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Abstract. This survey is offered in honour of the special occasion of
the birthday celebration of science and education pioneer Professor Juraj
Hromkovič. In this survey, we review recent results on one-player flood-
filling games on graphs, Flood-It and Free-Flood-It, in which the player
aims to make the board monochromatic with a minimum number of
flooding moves. As for many colored graph problems, flood-filling games
have relevant interpretations in bioinformatics. The original versions of
Flood-It and Free-Flood-It are played on n × m grids, but several stud-
ies were devoted to analyzing the complexity of these games when the
“board” (the graph) belongs to other graph classes. A complete mapping
of the complexity of flood-filling games on trees is presented, charting
the consequences of single and aggregate parameterizations. The Flood-
It problem on trees and the Restricted Shortest Common Supersequence
(RSCS) problem are analogous. Flood-It remains NP-hard when played
on 3-colored trees. A general framework for reducibility from Flood-It to
Free-Flood-It is revisited. The complexity behavior of these games when
played on various kinds of graphs is surveyed, such as Cartesian products
of cycles and paths, circular grids, split graphs, co-comparability graphs,
and AT-free graphs. We review a recent investigation of the parameter-
ized complexity of Flood-It when the size of a minimum vertex cover is
the structural parameter. Some educational aspects of the game are also
reviewed. Happy Birthday, Juraj!

Keywords: Combinatorial games · Flood-filling games · Flood-It
Free-Flood-It · Graph algorithms · Parameterized complexity

1 Introduction

Flood-It is a one-player combinatorial game (also known as the Mad Virus
Game), originally played on a colored board consisting of an n × m grid, where
each tile/cell of the board has an initial color from a fixed color set. In the classic
game, two tiles are neighboring tiles if they lie in the same row (resp. column) and
in consecutive columns (resp. rows). A sequence C of tiles is a path when every
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Fig. 1. An optimal sequence of moves to flood a 3 × 3 grid. (Color figure online)

Fig. 2. An optimal sequence of moves to flood a 6-colored Petersen graph. (Color figure
online)

pair of consecutive tiles in C is formed by neighboring tiles. A monochromatic
path is a path in which all the tiles have the same color. Two tiles a and b are
m-connected when there is a monochromatic path between them. In Flood-It, a
move consists of assigning a new color ci to the top left tile p (the pivot) and
also to all the tiles m-connected to p immediately before the move. The objective
of the game is to make the board monochromatic (“flood the board”) with the
minimum number of moves. Figure 1 shows a sequence of moves to flood a 3 × 3
grid colored with five colors.

A variation of Flood-It is Free-Flood-It, where the player can freely choose
which tile will be the pivot of each move. In addition, these games can easily be
generalized to be played on any graph with an initial coloring. Figure 2 shows a
sequence of moves to flood a graph using a fixed pivot vertex p.

Many complexity issues regarding Flood-It and Free-Flood-It have recently
been investigated. In [1], Arthur, Clifford, Jalsenius, Montanaro, and Sach show
that Flood-It and Free-Flood-It are NP-hard on n × n grids colored with at
least three colors. Meeks and Scott [28] prove that Free-Flood-It is solvable in
polynomial time on 1×n grids, and also that Flood-It and Free-Flood-It remain
NP-hard on 3 × n grids colored with at least four colors.
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Up to the authors’ knowledge, the complexity of Flood-It on 3 × n grids col-
ored with three colors remains an open question. Clifford, Jalsenius, Montanaro,
and Sach present in [7] a polynomial-time algorithm for Flood-It on 2 × n grids.
In [29], Meeks and Scott show that Free-Flood-It remains NP-hard on 2 × n
grids.

Fleischer and Woeginger [35] prove that Flood-It is NP-hard on trees.
Analysing the complexity of Flood-It on non-grid graphs, Fleischer and Woegin-
ger [14,35] also prove that Flood-It (also called the Honey-Bee-Solitaire problem)
remains NP-hard even when restricted to split graphs, but that it is polynomial-
time solvable on co-comparability graphs. When Flood-It is played on paths
(1 × n grids) the problem is trivially solvable if the pivot has degree one. How-
ever, allowing the pivot be any vertex of the path, the problem is equivalent to
the Shortest Common Supersequence problem (SCS) for two sequences [13,40],
a very well-studied problem that does not have a known linear-time algorithm.

By similar arguments, it can be seen that Flood-It on cycles can be solved
in polynomial time. In [28], Meeks and Scott show that Free-Flood-It on paths
can be solved in O(n6) time. Thus, by the approach of removing the last vertex
that will be flooded, we obtain an algorithm to solve Free-Flood-It on cycles in
O(n7) time. In [25], it was shown that Free-Flood-It can be solved in polynomial
time on 2-colored graphs.

