The Complexity of Some Problems on Subsequences
and Supersequences

DAVID MAIER

Princeton Umversity, Princeton, New Jersey

ABSTRACT The complexity of finding the Longest Common Subsequence (LCS) and the Shortest Common
Supersequence (SCS) of an arbitrary number of sequences 1s constdered We show that the yes/no version of the
LCS problem 1s NP-complete for sequences over an alphabet of size 2, and that the yes/no SCS problem 1s NP-
complete for sequences over an alphabet of size 5

KEY WORDS AND PHRASES ~ computational complexity, NP-completeness, longest common subsequence, shortest
common supersequence

CR CATEGORIES 523,539

1. Definitions

Given a finite sequence S = 51, 83, ..., Sm, we define a subsequence S’ of S to be any sequence
which consists of S with between 0 and m terms deleted (e.g. ac, ad, and abcd are all
subsequences of abcd). We write S” < S if S’ is a subsequence of S. We also say that S is
a supersequence of §’, and write § > §’. Given a set R = {Si, Sq, ..., Sp} of sequences, we
speak of a Longest Common Subsequence of R, LCS(R), as a longest sequence S such that
S<S.fori=1, .., p. For example, abe = LCS({ababe, cabe, abdde}). Actually, LCS(R)
1s a set of subsequences, since there may be more than one sequence fitting the definition.
Since we will be mainly concerned with the length of any (and every) LCS(R), when we
write LCS(R) we will mean a single representative of this set. Simularly, a Shortest Common
Supersequence of R, SCS(R), is a shortest sequence S’ such that ' > S, I =1, ..., p. For
example, SCS({abbb, bab, bba}) = abbab.

The yes/no LCS (SCS) problem is: Given an integer k and a listing of the sequences in
R, is [LCS(R)| = k (ISCS(R)| = k), where | S| is the number of terms in sequence S?
Whenever we refer to the LCS and SCS problems in this paper, we will mean the yes/no
versions. We define the alphabet of R, 2(R), to be the finite set of values the terms of
sequences S, Sy, ..., S, take on. Clearly [Z(R)| =m; + mo+ + m,, where m, = |S,|. We
also use | | to denote the cardinality of a set; the context will distinguish the usage.

2. Threading Schemes

It is convenient to think of the LCS and SCS problems in terms of threading beads. We
think of a sequence as a row of beads and the matching process as threading the beads n
a certain manner. Suppose we have three sequences S; = bybrr, S; = yyrrbr, and S; =
byrry. We represent them as rows of beads:

General permission to make fair use in teaching or research of all or part of this materal 1s granted to individual
readers and to nonprofit libranes acting for them provided that ACM’s copyrnight notice 1s given and that
reference 15 made to the publication, to 1ts date of 1ssue, and to the fact that reprnting privileges were granted by
permussion of the Assoctation for Computing Machinery To otherwise reprint a figure, table, other substantial
excerpt, or the entire work requires specific permission as does republication, or systematic or multiple
reproduction

This work was partially supported by the National Science Foundation under Grant DCR-74-21939

Author’s address. Department of Electrical Engineering and Computer Science, Princeton Umiversity, Princeton,
NJ 08540
© 1978 ACM 0004-5411/78/0400-0322 $00 75

Journal of the A for Computing Machinery, Vol 25, No 2, Apni 1978, pp 322-336

The Complexity of Some Problems on Subsequences and Supersequences 323

For the LCS problem we demand that each thread have exactly one bead from each
row, and all the beads on a thread be the same. We stipulate that no two threads may
cross. We wish to know if k threads can be used. In our example, ¥ must be three or less:

o % %
®<%2;®§
OJONOJGYORO
® OJO

For the SCS problem, we relax the threading rules so a thread contains at most one
bead from each row. We want to find if k threads are sufficient to thread all the beads. All
beads on a thread must still be of the same color and threads may not cross. In our example
k must be 9 or more:

q 9, € 9,0, @&

il

We refer to a thread by the terms of each sequence it threads, and also designate the
type of thread. For example, 8, is a y-thread in the LCS example and 6 is a b-thread in the
SCS example. We refer to a threading scheme © as a list of threads 6, 0,, ..., 6, which, in the
LCS problem, fulfill the threading rules and, in the SCS problem, fulﬁll the rules and
thread all the beads. Given a threading scheme © = 8,, 0, ..., 4, for a set of sequences R,
we can obtain a common subsequence or common supersequence, depending on the sort
of scheme, by reading off the types of 6, 0,, ..., 8. Note that a threading scheme gives rise
to a unique sub- or supersequence, but the reverse is false, as there may be a number of
threading schemes giving rise to the same sub- or supersequence.

3. Applications of Threading Schemes to the LCS Problem

Computing the LCS has found use in the field of molecular biology n studying amino
acid sequences 1n similar proteins {6, 7, 16, 18]. The LCS and SCS problems may also have
application to data compression techniques: A number of very similar files might be stored
as the LCS or SCS of the files plus modifications for individual files. The complexity of
the LCS and sumilar problems has been analyzed for the case where |R| = 2 [1-4, 8-12, 14,
15, 17, 19-24], R being the set of sequences in question. In this paper the LCS and SCS
problems are considered with no bound on the size of R, but with various bounds on the
size of Z(R). We shall show the SCS problem to be NP-complete for [Z(R)| = 5 and the
LCS problem to be NP-complete for |Z(R)| = 2.

