Polynomial With Minimal Deviance

(This work was done by Chebyshev in the 1800's.)

Def 0.1 If f is a function and a < b then the **deviance of** f **on** [a, b] is $\max_{x \in [a, b]} |f(x)|$.

We seek polynomials with minimum deviance. We first TRY to state this problem. **Problem:** Given n, find the polynomial of degree n that has least deviance in the interval [-1, 1].

There is a problem with this problem. For degree 3 take $f(x) = \frac{1}{1000}x^3$. If I made the lead coefficient even smaller we could do better, so the problem has no real answer.

Def 0.2 A polynomial is *monic* if its lead coefficient is 1.

Problem: Given n, find the monic polynomial of degree n that has least deviance in the interval [-1, 1].

Example 0.3 n = 1. So f(x) = x + c for some c. f(x) = x has deviance 1. You can easily prove that if $c \neq 0$ then f(x) = x + c will have larger deviance. Deviation is 1 which we write as $2^0 = 2^{n-1}$.

Example 0.4 n = 2. So $f(x) = x^2 + bx + c$ for some b, c. If b = 0 then we have $f(x) = x^2 + c$. Lets assume that f(1) > 0 and f(0) < 0.

$$f(1) = 1 + c$$
, $|f(1)| = 1 + c$.
 $f(-1) = 1 + c$, $|f(-1)| = 1 + c$.
 $f(0) = c$, $|f(0)| = -c$.

To get these to be minimal set them equal. 1 + c = -c so c = -1/2.

SO, a good candidate is $f(x) = x^2 - \frac{1}{2}$. Deviation is $\frac{1}{2}$ which we write as $2^{(-1)} = 2^{n-1}$.

Can we do better? No. Assume that g(x) was a monic quadratic that did better. Since g(1) < f(1), g(0) > f(0), and g(-1) < f(1), we have that the f and g functions cross twice. That is, there exists a, b such that f(a) = g(a) and f(b) = g(b). Since f, g are monic quadratic, we have f = g.

We now try to solve the general problem.

IDEAS: We try to find a polynomial that HUGS the deviance lines above and below. A function that LOOKS that way is Cosine. Unfortunately cosine is not a polynomial Even so, we can use this similarlity.

Lemma 0.5 For all n, there exists f_n monic, degree n, such that $f_n(\cos \alpha) = \frac{1}{2^{n-1}}\cos n\alpha$.

We will later prove Lemma 0.5 constructively so that the f_n 's can be calculated. For now we just use Lemma 0.5.

Theorem 0.6 Let f_n be as in Lemma 0.5. The deviance of f_n on [-1,1] is $d = \frac{1}{2^{n-1}}$. The number of times that f_n hits the y = d or y = -d lines is exactly n + 1.

Proof:

The key is that the function $\cos \alpha$ is a bijection from $[0, \pi]$ to [-1, 1]. Let $x \in [-1, 1]$. Let $\alpha \in [0, \pi]$ be such that $x = \cos \alpha$. Then

$$f_n(x) = f_n(\cos \alpha) = \frac{1}{2^{n-1}} \cos n\alpha.$$

Since cos is always between -1 and 1 we have

$$-\frac{1}{2^{n-1}} \le f_n(x) \le \frac{1}{2^{n-1}}.$$

Hence the deviance of $f_n(x)$ on [-1,1] is $\frac{1}{2^{n-1}}$. We want to know when $f_n(x) = \pm \frac{1}{2^{n-1}}$.

$$f_n(x) = \pm \frac{1}{2^{n-1}} \text{ iff}$$

 $x = \cos \alpha$ and $\cos n\alpha = \pm 1$ iff

$$x = \cos \alpha$$
 and $\alpha \in \{0, \frac{\pi}{n}, \frac{2\pi}{n}, \dots, \frac{n\pi}{n}\}$ iff

$$x \in \{\cos 0, \cos \frac{\pi}{n}, \cos \frac{2\pi}{n}, \dots, \cos \frac{n\pi}{n}\}.$$

There are n+1 of these points.