In [30], it is shown the elegant fact that the minimum number of moves
required to flood any given graph G is equal to the minimum, taken over all
spanning trees T of G, of the number of moves required to flood T . Meeks and
Vu present some extremal properties of flood-filling games in [31]. Fukui et al. [15]
show that if the number of colors is not bounded, Free-Flood-It is NP-complete
even on caterpillars and proper interval graphs, but when the number of colors
is a fixed constant, the game can be solved in XP time on interval graphs. Hon
et al. [19] present a polynomial-time algorithm for Flood-It on AT-free graphs.
In [41], Souza, Protti and Dantas da Silva describe polynomial-time algorithms
to play Flood-It on C2

n (the second power of a cycle on n vertices), 2×n circular
grids (2×n grids where the first and last tiles in a same row are neighboring tiles).
Souza et al. also show that Free-Flood-It is NP-hard on C2

n and 2 × n circular
grids. More recently, in [8,12] there was presented a parameterized complexity
analysis of Flood-It, parameterizing with respect to the vertex cover number,
and the neighborhood diversity of the input.

Flood-filling Games in Bioinformatics. Since the 90’s, an increasing number of
papers on biological applications have been dealt with as combinatorial prob-
lems. Vertex-colored graph problems have several applications in bioinformat-
ics [9]. The Colored Interval Sandwich Problem has applications in DNA phys-
ical mapping [11,16] and in perfect phylogeny [27]; vertex-recoloring problems
appear in protein-protein interaction networks and phylogenetic analysis [6,33];
the Graph Motif Problem [9] was introduced in the context of metabolic network
analysis [24]; the Intervalizing Colored Graphs Problem [5] models DNA physical
mapping [11]; and the Triangulating Colored Graph Problem [5] is polynomially
equivalent to the Perfect Phylogeny Problem [17].
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Flood-Filling games on colored graphs are also related to many problems in
bioinformatics. As shown in [13,40], Flood-It played on trees is analogous to
a restricted case of the Shortest Common Supersequence Problem [18]. Conse-
quently, these games inherit from the Shortest Common Supersequence Prob-
lem many applications in bioinformatics, such as: microarray production [36],
DNA sequence assembly [3], and a close relationship to multiple sequence align-
ment [38]. In addition, some disease spreading models, described in [2], work in
a similar way to flood-filling games.

Additional Definitions and Notation. Neighboring tiles naturally correspond to
neighboring vertices of a graph G representing the board; therefore, from now
on, we use the term vertex instead of tile. A subgraph H of G is adjacent to a
vertex v ∈ V (G) if v has a neighbor in V (H). A flood move, or just move, is a
pair m = (p, c) where p is the pivot of m (the vertex chosen to have its color
changed by m), and c is the new color assigned to p; in this case, we also say
that color c is played in move m. In Flood-It all moves have the same pivot. A
subgraph H is said to be flooded when H becomes monochromatic. A vertex v is
flooded by a move m if the color of v is played in m and v becomes m-connected
to new vertices after playing m. We say that a move m floods a vertex v by a
vertex w if v and w are neighbors and move m changes the color of w to flood v.
A (free-)flooding is a sequence of moves in (Free-)Flood-It which floods G (the
entire board). An optimal (free-)flooding is a flooding with a minimum number
of moves. A move m = (p, c) is played on subgraph H if p ∈ V (H). An island
is a vertex v colored with a color c such that no neighbor of v is colored with
c. Let Gn be a graph with n vertices, the k-th power of Gn, denoted by Gk

n, is
the graph formed by Gn plus edges between vertices at a distance at most k.
Thus, P k

n and Ck
n is the k-th power of a path Pn and a cycle Cn, respectively. A

circular grid is an n×m grid with the additional property that the first and the
last tiles in a same row are neighboring tiles. Finally, we denote by Π ∝f Π ′ a
reduction from a problem Π to a problem Π ′ via a computable function f .

The formal definitions of the most studied flood-filling games are as follows.

Flood-It (decision version)
Instance: A colored graph G with a pivot vertex p, an integer λ.
Question: Is there a sequence of at most λ flood moves which makes the graph
monochromatic, using p as the pivot in all moves?

Free-Flood-It (decision version)
Instance: A colored graph G, an integer λ.
Question: Is there a sequence of at most λ flood moves which makes the graph
monochromatic?

