
Polynomial With Minimal Deviance
(This work was done by Chebyshev in the 1800’s.)

Def 0.1 If f is a function and a < b then the deviance of f on [a, b] is maxx∈[a,b] |f(x)|.

We seek polynomials with minimum deviance. We first TRY to state this problem.
Problem: Given n, find the polynomial of degree n that has least deviance in the
interval [−1, 1].

There is a problem with this problem. For degree 3 take f(x) = 1
1000

x3. If I
made the lead coefficient even smaller we could do better, so the problem has no real
answer.

Def 0.2 A polynomial is monic if its lead coefficient is 1.

Problem: Given n, find the monic polynomial of degree n that has least deviance in
the interval [−1, 1].

Example 0.3 n = 1. So f(x) = x + c for some c. f(x) = x has deviance 1. You can
easily prove that if c 6= 0 then f(x) = x + c will have larger deviance. Deviation is 1
which we write as 20 = 2n−1.

Example 0.4 n = 2. So f(x) = x2 + bx + c for some b, c. If b = 0 then we have
f(x) = x2 + c. Lets assume that f(1) > 0 and f(0) < 0.

f(1) = 1 + c, |f(1)| = 1 + c.
f(−1) = 1 + c, |f(−1) = 1 + c.
f(0) = c, |f(0)| = −c.
To get these to be minimal set them equal. 1 + c = −c so c = −1/2.
SO, a good candidate is f(x) = x2− 1

2
. Deviation is 1

2
which we write as 2(−1) =

2n−1.
Can we do better? No. Assume that g(x) was a monic quadratic that did better.

Since g(1) < f(1), g(0) > f(0), and g(−1) < f(1), we have that the f and g functions
cross twice. That is, there exists a, b such that f(a) = g(a) and f(b) = g(b). Since
f, g are monic quadratic, we have f = g.

We now try to solve the general problem.
IDEAS: We try to find a polynomial that HUGS the deviance lines above and below.
A function that LOOKS that way is Cosine. Unfortunately cosine is not a polynomial
Even so, we can use this similarlity.

Lemma 0.5 For all n, there exists fn monic, degree n, such that fn(cos α) = 1
2n−1 cos nα.

We will later prove Lemma 0.5 constructively so that the fn’s can be calculated.
For now we just use Lemma 0.5.
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Theorem 0.6 Let fn be as in Lemma 0.5. The deviance of fn on [−1, 1] is d = 1
2n−1 .

The number of times that fn hits the y = d or y = −d lines is exactly n + 1.

Proof:
The key is that the function cos α is a bijection from [0, π] to [−1, 1].
Let x ∈ [−1, 1]. Let α ∈ [0, π] be such that x = cos α. Then

fn(x) = fn(cos α) =
1

2n−1
cos nα.

Since cos is always between -1 and 1 we have

− 1

2n−1
≤ fn(x) ≤ 1

2n−1
.

Hence the deviance of fn(x) on [−1, 1] is 1
2n−1 .

We want to know when fn(x) = ± 1
2n−1 .

fn(x) = ± 1

2n−1
iff

x = cos α and cos nα = ±1 iff

x = cos α and α ∈ {0, π

n
,
2π

n
, . . . ,

nπ

n
} iff

x ∈ {cos 0, cos
π

n
, cos

2π

n
, . . . , cos

nπ

n
}.

There are n + 1 of these points.

Theorem 0.7 For all n the monic polynomial with the least deviance on [−1, 1] is
fn from Lemma 0.5.

Proof: If h is a monic polynomial with better deviance then fn then we can show
that h and fn must cross in n points, and hence are the same. (draw the picture
yourself).

Proof of Lemma 0.5 which we restate and elaborate on:
For all n, there exists fn monic, degree n, such that fn(cos α) = 1

2n−1 cos nα.
Proof:

We first show that, for all n there exists a (not monic) polynomial gn of degree
n such that gn(cos α) = cos(nα). We will keep track of the leading coefficient of gn.
We prove this by induction on n.