Theorem 0.7 For all n the monic polynomial with the least deviance on [-1, 1] is f_n from Lemma 0.5.

Proof: If h is a monic polynomial with better deviance then f_n then we can show that h and f_n must cross in n points, and hence are the same. (draw the picture yourself).

Proof of Lemma 0.5 which we restate and elaborate on:

For all n, there exists f_n monic, degree n, such that $f_n(\cos \alpha) = \frac{1}{2^{n-1}}\cos n\alpha$.

Proof:

We first show that, for all n there exists a (not monic) polynomial g_n of degree n such that $g_n(\cos \alpha) = \cos(n\alpha)$. We will keep track of the leading coefficient of g_n . We prove this by induction on n.

Clearly $g_0(x) = 1$ and $g_1(x) = x$.

Assume that $g_{n-1}(\cos \alpha) = \cos(n-1)\alpha$ and $g_n(\cos \alpha) = \cos(n)\alpha$. We get g_{n+1} in terms of g_n and g_{n-1} .

Recall that

$$cos(x + y) = cos x cos y - sin x sin y$$

$$cos(x - y) = cos x cos y + sin x sin y$$

Hence we have

$$\cos((n+1)\alpha) = \cos n\alpha \cos \alpha - \sin n\alpha \sin \alpha$$
$$\cos((n-1)\alpha) = \cos n\alpha \cos \alpha + \sin n\alpha \sin \alpha$$

We add these and isolate the $\cos(n+1)\alpha$) term to get

$$\cos((n+1)\alpha) = 2\cos n\alpha\cos\alpha - \cos((n-1)\alpha)$$

Inductively $\cos(n\alpha) = g_n(\cos \alpha)$ and $\cos((n-1)\alpha) = g_{n-1}(\cos \alpha)$. So we have

$$\cos((n+1)\alpha) = 2 \cdot g_n(\cos \alpha) \cos \alpha - g_{n-1}(\cos \alpha)$$

So

$$g_{n+1}(x) = 2xg_n(x) - g_{n-1}(x).$$

Note that

$$\begin{array}{lll} g_0(x) = & 1 \\ g_1(x) = & x \\ g_2(x) = & 2x^2 - 1 \\ g_3(x) = & 4x^3 - 2x - x = 4x^3 - 3x \\ g_4(x) = & 8x^4 - 6x^2 - 2x^2 + 1 = 8x^4 - 8x^2 + 1 \end{array}$$

One can easily prove by induction that, for all $n \geq 1$, g_n has leading coefficient 2^{n-1} . Note that g_0 does not fit this pattern.

For $n \ge 1$ let $f_n(x) = \frac{1}{2^{n-1}}g_n(x)$. Note that f_n is monic, degree n, and $f_n(x) = \frac{1}{2^{n-1}}\cos(n\alpha)$.

Note 0.8 From the recurrence we can deduce some things about g_n . One can easily prove by induction that (1) if n is even then g_n only uses even powers and if n is odd then g_n only uses odd powers, and (2) if $n \equiv 0 \pmod{4}$ then the constant term is 1, if $n \equiv 2 \pmod{4}$ then the constant term is -1, and if $n \equiv 1, 3 \pmod{4}$ then the constant term is 0.

Example 0.9

$$f_1(x) = x$$

$$f_2(x) = x - \frac{1}{2}$$

$$f_3(x) = x^3 - \frac{3}{4}x$$

$$f_4(x) = x^4 - x^2 + \frac{1}{8}$$

Is there a way to compute these without using the recurrence? There is—we derive it using generating functions. We first derive a closed form for g_n then modify it for f_n . We write g_n instead of g_n .

