  (possibly both). We assume the problem is posed as an integer k 
and a list of  edges in E: k; (xl,y~); (xz, yz); ...; (Xr, yr). We flow prove three theorems, each 
having successwely stronger results. The reason for the redundant theorems is to develop 
the proof in stages which can be more easdy grasped. 

THEOREM 1. The LCS problem ts NP-complete for Z(R) of arburary size. 
PROOF. Given an instance of  the node cover problem on the graph G -- (N, E)" k; 

(x~, y0 ;  (x2, y2); ...; (xr, yr), encoded into a string of  length n, we find N and assign an 
arbitrary order {v~, v2 .... .  v,} to N. Clearly, r, t _< n. We construct r + 1 sequences of  length 
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at most 2(t - 1) as shown in Figure 1. The first sequence is the template T, which is the 
sequence vl, v2 . . . . .  yr. For  each edge e, = (x,, y,) m E we construct a sequence S~. Assume 
without loss of  generality that x,  = vj, y ,  = vm, a n d j  < m. Then S, is vl, v2, v3 .. . . .  vj-~, vj+~, 
• . . ,  Vm~ . . . ,  'l~t, V1, '122, ...~ l"j~ ...~ Vm--1, "Vm+l, . . . ,  I~l 

CLAIM. The graph G has a node cover o f  size k i f  and only i f  the set R = {T, $1, $2, 
.... St} has a common subsequence o f  size t - k. 

PROOF (only if). Let V' = {u~, u2 ..... uk} be the node cover of  size k. Then the sequence 
T ' ,  which is T with the nodes of  V' deleted, has size t - k. Clearly T '  < T. For  each S, 
either x, E V" o ry ,  E V'. I f  x, E V', then T'  is a subsequence o f  the first half  of  S~, since 
every node in T'  appears in the first half  of  S,, and the elements of  T'  and the first hal f  of  
S, are in the same order. I f  y, E V', then T' is a subsequence of  the last half  of  S,. So 7" is 
a common subsequence o f  R with length t - k. 

(if). Let T' be a common subsequence of  R. We notice that for each t, T '  cannot 
contain both x, andy, .  To see this, let x, = v~ andy ,  = Vm, where we have a s sumed j  < m. 
For  both vj and Vm to be in T', in any threading scheme we must have threads running 
through vj and v~ in T. Also, we have only one choice of  where to run the threads in S,, 
since it also has only one occurrence of  vj and Vm. But thls cannot be done without crossing 
threads, since the order of  vj and Vm is different in the two sequences. (See Figure 2.) Let 
V '  = { u l ,  u2 . . . . .  uk} be the nodes in T but not in T'. We are given [ T' [ = t - k, so I V'[ 
= k. For  each S ,  either x~ or y, IS in V'. Hence for every edge (x ,  y,) in E of  graph G, x, 

V' or y~ ~ V'. Hence V' is a node cover of  size k. 
PROOF OF THEOREM 1 CONTINUED. From the claim it is apparent  that the minimal 

node cover of  G has size k if  and only if  LCS(R) has size t - k. I f  the node cover problem 
has length n, the input for the LCS algorithm is of  length t + 2r(t - 1) _< O(n2). It is not 
hard to see that the construction can be done in polynomml time. Therefore we have a 
polynomial'  reduction of  the node cover problem to the LCS problem. 

THEOREM 2. The L C S p r o b l e m  is NP-complete for  I ~ ( R ) I  = 3. 
PROOF. Here we use an encoding for the nodes of  the graph. In Theorem l the main 

point is that for each edge e, = (x,, y,) in E, the LCS(R) cannot contain both x, andy, ,  and 
this point is preserved in the encoding. We also encode the edges, for use in distinguishing 
among the sequences. 