Clearly g0(x) = 1 and g1(x) = x.
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Assume that gn−1(cos α) = cos(n − 1)α and gn(cos α) = cos(n)α. We get gn+1 in
terms of gn and gn−1.

Recall that

cos(x + y) = cos x cos y − sin x sin y
cos(x− y) = cos x cos y + sin x sin y

Hence we have

cos((n + 1)α) = cos nα cos α− sin nα sin α
cos((n− 1)α) = cos nα cos α + sin nα sin α

We add these and isolate the cos(n + 1)α) term to get

cos((n + 1)α) = 2 cos nα cos α− cos((n− 1)α)

Inductively cos(nα) = gn(cos α) and cos((n− 1)α) = gn−1(cos α).
So we have

cos((n + 1)α) = 2 · gn(cos α) cos α− gn−1(cos α)

So
gn+1(x) = 2xgn(x)− gn−1(x).
Note that

g0(x) = 1
g1(x) = x
g2(x) = 2x2 − 1
g3(x) = 4x3 − 2x− x = 4x3 − 3x
g4(x) = 8x4 − 6x2 − 2x2 + 1 = 8x4 − 8x2 + 1

One can easily prove by induction that, for all n ≥ 1, gn has leading coeffient
2n−1. Note that g0 does not fit this pattern.

For n ≥ 1 let fn(x) = 1
2n−1 gn(x). Note that fn is monic, degree n, and fn(x) =

1
2n−1 cos(nα).

Note 0.8 From the recurrence we can deduce some things about gn. One can easily
prove by induction that (1) if n is even then gn only uses even powers and if n is odd
then gn only uses odd powers, and (2) if n ≡ 0 (mod 4) then the constant term is
1, if n ≡ 2 (mod 4) then the constant term is -1, and if n ≡ 1, 3 (mod 4) then the
constant term is 0.

Example 0.9

f1(x) = x
f2(x) = x− 1

2

f3(x) = x3 − 3
4
x

f4(x) = x4 − x2 + 1
8
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Is there a way to compute these without using the recurrence? There is— we
derive it using generating functions. We first derive a closed form for gn then modify
it for fn. We write gn instead of gn.

Let Φ =
∑∞

n=0 gnz
n. We will obtain another expression for Φ so that we can read

off the coeff of zn which will be a poly in x of degree n. of degree n.

Φ =
∑∞

n=0 gnz
n = g0 + g1z +

∑∞
n≥2 gnz

n

g0 + g1z +
∑∞

n≥2(2xgn−1 − gn−2)z
n

g0 + g1z + 2x
∑∞

n≥2 gn−1z
n − ∑

n≥2 gn−2z
n

g0 + g1z + 2xz
∑∞

n≥2 gn−1z
n−1 − z2 ∑

n≥2 gn−2z
n−2

g0 + g1z + 2xz
∑∞

n≥1 gnz
n − z2 ∑

n≥0 gnz
n

g0 + g1z + 2xz(−g0 +
∑∞

n≥0 gnz
n)− z2 ∑

n≥0 gnz
n

g0 + g1z + 2xz(−g0 + Φ)− z2Φ
1 + xz + 2xz(−1 + Φ)− z2Φ
1 + xz − 2xz + 2xzΦ− z2Φ
1− xz + 2xzΦ− z2Φ

Φ− 2xzΦ + z2Φ = 1− xz
Φ(1− 2xz + z2) = 1− xz

Φ = 1−xz
1−2xz+z2

Φ = 1−xz
1−(2xz−z2)

Now we want to look at

1
1−(2xz−z2)

=
∑∞

n=0(2xz − z2)n

=
∑∞

n=0

∑n
i=0

(
n
i

)
(z2)i(2xz)n−i(−1)i

=
∑∞

n=0

∑n
i=0

(
n
i

)
z2i(2x)n−izn−i(−1)i

=
∑∞

n=0

∑n
i=0

(
n
i

)
zn+i(2x)n−i(−1)i

=
∑∞

n=0

∑n
i=0

(
n
i

)
(−1)i(2x)n−izn+i

We rewrite this so that n + i is the outer sum. Let m = n + i. As m goes from 0
to infinity, i goes from 0 to bm/2c.