Definition 1. Let Π be a flood-filling game and let S = {s1, . . . , sn} be a subset
of the aspects of Π (see below). [S1]-Π(S2) is the family of parameterized prob-
lems where the aspects in S1 ⊆ S are fixed constants and the aspects in S2 ⊆ S
are aggregate parameters.
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As an example, [d]-Flood-It(c) is the family of parameterized problems where
d (maximum distance of the pivot) is a fixed constant and c (number of colors)
is the parameter. We consider the following aspects of the problem:

– c = number of colors
– λ = number of moves
– d = maximum distance of the pivot
– o = maximum orbit
– t = number of leaves
– r = number of bad moves, r = (λ − c)

Given a vertex-colored graph G, the orbit of a color b in G, ob, is the number
of occurrences of b in G. We say the the maximum orbit of a vertex-colored
graph G is the maximum orbit of a color used in G. A good move for a color ca

is a move that floods all non-flooded vertices with color ca. A move that is not
good is a bad move. As in Free-Flood-It there is no fixed pivot, for such a game
the parameter d stands for the diameter of the graph.

2 Flood-Filling Games on Grids

In this section we summarize the main results on the complexity of flood-filling
games on grids.

Lemma 1 (Clifford et al. [7]). For c ≥ 4, [c]-Flood-It and [c]-Free-Flood-It
are NP-hard on grids. Further, for an unbounded number of colours c, there is
no polynomial-time constant-factor approximation algorithm, unless P = NP .

Lemma 2 (Clifford et al. [7]). [c = 3]-Flood-It and [c = 3]-Free-Flood-It on
grids are NP-hard.

Theorem 1 (Clifford et al. [7]). Flood-It is polynomial-time solvable on 2×n
grids.

Theorem 2 (Meeks and Scott [28]). [c = 4]-Flood-It remains NP-hard when
restricted to 3 × n grids.

Theorem 3 (Meeks and Scott [28]). [c = 4]-Free-Flood-It remains NP-hard
when restricted to 3 × n grids.

Theorem 4 (Meeks and Scott [28]). Free-Flood-It can be solved in polyno-
mial time on 1 × n grids.

Theorem 5 (Meeks and Scott [28], Lagoutte et al. [25]). [c = 2]-Free-
Flood-It can be solved in polynomial time on general graphs.

Theorem 6 (Meeks and Scott [29]). Free-Flood-It remains NP-hard when
restricted to 2 × n grids.
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Theorem 7 (Meeks and Scott [29]). Free-Flood-It(c) can be solved in O(2c ×
n10) time on 2 × n grids.

In [7], Clifford et al. also provided a discussion about approximating the
number of moves, and grids where each tile is coloured uniformly at random.
Up to the authors’ knowledge, the complexity of Flood-It and Free-Flood-It on
k × n (k ≥ 3) grids colored with three colors remains as an open question.

Tables 1 and 2 summarize the results of this section.

Table 1. Complexity of Flood-It

#colors\ grid size 1 × n 2 × n 3 × n k × n n × n

2 P P P P P

3 P P open open NP-hard [7]

4 P P NP-hard [28] NP-hard NP-hard

unbounded P P [7] NP-hard NP-hard NP-hard

Table 2. Complexity of Free-Flood-It

#colors\ grid size 1 × n 2 × n 3 × n k × n n × n

2 P P P P P [25,28]

3 P P open open NP-hard [7]

4 P P [29] NP-hard [28] NP-hard NP-hard

unbounded P [28] NP-hard [29] NP-hard NP-hard NP-hard

3 Flood-Filling Games on Trees

Now, we revisit a multivariate investigation of the complexity of Flood-It and
Free-Flood-It when played on trees presented in [13,40], where the authors ana-
lyze the complexity consequences of parameterizing flood-filling problems in var-
ious ways.

3.1 Flood-It on Trees

We start this section by remarking that Flood-It played on a tree is equivalent
to Flood-It played on a rooted tree whose root is the pivot.

Theorem 8 (Fellows et al. [13], Souza et al. [40]). [d]-Flood-It on trees
remains NP-hard when d = 2.

The proof of Theorem 8 uses a reduction from the Vertex Cover Problem.
The authors show that there is a vertex cover of size k in a graph G if and only
if there is a flooding with n + k moves in the associated tree T . Given a graph
G = (V,E) with |V | = n and |E| = m, they construct a tree T as follows:
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– create a pivot root s with color cs;
– for each edge ei = uv of G, add to T a subset of vertices Ei = {u′

i, v
′
i, u

′′
i , v′′

i }
such that u′

i, v
′
i are children of s, v′′

i is a child of u′
i, and u′′

i is a child of v′
i;

– define a distinct color cu for each u ∈ V (G), and color all vertices of the form
u′

i, u
′′
i (for all i) with the color cu.

Figure 3 shows a graph G and its associated tree T .
Theorem 8 shows that the problem remains NP-hard even for a very restricted

class of trees. Notice that Flood-It and Free-Flood-It are trivially solvable when
T is a star.

(a) (b)

e1

e2

e3
e4 u1’ u3’ u4’z1’ z2’ v4’w2’ w3’

u1” u3” u4”z1” z2” v4”w2” w3”

u

z

v w

s

Fig. 3. (a) A graph G; (b) tree T obtained from G.