In Figure 3 we see how the codes are laid out. The codes are over the alphabet 

, v ,  , v= , v~  , . . .  , v t , 

ALL NODES 

Si  j ±  .z "_" ,J ,_- '_ ,J2:L "_" "_L v_, ,_ , j ,  , j± . ._ .  ._, ._, ,z", v ,  J 

ALL NODES BUT x! (= vj) ALL NODES BUT Yl (=Vm) 

F I G  1 

Si 

J± ~'_'~_"'_JLJ 
, v , ' - "  vj. ,vj , . . . , v . , / . . . , v t  y ,  , . . .~vj  , . . . , ~ ,  ,v,~., , . . . , v t ,  

. . . . . . . . . .  1 . . . . . .  . . . . . . . . . .  

~t AND 02 MUST CROSS 

Flo 2 
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{1, 0, *}. There are two codes which go into the template, called codeplates. The node 
codeplate ~r consists of  t + 1 blocks o f4 r  + 2t ones, separated by stars. The edge codeplate 
~? has r + 1 blocks o f4 r  + 2t zeros, separated by two stars. The code for a node v, ~ N wall 
be denoted ~r[/], and will be obtained by deleting the ith star of  ~r. We also define a 
multiple node code for v,,, v,~ ..... v±~ E N, denoted N[i l , /2  ..... i,], to be obtained by deleting 
the fist, t2nd ..... i~th stars from N. f~[j] and E[fi, J2 . . . .  , j~] are obtained by analagous 
deletions of  pairs of  stars from ~S. 

Given an instance of  the node cover problem on a graph G = (N, E): k; (Xl, yl); (x2, 
y2); ...; (x~, y~), let us construct a set R of  r + 1 sequences as shown in Figure 4. Our 
template_T will be the edge codeplate E, followed by the node c odeplate ~r, followed by 
another E. We will distinguish the two f~'s as the left and right E's. For the ith edge e, = 
(x,, y,), let x, = v~ and y, = Vm, where {v~, v2 . . . . .  vt} is an ordering of  N. We create a 
sequence S, which ts the code for edge e,, Ell]; the code for vj, N0];  the edge codeplate, 
E; the code for Vm, rid[m]; and a second occurrence of  E[0. Again, we distinguish the left 
E[t] and the nght E[0. 

CLAIM. l f  graph G = (N, E) has a node cover o f  size k then the set R has a common 
subsequence o f  size 

(2r + t + 3)(4r + 20 + (2r + t -  k). 

PROOF. Let N '  = {Ul, u~ ..... u~} be a node cover of  size k. Let W be the set o f  all edges 
e, = (x,, y,) such that x, ~ N'. Let U be the set of  the rest of  the edges in N. Clearly, for 
every e, in U, y,  ~ N'. Let T'  be the sequence E[ W]; /V[N']; E[U]. (See Figure 5.) 7" is of  
length (2r + t + 3)(4r + 20 + (2r + t - k), since f WI + I U I = r. In Figure 6 we show how 

NODE CODEPLATE N LENGTH = ( t + l ) ( 4 r + 2 t )  +1 

t OCCURRENCES OF m 
f 
! ! I m . . . m I 

* l , , , I t l i 
L-----.-J-- -I-- __ --L-- L - -  .J---- L--. . . . . . . . . . . .  L.--.--L -- .--t 

4r+2t I 4r+2t I 4r+2t I I 4 re2 t  

EDGE CODEPLATE E LENGTH = (r+l)(4r+Zt) + 2r 

r OCCURRENCES OF m m 

0 i 0 • 0 I o m 0 
I I i i  t l  e e  I I  I L _ _ L ~ _ _  ' = , , ~ _ . _ ~  . . . . . . . . . . .  
4 r + 2 t  2 4r+Zt 2 4r+2t 2 2 4 r e 2 t  

NODE CODE N [ i ]  LENGTH =( t+ l ) (4 r+2 t )  + ( t - I )  

E ! . . .  I m . . .  l it I 
t i t , f I i ~ i 

4r+2t  I 4r+2t I 4r+2t  14r+2t I I 4r÷2t 
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I I I 
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F ~  3 
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FIG. 4 
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T' will thread with T and with the sequence S, for edge (x,, y,) = (vj, vm), assuming x, E 
N'. Corresponding sections of  T'  and T thread because T'  is simply T with some of  the 
stars deleted. T'  threads with the left side of  S, as follows: E[ IV] threads with 8[/] since the 
only pair o f  stars missing in LE[t] is also missing ~ El W]. Similarly, _~N'] threads with At[/] 
since the j th  star of  ~/[N'] is missing. Finally, E[ U] threads with E, since E[ U] is E with 
some pairs of  stars deleted. So T' is a common subsequence of  R with the desired length. 