1
1−(2xz−z2)

=
∑∞

n=0

∑n
i=0

(
n
i

)
(−1)i(2x)n−izn+i∑∞

m=0

∑bm/2c
i=0

(
m−i

i

)
(−1)i(2x)m−2izm∑∞

m=0 zm ∑bm/2c
i=0

(
m−i

i

)
(−1)i(2x)m−2i∑∞

n=0 zn ∑bn/2c
i=0

(
n−i

i

)
(−1)i(2x)n−2i

Let hn(x) =
∑bn/2c

i=0

(
n−i

i

)
(−1)i(2x)n−2i. Then 1

1−(2xz−z2)
=

∑
n≥0 hn(x)zn. But we

are interested in 1−xz
1−(2xz−z2)

= (1− xz)
∑

n≥0 hn(x)zn.
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(1− xz)
∑

n≥0 hn(x)zn =
∑

n≥0 hn(x)zn − xz
∑

n≥0 hn(x)zn

=
∑

n≥0 hn(x)zn − ∑
n≥0 xhn(x)zn+1

=
∑

n≥0 hn(x)zn − ∑
m≥1 xhm−1(x)zm

=
∑

n≥0 hn(x)zn − ∑
n≥1 xhn−1(x)zn

= h0 +
∑

n≥1 hn(x)zn − ∑
n≥1 xhn−1(x)zn

= h0 +
∑

n≥1(hn(x)− xhn−1(x))zn

Recall that we want the coef of zn. Hence we want hn(x) − xhn−1(x)). We first
get a neater form for hn. There are two cases. We do the first case, m even, and leave
the second case, m odd, to the reader.
Case 1: n is even. So n = 2m and bn/2c = m, bn− 1/2c = m− 1.

hn(x) =
∑bn/2c

i=0

(
n−i

i

)
(−1)i(2x)n−2i

=
∑m

i=0

(
2m−i

i

)
(−1)i(2x)2m−2i

=
∑m

i=0

(
2m−i

i

)
(−1)i(2x)2(m−i) now set j = m− i

=
∑m

j=0

(
m+j
m−j

)
(−1)m−j(2x)2j

=
∑m

i=0

(
m+i
m−i

)
(−1)m−i22ix2i

hn−1(x) =
∑m−1

i=0

(
2m−i−1

i

)
(−1)i(2x)2m−2i−1

=
∑m−1

i=0

(
2m−i−1

i

)
(−1)i(2x)2m−2i−1

=
∑m−1

i=0

(
2m−i−1

i

)
(−1)i(2x)2(m−i)−1 now set j = m− i

=
∑m

j=1

(
m+j−1

m−j

)
(−1)m−j(2x)2j−1

=
∑m

i=1

(
m+i−1

m−i

)
(−1)m−i22i−1x2i−1

xhn−1(x) =
∑m−1

i=0

(
m+i−1

m−i

)
(−1)m−i22i−1x2i

So

hn(x)− xhn−1(x) =
∑m

i=0

(
m+i
m−i

)
(−1)m−i22ix2i − ∑m

i=1

(
m+i−1

m−i

)
(−1)i22i−1x2i

= (−1)m +
∑m

i=1(
(

m+i
m−i

)
(−1)m−i22i −

(
m+i−1

m−i

)
(−1)i22i−1)x2i

Hence if m = 2n then
gn(x) = (−1)m +

∑m
i=1(

(
m+i
m−i

)
(−1)m−i22i −

(
m+i−1

m−i

)
(−1)i22i−1)x2i

Thus
fn(x) = 1

2n−1 gn(x) =
(−1)m

2n−1 +
∑m

i=1(
(

m+i
m−i

)
(−1)m−i22i−n+1 −

(
m+i−1

m−i

)
(−1)i22i−n)x2i
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