Corollary 1. [o, d]-Flood-It on trees is NP-hard even when o = 4 and d = 2.

Corollary 1 follows by restricting the reduction presented in Theorem8 to
cubic graphs. In addition, in [13,40] the authors also show the following result.

Theorem 9. [d]-Flood-It(c) is in FPT and admits a polynomial kernelization.

Analogous Problems

Next we present a very interesting observation provided in [13].

Definition 2. Two optimization problems Π and Π ′ are said to be analogous
if there exist linear-time reductions f, g such that:

1. Π ∝f Π ′ and Π ′ ∝g Π;
2. every feasible solution s for an instance I of Π implies a feasible solution s′

for f(I) such that size(s) = size(s′);
3. every feasible solution s′ for an instance I ′ of Π ′ implies a feasible solution

s for g(I ′) such that size(s′) = size(s).

Next we have an equivalent definition for decision problems. Denote by Y (Π)
the set of all instances I of Π yielding a yes-answer for the question “I ∈ Y (Π)?”.



364 M. R. Fellows et al.

Definition 3. Two decision problems Π and Π ′ in NP are said to be analogous
if there exist linear-time reductions f, g such that:

1. Π ∝f Π ′ and Π ′ ∝g Π;
2. every easy checkable certificate C for the yes-answer of the question “I ∈

Y (Π)?” implies an easy checkable certificate C′ for the yes-answer of the
question “f(I) ∈ Y (Π ′)?” such that size(C) = size(C′);

3. every easy checkable certificate C′ for the yes-answer of the question “I ′ ∈
Y (Π ′)?” implies an easy checkable certificate C for the yes-answer of the
question “g(I ′) ∈ Y (Π)?” such that size(C′) = size(C).

Definition 4. Let Π and Π ′ be analogous decision problems. The parameterized
problems Π(k1, . . . , kt) and Π ′(k′

1, . . . , k
′
t) are said to be p-analogous if there

exist FPT reductions f, g and a one-to-one correspondence ki ↔ k′
i such that:

1. Π(k1, . . . , kt) ∝f Π ′(k′
1, . . . , k

′
t) and Π ′(k′

1, . . . , k
′
t) ∝g Π(k1, . . . , kt);

2. every easy checkable certificate C for the yes-answer of the question “I ∈
Y (Π(k1, . . . , kt))?” implies an easy checkable certificate C′ for the yes-answer
of the question “f(I) ∈ Y (Π ′(k′

1, . . . , k
′
t))?” such that k′

i = ϕ′
i(ki) for some

function ϕ′
i (1 ≤ i ≤ t);

3. every easy checkable certificate C′ for the yes-answer of the question “I ′ ∈
Y (Π ′(k′

1, . . . , k
′
t))?” implies an easy checkable certificate C for the yes-answer

of the question “g(I ′) ∈ Y (Π(k1, . . . , kt))?” such that ki = ϕi(k′
i) for some

function ϕi (1 ≤ i ≤ t).

Two straightforward consequences of the above definitions are: (a) if Π and
Π ′ are analogous problems then Π is in P (is NP-hard) if and only if Π ′ is in P
(is NP-hard); (b) if Π(k1, . . . , k�) and Π ′(k′

1, . . . , k
′
�) are p-analogous problems

then Π(k1, . . . , k�) is in FPT (admits a polynomial kernel/is W[1]-hard) if and
only if Π ′(k′

1, . . . , k
′
�) is in FPT (admits a polynomial kernel/is W[1]-hard).

Fleischer and Woeginger used a reduction from the Fixed Alphabet Shortest
Common Supersequence Problem [35] to prove that Flood-It on trees is NP-hard
even when the number of colors is fixed. In [13], the authors show that Flood-It
on trees and Restricted Shortest Common Supersequence(RSCS) are analogous
problems. RSCS is a variant of SCS - Shortest Common Supersequence [10].

Shortest Common Supersequence (SCS)
(decision version)
Instance: A set of strings S = s1, . . . , s� over an alphabet Σ, an integer Λ.
Question: Does there exist a string s ∈ Σ of length at most Λ that is a
supersequence of each string in S?

Restricted Shortest Common Supersequence (RSCS)
(decision version)
Instance: A set of ρ-strings R = r1, . . . , r� over an alphabet Σ, an integer Λ.
(A ρ-string is a string with no identical consecutive symbols.)
Question: Does there exist a string r ∈ Σ of length at most Λ that is a
supersequence of each ρ-string in R?
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Let SCS(|Σ1|, �1) stand for the SCS problem parameterized by |Σ1| and �1
(�1 is the number of strings). The notation RSCS(|Σ2|, �2) is used similarly.