CLAIM. I f  L C S ( R )  has length 

(2r + t + 3)(4r + 20 + (2r + t - k), 

then the graph G has a node cover o f  size k. 
PROOF. We need a preliminary lemma and corollary. 
LEMMA. Given any common subsequence T'  o f  R, there exists a common subsequence 

T" o f  R with [ T" I -> ] T'  ], such that T" has a threading scheme which threads entire blocks 
o f  4r + 2t zeros or ones in the sequences o f  R. That is, under this threading scheme, in any 
Mock o f  zeros or ones in a sequence, either all the zeros or ones are threaded, or none are 
threaded. 

PROOF. We will show the lemma holds for the blocks of  zeros. The proof is merely a 
process of  pushing threads to the left within blocks of  ones and adding more threads. 
Suppose we have a threading scheme O for T', with 01 being the leftmost 0-thread, and let 
Bo, B~, B2 .. . . .  Br be the blocks of  zeros which 0~ threads. (See Figure 7(a).) Since 0~ is the 
leftmost 0-thread, we can move it so it threads the leftmost zero in each of  Bo, B~ . . . . .  B,. 
(See Figure 7(b).) We then add thread Oz runmng through the second leftmost zero of  B0, 
B1 ..... Br. Notice that 02 can conflict with at most one existing thread. Suppose there were 
two threads, 0a and 0b, which already threaded second leftmost zeros in two different 
blocks, say B, and B~, respectively. Then in sequence S,, 0, would be to the left of  0b, while 
in Sj, 0a has to thread to the right of  ~ .  This would mean 0a and 0b crossed somewhere 
between S, and S~, which is disallowed by our threading rules. 

Should we find such a thread conflicting wtth 02, we elimmate it. We continue by adding 
threads 03, 04 .... ,04r+2t in the same manner, never decreasing the number of  threads in 0. 
Now we find the next 0-thread to the right of  04r+2, call it 0L and repeat the process. 
realizing that 0~ cannot pass through blocks Bo, B~ . . . . .  Br. We continue in this manner 
until all 0-threads run through blocks which are completely threaded. 

We perform a similar process on the l-threads, and derive our common subsequence T" 
from the new threading scheme, with [ T '  [ _> 17"]. 

COROLLARY. There exists an L C S  f o r  R with a threading scheme whtch threads all 
the zeros and ones in T. 

PROOF First we note that 
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is a common subsequence of  R of  size (2r + t + 3)(4r + 20. Suppose T' is an LCS of  R. 
We apply the above lemma to T' to get an LCS T '  with a threading scheme O which 
threads only whole blocks of  zeros and ones. Suppose O does not thread some block of  
zeros or block of  ones in T, the template. Then the maximum length of  T" is (2r + t + 2) 
(4r + 20 + (4r + t), since the blocks have length 4r + 2t. But this makes T" shorter than 
(2r + t + 3)(4r + 20 and therefore not an LCS of  R. Contradiction. So the scheme O for 
T" must thread all the zeros and ones in T. 

PROOF OF CLAIM CONTINUED. Now that we know an LCS T" for R matches all the 
zeros and ones in T, we can demonstrate some other properties of  T". First we note that 
there is no threa_ding scheme O for T" which contains threads Oa and Ob threading the left 
8 and the right E of  T and also the 8 of  any S,, since this would prevent the ones in ~r of  
T from being threaded. (See Figure 8.) Hence for any threading scheme O and sequence 
S,, ~t must either be the case that there a r e ( r  + 1)(4r + 20 0-threads, 01, 02 ..... 8,, threading 
all the zeros in the left 8 and the left E[l] or (r + l)(4r + 20 0-threads 0~, 81 . . . . .  O's, 
threading all the zeros in the right 8 and the nght  8[0, as shown in Figure 9. This means 
the ith pair  of  stars in the left or right 8 of  T is not threaded, though not necessarily both 
pairs. 