All of the proofs of NP-completeness will be by reduction of the node cover problem [5,
13]. Given an undirected graph G = (N, E) and an integer k, the node cover problem is to
determine if there is an N’ contained in N, with [N'| = k, such that for every (x, y) € E,
etther x € N or y € N’ (possibly both). We assume the problem is posed as an integer K
and a list of edges in E: k; (x1, 11); (X2, y2); ...; (X, yr). We now prove three theorems, each
having successively stronger results. The reason for the redundant theorems is to develop
the proof in stages which can be more easily grasped.

THEOREM 1. The LCS problem 1s NP-complete for Z(R) of arbitrary size.

PrOOF. Given an instance of the node cover problem on the graph G = (N, E) k;
(x1, y1); (X2, ¥2); ...; (x», yr), encoded into a string of length n, we find N and assign an
arbitrary order {v;, v,, ..., v;} to N. Clearly, r, t < n. We construct » + 1 sequences of length

324 DAVID MAIER

at most 2(¢+ — 1) as shown in Figure 1. The first sequence is the template T, which is the
sequence vy, vz, ..., v. For each edge e, = (x,, 1) in E we construct a sequence S.. Assume
without loss of generality that x, = v,, y, = v, and j < m. Then S, 15 v1, v2, v3, ..., V=1, V41,
vees Vmy weey Vs VI, V24 ciy ¥y ooy Vin—1y Vintly ooes Vi
CLAIM The graph G has a node cover of size k if and only if the set R = {T, Si, Ss,
., Sy} has a common subsequence of size t — k.

PROOF (onlyif). Let V' = {u), us, ..., ux} be the node cover of size k. Then the sequence
T, which is T with the nodes of ¥’ deleted, has size ¢+ — k. Clearly T° < T. For each S,
either x, € V' or y, € V'. If x, € V’, then T’ is a subsequence of the first half of S., since
every node in T’ appears in the first half of S,, and the elements of T and the first half of
S: are in the same order. If y, € V7, then T is a subsequence of the last half of S.. So T" is
a common subsequence of R with length ¢ — &

(if). Let 7" be a common subsequence of R. We notice that for each ;, 7’ cannot
contain both x, and y,. To see this, let x, = v, and y, = v,,, where we have assumed j < m.
For both v, and v, to be in 77, 1n any threading scheme we must have threads running
through v, and vy, in 7. Also, we have only one choice of where to run the threads in S,,
since it also has only one occurrence of v, and v,.. But this cannot be done without crossing
threads, since the order of v, and vy, is different in the two sequences. (See Figure 2.) Let
V' = {u, U, ..., ux} be the nodes in T but not in T". We are given |T"| = ¢ — k, so | V|
= k. For each S, either x, or y, 15 1n V. Hence for every edge (x., y) m E of graph G, x,
&€ V' or y. € V'. Hence V' is a node cover of size k.

PROOF OF THEOREM | CONTINUED. From the claim it 1s apparent that the minimal
node cover of G has size k if and only if LCS(R) has size ¢ — k. If the node cover problem
has length n, the nput for the LCS algorithm is of length + 2r(z — 1) < O(r?). It is not
hard to see that the construction can be done in polynomial time. Therefore we have a
polynomial reduction of the node cover problem to the LCS problem.

THEOREM 2. The LCS problem is NP-complete for |Z(R)| = 3.

ProOOF. Here we use an encoding for the nodes of the graph. In Theorem 1 the main
point is that for each edge e, = (x,, y,) in E, the LCS(R) cannot contain both x, and y., and
this point is preserved in the encoding. We also encode the edges, for use in distinguishing
among the sequences.

In Figure 3 we see how the codes are laid out. The codes are over the alphabet

T Lvij.vzivsl"'_ivt_;
b G m——
ALL NODES
S MY e Vs Ve e Y Y e e Ve Ve e Y
L 1 i i AR T J R S A i H 4
N\ _J/
I o
ALL NODES BUT x, (= vl) ALL NODES BUT y, (=vp)
Fic 1
T
Si

@, AND @, MUST CROSS
Fic 2

The Complexity of Some Problems on Subsequences and Supersequences 325

{1, 0, *}. There are two codes which go into the template, called codeplates. The node
codeplate N consists of ¢ + 1 blocks of 4r + 2t ones, separated by stars. The edge codeplate
E has r + 1 blocks of 4r + 21 zeros, separated by two stars. The code for a node v, € N will
be denoted M[i}, and will be obtained by deleting the ith star of N. We also define a
multiple node code for v, , v, ... v, EN, denoted N[iy, iz, ..., i,], to be obtained by deleting
the iist, ©ond, ..., isth stars from . E{j} and E[j, o, ..., Js] are obtained by analagous
deletions of pairs of stars from E.

Given an instance of the node cover problem on a graph G = (N, E) k; (X1, y1); (%2,
y2); s (Xr, yr), let us construct a set R of r + 1 sequences as shown in Figure 4. Our
template T will be the edge codeplate E, followed by the node codeplate N, followed by
another E. We will distinguish the two E’s as the left and right E’s. For the ith edge e, =
(x, y.), let x, = v, and y, = v,, where {v,, v,, ..., v} is an ordering of N. We create a
sequence S, which 1s the code for edge e., Eli]; the code for v,, N[/]; the edge codeplate,
E; the code for Vm,_ N[m]; and a second occurrence of E[i]. Again, we distinguish the left
Eli] and the nght E[i.

CLamM. If graph G = (N, E) has a node cover of size k then the set R has a common
subsequence of size

Qr+t+3)@Er+20+ Qr+1t—k).