Theorem 10 (Fellows et al. [13]). SCS(|Σ1|, �1) is FPT-reducible to RSCS
(|Σ2|, �2).
Theorem 11 (Fellows et al. [13]).

(a) Flood-It on trees and RSCS are analogous problems.
(b) Flood-It(c, t, λ) on trees is p-analogous to RSCS(|Σ|, �, Λ).

By Theorem 11, results valid for RSCS can be inherited by Flood-It on trees:

Corollary 2 (Fellows et al. [13]). [t]-Flood-It on trees is solvable in polynomial
time.

Corollary 3 (Fellows et al. [13]). Flood-It(t, c) on trees is W[1]-hard.

Phylogenetic Colored Trees

Flood-It played on trees can be applied to scheduling. Each color corresponds to
an operation in the sequential process of manufacturing an object. In the input
tree T , paths from the pivot to the leaves correspond to the manufacturing
sequences for a number of different objects that share the same production line.
A flooding to T then corresponds to a schedule of operations for the production
line that allows all of the different objects to be manufactured. It may reasonably
be the case that each object to be manufactured requires any given operation to
be applied at most once.

Theorem 12 (Fellows et al. [13]). [r]-Flood-It on general graphs can be solved
in polynomial time.

Definition 5. A colored rooted tree is a pc-tree (phylogenetic colored tree) if no
color occurs more than once in any path from the root to a leaf.

Corollary 4 (Fellows et al. [13]). Flood-It on trees remains NP-hard even
when restricted to pc-trees with pivot root.

Corollary 5 (Fellows et al. [13]). Flood-It(t) on pc-trees with pivot root is
W[1]-hard.

Definition 6. A pc-tree T is a cpc-tree (complete pc-tree) if each color occurs
exactly once in any path from the root to a leaf.

Cpc-trees are a special subclass of pc-trees. Many hard cases of Flood-It on
pc-trees are easy to solve when restricted to cpc-trees; for example, while Flood-
It on pc-trees remains NP-hard when d is the parameter, Flood-It on cpc-trees
is trivially solved in FPT time.

As in biological applications the phylogenetic sequences are often complete,
the complexity of flood-filling games for complete pc-trees is an interesting issue.
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Theorem 13 (Fellows et al. [13]). Flood-It on trees remains NP-hard even
when restricted to cpc-trees with pivot root.

In Corollary 1, it was shown that Flood-It remains NP-hard even when
restricted to pc-trees with maximum orbit 4. Theorem 14 shows that Flood-It
on cpc-trees can be solved in polynomial time when considering the maximum
orbit as the parameter.

Theorem 14 (Fellows et al. [13]). [o]-Flood-It on cpc-trees can be solved in
polynomial time.

Flood-It on 3-Colored Trees

Flood-It on 2-colored graphs is trivially solvable. Fleischer and Woeginger [35]
proved that Flood-It remains NP-hard when restricted to 4-colored trees. Raiha
and Ukkonen [37] proved that Shortest Common Supersequence over a binary
alphabet is NP-complete, and Middendorf [32] proved that Shortest Common
Supersequence over a binary alphabet remains NP-complete even if the given
strings have the same length and each string contains exactly two ones.

In Middendorf’s proof the instances of Shortest Common Supersequence do
not have two consecutive ones; hence, without loss of generality, we can assume
that the last character of each input string is ‘0’ (since after each ‘1’ there is a
‘0’). Using this fact, in [13] was proved the following theorem.

Theorem 15 (Fellows et al. [13]). [c]-Flood-It on trees remains NP-hard when
c = 3.

3.2 Free-Flood-It on Trees

Theorem 16 (Fellows et al. [13]). [r]-Free-Flood-It on general graphs can be
solved in polynomial time.

The proof of Theorem 16 is similar to the proof presented in Theorem12 in [13].
Now we present a general framework for reducibility from Flood-It to Free-

Flood-It provided in [13].

Definition 7. Let G be a graph, v ∈ V (G), and � a positive integer. The graph
ψ(G, v, �) is constructed as follows: (i) create � disjoint copies G1, . . . , G� of G;
(ii) contract the copies v1, v2, . . . , v� of v into a single vertex v∗.

Definition 8. Let F be a class of graphs. Then:

ψ(F ) = {G | G = ψ(G′, v, �) for some triple (G′ ∈ F , v ∈ V (G′), � > 0) }.

Definition 9. A class F of graphs is closed under operator ψ if ψ(F ) ⊆ F .

Examples of classes closed under ψ are chordal graphs and bipartite graphs.
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Theorem 17 (Fellows et al. [13]). Flood-It played on F is reducible in poly-
nomial time to Free-Flood-It played on ψ(F ).