Suppose for a given S, all these 0-threads run through the left 8 and E[l]. (See Figure 
10.) Then [here cannot be threads 0a and 0b both passing through ~r of  T and then through 
~ / ]  and NIm] of  S,, respectively. This would mean the ith pair o f  stars o f  the right E in 
T would go unmatched. But more threads could be run, as shown in Figure 11, by 
threading the lefi 8 and 8[/] together, N and NIJ] together, and the right 8 of  T and 8 of  
S, together. Tins would mean the ith star of  N goes unmatched. A symmetrical situation 
applies if  8~, 8~ . . . . .  ~ thread the right E and 8[i], with the final result given in Figure 12. 

What  we see from these constraints on O is that for each S, in R, the ith pair  of  stars in 
the lefi 8 or the right 8 m Tgoes unmatched and the j th  or mth star in N goes unmatched. 
Now if  T", our LCS, is of  size (2r + t + 3)(4r + 2t) + (2r + t - k), we know that 
(2r + t + 3)(4r + 2t) threads match zeros and ones in T, leaving 2r + t - k threads for 
stars. There are 4r + t stars in T, and we know that for each S, in R we can match the ith 
pair of  stars in the left E[t], but not in the right 8[0, or wee versa. So we have 2r stars 
matched in the left and right E ' s  of  T, leaving t - k stars matched in ~r of  T. There are t 
stars in N, so k of  these stars go unthreaded under the scheme O. By letting N'  be the set 
of  nodes corresponding to those stars not matched in ~r of  T, we can show that N'  is a 
node cover of  graph G of  size k, by methods similar to Theorem 1. 

PROOF OF THEOREM 2 CONTINUED The two claims above suffice to show that 
LCS(R) has size (2r + t + 3)(4r + 20 + (2r + t - k) if  and only if the graph G has a 
mlntmal node cover of size k. Given an input for the node cover problem of  length n, we 
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must construct r + l sequences of length less than or equal to (3r + 2t + 5)(4r + 2 0 + 
(6r + 2t - 6) to use as input for the LCS algorithm, where r, t _~ n. So the total length of 
the input for the LCS problem ts O(n3), and it can be seen that the sequences of R can be 
generated m polynomial time. Therefore the LCS problem with [X(R) I >_ 3 is NP-complete. 

THEOREM 3. The LCSproblem is NP-completefor [~(R)I ~_ 2. 
PROOF. The proof of this theorem is essenttally that of Theorem 2, but we ehmmate 

the use of stars, replacing them by zeros and ones as appropriate. (See Figure 13). The 
proof of Theorem 2 now carries through with the changes of stars to zeros and ones, except 
for one difficulty. The problem arises in the lemma, where the proof becomes invalid with 
the changes of symbols. We present an alternate lemma which will replace the former 
lemma and its corollary. All our notaUon will be the same as m Theorem 2, except as 
noted. 

LEMMA. There exists an LCS T" of  R with a threading scheme which fully threads all 
the blocks in T of R. 
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NODE CODEPLATE N LENGTH = ( t+  I ) ( 4 r  + 2t  ) -I- t 
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PROOF. Since we now have zeros and ones occurring in places other than in blocks, we 
will also write of O-diwders (of length 1) and 1-dividers (of length 2), these being the zeros 
and ones which replaced the stars of Theorem 2. Next we note that LT[I, 2 .. . . .  r]; At[l, 2, 
.... t]; E l i ,  2 ..... r] is a common subsequence of R of length (2r + t + 3)(4r + 20 + 2r; it 
threads slmdarly to 7" m Figure 6. So any LCS of R must have at least this length, and 
must therefore thread at least (2r + t + 2)(4r + 20 + (2r + 0 terms of the blocks of T, 
since there are only 4r + t terms in the dividers. In other words, only 2r + t terms in blocks 
of T may go unthreaded, which implies that every block of T must have at least 2r + t 
terms threaded m any scheme for an LCS of R. 