PROOF. Let N’ = {u1, us, ..., ux} be a node cover of size k. Let W be the set of all edges
= (x,, y.) such that x, € N'. Let U be the set of the rest of the edges in N. Clearly, for
every e.in U, y. € N'. Let T’ be the sequence E{W); NIN'}; E{U]. (See Figure 5.) T’ is of
length (2r + ¢ + 3)(4r + 2t) + (2r + ¢ — k), since | W| + | U | = r. In Figure 6 we show how

NODE CODEPLATE N LENGTH = (1+1)(4r+2t) +1
1 OCCURRENCES OF =

4r+2t | | 4r+2t

EDGE CODEPLATE E LENGTH = (r+1)(4r+2t) + 2r
r OCCURRENCES OF % »
* o} = o} » P L] (o]

] 1 t ! 1 [] [[]
| — — _I__~I___l__——-___.._——-———--——-—.l—*__l

4r+2t 2 4r+2t 2 4r+2t 2 2 Ar+2t

NODE CODE W [i} LENGTH ={t+1){4r+2t) + (t=1)

. | ’-Ll %, voe , | LI ver 1._" | .
L . E—— e __.l_.__j:___l__l—_._.._.—_ j_-—l
ar+2t | 4re2t | 4r+2t (ar+2t | | 4r+2t

i spoT

MULTIPLE NODE CODE N [y iy .15 LENGTH = (t+I{4r+21) + (1-s)

, | .‘| ! RITH [l!|...l | , 1 I-'oo-' | , | l‘l...l‘l 1 .
— L — J—— — —_— . —_— —_ — *—.—l
— * — h’_‘.;._ P T -t —r i

1
4r+2t | 4r+2t 4r+21:4r+Zt I 4r+2t |4r+2? | 4r+2t {4r+21 1 | 4r+2t
i, SPOT iy SPOT wee 14 SPOT

Fic 3

LENGTH = (2r+t+3)(4r+21) + (4r+1)

T , E , N , E
—— —_ —— — —_——
\ > < ”

(r+1)(r+e21h2r (f+0)(4r+21)¢1 (r+l)(dre2t}42r

LENGTH = (3r+2t+5)(4r+21) + (6r +21-6)
Si | E D) , N D) N £ flm] . £l

e — —— ~~ —_———— e J

7\ N N I\ /

(r31)(Qr+20)42(r-1) (14 1){(4r+2t)+{1=1) (r+1){(Qr+20)+2r (14})Ar+20)41-1) (r+1)(4r¥23)+2(r-1)
FiG. 4

326 DAVID MAIER

T . Elwl . N IN] , gl ,
= ' "¢ ey —he
(r+ 1 4re20)+2(r=1W1) (141)(Qr+21)+(t=k) (r+1)(4r+21)+2(r- 1)
FiG, 5
T Elwl), NIND EW

FiG. 6

T’ will thread with T and with the sequence S, for edge (xi., y) = (v, V=), assuming x. €

N'. Corresponding sections of 7" and T thread because T’ is simply 7 with some of the

stars deleted. T” threads with the left side of S. as follows: E[W] threads with E[{] since the

only pair of stars missing in Ed] is also missing in E[W). Similarly, !V[N’] threads with N

since the jth star of N[N’} is missing. Finally, E[U] threads with E, since E[U] is E with

some pairs of stars deleted. So T is a common subsequence of R with the desired length.
CLamm. If LCS(R) has length

Qr +t+ 3)dr + 20 + 2r + t — k),

then the graph G has a node cover of size k.

ProOF. We need a preliminary lemma and corollary.

LEMMA. Given any common subsequence T’ of R, there exists a common subsequence
T" of Rwith|T"| = |T’|, such that T” has a threading scheme which threads entire blocks
of 4r + 2t zeros or ones in the sequences of R. That is, under this threading scheme, in any
block of zeros or ones in a sequence, either all the zeros or ones are threaded, or none are
threaded.

PrOOF. We will show the lemma holds for the blocks of zeros. The proof is merely a
process of pushing threads to the left within blocks of ones and adding more threads.
Suppose we have a threading scheme © for T, with 8, bemng the leftmost O-thread, and let
By, By, B,, ..., B, be the blocks of zeros which &, threads. (See Figure 7(a).) Since 6, is the
leftmost O-thread, we can move 1t so it threads the leftmost zero in each of By, By, ..., B,.
(See Figure 7(b).) We then add thread #; running through the second leftmost zero of B,
By, ..., Br. Notice that #; can conflict with at most one existing thread. Suppose there were
two threads, 6, and 6s, which already threaded second leftmost zeros in two different
blocks, say B, and B), respectively. Then in sequence S,, 8, would be to the left of 8;, while
in S, 6, has to thread to the right of &. This would mean @, and 8, crossed somewhere
between S, and S, which is disallowed by our threading rules.

Should we find such a thread conflicting with &, we eliminate it. We continue by adding
threads @, s, ..., 04-42; in the same manner, never decreasing the number of threads in 6.
Now we find the next 0-thread to the night of 8442, call it §;, and repeat the process,
realizing that ¢ cannot pass through blocks Bo, B, ..., B.. We continue in this manner
until all O-threads run through blocks which are completely threaded.

We perform a similar process on the I-threads, and derive our common subsequence 7”
from the new threading scheme, with | 77| = | T"|.

COROLLARY. There exists an LCS for R with a threading scheme which threads all
the zeros and ones in T.