Corollary 6 (Fellows et al. [13]). Let F be a class of graphs closed under
ψ. Then Flood-It played on F is reducible in polynomial time to Free-Flood-It
played on F .

NP-hardness results valid for Flood-It can be inherited by Free-Flood-It:

Corollary 7 (Fellows et al. [13]). [d]-Free-Flood-It on trees is NP-hard even
when d = 4.

Corollary 8 (Fellows et al. [13]). Free-Flood-It on cpc-trees is NP-hard.

Corollary 9 (Fellows et al. [13]). [c]-Free-Flood-It on trees is NP-hard even
when c = 3.

The next theorem implies that Flood-It on pc-trees and Free-Flood-It on
pc-trees are analogous, and parameterized versions of these problems are p-
analogous.

Theorem 18. In Free-Flood-It on pc-trees, there always exists an optimal free-
flooding which is a flooding with pivot root.

Corollary 10 (Fellows et al. [13]). Free-Flood-It(t) on pc-trees is W[1]-hard.

Corollary 11 (Fellows et al. [13]). Free-Flood-It(t, r) on pc-trees with pivot
root is in FPT.

Table 3 summarizes the results presented in [13].

4 Flood-Filling Games on Other Classes of Graphs

In this section we consider the complexity of flood-filling games played on other
classes of boards, such as split graphs, co-comparability graphs, powers of paths,
powers of cycles and circular grids.

In [35], Flood-It was denoted by Honey-Bee-Solitaire.

Theorem 19 (Fleischer and Woeginger [35]). Flood-It can be solved in poly-
nomial time on co-comparability graphs.

Theorem 20 (Fleischer and Woeginger [35]). Flood-It on split graphs is
NP-hard.

Recently, Hon et al. [19] claim that Flood-It on AT-free graphs can be solved
in polynomial time.

Theorem 21 (Hon et al. [19]). Flood-It can be solved in polynomial time on
AT-free graphs graphs.
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Table 3. Multivariate analysis of flood-filling games on trees.

Problem Instance Fixed constant Parameters Complexity

Flood-It cpc-trees – NP-hard

trees c ≥ 3 – NP-hard

pc-trees c FPT

graphs λ FPT

cpc-trees d FPT

cpc-trees o – Polynomial

pc-trees k W[1]-hard

graphs r – Polynomial

cpc-trees r FPT

trees c, d FPT

graphs c, o FPT

trees c, k W[1]-hard

trees c, r FPT

pc-trees d ≥ 2, o ≥ 4 – NP-hard

trees d, k FPT

trees o, k W[1]-hard

trees k, r FPT

Free-Flood-It cpc-trees – NP-hard

trees c ≥ 3 – NP-hard

trees d ≥ 4 – NP-hard

pc-trees k W[1]-hard

cpc-trees r FPT

trees o, k W[1]-hard

pc-trees k, r FPT

The next results focus on the powers of some classes of graphs, and circular
grids.

Corollary 12 (Souza et al. [41]). Flood-It is solvable in polynomial time on
2 × n circular grids.

Lemma 3 (Souza et al. [41]). Flood-It on C2
n is a particular case of Flood-It

on circular grids.

Figure 4 illustrates a C2
n as a particular instance of Flood-It on circular grids.

Corollary 13 (Souza et al. [41]). Flood-It can be solved in polynomial time
on C2

n.

Corollary 14 (Souza et al. [41]). Flood-It can be solved in polynomial time
on P 2

n .
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Fig. 4. (a) 2 × n circular grid for even n; (b) 2 × n circular grid for odd n.

In [31], Meeks and Vu present some upper bounds to the maximum number of
moves that might be required to flood a arbitrary graph, which they show to be
tight for particular classes of graphs. They also determine this maximum number
of moves exactly when the underlying graph is a path, cycle, or a blow-up of a
path or cycle (Table 4).

Table 4. Complexity of flood-filling games on particular graph classes

Flood-It Free-Flood-It

Caterpillars P [35] NP-hard [15]

P 2
n P [41] NP-hard [41]

Proper interval P [35] NP-hard [15]

Co-comparability P [35] NP-hard [15]

AT-free P [19] NP-hard [15]

C2
n P [41] NP-hard [41]

2 × n circular grid P [41] NP-hard [41]

Split NP-hard [35] NP-hard [15]

Free-Flood-It

Theorem 22 (Fukui et al. [15]). Free-Flood-It is NP-hard even on proper
interval graphs, or even on caterpillars. These results still hold even if the max-
imum degree of the graphs is bounded by 3.

Theorem 23 (Fukui et al. [15]). Free-Flood-It on an interval graph can be
solved in O(4cc2n3) time.