Gwen a threading scheme for an LCS of R, we will show that we can rearrange the 
threads so that all blocks of T in the left E thread completely with entire blocks m St, $2, 
..., S,. A similar approach works for the blocks of N and the right/~ of T. We first note 
that all the sequences m R begin with a 0-block We thread these 0-blocks together, which 
we can do without decreasing the number of threads. We now look at the next 0-block to 
the right in the left E, and attempt to thread it with 0-blocks in $1, $2, ..., St, and proceed 
to the right. 

We may encounter a hitch, however. Examine Figure 14. We are working on the 0- 
block B0 of T, and we know that all the blocks to the left of B0 thread completely with 0- 
blocks in the rest of the sequences. The last 0-thread of the previous block we call 0p. The 
threads through the l-divider immediately before B0 we call Oa and 8b, if they exist. The 
leftmost and rightmost threads in Bo we call O. and 0v, respectively. Since B0 must have at 
least 2r + t threads, in each of the S, some of the threads 0. - 0~, must either pass through 
or encompass (pass to the left and right of) at least one 0-block, since ~r[x,] and ~r[y~] have 
only t - 1 zeros apiece. 

We can have one of three cases with each of the S,; these cases are exemplified by 
sequences Sf, Sg, and Sh Sequence St represents the case where there is a block or a 
portion of a block Bf between 0,, and Op (or 0b instead, if it exists), where no threads from 
other 0-blocks of T run through Bf. The case for Se is where all the threads 0. - 0o pass 
through a single block B e, there are no 0-blocks between 0. and whichever of 0p or 0b is 
closer, and there exist some threads to the right of 0,, in B e. The case for Sh is that of Sg, 
except that 0u and some threads to its right run through 0-dwiders instead of Bh. 

If we have a case similar to Sf, we simply push all the threads 0u - 0o into Bf. The case 
S e is harder to handle, and will be dealt with in detail. The case for Sh is very much the 
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same as the case for Sg, and will not be given. Going back to Sg, consider the thread to the 
immediate right of  0o in Bg. This thread ts of  course to the immediate right of  0,. m T as 
well, and a moment's careful thought wdl show that this thread must pass through the next 
0-block to the right of  B0 in the left E. We call this block Bo ~, with leftmost and nghtmost 
threads 0~ and 0~. 

The situation for Se may be further complicated, as we see in Figure 15. Here we have 
0-blocks B~, j = 0 ..... s, in the left E of  T, with leflmost and nghtmost threads 0~ and 
0~, and 0-blocks B~, j = 0 ..... s, in Sg (with possibly no S~ ). The blocks Bo °, Bo l, and Bg ° 
correspond to B0, B~, and Bg in Figure 14. The following condiuons hold: 

(l) Bo j-~ and Bo J are adjacent blocks of  T f o r j  = l ..... s. 
(2) 0~ -~ and 01 both thread B~ -~ f o r j  = l ..... s - I. 
(3) B~ -~ and B~ are adjacent 0-blocks in Sg, or they are separated by A/[xg], for j = 

l, ..., s. (They cannot be separated by Ar[ygl, for this would make it impossible to thread 
the l-blocks in A r of  T.) 

(4) B[ is the first block to the right of  Bo o where the threads 0~ - 8~ do not share a block 
or divider in S¢ with any 0-threads to the risht of  0~,. 

Note that B~ must occur before f¢ of  T, since the first l-block of  A r must have a l-thread, 
and our conditions preclude a l-thread between 0°~ and 0~. 

Our conditions allow for four cases, as to where 0~runs in Sg. 
Case I. The thread 0~ runs though the block B~ in Sg. (See Figure 16.) We know there 

are no threads to the right of  0~ in B~. So we move threads as follows: 

0~ - 0~ run t h r o u g h / ~  by themselves. 
0~ -~ - 0~ -~ run through B'~ -~ by themselves. 

0~ - 0~ run through B~ by themselves. 
0~ - 0~ run through B~ by themselves. 