ProoF First we note that

The Complexity of Some Problems on Subsequences and Supersequences 327

8, 6 8,05 8are2s

S

Fic 7

E[l, 2, ..., r]; N[l, 2, .., t]; E[l, 2, ..., r] = |r+Ddr+20 +Ddr+20 | O+ 1dr+ 20

is a common subsequence of R of size (2r + 1 + 3)(4r + 2f). Suppose T” is an LCS of R.
We apply the above lemma to T’ to get an LCS T” with a threading scheme © which
threads only whole blocks of zeros and ones. Suppose © does not thread some block of
zeros or block of ones in 7, the template. Then the maximum length of T” is 2r + ¢ + 2)
(4r + 2f) + (4r + 1), since the blocks have length 4r + 2¢. But this makes T” shorter than
(2r + t + 3)(4r + 2r) and therefore not an LCS of R. Contradiction. So the scheme O for
T” must thread all the zeros and ones in T.

PROOF OF CLAIM CONTINUED. Now that we know an LCS T” for R matches all the
zeros and ones in T, we can demonstrate some other properties of T”. First we note that
there is no threading scheme © for T” which contains threads 8, and 0, threading the left
E and the right E of T and also the E of any S, since this would prevent the ones in N of
T from being threaded. (See Figure 8.) Hence for any threading scheme © and sequence
S, 1t must either be the case that there are (r + 1)(4r -+ 21) O-threads, 6, 6, ..., 6,, threading
all the zeros in the left E and the left E[{] or (r + 1)(4r + 2r) O-threads 8}, 85, ..., G,
threading all the zeros in the right E and the nght E[i], as shown in Figure 9. This means
the ith pair of stars in the left or right E of T is not threaded, though not necessarily both
pairs.

Suppose for a given S, all these 0-threads run through the left E and E[i]. (See Figure
10.) Then there cannot be threads 8, and &, both passing through N of T and then through
N[j] and Nim] of S., respectively. This would mean the ith pair of stars of the right £ in
T would go unmatched. But more threads could be run, as shown in Figure 11, by
threading the left E and Efi] together, N and f\’]’j] together, and the right E of T and E of
S, together. This would mean the ith star of N goes unmatched. A symmetncal situation
applies if 8, 6, ..., &, thread the right £ and E[i], with the final result given in Figure 12.

What we see from these constraints on © is that for each S, in R, the ith pair of stars 1n
the left E or the right Emn T goes unmatched and the jth or mth star in N goes unmatched.
Now 1if T, our LCS, is of size 2r + t + 3)(4r + 2t) + (2r + t — k), we know that
(2r + t + 3)(4r + 2¢) threads match zeros and ones in T, leaving 2r + t — k threads for
stars. There are 4r + ¢ stars in T, and we know that for each S, in R we can match the ith
pair of stars in the left EJi}, but not in the right Eli), or vice versa. So we have 2r stars
matched in the left and right E’s of T, leaving ¢ — k stars matched in N of T. There are ¢
stars in N, so k of these stars go unthreaded under the scheme ©. By letting N’ be the set
of nodes corresponding to those stars not matched in N of T, we can show that N is a
node cover of graph G of size k, by methods similar to Theorem 1.

Proor OF THEOREM 2 CONTINUED The two claims above suffice to show that
LCS(R) has size (2r + ¢t + 3)(4r + 2t) + (2r + ¢ — k) if and only if the graph G has a
mimmal node cover of size k. Given an input for the node cover problem of length n, we

328 DAVID MAIER

Fic 12

must construct r + 1 sequences of length less than or equal to (3r + 2¢ + 5)(4r + 21) +
(6r + 2¢ — 6) to use as input for the LCS algorithm, where 7, ¢ < n. So the total length of
the input for the LCS problem 1s O(n%), and it can be seen that the sequences of R can be
generated 1n polynomial time. Therefore the LCS problem with |Z(R)| = 3 1s NP-complete.

THEOREM 3. The LCS problem is NP-complete for |Z(R)| = 2.

Proor. The proof of this theorem 1s essentially that of Theorem 2, but we ehminate
the use of stars, replacing them by zeros and ones as appropriate. (See Figure 13). The
proof of Theorem 2 now carries through with the changes of stars to zeros and ones, except
for one difficulty. The problem arises in the lemma, where the proof becomes invalid with
the changes of symbols. We present an alternate lemma which will replace the former
lemma and its corollary. All our notation will be the same as 1n Theorem 2, except as
noted.

LEMMA. There exists an LCS T” of R with a threading scheme which fully threads all
the blocks in T of R.

The Complexity of Some Problems on Subsequences and Supersequences 329

NODE CODEPLATE N LENGTH = (t+1)(4r+2t) + 1
t OCCURRENCES OF O
, 0, 0, 1 0 Lo
e e e et~
4r+2t | 4r+2t | 4r+2t | | 4r+2t
EDGE CODEPLATE E LENGTH = (r+ () (4r42t) +2r
r OCCURRENCES OF 1l
Io,’ulo,l,o.u. ll‘|2l
| ——— [W N — ——— —— — —— — — —— — lc:L—
4r+2t 2 4r+ 2 4r+2t 2 2 4r+2t
NODE CODE N [i] LENGTH = (t#) (4r+21) +(1-1)
, 1,0, 1 ,0, e, U, 1,0, ,0, 1,
t_.g_l._ —_— — e _F'_;‘L— —— _t_.’.l__.l
4r421 | 4r+2t | 4r+2'=4r+2' 1 | 4r+2t
th
" SPOT
MULTIPLE NODE CODE NLi i, ,. .1g] LENGTH= (t+1)(4r+21) +(1-5)
L_' 0, 1 = o 10:"" ' 0, eee, | 1 -°-"_'f- [
e e e A tl — __l__l.-l——l—__—_—ld— @J
4r+2t | 4r+2t 4r+21:4r+2' | 4r+21=4r+2t | 4r+2t 4r+2t | t 4r+2t
', SPOT i, SPOT ... g SPOT
Fic 13

PROOF. Since we now have zeros and ones occurring in places other than in blocks, we
will also write of 0-dividers (of length 1) and 1-dividers (of length 2), these being the zeros
and ones which replaced the stars of Theorem 2. Next we note that E[l, 2, ..., r]; N[1, 2,
oo 1]; E[1, 2, ..., r} is a common subsequence of R of length (2r + ¢ + 3)(4r + 2£) + 2r; it
threads similarly to 77 1n Figure 6. So any LCS of R must have at least this length, and
must therefore thread at least (2r + ¢ + 2)(4r + 2f) + (2r + £) terms of the blocks of 7T,
since there are only 4r + ¢ terms in the dividers. In other words, only 2r + ¢ terms in blocks
of T may go unthreaded, which implies that every block of 7 must have at least 2r + ¢
terms threaded in any scheme for an LCS of R.

