Polynomial With Minimal Deviance
(This work was done by Chebyshev in the 1800’s.)

Def 0.1 If fis a function and a < b then the deviance of f on [a, b] is max,¢[q ) | f ()]

We seek polynomials with minimum deviance. We first TRY to state this problem.
Problem: Given n, find the polynomial of degree n that has least deviance in the
interval [—1, 1].

There is a problem with this problem. For degree 3 take f(z) = gz If I
made the lead coefficient even smaller we could do better, so the problem has no real

answer.
Def 0.2 A polynomial is monic if its lead coefficient is 1.

Problem: Given n, find the monic polynomial of degree n that has least deviance in
the interval [—1,1].

Example 0.3 n=1. So f(x) =z + ¢ for some c. f(x) =z has deviance 1. You can
easily prove that if ¢ # 0 then f(x) = x 4 ¢ will have larger deviance. Deviation is 1
which we write as 2° = 271,

Example 0.4 n = 2. So f(z) = 2* + bz + ¢ for some b,c. If b = 0 then we have
f(x) = 2® + c. Lets assume that f(1) > 0 and f(0) < 0.

f)=1+¢ |f(D)]=1+c

f(=1)=1+¢ |f(-1)=1+c

f(0)=c, [f(0)] = —c.

To get these to be minimal set them equal. 14+ ¢= —cso c=—1/2.

SO, a good candidate is f(z) = 2% — . Deviation is § which we write as 20— 1) =
ot

Can we do better? No. Assume that g(x) was a monic quadratic that did better.
Since g(1) < f(1), g(0) > f(0), and g(—1) < f(1), we have that the f and g functions
cross twice. That is, there exists a,b such that f(a) = g(a) and f(b) = g(b). Since
f, g are monic quadratic, we have f = g.

We now try to solve the general problem.
IDEAS: We try to find a polynomial that HUGS the deviance lines above and below.
A function that LOOKS that way is Cosine. Unfortunately cosine is not a polynomial
Even so, we can use this similarlity.

Lemma 0.5 For alln, there exists f, monic, degree n, such that f,(cos a) = 2,1%1 COS nQ.

We will later prove Lemma 0.5 constructively so that the f,,’s can be calculated.
For now we just use Lemma 0.5.



Theorem 0.6 Let f, be as in Lemma 0.5. The deviance of f, on [—1,1] is d = 5.
The number of times that f,, hits the y = d or y = —d lines is evactly n + 1.

Proof:
The key is that the function cos « is a bijection from [0, 7] to [—1, 1].
Let z € [-1,1]. Let o € [0, 7] be such that # = cosa. Then

1
fa(z) = falcosa) = ST Cos N
Since cos is always between -1 and 1 we have

1 1
_2n—1 < fn(x) — 9n-1°
1

Hence the deviance of f,,(z) on [~1,1] is 5.

We want to know when f,(x) = :I:in,l.

z =cosa and cosna = £1 iff

T 27T nmw. .
r=cosaand a € {0,—, —,...,—}iff
n' n n
T 2 nmw
x € {cos0,cos —,cos —,...,cos —}.
n n n

There are n + 1 of these points.
|

Theorem 0.7 For all n the monic polynomial with the least deviance on [—1,1] is
fn from Lemma 0.5.

Proof: If h is a monic polynomial with better deviance then f,, then we can show
that h and f, must cross in n points, and hence are the same. (draw the picture

yourself). 1

Proof of Lemma 0.5 which we restate and elaborate on:

For all n, there exists f,, monic, degree n, such that f,(cosa) = Qn—l,l cos na.
Proof:

We first show that, for all n there exists a (not monic) polynomial g, of degree
n such that g,(cosa) = cos(na). We will keep track of the leading coefficient of g,.
We prove this by induction on n.

Clearly go(z) =1 and ¢y (z) = =.



Assume that g,,_1(cosa) = cos(n — 1)a and g,,(cos ) = cos(n)a. We get g, 41 in
terms of g, and ¢,_1.
Recall that

cos(x +y) = cosxcosy —sinzsiny
cos(z —y) = cosxcosy +sinxsiny
Hence we have
cos((n + 1)a) = cosna cosa — sin nasin o
cos((n — 1)a) = cosnacos o + sin nasin o

We add these and isolate the cos(n + 1)a) term to get

cos((n + 1)a) = 2cosnacosa — cos((n — 1))

Inductively cos(na) = g,(cos ) and cos((n — 1)) = g,—1(cos ).