Bg . (See Figure 17.) This means all the Case II. The thread 0~ runs through block ~-] 
threads 0°= - 0~ will fit in the blocks B~ through ~-~ Bg , plus possibly the 0-divlders in 
]V[xg], of  Sg. But this is only s(4r + 2t) + 2r terms. So Bo O through B[  must have 2r + 2t 
unthreaded terms, which is more than the 2r + t allowed. This means our threading 
scheme cannot correspond to an LCS for R. 

Case III. The thread 0~ runs through a 0-divider in A/[xg], and there is a 0w between 
and 0~ which threads through B~. (See Figure 18.) Here we proceed as in case I. 

Case IV. The thread 0~ runs through a 0-divider m Ar[xg], but there is no block B~ 
between 0~ and 0~. (See Figure 19.) The argument from case II can be applied. 

We now are able to thread 0~ - 0~ through the same block m St, Sg, and Sh, with no 
other threads passing through these blocks. These sequences typify the cases in all the S,, 
so we may run 0, - 0o through blocks by themselves in all the S~. It then becomes a stmple 
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process to add more threads, if  necessary, through these blocks to bring the count up to 4r 
+ 2t. We thus fully thread all the 0-blocks in the left ~S of  T. A similar method works for 
the l-blocks of  ~ / a n d  the 0-blocks of  the right E of  T. This leads us to the desired result. 

PROOF OF THEOREM 3 CONTINUED. With the above lemma, the proof  of  Theorem 2, 
minus the lemma and corollary, is adequate for the proof of  Theorem 3. 

4 Applicattons of Threading Schemes to the SCS Problem 

The proofs we will present dealing with the Shortest Common Supersequence (SCS) 
problem are fairly similar to those for the LCS theorems; hence we will not go into as 
much detail. We will prove two theorems, the second stronger than the first, in order to 
develop the proof  m stages. 
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THEOREM 4. The S C S  problem is NP-complete f o r  Z(R)  o f  arbitrary size 
PROOF. Once again we reduce the node cover problem to the problem at hand. Given 

a node cover problem on a graph G = (N, E), say, k; (xl, Y0; (x2, y2); ...; (xr, yr), we 
construct a set R of r + l sequences. The alphabet for R will be as follows. Find the set of 
nodes m G, N = {vx, v2 . . . . .  vt}, and make each an alphabet member. The edges of E = 
{el, e2 . . . .  er}, where e, = (x,, y,), are also members of the alphabet. Finally, star (*) is a 
member of the alphabet. 

We then construct the r + l sequences. The template T is composed of six sections: ~r; 
~;  ~; ~; ,~; ~r, in that order. N is a hst of the nodes in N. E is a list of the edges m E, with 
each edge appeanng twice m a row. The section A is a sequence of 4c stars, where c = 
max(r, t). (See Figure 20 ) For each edge e, = (x,, y,) we construct a sequence S, which is 
e,e,; vj; A; Vm; e,e,, where x, = vj, y, = vm, and A is 4c stars, as before. 

CLAIM. If G has a node cover o f  stze k, then R has a common supersequence o f  length 
8c + 6r + 2t + k 

PROOF. Let N' = {ul, u~ ..... u~} be a node cover of size k. Let W =  {e, lx, E N'}, and 
U = {ejle~ is not in /4/}. Clearly if e, E U, then y, ~ N'. We now construct a sequence T'  
by augmenting T with three sections: fV at the beginning, ~r, between the two E's, and 
at the end, where fl r is a list of the edges in W, with each edge twice, fg' is a list of the 
nodes m N', and U is two occurrences of each edge in U. (See Figure 21 ) T' has length 8c 
+ 6r + 2t + k. To see that T' is a common su_persequence of R, note that for each S,, we 
can match x, = vj or y, = Vm to a term m N'. The rest of the matching follows m a 
straightforward manner. 

CLAIM. I f  R has an S C S  o f  length 8c + 6r + 2t + k, then G has a node cover o f  size 
k. 