Let $\Phi = \sum_{n=0}^{\infty} g_n z^n$. We will obtain another expression for Φ so that we can read off the coeff of z^n which will be a poly in x of degree n.

$$\begin{split} \Phi = & \sum_{n=0}^{\infty} g_n z^n = g_0 + g_1 z + \sum_{n \geq 2}^{\infty} g_n z^n \\ & g_0 + g_1 z + \sum_{n \geq 2}^{\infty} (2x g_{n-1} - g_{n-2}) z^n \\ & g_0 + g_1 z + 2x \sum_{n \geq 2}^{\infty} g_{n-1} z^n - \sum_{n \geq 2} g_{n-2} z^n \\ & g_0 + g_1 z + 2x z \sum_{n \geq 2}^{\infty} g_{n-1} z^{n-1} - z^2 \sum_{n \geq 2} g_{n-2} z^{n-2} \\ & g_0 + g_1 z + 2x z \sum_{n \geq 1}^{\infty} g_n z^n - z^2 \sum_{n \geq 0} g_n z^n \\ & g_0 + g_1 z + 2x z (-g_0 + \sum_{n \geq 0}^{\infty} g_n z^n) - z^2 \sum_{n \geq 0} g_n z^n \\ & g_0 + g_1 z + 2x z (-g_0 + \Phi) - z^2 \Phi \\ & 1 + x z + 2x z (-1 + \Phi) - z^2 \Phi \\ & 1 + x z - 2x z + 2x z \Phi - z^2 \Phi \\ & 1 - x z + 2x z \Phi - z^2 \Phi \\ \Phi - 2x z \Phi + z^2 \Phi &= 1 - x z \\ \Phi (1 - 2x z + z^2) &= 1 - x z \\ \Phi = & \frac{1 - x z}{1 - 2x z + z^2} \\ \Phi = & \frac{1 - x z}{1 - (2x z - z^2)} \end{split}$$

Now we want to look at

$$\frac{1}{1-(2xz-z^2)} = \sum_{n=0}^{\infty} (2xz - z^2)^n
= \sum_{n=0}^{\infty} \sum_{i=0}^{n} {n \choose i} (z^2)^i (2xz)^{n-i} (-1)^i
= \sum_{n=0}^{\infty} \sum_{i=0}^{n} {n \choose i} z^{2i} (2x)^{n-i} z^{n-i} (-1)^i
= \sum_{n=0}^{\infty} \sum_{i=0}^{n} {n \choose i} z^{n+i} (2x)^{n-i} (-1)^i
= \sum_{n=0}^{\infty} \sum_{i=0}^{n} {n \choose i} (-1)^i (2x)^{n-i} z^{n+i}$$

We rewrite this so that n+i is the outer sum. Let m=n+i. As m goes from 0 to infinity, i goes from 0 to $\lfloor m/2 \rfloor$.

$$\frac{1}{1-(2xz-z^2)} = \sum_{n=0}^{\infty} \sum_{i=0}^{n} {n \choose i} (-1)^i (2x)^{n-i} z^{n+i}$$

$$\sum_{m=0}^{\infty} \sum_{i=0}^{\lfloor m/2 \rfloor} {m-i \choose i} (-1)^i (2x)^{m-2i} z^m$$

$$\sum_{m=0}^{\infty} z^m \sum_{i=0}^{\lfloor m/2 \rfloor} {m-i \choose i} (-1)^i (2x)^{m-2i}$$

$$\sum_{n=0}^{\infty} z^n \sum_{i=0}^{\lfloor n/2 \rfloor} {n-i \choose i} (-1)^i (2x)^{n-2i}$$

Let $h_n(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} {n-i \choose i} (-1)^i (2x)^{n-2i}$. Then $\frac{1}{1-(2xz-z^2)} = \sum_{n \geq 0} h_n(x) z^n$. But we are interested in $\frac{1-xz}{1-(2xz-z^2)} = (1-xz) \sum_{n \geq 0} h_n(x) z^n$.