Notice that Theorem 23 shows that the problem is fixed-parameter tractable
on interval graphs considering the number of colors as the parameter.
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Flood-It on paths can be easily solved in O(n2) time by a dynamic program-
ming [40], and as show in [41], the problem remains polynomially solvable when
played on 2×n circular grids, C2

n and P 2
n . Although Free-Flood-It can be solved

in polynomial time when played on paths and cycles, in [41], they show that
Free-Flood-It is NP-hard when played on C2

n, P 2
n or circular grids.

Theorem 24 (Souza et al. [41]). Free-Flood-It remains NP-hard on C2
n.

Corollary 15 (Souza et al. [41]). Free-Flood-It remains NP-hard on P 2
n .

Corollary 16 (Souza et al. [41]). Free-Flood-It remains NP-hard on 2 × n
circular grids.

5 The Size of a Minimum Vertex Cover as Parameter

From the parameterized complexity point of view, we consider the complexity of
the Flood-It game played on graphs with bounded minimum vertex cover. We
revisit the results presented in [8,12].

In the literature, there exist some results considering bounded values for
different parameters of Flood-It. For instance, Flood-It is NP-hard on n × n
grids colored with at least three colors [1], and it is also NP-hard on trees with
diameter at most four [13,40]. In [13,40], the authors show some parameterized
complexity results on Flood-It on trees, such as: Flood-It is W[1]-hard on trees
when the number of leaves and the number of colors are parameters. On the
other hand, it is easy to verify in O∗(λλ) time whether Flood-It has a solution
of size at most λ, and to obtain a kernel of size O(cd) where c and d are the
parameters, the number of colors and the diameter of the graph, respectively. At
this point, we review the parameterized complexity of Flood-It game considering
the minimum vertex cover of the board (graph) as the parameter.

In [8,12], they present a parameterized complexity analysis of Flood-It with
respect to the vertex cover number and with respect to the neighborhood
diversity.

Theorem 25 (Fellows et al. [8,12]). Flood-It is in FPT when parameterized
by the vertex cover number (|vc|).
Definition 10. A graph G(V,E) has neighborhood diversity nd(G) = t if one
can partition V into t sets V1, . . . , Vt such that, for all v ∈ V and every i ∈
{1, . . . , t}, either v is adjacent to every vertex in Vi or it is adjacent to none of
them. Note that each part Vi of G is either a clique or an independent set.

The parameter neighborhood diversity is a natural generalization of the ver-
tex cover number. In 2012, Lampis [26] showed that for every graph G we have
nd(G) ≤ 2|vc| + |vc|, where |vc| is the vertex cover number of G. The optimal
neighborhood diversity decomposition of a graph G can be computed in O(n3)
time [26].



A Survey on the Complexity of Flood-Filling Games 371

Corollary 17 (Fellows et al. [8,12]). Flood-It is fixed-parameter tractable
when parameterized by the neighborhood diversity.

Theorem 26 (Fellows et al. [8,12]). Flood-It admits polynomial kernelization
when parameterized by the neighborhood diversity (nd) and the number of colors
(c).

Theorem 27 (Fellows et al. [8,12]). Flood-It parameterized by the vertex
cover number does not admit a polynomial kernel, unless coNP ⊆ NP/poly,
even restricted to bipartite or chordal graphs.

Corollary 18 (Fellows et al. [8,12]). Flood-It does not admit a polynomial
kernel, unless coNP ⊆ NP/poly, even when the vertex cover number and the
maximum number of bad moves to be played are considered as an aggregate
parameter.

Based on the Exponential Time Hypothesis (ETH) and the Strong Exponen-
tial Time Hypothesis (SETH), in [12] they obtained the following bounds for
Flood-It.

Theorem 28 (Fellows et al. [12]). Flood-It cannot be solved in

1. 2o(|vc|+ic)nO(1) time, unless ETH fails, and
2. (2 − ε)icnO(1) time, unless SETH fails,

even when the input graph is either bipartite or chordal, and ic denotes the
minimum number of colors of a maximum independent set of G.

Theorem 28 provides a strong bound for bipartite and chordal graphs. The
next result gives us bounds for very restricted subclasses of bipartite and chordal
graphs.

Theorem 29 (Fellows et al. [12]). Unless ETH fails, Flood-It cannot be solved
in 2o(|vc|+ic)nO(1) time, even when the input graph G is a tree with height two
or a split graph formed by a clique and a set of pendant vertices.

In [12] the author also provided an exact algorithm for Flood-It.

Theorem 30 (Fellows et al. [12]). Flood-It can be solved in O(2O(|vc| log(ic |vc|))

nO(1)) time, where |vc| is the vertex cover number and ic is the minimum number
of colors of a maximum independent set of G.

In [30] they show that the minimum number of moves required to flood any
given graph G is equal to the minimum, taken over all spanning trees T of G,
of the number of moves required to flood T . This result can be applied to give
polynomial-time algorithms for flood-filling problems.