PROOF. First we note that for any node cover N' of G of size s, there is a supersequence 
T'  of R with length 8c + 6r + 2t + s, formed in the manner  of the T'  in the claim above. 
Further, since s _< t, 8c + 6r + 2t + s _< 8c + 6r + 3t, and since N is a node cover of G, any 
SCS of R has length less than 8c + 6r + 3t. Let T" be an SCS of R. We can now prove the 
following lemma. 

LEMMA. There is a threading scheme O" for  T" such that fo r  all S, ~ R, all the stars 
o f  A o f  S, are threaded with the left A o f  T or the right .4 o f  T. 

PROOF. It is a property of SCS threading schemes that all terms of all sequences get 
threaded. Suppose for a given S,, none of the stars in A thread with either A of T. Then 
0"  has at least 12c + 4r + 2t threads, which is more than the 8c + 6r + 3t allowed for an 
SCS. We get the former number by counting the terms in T (8c + 4r + 2t) plus the_terms 
in A of S,, all of which need separate threads. So at least one thread goes through A of S, 
and one of the A's of T. But once we have one common thread, we can shift and add 
threads to thread all the stars of A of S, and all the stars of either the left or the right A of 
T. (See Figure 22.) 

L E N G T H =  8 c + 4 r  + 2 t  

~ VJ V21__ , . V .  • e • e -  e . e .  e .  e ,  e ,  
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PROOF OF CLAIM CONTINUED. Now ~t remains to be determined how the rest of  S, is 
threaded. We will define extra threads as those threads in O" threading no term in T. 
Suppose we have A of  S, threading completely with the left A of  T, as shown in Figure 22. 
Then there are no terms in T or any other sequence to thread with the left pair of  e,'s, so 
they must be on their own extra threads, which we can run around the left end of  T. (See 
Figure 23.) This allows us to thread b with the corresponding term in N of  T. On the right 
end, it is not difficult to see that we can do no better than running vm on an extra thread 
between the E ' s  and matching e,e, to the right E. I f  A of  St threads the right A of  T, we 
end up with a mirror image scheme. 

For  each S,, we must run two extra threads for e,e, and one extra thread for x, o ry ,  (b  
or v~). If  x, = x~ for some j ,  and x~ and x~ are on extra threads, these threads can be 
combined; likewise for x, = y~, y,  = x~, or y, = y~ for somej .  We  see that O" will have 2r 
extra threads for the e,'s and a number of  extra threads for some of  the members of  N, 
such that x, or y, is on an extra thread for each e~ = ( x ,  y,) Since I T" I -- 8c + 6r + 2t + 
k and we have 8c + 4r + 2t threads for T, plus 2r extra threads for the e,'s, there must be 
k extra threads for the elements of  N. If  we let N '  = {vj E N I vj corresponds to an extra 
thread}, we see that N'  is a node cover for G of  size k. 

PROOF OF THEOREM 4 CONTINUED. The two claims above give us a reduction of  the 
node cover problem to the SCS problem. The length of the sequences for R is polynomial  
in n, the length of  the node cover input. The reduction Is polynomial, so the SCS problem 
is NP-complete for [~(R)[ unbounded. 

THEOREM 5. The S C S p r o b l e m  is NP-comple te for  []g(R)[ = 5. 
PROOF. We use the same notation for our graph and node cover problem as we used 

in the last theorem. Again, we do an encoding for the nodes and edges, usmg the alphabet 
{a, b, 0, 1, *}. The encoding is similar to the encoding used for the LCS problem, except 
that we insert &viders instead of deleting them. We define the node codeplate ~ /a s  t + 1 
blocks of  10c a's, where c = max(r, t). Any v, in N we encode with node code ~r[/], which 
is obtained by inserting a b between the ith and (i + l)-st blocks of  ~r. The multiple node 
code ~/[il, i2 . . . . .  is] has a b in the ilst, i2nd .... .  i~th spots. The special case of  At[l, 2 . . . . .  t I we 
denote Ars and refer to as the node sink, since it is a supersequence of  all the node codes, 
as well as the node codeplate. The edge codeplate E, the edge code E[j], and the multiple 
edge code Lift, j2 . . . . .  js] are defined similarly wi thblocks  of  10c zeros and pairs of  ones. 
(The code ElL ] is shown in Figure 24.) We call E[I ,  2 . . . . .  r] the edge sink and denote 
itEm. Finally, A consists of  10c stars. 