$$(1-xz)\sum_{n\geq 0}h_n(x)z^n = \sum_{n\geq 0}h_n(x)z^n - xz\sum_{n\geq 0}h_n(x)z^n$$

$$= \sum_{n\geq 0}h_n(x)z^n - \sum_{n\geq 0}xh_n(x)z^{n+1}$$

$$= \sum_{n\geq 0}h_n(x)z^n - \sum_{m\geq 1}xh_{m-1}(x)z^m$$

$$= \sum_{n\geq 0}h_n(x)z^n - \sum_{n\geq 1}xh_{n-1}(x)z^n$$

$$= h_0 + \sum_{n\geq 1}h_n(x)z^n - \sum_{n\geq 1}xh_{n-1}(x)z^n$$

$$= h_0 + \sum_{n\geq 1}(h_n(x) - xh_{n-1}(x))z^n$$

Recall that we want the coef of z^n . Hence we want $h_n(x) - xh_{n-1}(x)$). We first get a neater form for h_n . There are two cases. We do the first case, m even, and leave the second case, m odd, to the reader.

Case 1: n is even. So n = 2m and $\lfloor n/2 \rfloor = m$, $\lfloor n - 1/2 \rfloor = m - 1$.

$$h_n(x) = \sum_{i=0}^{\lfloor n/2 \rfloor} {n-i \choose i} (-1)^i (2x)^{n-2i}$$

$$= \sum_{i=0}^m {2m-i \choose i} (-1)^i (2x)^{2m-2i}$$

$$= \sum_{i=0}^m {2m-i \choose i} (-1)^i (2x)^{2(m-i)} \text{ now set } j = m-i$$

$$= \sum_{j=0}^m {m+j \choose m-j} (-1)^{m-j} (2x)^{2j}$$

$$= \sum_{i=0}^m {m+i \choose m-i} (-1)^{m-i} 2^{2i} x^{2i}$$

$$h_{n-1}(x) = \sum_{i=0}^{m-1} {2m-i-1 \choose i} (-1)^i (2x)^{2m-2i-1}$$

$$= \sum_{i=0}^{m-1} {2m-i-1 \choose i} (-1)^i (2x)^{2m-2i-1}$$

$$= \sum_{i=0}^{m-1} {2m-i-1 \choose i} (-1)^i (2x)^{2(m-i)-1} \text{ now set } j = m-i$$

$$= \sum_{j=1}^{m} {m+j-1 \choose m-j} (-1)^{m-j} (2x)^{2j-1}$$

$$= \sum_{i=1}^{m} {m+i-1 \choose m-i} (-1)^{m-i} 2^{2i-1} x^{2i-1}$$

$$xh_{n-1}(x) = \sum_{i=0}^{m-1} {m+i-1 \choose m-i} (-1)^{m-i} 2^{2i-1} x^{2i}$$

So

$$\begin{array}{ll} h_n(x) - x h_{n-1}(x) = & \sum_{i=0}^m \binom{m+i}{m-i} (-1)^{m-i} 2^{2i} x^{2i} - \sum_{i=1}^m \binom{m+i-1}{m-i} (-1)^i 2^{2i-1} x^{2i} \\ &= & (-1)^m + \sum_{i=1}^m \binom{m+i}{m-i} (-1)^{m-i} 2^{2i} - \binom{m+i-1}{m-i} (-1)^i 2^{2i-1} x^{2i} \end{array}$$

Hence if
$$m = 2n$$
 then

Thence if
$$m = 2n$$
 then $g_n(x) = (-1)^m + \sum_{i=1}^m {m+i \choose m-i} (-1)^{m-i} 2^{2i} - {m+i-1 \choose m-i} (-1)^i 2^{2i-1} x^{2i}$ Thus

$$f_n(x) = \frac{1}{2^{n-1}} g_n(x) = \frac{(-1)^m}{2^{n-1}} + \sum_{i=1}^m {m+i \choose m-i} (-1)^{m-i} 2^{2i-n+1} - {m+i-1 \choose m-i} (-1)^i 2^{2i-n} x^{2i}$$