So we have
cos((n +1)a) = 2-g,(cosa)cosa — g,—1(cos )

So
n1(z) = 22gn(7) — gn-1(2).
Note that

go(z)= 1

g(r)= =

go(z) = 22% —1

g3(x) = 42® — 2z — 1 =42 — 3x

gi(x) = 8z* —62% — 222 +1 =8z — 822 + 1

One can easily prove by induction that, for all n > 1, g, has leading coeffient
27~ Note that gy does not fit this pattern.

For n > 1 let f,(z) = 5i=rgn(x). Note that f, is monic, degree n, and f,(z) =
it cos(na).

Note 0.8 From the recurrence we can deduce some things about g,. One can easily
prove by induction that (1) if n is even then g, only uses even powers and if n is odd
then g, only uses odd powers, and (2) if n =0 (mod 4) then the constant term is
1,if n =2 (mod 4) then the constant term is -1, and if n = 1,3 (mod 4) then the
constant term is 0.

Example 0.9
filz) = =
folx)= o —3
fale) = 2~
file) = ot =22+



Is there a way to compute these without using the recurrence?” There is— we
derive it using generating functions. We first derive a closed form for g, then modify
it for f,. We write g, instead of g,.

Let ® =3"7°, g,2". We will obtain another expression for ¢ so that we can read
off the coeff of 2™ which will be a poly in = of degree n. of degree n.

D= >,l09n2" =G0+ G172+ 3030 gnZ"
9o+ 912 + 303020 Gn—1 — Gn-2)2"
go+ g1z + 2x Z?LOZQ Gn-12" = Xz Gn—22"
Go+ 912+ 222308 gno12" T = 2% Y50 Gn2?”
Go+ 912+ 2223051 g2 — 22250 Gn 2"
go+ 912 +222(—go + 2020 Gn ") — 2° Lps0 Gn 2"
go + g1z + 222(—go + ®) — 2P
1+ xz+2x2(—1+ @) — 22P
1+x2— 222+ 2220 — 2P
1 — 22+ 222 — 220

O — 2020+ 20 =1—az
P(1—2z2+2%) = 1—x2

-2

_ l—xz
¢ = 172190z+z2
= 17Tz
¢ = 1—(2z2—22)

Now we want to look at

m = Yoo(2z —22)"
= Yoyt (1) (D) (2zz) T (—1)
= Yoy (1) (2x) e (=)
— T, (1)t (2e)m T (~ 1)
= Yo X (7) (=1) 2z

We rewrite this so that n 44 is the outer sum. Let m = n +i. As m goes from 0
to infinity, ¢ goes from 0 to [m/2].

o = Lo X (1) (< 1)i(2a)m it
D im= OZWQJ (m_l)( 1)i(2x)m % m
2o 2 () (— 1) 20y
0 S (77 1)( 1)i(22)"%

Let h,(z) = 220 ("7 )(-1)@‘(2 )", Then =g = Sy ha(2)2". But we
are interested in % = (1 = 22) Xpso hn(z)2"



(1 —22) Y50 hn(x)2" = ) >
)2 = Yz Thy () 2"
x)2" =31 Thy—1(2) 2™
)zt — > on>1 zhy_1(z)2"
> — 21 Thy_1(x)2"
= ho+ Lnz1(hn(x) — 2hyo(2))2"
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Recall that we want the coef of 2. Hence we want h,(z) — zh,_1(x)). We first
get a neater form for h,. There are two cases. We do the first case, m even, and leave
the second case, m odd, to the reader.

Case 1: nis even. Son =2m and [n/2] =m, [n —1/2] =m — 1.

ho(z) = Ztn/% n— Z> —1)i(2z)n2

— 2m i 1)1(2 2m 2i
- sz 1)1( )20m=0) now set j =m —i

_ m m+] m j ZIE 27

— (m-H) m 1221 24

hnoa(x) = X060 (") (=12
— Zm 1 2m i— ( 1)1,(2 )2m—2i—1
= Yt 2m T (=1)4(22)2m =D~ now set j =m — i
=y (mﬂ N (=1)mi (22) %

)2m72i71

8

J=1\ m—j
= B () (e
Thy_1(z) = 275! (mrjl'i_il)(_l)m—iQQi—lx%
So
ho(2) = whn_y () = Xy (0H) (—1)mig2ig? — o (M) (— 122 1y
= (=" ((m+z)(_1)m—i22i_(m%rzl)(_lyfi—l)xz

Hence if m = 2n then

gnlz) = (=)™ + 7 (<m+l>(_1)m7i22i _ (m;;i—il>(_1)i22ifl)x2i
Thus

fa(z) = Tb%lgn('r) =

(Q—nlzzn + Zgl((ztz:)(_l)m—iQ%—n—i-l _ (m+if1)(_1)i22z‘—n)x2i

m—1