Given a threading scheme for an LCS of R, we will show that we can rearrange the
threads so that all blocks of T in the left E thread completely with entire blocks 1n Si, Se,
. S,. A similar approach works for the blocks of N and the right E of T. We first note
that all the sequences 1n R begin with a O-block We thread these 0-blocks together, which
we can do without decreasing the number of threads. We now look at the next 0-block to
the night in the left E, and attempt to thread it with O-blocks in S, S, ..., S», and proceed
to the right.

We may encounter a hitch, however. Examine Figure 14. We are working on the 0-
block By of T, and we know that all the blocks to the left of By thread completely with 0-
blocks in the rest of the sequences. The last O-thread of the previous block we call §,. The
threads through the 1-divider immediately before By we call 6, and @, if they exist. The
leftmost and rightmost threads in Bo we call 8, and 8., respectively. Since B, must have at
least 2r + ¢ threads, in each of the S, some of the threads 6, — 6. must either pass through
or encompass (pass to the left and right of) at least one 0-block, since N[x,] and N[y;] have
only ¢ — 1 zeros apiece.

We can have one of three cases with each of the S,; these cases are exemplified by
sequences Sy, S, and S, Sequence S; represents the case where there is a block or a
portion of a block By between 6, and 8, (or 8, instead, if it exists), where no threads from
other 0-blocks of T run through By The case for S, 1s where all the threads 6, — 6, pass
through a single block By, there are no 0-blocks between 6, and whichever of 8, or 0 is
closer, and there exist some threads to the right of 8. in B,. The case for S}, is that of S,
except that 6, and some threads to 1ts right run through 0-dividers instead of Bj.

If we have a case sumular to Sy, we simply push all the threads 6, — @, into By. The case
S, 18 harder to handle, and will be dealt with in detail. The case for S is very much the

330 - DAVID MAIER

T
]
S¢ ,
— i
S H
Sa y ! it i _
a7 "7 Ino o-BLocks
Fic 14

same as the case for S, and will not be given. Going back to S, consider the thread to the
immediate nght of 8, in B,. This thread 1s of course to the immediate nght of . 1n T as
well, and a moment’s careful thought will show that this thread must pass through the next
0-block to the right of B, in the left E We call this block Bj, with leftmost and nghtmost
threads 6. and 6.

The situation for S, may be further complicated, as we see in Figure 15. Here we have
0-blocks Bb, j = 0, ..., s, in the left E of T, with leftmost and nghtmost threads & and
@, and 0-blocks B j 0, ..., s, in S, (with possibly no S). The blocks B), B}, and B;
correspond to By, B&, and Bg in Figure 14. The following conditions hold:

(1) B{™* and Bj are adjacent blocks of T forj = 1, ..., s

(2) 6,7" and & both thread B, forj=1,..,s— 1.

(3) B! »nd B} are adjacent 0-blocks in Sg, or they are separated by N[x], for j =
1, .., 5. (They cannot be separated by N[y,], for this would make it impossible to thread
the l blocks in N of T)

(4) Biis the first block to the right of B3 where the threads 85 — 83 do not share a block
or divider in S, with any 0-threads to the right of 6.

Note that B must occur before N of 7, since the first 1-block of N must have a 1-thread,
and our conditions preclude a 1-thread between 89 and &.

Our conditions allow for four cases, as to where 5runs in S,.

Case I. The thread 4} runs though the block B} in S. (See Figure 16.) We know there
are no threads to the right of 87 in B. So we move threads as follows:

& — & run through B; by themselves.
67 — 657! run through B§™ by themselves.

0% — 6. run through B by themselves.
6. — 63 run through B2 by themselves.

Case II. The thread ¢ runs through block B ™. (See Figure 17.) This means all the
threads 3, — §; will fit in the blocks B} through B}™, plus possibly the 0-dividers in
Nix,], of S,. But this is only s(4r + 2£) + 2r terms. So BS through Bj must have 2r + 21
unthreaded terms, which is more than the 2r + ¢ allowed. This means our threading
scheme cannot correspond to an LCS for R.

Case III. The thread & runs through a O-divider in N[xg], and there is a 6., between
&, and & which threads through B (See Figure 18.) Here we proceed as in case 1.

Case IV. The thread 8 runs through a 0-divider 1n N[x,), but there 1s no block B}
between & and 6. (See Figure 19.) The argument from case II can be applied.

We now are able to thread 6, — @, through the same block 1n Sy Sg, and Sz, with no
other threads passing through these blocks. These sequences typify the cases in all the S,,
so we may run 6§, — 8, through blocks by themselves in all the S. It then becomes a simple

The Complexity of Some Problems on Subsequences and Supersequences 331

8 o7

vee P
2
l \\ 83 /¢
NO 0-BLOCKS NO O-BLOCKS NO O-BLOCKS
Fic 15

Fic 18

e e e

)
NO By

D IS A O-DIVIDER
Fic 19

process to add more threads, if necessary, through these blocks to bring the count up to 4
+ 2t. We thus fully thread all the 0-blocks in the left E of 7. A similar method works for
the 1-blocks of N and the 0-blocks of the right E of T. This leads us to the desired result.