We define the r + 1 sequences of  R as follows. The sequences are somewhat similar to 
the sequences of  R in Theorem 4. The template T consists of  the following codes in the 
g}ven order: E; N~; A; E~; A/; L ;  A; ~r; ~.  For  each e, = (x,, y,) we define S, as. E[l]; 
N[j]; A, fV[m]; ~7[/], where x, = vj and y, = Vm. (See Figure 25.) Note that T has length 
10c(4r + 3t + 9) + (4r + 2t). 

T N A E E A 
1 i i i i i 

Si " ' "  _ 

F i e  22 

T ~ XX ~ ~ ~ 

FiG. 23 
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CLAIM. 

PROOF. 
Then 

I f  G has a node cover o f  size k, then R has a common supersequence o f  length 

10c(4r + 3t + 9) + (4r + 2t) + (2r + k). 

Given N', a node cover of size k, let W and U be as specified In Theorem 4. 

is a common supersequence of R of length 

10c(4r + 3t + 9) + (4r + 2t) + (2r + k). 

The matchmg is analogous to that of Theorem 4, with either v: or vm threading with 
A l [ N ' ] .  

CLAIM. I f  R has an S C S  o f  length 

10c(4r + 3r + 9) + (4r + 2t) + (2r + k), 

then G has a node cover o f  size k. 
PROOF. Given any node cover N' for G of raze s, we can construct T', a supersequence 

for R of length 

10c(4r + 3t + 9) + (4r + 2 0 + (2r + s) < 10e(4r + 3t + 9) + (4r + 2t) + (2r + t), 

as above. The right-hand side of the inequality is thus an upper bound on the length of 
any SCS of R. Let T" be an SCS of R. We may again observe that there exists a threading 
scheme O" for T", such that for any S,, A of S, is completely threaded with the left A or 
the right A of T. If A of S, had no threads in common wRh the left or right .A of T, O" 
would have at least 10c(4r + 3t + 9) + (4r + 2 0  + 10c threads, which is too many, as 10c 
> 2r + t. Once we have one thread common to A of S, and the left or right A of T, we can 
run 10c threads through the two A's. Figure 26 shows one of the two cases. A similar 
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argument shows that the a-blocks of N[/] and fV[m] and the 0-blocks of the left and right 
8[/] can also be made to thread with whole blocks in T. 

Assummg .~ of S, is threaded as m Figure 26, we have little choice on how to thread the 
blocks of E[/] and i~/] They thread with E and N~ of T, and we need two extra threads, 
0] and 02, to thread the two ones m the left E[t]. (See Fi_gure 27.) On the right side, we can 
do no better than to thread N and ~r[m], and the right E~ and the right E[q, with an extra 
thread 03 to thread the b in fV[m]. We have the mirror situation if A of S~ is threaded with 
the right A of T. 

We may now proceed as in Theorem 4 to show that the nodes of N corresponding to 
extra threads through N of T form a node cover for G of size k. 

PROOV OF THEOREM 5 CONTINUED. The reduction of the node cover problem m 
polynomial time and the NP-completeness follow as usual. 

5. Conclusion 

We have seen that the LCS and SCS problems are NP-complete for alphabet sizes of 2 
and 5, respectively. We conjecture that the latter figure might be reduced to 3, by changing 
the b's and ones to stars in Theorem 5. 

The theorems indicate that any method for finding the LCS and SCS of an arbitrary 
number of sequences is going to be intractable, and hence not useful for data compression 
schemes. However, we might still ask if there are any good approximation methods whtch 
could be used for data compression. Another question of interest is whether there exist low 
order polynomial reductions directly between the LCS and SCS problems. Here we note 
that the LCS of a set of sequences does not necessarily give any reformation about the 
SCS, since we can always add a sequence to the set which will not change the SCS but 
which is a common subsequence of all the other sequences. 
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