Corollary 19 (Meeks and Scott [30]). Free-Flood-It is solvable in polynomial
time on subdivisions of any fixed graph H.
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6 Final Considerations

We revisited recent results (see [1,7,8,12–15,19,25,28–31,35,40,41]) on flood-
filling games. Many complexity issues on Flood-It and Free-Flood-It have
recently been investigated, and these games have presented interesting behav-
ior when played on non-grid graphs. We also briefly presented a multivariate
investigation of the complexity of Flood-It and Free-Flood-It when played on
trees provided in [13,39,40]. During our analysis we remember that Flood-It on
trees is analogous to Restricted Shortest Common Supersequence, and Flood-It
remains NP-hard on 3-colored trees. We also revisited a general framework for
reducibility from Flood-It to Free-Flood-It. From the parameterized complexity
point of view, we revisited recent results which show that: Flood-It game played
on graphs with bounded minimum vertex cover is fixed-parameter tractable,
and admits polynomial kernelization when besides the minimum vertex cover,
the number of colors is also part of the parameter.

6.1 Open Problems

We present some open problems on flood-filling games:

– What are the complexities of [c = 3]-Flood-It and [c = 3]-Free-Flood-It on
k × n grids, in the case that k ≥ 3 is a fixed integer?

– Does Flood-It(r) remain fixed-parameter tractable on general pc-trees?

Motivated by the general framework for reducibility from Flood-It to Free-
Flood-It presented in [13], the following question arises:

– Is there any graph class for which Free-Flood-It can be solved in polynomial
time, but Flood-It is NP-hard?

In addition, it is interesting to identify new graph classes for which Flood-It
can be non-trivially solvable in polynomial time. It is also interesting to identify
other single parameters for which Flood-It is fixed-parameter tractable.

We could think of games as a way of defining graph parameters. The
paper [34], gives a game-defined look at graph structure. From this perspec-
tive, they show that it follows that branch-width is polynomially computable
for planar graphs. Maybe a parameter such as “flood-filling number” will be
similarly a useful structural parameter.

6.2 Flood-Filling Games in Teaching Computational Thinking

From the beginning of time, humans have generated knowledge of the world
around them and have developed procedures (or algorithms) in order to reach
their goals [21]. This makes computer science crucial to the development of
society, and modular thinking as a fundamental tool for human creative work
[20].
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In [22], an efficient and didactic method of teaching computational thinking
(or algorithmic thinking) by introducing the concepts gradually is described.
This is done by using the spiral curriculum, which goes back to the research
of Jerome Bruner in the 1960s. The Center for Computer Science Education
of ETH Zurich follows this principle when designing teaching materials. The
increase in knowledge occurs gradually, along with the development of intuition
and the ability to abstract. Thus, students can be introduced to computational
thinking from primary school, learning to develop their programs in a modular
and structured way.

The elaboration of the spiral curriculum has many levels of depth [21], making
it an excellent tool for developing algorithmic thinking. The algorithm concept
is very abstract and can be introduced gradually. Initially, one can work with
specific inputs of a problem and intuitive strategies. Then, one can work with
more robust strategies, analyzing the universe of viable solutions when possible.
At a further level, one can analyze the quality of the solutions, and then look
for good solutions, when the analysis of all solutions is not possible anymore.

One of the well-studied methods for teaching computational thinking is the
use of digital games. We can find in the literature both studies of the didactic use
of games already available and commonly used for recreation [4] and the develop-
ment of games and platforms specifically aimed at computer education [22,23].

The flood-filling game is available on a variety of websites and applications
and it can be configured for board dimensions and number of colors. Using the
spiral approach, one can initially propose matches to the students with a small
board and a small number of colors so that they find viable solutions and even
list all of them. At this stage, they may observe that certain flooding moves do
not change the number of tiles flooded, while other choices increase the flood.
They may notice that among the colors that increase the flood, some increase it
more than others. When comparing all the solutions found, they learn to measure
the quality of each solution, noting that some have fewer moves than others. The
goal of the game is then understood and the optimal solutions are those that
have the least number of moves. Looking at these solutions, some concepts of
simple and robust strategies, such as greedy, can be introduced. As the size of
the board and the number of colors is increased, finding all the solutions is no
longer a feasible task. Students are then prompted to search for heuristics that
find a good solution. At this step, one can observe and discuss some algorithm
development strategies, which can guarantee optimal solutions for some problems
but not for others, such as flood-filling, and it is possible to explain the concept
of NP-difficulty. The flood-filling game is useful for demonstrating and teaching
many basic concepts of computation, from trivial definitions about graphs such
as “neighborhood” and “the distance between two vertices”, to more complex
concepts. Clearly, a study on which concepts should be inserted at each age and
school subject is needed [20].
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