PROOF OF THEOREM 3 CONTINUED. With the above lemma, the proof of Theorem 2,
minus the lemma and corollary, is adequate for the proof of Theorem 3.

4 Applications of Threading Schemes to the SCS Problem

The proofs we will present dealing with the Shortest Common Supersequence (SCS)
problem are fairly similar to those for the LCS theorems; hence we will not go mnto as
much detail. We will prove two theorems, the second stronger than the first, in order to
develop the proof in stages.

332 DAVID MAIER

THEOREM 4. The SCS problem is NP-complete for Z(R) of arbitrary size

ProoF. Once again we reduce the node cover problem to the problem at hand. Given
a node cover problem on a graph G = (N, E), say, k; (x1, 31); (x2, y2); ..o; (Xr, pr), We
construct a set R of r + 1 sequences. The alphabet for R will be as follows. Find the set of
nodes in G, N = {v, v, ..., v, and make each an alphabet member. The edges of E =
{e1, €2, .., e}, where e, = (x,, y,), are also members of the alphabet. Finally, star () is a
member of the alphabet.

We then construct the r + 1 sequences. The template T is composed of six sections: N;
A; E; E; 4; N, in that order. N is a hst of the nodes in N. E 1s a list of the edges 1n E, with
each edge appearing twice 1n a row. The section 4 is a sequence of 4c stars, where ¢ =
max(r, ?). (See Figure 20) For each edge e, = (x;, y») we construct a sequence S, which 1s
e.e; v, A; v €€, where x, = v, Vi = Vm, and A 15 4c stars, as before.

CLaM. If G has a node cover of size k, then R has a common supersequence of length
8c+6r+2t+k

PROOF. Let N' = {u, u, ..., us} be a node cover of size k. Let W = {e|x. € N'}, and

= {gle is not in W}. Clearly if e, € U, then y. € N'. We now construct a sequence 7"
by augmenting T with three sections: W at the beginning, N’ between the two E’s, and U
at the end, where W is a list of the edges in W, with each edge twice, N is a list of the
nodes 1n N, and U is two occurrences of each edge in U. (See Figure 21) 7" has length 8¢
+ 6r + 2t + k. To see that T” is a common supersequence of R, note that for each S, we
can match x, = v, of y, = v, to a term 1 N’. The rest of the matching follows in a
straightforward manner.

CLAIM. If R has an SCS of length 8¢ + 6r + 2t + k, then G has a node cover of size
k. :

Proor. First we note that for any node cover N’ of G of size s, there 1s a supersequence
T’ of R with length 8¢ + 6r + 2t + s, formed in the manner of the 7' in the claim above.
Further, since s = ¢, 8¢ + 6r + 2t + 5 = 8¢ + 6r + 3¢, and since N is a node cover of G, any
SCS of R has length less than 8¢ + 6r + 3t. Let T” be an SCS of R. We can now prove the
following lemma.

LEMMA. There is a threading scheme ©” for T” such that for all S, € R, all the stars
of A of S, are threaded with the left A of T or the right 4 of T.

ProoF. It is a property of SCS threading schemes that all terms of all sequences get
threaded. Suppose for a given S, none of the stars in 4 thread with either 4 of 7. Then
©O” has at least 12¢ + 4r + 2¢ threads, which is more than the 8¢ + 6r + 3¢ allowed for an
SCS. We get the former number by counting the terms in 7 (8¢ + 4r + 2¢) plus the terms
in 4 of S,, all of which need separate threads. So at least one thread goes through 4 of S,
and one of the A’s of T. But once we have one common thread, we can shift and add
threads to thread all the stars of A of S, and all the stars of either the left or the right 4 of
T. (See Figure 22.)

LENGTH = 8c +4r + 2t

T N A 3 3 A N
v||v2| ot * .eheln ¢ o |er-er|e' .e'. A le'le’c L (TP P PRI |vf|
O S N T . o S O S VW [V RS W — l_l_.L — d
e ————
4c¢ 4c
LENGTH= 4¢+ 6
s; A
el lei lv]) x Iv"‘leilei)
[SOl I S H S |
D
4c
Fic 20
T w N A E N E A N [T;
A IR Y Y2, el Vs, \ . ».‘1. ey
A SN IS SNV SN Syl S-S S S S PN (L0 N M |
FOR ALL ¢, IN W ALL MEMBERS OF N’ FOR ALL ¢; IN U

Fic 21

The Complexity of Some Problems on Subsequences and Supersequences 333

ProOF OF CLAIM CONTINUED. Now 1t remains to be determined how the rest of S, is
threaded. We will define extra threads as those threads in ©” threading no term in T.
Suppose we have A4 of S, threading completely with the left A4 of T, as shown in Figure 22.
Then there are no terms in T or any other sequence to thread with the left pair of e.’s, so
they must be on their own extra threads, which we can run around the left end of T. (See
Figure 23.) This allows us to thread v, with the corresponding term in N of T On the right
end, it is not difficult to see that we can do no better than running v,, on an extra thread
between the E’s and matching e.e, to the right E. If 4 of S, threads the right A of T, we
end up with a mirror 1mage scheme.

For each S,, we must run two extra threads for e,e; and one extra thread for x, or y, (v,
or vy). If x, = x, for some j, and x, and x, are on extra threads, these threads can be
combined; likewise for x, = y,, y, = x,, or y, = y, for some j. We see that ©” will have 2r
extra threads for the ¢’s and a number of extra threads for some of the members of N,
such that x, or y, is on an extra thread for each e, = (x,, ;) Since |T”| = 8¢ + 6r + 21 +
k and we have 8¢ + 4r + 2t threads for T, plus 2r extra threads for the e/’s, there must be
k extra threads for the elements of N. If we let N' = {v, € N|v, corresponds to an extra
thread}, we see that N’ is a node cover for G of size k.

PROOF OF THEOREM 4 CONTINUED. The two claims above give us a reduction of the
node cover problem to the SCS problem. The length of the sequences for R is polynomial
n n, the length of the node cover input. The reduction 1s polynomial, so the SCS problem
1s NP-complete for | Z(R)| unbounded.

THEOREM 5. The SCS problem is NP-complete for | Z(R)| = 5.

ProoF. We use the same notation for our graph and node cover problem as we used
in the last theorem. Again, we do an encoding for the nodes and edges, using the alphabet
{a, b, 0, 1,). The encoding is similar to the encoding used for the LCS problem, except
that we insert dividers nstead of deleting them. We define the node codeplate N as ¢ + 1
blocks of 10¢ a’s, where ¢ = max(, £). Any v, in N we encode with node code N[i], which
is obtained by inserting a b between the ith and (i + 1)-st blocks of N. The > multiple node
code N[l,, iy, ..., iy) has a b in the i;st, ihand, .., ith spots The special case of N[l 2, ..,] we
denote N, and refer to as the node sink, since it is a supersequence of all the node codes,
as well as the node codeplate. The edge codeplate E, the edge code E[;], and the multiple
edge code E[/l,]2, ..s Js] are defined similarly with blocks of 10c¢ zeros and pairs of ones.
(The code E[j] is shown in Figure 24.) We call E[M, 2, .., 7] the edge sink and denote
it E,. Finally, A consists of 10c stars.

We define the r + | sequences of R as follows. The sequences are somewhat similar to
the sequences of R in Theorem 4. The template T consists of the following codes 1n the
gwven order: E; N,; 4; E,; N; E; 4; N,; E. For each e, = (x,, y) we define S, as. E[i];
N[jl; 4, N[m); E[i], where x, = v, and y, = vn. (See Figure 25.) Note that T has length
10c(4r + 3t + 9) + (4r + 21).

T N

| S ——

334 DAVID MAIER

NODE CODEPLATE t +1 BLOCKS LENGTH = 10c(t + 1)
- a a a « o . a
[i i i O |
10¢ 10¢ 10¢ 10¢c
NODE CODE NCil LENGTH = t0c(t+1) + |
7 a [] , .. a . b, qa e e a . a |
—— . s e e e, e, e b . e, e el e b s) e e)
[————— S —— e ——
10¢ 10¢ 10¢ | 10¢ 10¢ 10¢
)
_ 1™ spot
MULTIPLE NODE N [1y.15 1..001g) LENGTH =10c(t+ 1) +s
y @, 0 .. @ b a .. a b a .. a b oo .. o,
[R T S SN S S S S IS Sy SRS SE—" S— S S S S—— |
10¢c 10c 10c | 0c 0c | 10¢c 10¢ ll 10¢ 10¢
1 [}
[} 1
£ i, SPOT iy SPOT e 15 SPOT
EDGE CODE E =
DGE) r+ | BLOCKS LENGTH = 10c(r+1) + 1
;7o , 0 , ..., O 1, 0 ..., O , O
[— —t i — i A, [S [S T ———
—— [——" s W———)
i0¢ 10¢ 10¢ 1 10¢c [[e]4 10¢
th o
) SPOT
Fic 24
T E Ng A Es N & , & Ng E |
S S H —_ H IR S S SO |
S, gtia Nt A NIml EMi2
I T S SN A
Fic 25

CrLAaM. If G has a node cover of size k, then R has a common supersequence of length
10c(4r + 3t + 9) + (4r + 20) + 2r + k).

PrROOF. Given N, a node cover of size k, let W and U be as specified in Theorem 4.
Then

T' = E\W}; Ny 4; E;; NIN'); Es; 4; No; E[U)
is a common supersequence of R of length
10c(4r + 3t +9) + (4r + 20 + 2r + k).

The matching is analogous to that of Theorem 4, with either v, or v, threading with
NN
CLAaM. If R has an SCS of length

10c(4r + 3r + 9) + (4r + 26) + 2r + k),

then G has a node cover of size k.

ProOOF. Given any node cover N’ for G of s1ze 5, we can construct 77, a supersequence
for R of length

10c(4r + 3t +9)+ (4r+ 20) + Qr + 5) < 10c(@r + 3t + 9 + (4r + 20) + Q2r + 9),

as above. The right-hand side of the inequality 1s thus an upper bound on the length of
any SCS of R. Let 7" be an SCS of R. We may agamn observe that there exists a threading
scheme ©” for T”, such that for any S,, 4 of S, is completely threaded with the left 4 or
the right 4 of T. If A4 of S, had no threads in common with the left or right 4 of 7, ©”
would have at least 10c(4r + 3t + 9) + (4r + 21) + 10c threads, which is too many, as 10c
> 2r + t. Once we have one thread common to 4 of S, and the left or right 4 of T, we can
run 10c threads through the two A’s. Figure 26 shows one of the two cases. A similar

The Complexity of Some Problems on Subsequences and Supersequences 335

Es A Ny | E

Ntm3 | ELD

— —_——

argument shows that the a-blocks of NYj) and Nim] and the 0-blocks of the left and right
E[i] can also be made to thread with whole blocks in 7.

Assuming A4 of S, is threaded as in Figure 26, we have little choice on how to thread the
blocks of Efi} and N[j] They thread with E and N, of T, and we need two extra threads,
6, and 6,, to thread the two ones n the left E[]. (See Figure 27.) On the right side, we can
do no better than to thread N and N[m], and the right E, and the right E[4], with an extra
thread 8; to thread the b in Njm]. We have the mirror situation if A of S, is threaded with
the right A of T.

We may now proceed as in Theorem 4 to show that the nodes of N corresponding to
extra threads through N of T form a node cover for G of size k.

PrROOF OF THEOREM 5 CONTINUED. The reduction of the node cover problem 1n
polynomial time and the NP-completeness follow as usual.

5. Conclusion

We have seen that the LCS and SCS problems are NP-complete for alphabet sizes of 2
and 5, respectively. We conjecture that the latter figure maght be reduced to 3, by changing
the b’s and ones to stars in Theorem 5.

The theorems indicate that any method for finding the LCS and SCS of an arbitrary
number of sequences is going to be intractable, and hence not useful for data compression
schemes. However, we might still ask if there are any good approximation methods which
could be used for data compression. Another question of interest 1s whether there exist low
order polynomial reductions directly between the LCS and SCS problems. Here we note
that the LCS of a set of sequences does not necessarily give any mformation about the
SCS, since we can always add a sequence to the set which will not change the SCS but
which is a common subsequence of all the other sequences.

ACKNOWLEDGMENT. The author wishes to thank Jeff Ullman for suggesting the topics
covered in this paper, and for the many discussions we had about them.

REFERENCES

1 AHO, AV, HIRSCHBERG, DS, AND ULLMAN, JD Bounds on the complexity of the longest common
subsequence problem J ACM 23, 1 (Jan 1976), 1-12

2 AHO, AV, HOrCROFT, J E,, AND ULLMAN, J D The Design and Analysis of Computer Algorsthms Addison-
Wesley, Reading, Mass , 1974

3 CHVATAL, V, KLARNER, D A, AND KNUTH, D E Selected combinatornal research problems STAN-CS-
72-292, Stanford U, Stanford, Calif, 1972, p 26

4 CHVATAL, V, AND SANKOFF, D Longest common subsequences for two random sequences STAN-CS-75-
477, Stanford U, Stanford, Calif., Jan 1975

5 Cook, S A The complexity of theorem proving procedures Proc Third Annual ACM Symp on Theory of
Computing, 1971, pp 151-158.

336 DAVID MAIER

10.

11.

13

14

15.

18.

19.

20.

21.

22.

23.

24.

. DAYHOFF, M.O Computer aids to protein sequence determination. J. Theoret. Biology 8, 1 (Jan 1965),

97-112.

. DAYHOFF, M.O. Computer analysis of protein evolution. Scientif. Amer. 221, 1 (July 1969), 86~95
. FISCHER, MLJ., AND PATERSON, M.S. String matching and other products. Tech Memo 41, Proy MAC,

M.LT., Cambridge, Mass , 1974,

FREDMAN, M.L. On computing length of the longest increasing subsequences Discrete Math 11, I (Jan.
1975), 29-36.

HIRSCHBERG, DS On finding maximal common subsequences TR-156, Comptr Sc1 Lab, Princeton U,
Princeton, N J, 1974

HIRSCHBERG, D S. A linear space algonthm for computing maximal common subsequences Comm. ACM
18, 6 (June 1975), 341-343

HirscHBERG, DS The longest common subsequence problem. Ph D Diss., Princeton U, Princeton, N J.,
Aug 1975.

Karp, RM Reducbility among combinatorial problems. In Complexity of Computer Computation, R E
Miller and JW Thatcher, Eds, Plenum, New York, 1972, pp. 85-103

LOWRANCE, R., AND WAGNER, R A An extension of the string-to-string correction problem J. ACM 22, 2
(Apnl 1975), 177-183

Morris, LH., AND PRATT, V R, A linear pattern-matching algorithm. TR-40, Comptr Ctr., U of Cahformia,
Berkeley, Calif., June 1970

NEEDLEMAN, S B, AND WuNscH, CS. A general method applicable (o the search for similarities in the
amino acid sequence of two protemns J. Molecular Biol 48 (1970), 443453

SaNkOFF, D Matching sequences under deletion/insertion constramnts Proc. Nat Acad Sci. USA 69, 1
(Jan 1972), 4-6

SANKOFF, D., AND CEDERGREN, R J A test for nucleotide sequence homelogy. J Molecular Biol 77 (1973),
159-164.

SELLERS, PH An algonthm for the distance between two fimite sequences J Combin Theory 16 (1974),
253-258

SzyManskl, T.G. A special case of the maximal common subsequence problem. TR-170, Comptr Sci. Lab,
Princeton U, Princeton, N J., Jan. 1975.

WAGNER, R.A On the complexity of the extended string-to-string correction problem. Proc Seventh Annual
ACM Symp. on Theory of Comptng , 1975, pp 218-223

WAGNER, R A, AND FisCHER, MJ The string-to-string correction problem J ACM 21, 1 (Jan 1974),
168-173

WEINER, P Linear pattern matching algonthms Proc 14th Annual Symp on Switching and Automata
Theory, 1973, pp 1-11

WonG, CK., aNnp CHANDRA, AK Bounds for the string editing problem J ACM 23, 1 (Jan. 1976), 13-16.

RECEIVED NOVEMBER 1976; REVISED JUNE 1977

Journal of the A for Computing Machmery, Vol 25, No 2, Apnl 1978

